¶Intersection of ≤ t₁ and ≤ t₂
The intersection of two upper bounds is an upper bound of the meet (or intersection) of the two types.
(≤ t₁) ∧ (≤ t₂) = ≤ (t₁ ∩ t₂)
¶Equationally
⟦≤ t₁⟧ = {x | x ⊆ t₁} ⟦≤ t₂⟧ = {x | x ⊆ t₂} ⟦(≤ t₁) ∧ (≤ t₂)⟧ = {x | x ⊆ t₁} ∩ {x | x ⊆ t₂} = {x | x ⊆ t₁ ∧ x ⊆ t₂} = {x | x ⊆ (t₁ ∩ t₂)} = ⟦≤ (t₁ ∩ t₂)⟧
¶Graphically
If t₁ = {0,1} and t₂ = {1,2}, then the initial constraints are
≤ t₁ 🮣───╼╸{0,1,2}╺╾───🮢 🮣🮠 ╻ 🮡🮢 ┏━━━┷━━━┓ ╵ ╵ ┃ {0,1} ┃ 🮣╸{0,2}╺🮢 🮣╸{1,2} ┗━━━┳━━━┫ │ 🮡🮦🮠 ╻ ┏━━┷━━┓🮡🮦🮠┏━━━━━┓🮣🮧🮢 ╵ ┃ {0} ┠─🮧─┨ {1} ┠🮠 🮡─╴{2} ┗━━┳━━┛ ┗━━┳━━┛ ╻ 🮡🮢 ┏━━┷━━┓ 🮣🮠 🮡─────┨ { } ┠─────🮠 ┗━━━━━┛
and
≤ t₂ 🮣───╼╸{0,1,2}╺╾───🮢 🮣🮠 ╻ 🮡🮢 ╵ ╵ ┏━━━┷━━━┓ {0,1}╺🮢 🮣╸{0,2}╺🮢 ┃ {1,2} ┃ ╻ 🮡🮦🮠 │ ┣━━━┳━━━┛ ╵ 🮣🮧🮢┏━━━━━┓🮡🮦🮠┏━━┷━━┓ {0}╶─🮠 🮡┨ {1} ┠─🮧─┨ {2} ┃ ╻ ┗━━┳━━┛ ┗━━┳━━┛ 🮡🮢 ┏━━┷━━┓ 🮣🮠 🮡─────┨ { } ┠─────🮠 ┗━━━━━┛
The intersection should be
(≤ t₁) ∧ (≤ t₂) 🮣───╼╸{0,1,2}╺╾───🮢 🮣🮠 ╻ 🮡🮢 ╵ ╵ ╵ {0,1}╺🮢 🮣╸{0,2}╺🮢 🮣╸{1,2} ╻ 🮡🮦🮠 🮡🮦🮠 ╻ ╵ 🮣🮧🮢┏━━━━━┓🮣🮧🮢 ╵ {0}╶─🮠 🮡┨ {1} ┠🮠 🮡─╴{2} ╻ ┗━━┳━━┛ ╻ 🮡🮢 ┏━━┷━━┓ 🮣🮠 🮡─────┨ { } ┠─────🮠 ┗━━━━━┛
Since the meet (intersection) of t₁ and t₂ is {1}, we can write this as
(≤ t₁) ∧ (≤ t₂) = ≤ (t₁ ∩ t₂)