dcreager.net

Intersection of ≁ t₁ and ~ t₂

(≁ t₁) ∧ (~ t₂) = ∅                 if t₁ = t₂
                = (≠ t₁) ∧ (~ t₂)   otherwise

Equationally

Case 1

If t₁ = t₂:

⟦(≁ t₁) ∧ (~ t₂)⟧
  = {x | x ⊈ t₁ ∧ t₁ ⊈ x} ∩ {x | x ⊆ t₂ ∨ t₂ ⊆ x}
  = {x | x ⊈ t₁ ∧ t₁ ⊈ x ∧ (x ⊆ t₂ ∨ t₂ ⊆ x)}
  = {x | (x ⊈ t₁ ∧ t₁ ⊈ x ∧ x ⊆ t₂) ∨ (x ⊈ t₁ ∧ t₁ ⊈ x ∧ t₂ ⊆ x)}
  = {x | (x ⊈ t₁ ∧ t₁ ⊈ x ∧ x ⊆ t₁) ∨ (x ⊈ t₁ ∧ t₁ ⊈ x ∧ t₁ ⊆ x)}
  = {x | (false) ∨ (false)}
  = {x | false}
  = ∅

Otherwise

Otherwise, the two constraints cannot be simplified.

» Theory » Constraints on sets