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This article advocates the revival of coroutines as a convenient general control abstraction. After
proposing a new classification of coroutines, we introduce the concept of full asymmetric coroutines
and provide a precise definition for it through an operational semantics. We then demonstrate
that full coroutines have an expressive power equivalent to one-shot continuations and one-shot
delimited continuations. We also show that full asymmetric coroutines and one-shot delimited
continuations have many similarities, and therefore present comparable benefits. Nevertheless,
coroutines are easier implemented and understood, especially in the realm of procedural languages.
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1. INTRODUCTION

The concept of coroutines was introduced in the early 1960’s and constitutes
one of the oldest proposals of a general control abstraction. It is attributed to
Conway, who described coroutines as “subroutines who act as the master pro-
gram,” and implemented this construct to simplify the cooperation between the
lexical and syntactical analyzers in a COBOL compiler [Conway 1963]. The
aptness of coroutines to express several useful control behaviors was widely
explored during the next twenty years in different contexts, including sim-
ulation, artificial intelligence, concurrent programming, text processing, and
various kinds of data-structure manipulation [Knuth 1968; Marlin 1980; Pauli
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and Soffa 1980]. Nevertheless, designers of general-purpose languages have
disregarded the convenience of providing a programmer with this powerful
control construct, with rare exceptions such as Simula [Birtwistle et al. 1980],
BCPL [Moody and Richards 1980], Modula-2 [Wirth 1985], and Icon [Griswold
and Griswold 1983].

The absence of coroutine facilities in mainstream languages can be partly
attributed to the lack of a uniform view of this concept, which was never pre-
cisely defined. Marlin’s doctoral thesis [Marlin 1980], widely acknowledged as
a reference for this mechanism, summarizes the fundamental characteristics
of a coroutine as follows:

—the values of data local to a coroutine persist between successive calls;

—the execution of a coroutine is suspended as control leaves it, only to
carry on where it left off when control re-enters the coroutine at some later
stage.

This description of coroutines corresponds to the common perception of the
concept, but leaves open relevant issues with respect to a coroutine construct.
Apart from the capability of keeping state, we can identify three main issues
that distinguish different kinds of coroutine facilities:

—the control-transfer mechanism, which can provide symmetric or asymmetric
coroutines;

—whether coroutines are provided in the language as first-class objects, which
can be freely manipulated by the programmer, or as constrained constructs;

—whether a coroutine is implemented as a stackful construct, that is, whether
it is able to suspend its execution from within nested calls.

Depending on the intended use for the coroutine mechanism, particular so-
lutions for these issues were adopted. As a consequence, quite different im-
plementations of coroutines were developed, such as Simula’s and Modula’s
coroutine facilities, Icon’s generators and co-expressions, and Python genera-
tors [Schemenauer et al. 2001]. Although all these constructs satisfy Marlin’s
general characterization of coroutines, they provide significantly different de-
grees of expressiveness.!

Besides the absence of a precise definition, the introduction of first-
class continuations [Kelsey et al. 1998] also contributed to the virtual end
of research interest in coroutines as a general control abstraction. Unlike
coroutines, first-class continuations have a well-defined semantics and are
widely acknowledged as an expressive construct that can be used to im-
plement several interesting features, including generators, exception han-
dling, backtracking [Felleisen 1985; Haynes 1987], multitasking at the source
level [Dybvig and Hieb 1989; Wand 1980], and also coroutines [Haynes et al.
1986]. However, with the exception of Scheme, some implementations of
ML [Harper et al. 1991], and an alternative implementation of Python [Tismer
2000], first-class continuations are not usually provided in programming
languages.

IWe will define our concept of expressiveness in Section 5.



Another significant reason for the absence of coroutines in modern languages
is the current adoption of multithreading as a de facto standard for concurrent
programming. In more recent years, several research efforts have been dedi-
cated to alternative concurrency models that can support more efficient and
less error-prone applications, such as event-driven programming and coopera-
tive multitasking. Nevertheless, mainstream languages like Java and C# still
provide threads as their primary concurrency construct.

The purpose of this article is to advocate the revival of coroutines as a
powerful control abstraction which fits nicely in procedural languages and
can be easily implemented and understood. We argue and demonstrate that,
contrary to common belief, coroutines are not far less expressive than continu-
ations. Instead, when provided as first-class objects and implemented as stack-
ful constructs (i.e., when a full coroutine mechanism is implemented) corou-
tines have power equivalent to one-shot continuations and one-shot delimited
continuations.? We also demonstrate that symmetric and asymmetric corou-
tines have equivalent expressive power. However, since asymmetric coroutines
are easier to manage and understand, and support more structured applica-
tions, we specifically defend full asymmetric coroutines as a convenient con-
struct for language extensibility.

The remainder of this article is organized as follows. Section 2 proposes a
classification of coroutine mechanisms based on the three issues mentioned
earlier, and discusses their influence on the usefulness of a coroutine facility.
Section 3 provides a formal description of our concept of full asymmetric corou-
tines. Section 4 contains a collection of programming examples that use full
asymmetric coroutines to implement some useful control behaviors. In Section 5
we show that full asymmetric coroutines can provide not only symmetric corou-
tine facilities but also one-shot continuations and one-shot delimited continu-
ations. Section 6 summarizes the work and presents some final remarks.

2. A CLASSIFICATION OF COROUTINES

The capability of keeping state between successive calls constitutes the gen-
eral and commonly adopted description of a coroutine construct. However, the
various implementations of coroutine mechanisms differ widely with respect
to their convenience and expressive power. In this section we identify and dis-
cuss the three issues that most notably distinguish coroutine mechanisms and
influence their usefulness.

2.1 Control Transfer Mechanism

A well-known classification of coroutine facilities concerns the provided control-
transfer operations and distinguishes the concepts of symmetric and asymmet-
ric coroutines. Symmetric coroutine facilities provide a single control-transfer

2The usual implementation of coroutines using continuations (e.g., Springer and Friedman [1989])
uses continuations in a one-shot manner. Similarly, the implementation of coroutines using delim-
ited continuations presented by Sitaram [1994] also uses continuations in a one-shot manner. So,
here we are concerned only with the reverse direction: how to implement one-shot continuations
and delimited continuations with coroutines.



operation that allows coroutines to explicitly pass control among themselves.
Asymmetric coroutine mechanisms (more commonly denoted as semisymmetric
or semi coroutines [Dahl et al. 1972]) provide two control-transfer operations:
one for invoking a coroutine and one for suspending it, the latter returning
control to the coroutine invoker. While symmetric coroutines operate at the
same hierarchical level, an asymmetric coroutine can be regarded as subordi-
nate to its caller, the relationship between them being somewhat similar to that
between a called and a calling routine.

Coroutine mechanisms that support concurrent programming usually pro-
vide symmetric coroutines to represent independent units of execution, like in
Modula-2. On the other hand, coroutine mechanisms intended for implement-
ing constructs that produce sequences of values typically provide asymmetric
coroutines. Examples of this type of construct are iterators [Liskov et al. 1977,
Murer et al. 1996] and generators [Griswold and Griswold 1983; Schemenauer
et al. 2001]. The general-purpose coroutine mechanisms implemented by Sim-
ula and BCPL provide both types of control transfer.

In the absence of a formal definition of coroutines, Simula’s mechanism, a
truly complex implementation of coroutines, was practically adopted as a ref-
erence for a general-purpose coroutine mechanism and greatly contributed to
the common misconception that symmetric and asymmetric coroutines are not
equally powerful. However, we demonstrate in Section 5 that we can express any
of these constructs in terms of the other; therefore, a general-purpose coroutine
mechanism can provide either symmetric or asymmetric coroutines. Provid-
ing both constructs only complicates the semantics of the mechanism, with no
increase in its expressive power.

Although equivalent in terms of expressiveness, symmetric and asymmetric
coroutines are not equivalent with respect to ease of use. Handling and under-
standing the control flow of a program that employs even a moderate number
of symmetric coroutines transferring control among themselves may require
considerable effort from a programmer. On the other hand, since asymmetric
coroutines always transfer control back to their invokers, control sequencing is
much simpler to manage and understand. The composable behavior of asym-
metric coroutines also provides support for concise implementations of several
useful control behaviors, including generators, goal-oriented programming, and
multitasking environments, as we will show in Section 4. Although implement-
ing these control behaviors with symmetric coroutines is also possible, it com-
plicates considerably the structure of programs.

2.2 First-Class versus Constrained Coroutines

An issue that considerably influences the expressive power of a coroutine mech-
anism is whether coroutines are provided as first-class objects. In some im-
plementations of coroutines, typically intended for particular uses, coroutine
objects are constrained within a textual bound and cannot be directly manip-
ulated by the programmer. An example of this restricted form of coroutine is
the iterator abstraction, which was originally proposed and implemented by
the designers of CLU to permit the traversal of data structures independently



of their internal representation [Liskov et al. 1977]. Because a CLU iterator
preserves state between successive calls, they described it as a coroutine; actu-
ally, an iterator fits Marlin’s general characterization of coroutines. However,
CLU iterators are confined within a for loop that can invoke exactly one iter-
ator. This restriction imposes a limitation to the use of the construct; parallel
traversals of two or more data collections, for instance, are not possible. Sather
iterators [Murer et al. 1996], inspired by CLU iterators, are also confined to
a single call point within a loop construct. The number of iterators invoked
per loop is not restricted as in CLU, but if any iterator terminates, the loop
terminates. Although traversing multiple collections in a single loop is possi-
ble, asynchronous traversals, as required for merging data collections, have no
simple solution.

Icon’s goal-directed evaluation of expressions [Griswold and Griswold 1983]
is an interesting language paradigm where backtracking is supported by an-
other constrained form of coroutines, named generators: expressions that may
produce multiple values. Besides providing a collection of built-in generators,
Icon also supports user-defined generators, implemented by procedures that
suspend instead of returning. Despite not being limited to a specific construct,
Icon generators are confined within an expression and can only be invoked by
explicit iteration or goal-directed evaluation. Icon generators are easier to use
than CLU and Sather iterators, but they are not powerful enough to provide
for programmer-defined control structures [Griswold and Griswold 1983]. This
facility is only provided when coroutines are implemented as first-class objects,
which can be freely manipulated by the programmer and invoked at any place.
First-class coroutines are provided, for instance, by Icon co-expressions and the
coroutine facilities implemented by Simula, BCPL, and Modula-2.

2.3 Stackfulness

Stackful coroutine mechanisms allow coroutines to suspend their execution
from within nested functions; the next time the coroutine is resumed, its exe-
cution continues from the exact point where it suspended. Stackful coroutine
mechanisms are provided, for instance, by Simula and Modula-2.

A currently observed resurgence of coroutines is in the context of scripting
languages, notably Python and Perl. In Python [Schemenauer et al. 2001], a
function that contains a yield statement is called a generator function. When
called, this function returns an object that can be resumed at any point in a
program, so it behaves as an asymmetric coroutine. Despite constituting a first-
class object, a Python generator is not a stackful construct; it can only suspend
its execution when its control stack is at the same level that it was at creation
time. In other words, only the main body of a generator can suspend. A similar
facility has been proposed for Perl 6 [Conway 2000]: the addition of a new type
of return command, also called yield, which preserves the execution state of
the subroutine in which it is called.

Python generators and similar nonstackful constructs permit the develop-
ment of simple iterators or generators but complicate the structure of more elab-
orate implementations. As an example, if items are produced within recursive



or auxiliary functions, it is necessary to create a hierarchy of auxiliary genera-
tors that yield in succession until the original invocation point is reached.

Nonstackful coroutines are also not powerful enough to support general-
purpose multitasking environments. Most programs perform I/O through aux-
iliary libraries which usually require the suspension of a task during the exe-
cution of some I/O operation to avoid blocking the whole program (e.g., when
no data is available). With nonstackful coroutines, a task cannot yield within
those libraries. Therefore, either those programs will block until the operation
completes or they must be restructured to avoid doing I/O inside library func-
tions.

2.4 Full Coroutines

Based on the preceding discussion, we can argue that according to our clas-
sification, two issues determine the expressive power of a coroutine facility:
whether coroutines are first-class objects and whether they are stackful con-
structs. In absence of these facilities, a coroutine mechanism cannot support
several useful control behaviors, notably multitasking and therefore does not
provide a general control abstraction. We then introduce the concept of a full
coroutine as a first-class, stackful object which, as we will demonstrate later,
can provide the same expressiveness as obtained with one-shot continuations.

Full coroutines can be either symmetric or asymmetric; the selection of a par-
ticular control-transfer mechanism does not influence their expressive power.
However, asymmetric coroutines are more easily managed and can support
more succinct implementations of user-defined constructs. Moreover, as we dis-
cussed in Moura et al. [2004], asymmetric coroutines can be used even in pro-
grams that call external procedures developed in languages that do not provide
coroutine support.? Therefore, we believe that full asymmetric coroutine mech-
anisms provide a more convenient control abstraction than symmetric coroutine
facilities.

3. FULL ASYMMETRIC COROUTINES

The purpose of this section is to provide a precise definition for our concept
of full asymmetric coroutines. We begin by introducing the basic operators of
this model of coroutines. We then formalize the semantics of these operators by
developing an operational semantics for a simple language that incorporates
them.*

3.1 Coroutine Operators

Our model of full asymmetric coroutines has three basic operators: create, re-
sume, and yield. The operator create creates a new coroutine. It receives a pro-
cedural argument which corresponds to the coroutine main body, and returns

3This statement seems to contradict our claims that both forms of coroutines have equivalent
expressive power. However, the notion of expressive power is limited to constructions within the
language and therefore does not apply to interlanguage constructions, which are not part of our
formal model.

4This semantics is a modified version of the semantics we presented in Moura et al. [2004].



a reference to the created coroutine. Creating a coroutine does not start its ex-
ecution; a new coroutine begins in suspended state with its continuation point
set to the beginning of its main body.

The operator resume (re)activates a coroutine. It receives as its first argu-
ment a coroutine reference returned from a previous create operation. Once
resumed, a coroutine starts executing at its saved continuation point and
runs until it suspends or its main function terminates. In either case, con-
trol is transfered back to the coroutine’s invocation point. When its main
function terminates, the coroutine is said to be dead and cannot be further
resumed.

The operator yield suspends a coroutine execution. The coroutine’s continua-
tion point is saved so that the next time the coroutine is resumed, its execution
will continue from the exact point where it suspended.

The coroutine operators allow a coroutine and its invoker to exchange data.
The first time a coroutine is activated, a second argument given to the operator
resume is passed as an argument to the coroutine main function. In subse-
quent reactivations of a coroutine, this second argument becomes the result
value of the operator yield. On the other hand, when a coroutine suspends,
the argument passed to the operator yield becomes the result value of the
operator resume that activated the coroutine. When a coroutine terminates,
the value returned by its main function becomes the result value of its last
reactivation.

3.2 Operational Semantics

In order to formalize our concept of full asymmetric coroutines, we now develop
an operational semantics for this mechanism. Our approach is similar to the
operational semantics of subcontinuations, described by Hieb et al. [1994]. We
start with a core language, a call-by-value variant of the A-calculus extended
with assignments. In this core language, the set of expressions (denoted by e)
includes labels (I, a set of constant values), variables (x), function defini-
tions (abstractions), function calls (applications), assignments, conditionals, an
equality operator for labels, and a nil value.

e > l|x|xx-e|lee|x:=e|ifethencelsee |e =¢ |nil
Expressions that denote values (v) are labels, functions, and nil.
v > I | x-e|nil

As usual, F'V(e) is the set of free variables in e; we also define LB(e) as the set
of labels in e.

A store 6, mapping variables and labels to values, is included in the definition
of the core language to allow side-effects.?

0 : (variables U labels) — values

5The core language does not provide a means to bind a value to a label. Its extensions, however,
will include and use that facility.



We extend the definition of 'V and of LB to denote the free variables and the
labels in a store.

FVio) = ] FVO®&)
xedom(d)
LB®) = [ J LBO®x)

xedom(6)

The evaluation of the core language is defined by a set of rewrite rules that are
applied to states (expression-store pairs) until a value is obtained. Evaluation
contexts [Felleisen and Friedman 1986] are used to determine, at each step, the
next subexpression to be evaluated. The evaluation contexts (C) defined for our
core language specify a right-to-left evaluation® of applications.

C - O]leC|Cv|x:=C|ifCthencelsee|e=C|C=v

The rewrite rules for evaluating the core language are given next.

(Clx], ) = (ClO(x)], 0) (1D
(Cl(xx -e)], ) = (Clelz/x1], 6z < v]), (2)
z ¢ (FV(0) UFV(C[(Ax -e)v]))
(Clx :=v], 0) = (C[v], 0lx <« v]), x € dom(0) (3)
(Clif v then e else es], ) = (Cle1], 0),v # nil (4)
(C[if nil then e elsees], ) = (Cles], 6) (5)
(Cll =11, 0) = (CII], 6) (6)
(Cll1 =121, 0) = (CInill], 0),1; #12 (7

Rule 1 states that the evaluation of a variable results in its stored value in 6.
Rule 2 describes the evaluation of applications; in this case, variable renaming
is made to guarantee the use of a fresh variable z. In rule 3, which describes
the semantics of assignments, it is assumed that the variable already exists in
the store (i.e., it was previously introduced by an abstraction). Rules 4 and 5
describe conditionals which test whether the condition is nil in order to choose
a branch. The last two rules describe the equality operator.

We say that an expression (or a program) e results in a value v, denoted as
e | v, when (e, 6y)) = (v, 6), where 6, is the empty store and 6 is any arbitrary
store. As usual, = is the reflexive-transitive closure of =.

When needed, we will use the usual syntactic sugar letx = e¢; ines meaning
(Ax -eg)e; (where x may occur free in e3); and e1;eg meaning (Ax -eg) ey for some
x not free in es. We assume that let has a lower precedence than the semicolon
and that the semicolon has a lower precedence than the other operations; for
instance, let x =e; inx :=e9;e3 binds as let x =e7 in ((x := e2);e3).

In order to incorporate asymmetric coroutines into the language, we ex-
tend the set of expressions with labeled expressions (I: e), plus the coroutine

6Later it will become clear why we use right-to-left evaluation instead of the more usual left-to-right
order.



operators.
e —> ... |l:e|createe | resumece | yield e

In our extended language, which we will call 1, we use labels as references to
coroutines, and labeled expressions to represent a currently active coroutine. As
we will see later, labeling a coroutine context allows us to identify the coroutine
being suspended when the operator yield is evaluated. The precedence of the
prefix operator /: is lower than that of the semicolon.

The definition of evaluation contexts must include the new expressions. In
this new definition we specify a right-to-left evaluation for the operator resume.

C — ... |createC |resumeeC |resumeCv |yieldC |[: C

We actually use two types of evaluation contexts: full contexts (denoted by C)
and subcontexts (denoted by C’). A subcontext is an evaluation context that
does not contain labeled contexts (I: C). It corresponds to an innermost active
coroutine (i.e., a coroutine wherein no nested coroutine occurs).

The rewrite rules that describe the semantics of the coroutine operators are
given next.

(Clereatev], 0) = (CI[l], 6l < v]), I € (LB(#)U LB(Cl[createv])) (8)
(Clresume! v], 0) = (C[l: (6()v)], O[] < nil]) 9)
(C1ll: Cilyield vll, 6) = (Cilv], 0[] < rx - Cylx]1]) (10)
(Cll:v], 8) = (Clv], 0) (11)

Rule 8 describes the action of creating a coroutine. It creates a new label to
represent the coroutine and stores a mapping from this label to the coroutine
main function.

Rule 9 shows that the resume operation produces a labeled expression which
corresponds to a coroutine continuation obtained from the store. This continu-
ation is invoked with the extra argument passed to resume. In order to prevent
the coroutine to be reactivated, its label is mapped to nil.

Rule 10 describes the action of suspending a coroutine. The evaluation of
the yield expression must occur within a labeled subcontext (C;) that resulted
from the evaluation of the resume expression that invoked the coroutine. This
restriction guarantees that a coroutine always returns control to its correspond-
ing invocation point. The argument passed to yield becomes the result value
obtained by resuming the coroutine. The continuation of the suspended corou-
tine is represented by a function whose body is created from the corresponding
subcontext. This continuation is saved in the store, replacing the mapping for
the coroutine’s label.

The last rule defines the semantics of coroutine termination, and shows that
the value returned by the coroutine main function becomes the result value ob-
tained by the last activation of the coroutine. The mapping of the coroutine label
to nil, established when the coroutine was resumed, prevents the reactivation
of a dead coroutine.



4. PROGRAMMING WITH FULL ASYMMETRIC COROUTINES

This section provides some programming examples that illustrate the use of
full asymmetric coroutines as a general control construct. We begin by pre-
senting a full asymmetric coroutine facility provided by the general-purpose
programming language Lua. This facility is then used to implement different
useful control behaviors, including some representative examples of the use of
continuations.

4.1 An Example of a Full Asymmetric Coroutine Facility

As we mentioned in Section 2.3, the incorporation of asymmetric coroutine
facilities is a growing trend in the context of modern scripting languages such
as Python and Perl. However, the coroutine mechanisms provided by these
languages are typically intended for supporting specific constructs, and do not
implement our concept of full coroutines. In particular, they do not provide
stackful coroutines.

Lua [Ierusalimschy et al. 1996; Ierusalimschy 2003] follows a different ap-
proach. Since its version 5.0, Lua provides full asymmetric coroutines intended
for use as a general control abstraction.

4.1.1 An Overview of Lua. Lua is a lightweight scripting language
that supports general procedural programming with data description facil-
ities. It is dynamically typed, lexically scoped, and has automatic memory
management.

Functions in Lua are first-class values: They can be stored in variables,
passed as arguments to other functions, and returned as results. Lua functions
are always anonymous; the syntax

function foo(x) ... end
is merely a syntactical sugar for
foo = function (x) ... end

Variables in Lua can be either global or local. Global variables are not de-
clared and are implicitly given an initial nil value. Local variables are lexically
scoped and must be explicitly declared.

Function parameters work exactly as local variables, initialized with the
values of the actual arguments provided in the function call. Lua adjusts the
number of actual arguments to the number of parameters: Extra arguments
are thrown away, extra parameters are given a nil value.

Tables in Lua are associative arrays and can be indexed with any value; they
may be used to represent ordinary arrays, symbol tables, sets, records, etc. In
order to support a convenient representation of records, Lua uses a field name
as an index and provides a.name as syntactic sugar for a["name"].

Lua provides an almost conventional set of statements, similar to those in
Pascal or C, including assignments, function calls, and traditional control struc-
tures (if, while, repeat, and for). Lua also supports some not so conventional
features such as multiple assignments and multiple results.



function inorder (node)
if node then
inorder (node.left)
coroutine.yield(node.key)
inorder (node.right)
end
end

function inorder_iterator (tree)
return coroutine.wrap(function()
inorder (tree)
return nil
end)
end

Fig. 1. A binary tree iterator implemented with Lua coroutines.

4.1.2 Lua Coroutines. Except for some additional features supported by
the language, Lua coroutine facilities follow the semantics of full asymmetric
coroutines described in Section 3. Moura et al. [2004] provide a detailed de-
scription of these facilities; we present here only the facilities that we use in
our programming examples.

As in most Lua libraries, Lua coroutine operations are packed in a global
table (table coroutine). Function coroutine.wrap creates a new coroutine. It
receives as argument a Lua function that represents the main body of the
coroutine and returns a function that, when called, resumes that coroutine.”
The semantics of the Lua function wrap can be easily defined in terms of the
operators create and resume of the language A,.

wrap = Af -let! = create f in \x -resume [ x

Function coroutine.yield basically follows the semantics of the operator
yield. It suspends the execution of the active coroutine, and returns control
to that coroutine’s last activation point.

4.2 Implementing Generators

A generator is a control abstraction that produces a sequence of values, re-
turning a new value to its caller for each invocation. Besides the capability
of keeping state, the possibility of exchanging data when transferring con-
trol makes asymmetric coroutines a very convenient facility for implementing
generators.

A typical use of generators is to implement iterators, a related control ab-
straction that allows traversing a data structure. The Lua code shown in
Figure 1 implements a classical example: an iterator that traverses a binary
tree in in-order. In this example, tree nodes are represented by Lua tables

"Lua also offers a more primitive operation for creating coroutines, called coroutine.create. This
operation returns a coroutine object that allows other operations over the coroutine, such as in-
specting its stack, its status, etc. When we do not need these facilities, the higher-level wrap is
simpler to use.



function merge(tl, t2)
local itl = inorder_iterator(t1l)
local it2 = inorder_iterator(t2)

local v1 = it1()
local v2 = it2()
while vl "= nil or v2 "~ = nil do
if vl "= nil and (v2 == nil or vi < v2) then
print(vl); vli = it1(Q)
else
print(v2); v2 = it2(Q)
end
end
end

Fig. 2. Merging two binary trees.

containing three fields: key, left, and right. Field key stores the node value
(a number); fields left and right contain references to the node’s respective
children.

Function inorder_iterator receives as argument a binary tree’s root node
and returns an iterator that successively produces the values stored in the tree.
The possibility of yielding from inside nested calls allows a concise implemen-
tation of the tree iterator: The traversal of the tree is performed by an auxiliary
recursive function (inorder) that yields the produced value directly to the iter-
ator’s caller. The end of a traversal is signaled by a nil value, returned by the
iterator’s main function when it terminates.

Figure 2 shows an example of use of the binary tree iterator: merging two
binary trees. Function merge receives as arguments the two trees’ root nodes.
It begins by creating iterators for the trees (it1 and it2) and collecting their
smallest elements (v1 and v2). The while loop prints the smallest value and
reinvokes the corresponding iterator for obtaining its next element, continuing
until the elements in both trees are exhausted.

However useful, implementing data-structure iterators is not the only ap-
plication for generators. The next section provides an example of the use of
generators in a quite different scenario.

4.3 Goal-Oriented Programming

Goal-oriented programming, as implemented in pattern-matching [Griswold
and Griswold 1983] and also in Prolog-like queries [Clocksin and Mellish 1981],
involves solving a problem or goal that is either a primitive goal or a disjunction
of alternative goals. These alternative goals may be, in turn, conjunctions of
subgoals that must be satisfied in succession, each of them contributing a partial
outcome to the final result. In pattern-matching problems, matching string
literals are primitive goals, alternative patterns are disjunctions of goals, and
sequences of patterns are conjunctions of subgoals. In Prolog, the unification
process is an example of a primitive goal, a relation constitutes a disjunction,



and rules are conjunctions. In this context, solving a problem typically requires
the implementation of a backtracking mechanism that successively tries each
alternative until an adequate result is found.

Some authors (e.g., Bruggeman et al. [1996]) cite some implementations of
Prolog-style backtracking (e.g., Haynes [1987]) as a scenario that demands mul-
tishot continuations. This implementation is based on a well-known model of
backtracking computation—the two-continuation model—that uses two types
of continuations: a multishot success continuation, which consumes a candidate
answer, and a one-shot failure continuation that is invoked to get another an-
swer [Wand and Vaillancourt 2004].

However, this type of control behavior can be easily implemented with full
asymmetric coroutines used as generators.® Wrapping a goal in a coroutine
allows a backtracker (a simple loop) to successively retry (resume) the goal
until an adequate result is found. A primitive goal can be defined as a function
that yields a result at each invocation. A disjunction can be implemented by a
function that sequentially invokes its alternative goals. A conjunction of two
subgoals can be defined as a function that iterates on the first subgoal, invoking
the second one for each produced outcome.

As an example, let us consider a pattern-matching problem. Our goal is to
match a string S with a pattern patt, which can be expressed by combining
subgoals that represent alternative matchings or sequences of subpatterns. An
example of such a pattern is as follows.

(llabcll | Ildell) . "X"

Figure 3 shows our implementation of pattern-matching with Lua coroutines.
Each pattern function receives the subject string and a starting position. For
each successful matching, it yields the next position to be checked. When it
cannot find more matchings, it returns nil. Our primitive goal corresponds to
matching a substring of S with a string literal. Function prim implements this
goal; it receives as argument a string value and returns a function that tries to
match it with a substring of S starting at the given position. If the goal succeeds,
the position in S that immediately follows the match is yielded. Function prim
uses two auxiliary functions from Lua’s string library: string.len, which re-
turns the length of a string, and string. sub, which returns a substring starting
and ending at the given positions.

Alternative patterns for a substring correspond to a disjunction of goals.
They are implemented by function alt, which receives as arguments the two
alternative goals and returns a function that tries to find a match in S by
invoking these goals. If a successful match is found, the new position yielded
by the invoked goal goes directly to that function’s caller.

Matching a substring with a sequence of patterns corresponds to a conjunc-
tion of subgoals, implemented by function seq. The resulting pattern function
creates an auxiliary coroutine (btpoint) to iterate on the first subgoal. Each

8This style of backtracking can also be implemented with one-shot delimited continuations, as
shown by Sitaram [1993], or even with restricted forms of coroutines such as Icon generators.



-- matching a string literal (primitive goal)
function prim(str)
return function(S, pos)
local len = string.len(str)

if string.sub(S, pos, postlen-1) == str then
coroutine.yield(pos+len)
end
end

end

-- alternative patterns (disjunction)
function alt(pattl, patt2)
return function(S, pos)
patt1(S, pos)
patt2(S, pos)
end
end

-- sequence of sub-patterns (conjunction)
function seq(pattl, patt2)
return function(S, pos)
local btpoint = coroutine.wrap(function() patti(S, pos) end)
for npos in btpoint do patt2(S, npos) end
end
end

Fig. 3. Goal-oriented programming: pattern matching.

successful match obtained by invoking this subgoal results in a new position in
S where the second subgoal is to be satisfied. If a successful match for the second
subgoal is found, the new position yielded by it goes directly to the function’s
caller.

Using the functions just described, the pattern ("abc"|"de")."x" can be
defined as follows.

patt = seq(alt(prim("abc"), prim("de")), prim("x"))
Finally, function match verifies if string S matches this pattern.

function match(S, patt)
local len = string.len(S)
local m = coroutine.wrap(function() patt(S, 1) end)
for pos in m do

if pos == len + 1 then
return true
end
end

return false
end



Danvy and Filinski [1990] present two different implementations of pattern-
matching, one using delimited continuations in the form of shift/reset primi-
tives, and the other using explicit continuation passing style.

Both implementations need multishot continuations for the success case.
Coroutines support only one-shot continuations, so our implementation follows
a different approach. If we observe the CPS implementation, it is easy to see
that the only places where it creates continuations are the conjunction (concate-
nation) operation and the main match function. In our implementation, these
operations use an explicit loop to create distinct continuations for each success
match, thus avoiding invoking the same continuation twice.

4.4 Cooperative Multitasking

One of the most obvious uses of coroutines is to implement multitasking. How-
ever, due mainly to the wide adoption of multithreading in modern mainstream
languages, this suitable use of coroutines is currently disregarded.

A language with coroutines does not require additional concurrency con-
structs. Like threads and engines [Haynes and Friedman 1987a], coroutines
embody independent computations that can be suspended and later restarted
from the point of suspension. However, while engines and most implemen-
tations of threads provide preemption-based multitasking, coroutines pro-
vide a concurrency model which is essentially cooperative: A coroutine must
voluntarily release control to allow other coroutines to proceed.

In a cooperative multitasking environment, the interleaving of concurrent
tasks is deterministic, and race conditions do not occur. Coordinating access to
shared resources is a simple task, and the need for synchronization mechanisms
is minimized. Preemptive scheduling needs more complex synchronization
mechanisms, making the development of correct multithreading applications a
difficult task. In some contexts, such as operating systems and real-time appli-
cations, timely responses are essential, and therefore preemption is unavoid-
able. However, the timing requirements for most concurrent applications are
not critical. Moreover, differently from operating system developers, application
developers usually have little or no experience in concurrent programming.
In this scenario, a cooperative multitasking environment seems more
appropriate.

Cooperative multitasking can involve occasional fairness problems when
concurrent tasks execute time-consuming operations. In nonpreemptive
operating systems, where the concurrent tasks are typically noncollaborative
independent programs, fairness problems can be rather difficult to solve. In
this context, when a program monopolizes processing resources, it impacts the
progress of other programs, not its own. As a consequence of this behavior,
program developers will neither be aware of the need to insert yield statements
in time-consuming operations, nor motivated to do so. Moreover, performance
problems and starvation conditions are not easily reproduced, and there is
virtually no way for the programmer to check where suspension requests can
be adequately inserted.



-- list of "live" tasks
tasks = {}

-- create a task

function create_task(f)
local co = coroutine.wrap(function() f(); return "ended" end)
table.insert(tasks, co)

end

-- task dispatcher
function dispatcher()
local i =1
while true do

if tasks[i] == nil then
if tasks[1] == nil then break end
i=1

end

local status = tasks[i] ()

if status == "ended" then
table.remove(tasks, i)

else
i=1i+1

end

end

end

Fig. 4. Implementing cooperative multitasking.

User-level multitasking presents a somewhat different scenario, where
coroutines are part of the same program and collaborate to achieve a common
goal. Since fairness problems are restricted to the collaborative environment,
they are more easily identified and reproduced. Therefore, with cooperative
user-level multitasking, fairness is not as big a problem as it is in a noncoop-
erative scenario. Nevertheless, fairness is still a difficulty when programming
cooperative multitasking applications.?

Implementing cooperative multitasking in terms of full asymmetric corou-
tines is straightforward, as illustrated in Figure 4. Concurrent tasks are mod-
eled by coroutines; when a new task is created, it is inserted in a list of live
tasks implemented by a Lua table. This table, initially empty, is created by the
constructor expression {}.

A simple task dispatcher can be implemented by a loop that iterates on this
list, resuming the live tasks and removing the ones that have finished their
work. (Function table.remove removes the given item from a table, moving
down the upper indices to close the gap.) The end of a task is signaled by a
predefined value returned by the coroutine main function (the string "ended").
When a task suspends its execution (by calling function coroutine.yield with
no arguments), a nil value is returned to the dispatcher.

9We may say that by removing preemption, we have easier correctness at the expense of harder
fairness.



Besides fairness, another drawback of user-level cooperative multitasking
arises when using blocking operations. If, for instance, a coroutine calls an I/0
operation and blocks, the entire program blocks until the operation completes.
For many concurrent applications, this is an unacceptable behavior. Nonethe-
less, this situation is easily avoided by providing auxiliary functions that ini-
tiate an I/O operation and suspend the active coroutine when the operation
cannot be immediately completed. Ierusalimschy [2003] shows an example of
a concurrent application that uses Lua coroutines and includes nonblocking
facilities. That example makes use of a select operation when all coroutines
are blocked, thus avoiding unnecessary polling.

Currently, there is some renewal of interest in cooperative multitasking as an
alternative to multithreading [Adya et al. 2002; Behren et al. 2003]. However,
the concurrent constructs that support cooperative multitasking in most of the
proposed environments are usually provided by libraries or system resources
like Window’s fibers [Richter 1997]. Interestingly, although the description of
the concurrency mechanisms employed in those environments is no more than
a description of coroutines plus a dispatcher, the term coroutine is not even
mentioned.

Fair Threads [Serrano et al. 2004] is an example of an interesting model of
concurrent programming which combines preemptive service threads and coop-
erative user threads. In this model, user threads cooperate either explicitly (by
means of a yield operation) or implicitly (by waiting for signals). A cooperation
mechanism based on signaling conditions is not difficult to add to our coroutine
scheduler.

5. EXPRESSING ALTERNATIVE CONTROL STRUCTURES

In the previous section, we provided some examples that illustrate the use-
fulness of full asymmetric coroutines as a general control construct. In this
section we explore the expressive power of full asymmetric coroutines relative
to other control abstractions. We will show that full asymmetric coroutines can
implement not only symmetric coroutines, but also one-shot continuations and
one-shot delimited continuations; therefore, they can provide any sort of con-
trol structure implemented by those constructs. In other words, asymmetric
coroutines has the same expressive power of these other constructs.

Our notion of expressive power is as follows: Given two languages A and B
with a common core, differing only in that one has a set of operators {a1, ..., a,}
and the other a set {b4, ..., b,,}, we say that A has (at least) the same expressive
power of B (or that A is as least as expressive as B) if there is a context C such
that, if a program e results in v in language B, then the program Cle] also
results in v in language A.1°

0Formally, we must also allow specific local transformations from the original expression in lan-
guage B to the expression in language A: Any application of an operator b;, which is a primitive
operation in B, is changed to a regular function application in A.



5.1 Symmetric Coroutines

The basic characteristic of symmetric coroutine facilities is the provision
of a single control-transfer operation that allows coroutines to pass control
explicitly among themselves. Therefore, our model of symmetric coroutines
needs only two basic operators: create and transfer. For convenience, it also
provides another operator, current, that returns a reference to the running
(current) coroutine.

Creating a symmetric coroutine is similar to creating an asymmetric corou-
tine: The operator create receives a procedural argument (the coroutine main
body) and returns a reference to the new coroutine. The operator transfer saves
the continuation point of the current coroutine and (re)activates the coroutine
whose reference is passed as its first argument. The reactivated coroutine starts
executing at its saved continuation point and runs until it transfers control to
another coroutine, or until its main function terminates. The end of the main
coroutine is the end of the program; the end of any other coroutine implicitly
transfers the control back to the main coroutine.

Like our asymmetric coroutines, our symmetric coroutines can exchange
data; when a coroutine transfers control, the second argument given to the
operator transfer becomes the result value of the transfer operation which sus-
pended the reactivated coroutine.

Let us formalize our model of symmetric coroutines. We do so by extending
the core language introduced in Section 3.2. We will call this extended lan-
guage Agym. We begin by extending the set of expressions with the symmetric
coroutine operators.

e —> l|x| x-elee|x:=ec|ifethencelsee|e=¢ |nil|
create ¢ | transfer e e | current

We also extend the definition of evaluation contexts to include the new
expressions, specifying a right-to-left evaluation for the arguments of transfer.

C —- 0OleC|Cv|x:=C|ifCthenecelsec|C=c¢c|v=C|
create C | transfere C | transfer C v

In our semantics for symmetric coroutines, rewrite rules are applied to
expression-store-label triplets; the third element of this triplet represents
the active coroutine. A distinguished label /; identifies the main coroutine.
The first rules of A, are similar to rules 1-7 of the core language, except
that they operate on triplets instead of pairs, never changing the active
coroutine.

The new rules for the symmetric coroutine operations are as follows.

(Clereatev], 0, [1) =
(Cltransfer iy v], 9, 1) =
(Cltransfer/ v], 0,1) =
(Clcurrent], 0, ) =

(v, 0,1) =

(Clls], 6[lg < v], 1), wherels is a fresh label (12)
(0g)v, Ollg < mil, [ < rx-Clx]1l, o), 1 #15(13)
(Clvl, 0, 1) (14)
(ClL1, 0,1) (15)
Ol v, 0ll; <mnill, I7), ] #1; (16)



Rule 12 describes the semantics of creating a symmetric coroutine; this
operation is similar to the creation of an asymmetric coroutine, described in
Section 3.2.

Rule 13 describes the transfer of control between symmetric coroutines. A
transfer binds the current label /1 to the current continuation C in the store,
and gets the continuation of the coroutine to be (re)activated (6'(l3)). This con-
tinuation is then invoked with the second argument passed to ¢transfer. Rule 14
handles the particular case where a coroutine transfers control to itself; this
operation simply returns the given value.

Rule 15 provides the semantics for the current primitive.

Rule 16 describes what happens when a coroutine ends. The continuation
of the main coroutine is invoked with the value given by the ending coroutine.
The end of the main coroutine ends the program, so there is no rule for that
case. We say that e | v if (e, 6o, {7) = (v, 0, I;) for some store 6.

The implementation of symmetric coroutines on top of asymmetric facilities
is not difficult. Symmetrical transfers of control between asymmetric corou-
tines can be simulated with pairs of yield-resume operations and an auxiliary
dispatching loop that acts as an intermediary in the switch of control between
the two coroutines. When a coroutine wishes to transfer control, it yields to the
dispatching loop, which in turn resumes the coroutine that must be reactivated.
Following these guidelines, Figure 5 shows the implementation of symmetric
coroutines in Lua. When function transfer is called for the first time (i.e., by
the main coroutine), the dispatching loop is started. When transfer is invoked
by an active coroutine, function coroutine.yield is called to reactivate the dis-
patcher. Global variable current always contains a reference to the running
(current) coroutine. An auxiliary variable (main) represents the main coroutine
(it has the same role as label /7 in the semantics of Agy,,.)

The following definition is a straightforward translation of transfer and
current in Figure 5 to the language A,:!!

let current = create Lx -x in
let transfer =
let main = currentin
let next = mainin
let disp = nilin
disp := ival.
if current = main then val else (next :=main; Cy[resume current vall);
Aco - dval .
if current = main then current := co;disp val else (next := co;yield val)
ln P

where the context Cy is defined as follows.

letval = Oin current := next;disp val

11We use the technique of first declaring the variable disp and then defining its value to allow a
recursive function.



-- creates a distinguished coroutine
current = coroutine.wrap(function (x) end)

main

local next
local main = current

create = coroutine.wrap

transfer = function(co, val)
if current == main then
current = co
while current = main -- dispatching loop
next = main
val = current(val)
current = next

end
return val
else
next = co
return coroutine.yield(val)
end
end

Fig. 5. Implementing symmetric coroutines with Lua asymmetric coroutines.

To prove the correctness of this definition we must show that for any expression
e,if e | v in Ay, then (let current = --- inlettransfer =--- ine) | v in
Lqa. Roughly, we can prove this by defining a mapping from states in A, to
states in 1,, and then showing that the transition rules preserve the mapping.
In Ierusalimschy and de Moura [2008] we present the complete proof.

For completeness, we will now show how to emulate A, programs on top of
Asym, that is, how to implement resume—yield using transfer. A naive (but
slightly wrong) implementation could be like the one given next.

let yield = nil in
let resume = ico - Aval.
let previous = current in
let oldyield = yield in
yield := Aval - (yield := oldyield; transfer previous val);
transfer co val
in e

Function yield is initially nil because the main coroutine cannot yield. Function
resume contains the bulk of the implementation. First it saves the current
coroutine and the current value of yield. Then it redefines yield as a function
that, when called, restores yield and transfers control back to the now-current
coroutine. Finally, resume transfers control to the invoked coroutine.

The problem with this definition happens when a coroutine terminates its
main function. Language Ay, transfers control back to the main coroutine,
but in A, control should return to the corresponding resume. To solve this



problem, we insert in resume a new variable test which controls whether yield
was properly called.

let yield = nil in
let resume = Aco - Aval.
let previous = current in
let oldyield = yield in
let test = nil in
yield :=Aval - (yield :=oldyield;test := \x - x; transfer previous val);
test := Aval -test (yield val);
test (transfer co val)
in e

When a coroutine yields, test is set to the identity function, so it has no effect
and resume behaves as before. When a coroutine returns without yielding (i.e.,
its main function returns), test yields the returned value (and repeats the test
when control eventually returns).

5.2 One-Shot Continuations

Although conventional first-class continuation mechanisms allow a continu-
ation to be invoked multiple times, in virtually all their useful applications
continuations can be invoked only once. Motivated by this fact, Bruggeman
et al. [1996] implemented the concept of one-shot continuations [Haynes and
Friedman 1987b], introducing the control operator call/icc. One-shot contin-
uations differ from multishot continuations in that it is an error to invoke a
one-shot continuation more than once, either implicitly (by returning from the
procedure passed to call/1cc) or explicitly (by invoking the continuation cre-
ated by call/1cc).

We again will extend our core language to create the language A.1.., which
supports one-shot continuations. The new expressions are calllce (which cap-
tures a continuation) and throw (which invokes a continuation).

e - l|x| x-elee|x:=e|ifethencelsee|e=¢ |mnil|
calllcce | throw v

The evaluation context is extended accordingly.

C —- OleC|Cv|x:=C|ifCtheneelsee|C=¢c|v=C|
calllee C

A throw is not intended to be used directly by a programmer. It is created by
a calllcc always with a value as its first operand, but only executes when it
receives a second operand. So, we treat throw v as a value.
v — [ |Ax-e|nil|throwv
If we drop the one-shot restriction, the semantics for first-class continuations
is straightforward.
(Cleallecv], 9) = (Clv (throw Ay -C[y])], 6)
(C[throw vy vg], 6) = (v1 Vg, 0)



As expected, callcc calls its parameter with an argument that, when called,
reinstalls the continuation that was active when callec was invoked (C).

One problem with that semantics is that it duplicates the continuation C.
After a callce, C appears both as the current continuation and as a captured
continuation inside the throw expression. This makes it quite difficult to en-
sure that a continuation is called only once. We can solve this difficulty by
storing the continuation in the store.

(Clealleev], 8) = ((throwl)(v (throw!l)), 0[] < Ay -Cly1l),I & dom(#)
(Clthrow ! v], ) = (0()v, 0)

It is easy to see that this semantics is equivalent to the previous one. In both
semantics, if the continuation is ever invoked, the result will be (Ay -C[y]) v.
Otherwise, if the original argument to callcec returns, the result expression in
the second semantics will be again (Ay - C[y]) v, which reduces in two steps to
the result of the first semantics, C[v].

Now, to ensure one-shotness, we redefine throw to invalidate its label after
using it.

(Cleallleev], ) = ((throw)(v (throwl)), [l < Ay -Cly1l),l ¢ dom(#) (17)
(Clthrow! v], 8) = () v, O[] < nil]) (18)

As usual, we say that e || v in A if (e, 6p) = (v, 6), for some store 6.

The implementation of one-shot continuations described by Bruggeman et al.
[1996] reveals the many similarities between that mechanism and symmetric
coroutines. In that implementation, the control stack is represented as a linked
list of stack segments which are structured as stacks of frames (or activation
records). When a one-shot continuation is captured, the current stack segment
is encapsulated in the continuation and a fresh stack segment is allocated to
replace the current stack segment. In terms of symmetric coroutines, this cor-
responds to creating a new coroutine and transferring control to it. When a
one-shot continuation is invoked, the current stack segment is discarded and
control is returned to the saved stack segment. This is exactly what happens if
the new coroutine, at any time, transfers control back to its creator.

The similarities between one-shot continuations and symmetric coroutines
allow us to provide a concise implementation of call/1cc using the symmetric
coroutine facility described in Section 5.1. This implementation is shown in
Figure 6.

To simulate that semantics on top of Ay, (symmetric coroutines), we use the
following definition for call lcc.

letcalllce = Ay.

let cc = current in
let throw = Aval - (let curr = cc in cc := nil; transfer currval) in
transfer (create ic-c (f ¢)) throw

in s
This code is a straightforward translation of the Lua code at Figure 6.



function calllcc(f)
local cc = current

local throw = function(val)
local curr = cc
cc = nil
sym.transfer(curr, val)
end

return sym.transfer(sym.create(function(c) c(f(c)) end), throw)
end

Fig. 6. Implementing one-shot continuations with symmetric coroutines.

Again we may prove the correctness of this definition by mapping states in
Lsym tostatesin A,, and showing that the transition rules preserve the mapping.
In Ierusalimschy and de Moura [2008] we present this proof.

5.3 One-Shot Subcontinuations

Despite their expressive power, traditional continuations, either multishot or
one-shot, are difficult to use; except for some trivial examples, they complicate
considerably the structure of programs. Most of the complexity involved in the
use of continuations arises from the fact that they represent the whole rest
of a computation. The convenience of limiting the extent of continuations and
localizing the effect of their control operators motivated the introduction of par-
tial or delimited continuations [Felleisen 1988; Johnson and Duggan 1988] and
the proposal of a series of constructs based on this concept [Danvy and Filinski
1990; Queinnec and Serpette 1991; Sitaram 1993; Hieb et al. 1994]. The essence
of these abstractions is that the invocation of a captured delimited continuation
does not abort the current continuation; instead, delimited continuations can
be composed like regular functions.

Subcontinuations [Hieb et al. 1994] are an example of a delimited contin-
uation mechanism. A subcontinuation represents the rest of an independent
partial computation (a subcomputation) from a given point in that subcompu-
tation. The operator spawn establishes the base, or root, of a subcomputation.
It takes as argument a procedure (the subcomputation) to which it passes a
controller. If the controller is not invoked, the result value of spawn is the
value returned by the procedure. If the controller is invoked, it captures and
aborts the continuation from the point of invocation back to, and including,
the root of the subcomputation. The procedure passed to the controller is then
applied to this captured subcontinuation. A controller is only valid when the
corresponding root is in the continuation of the program. Therefore, once a
controller has been applied, it will only be valid again if the subcontinuation is
invoked, reinstating the subcomputation.

The semantics of subcontinuations can be described with another extension
of our core language, which we will call Ay,;.. This extended language incorpo-
rates labeled expressions and two control operators: spawn, which creates and



starts a subcomputation, and controller, which invokes a controller.

e —> l|x| x-elee|x:=ec|ifethencelsee|e=¢ |nil|
[:e | spawn e | controller/

Like throw in 1.1, the operator controller is not intended to be used directly
by a programmer. As we will see next, it is created by the evaluation of spawn,
with a specific label as its first argument, which identifies the corresponding
subcomputation. It only executes when it receives a second argument which
represents the procedure to be applied to the captured subcontinuation. We
then treat controller!/ as a value in Ag..

v — [ | Ax-e | nil | controller!/
We use the following definition for the evaluation contexts of Agup..

C — 0OleC|Cv|x:=C|ifCthencelsec|C=c|v=C|
[: C | spawn C

The semantics of subcontinuations is described by the rules shown next:!2

(Clspawnv], ) = (C[l:v (Ax-controllerl: x)], ) (19)
where [: is a fresh label

(ClL:v], ) = (Clv], 0) (20)
(C4ll: Colcontroller! v]], ) = (Cilv (Ax -1: Colx])], 0) (21)

Rule 19 describes the semantics of the operator spawn. It installs a new
(fresh) label, producing a labeled expression—a subcomputation—which in-
vokes spawn’s argument with a controller associated with that label.

Rule 20 shows what happens when a subcomputation ends without invoking
the controller: Its label is removed and its result value is returned to its last
invocation point.

Rule 21 describes the action of invoking a controller, showing how a sub-
continuation is created. A controller invocation must occur within a labeled
expression with a matching label (an active subcomputation). The captured
subcontinuation is an abstraction created from the context of that subcom-
putation, including the matching label. The second argument provided to the
operator controller is applied to that subcontinuation; this application occurs
in a context that does not include the abstracted context.

When the restriction imposed to one-shot continuations (a single invoca-
tion) is applied to subcontinuations, we have the concept of one-shot sub-
continuations [Kumar et al. 1998]. To describe the semantics of one-shot
subcontinuations, we can use the same technique that we used to ensure one-
shotness for first-class continuations. First we extend Az, with a new operator
(subcont) that invokes a subcontinuation. The operator subcont is always as-
sociated with a specific label, which identifies a subcomputation. The expression

2Except for some syntactical adaptations, this is the operational semantics of subcontinuations
developed by Hieb et al. [1994].



subcont/ is treated as a value.
v — ... |subcont!

We then redefine the rewrite rules to ensure that a subcontinuation can be
invoked only once.

(Clspawnv], ) = (C[l:v (Ax - controller!: x)], [l < nil]) (22)
where [ is a fresh label

(Cll:v], 8) = (C[v], 0) (23)
(C1ll: Cylcontroller ! v]], 8) = (Cilv (subcont!)], [l < ix - Colx]]) (24)
(C[subcont!/ v], 8) = (C[l:0()v], 0[] < nil]) (25)

Rules 22 and 23 are similar to rules 19 and 20; the only difference is that rule 22
clarifies the notion of a fresh label by stating that a fresh label is not present
in the store.

According to rule 24, when a controller is invoked the captured subcontinua-
tion is saved in the store, mapped to the label that represents the corresponding
subcomputation. The procedure passed to the controller receives a subcont ex-
pression that can be used to invoke this subcontinuation.

Rule 25 shows that the invocation of a subcontinuation invalidates the map-
ping of its corresponding label; this prevents a subcontinuation from being shot
more than once.

When we compare the semantics of one-shot subcontinuations with the se-
mantics of full asymmetric coroutines (described in Section 3.2), we can observe
many similarities. A full asymmetric coroutine can be seen as an independent
subcomputation. Spawning a subcomputation is similar to creating and acti-
vating an asymmetric coroutine. Except for the application of the controller
argument to the captured subcontinuation, invoking a subcomputation con-
troller (rule 24) is very much like suspending an asymmetric coroutine (rule 10).
Invoking a one-shot subcontinuation (rule 24) is also similar to resuming an
asymmetric coroutine (rule 9).

The main difference between subcontinuations and other types of delimited
continuations is that a subcontinuation is not restricted to the innermost sub-
computation. Instead, a subcontinuation extends from the controller invocation
point up to the root of the invoked controller, and may include several nested
subcomputations.'® This facility makes subcontinuations a useful abstraction
for controlling tree-structured concurrency, allowing nonlocal exits to arbitrary
points in a process tree: the scenario which motivated the introduction of sub-
continuations, formerly called process continuations [Hieb and Dybvig 1990].

13This behavior is also provided by variants of some delimited-continuation mechanisms that use
marks [Queinnec and Serpette 1991] or tags [Sitaram 1993] to specify the context up to which a
delimited continuation is to be reified.



The following definition of spawn simulates the semantics of one-shot sub-
continuations on top of A,.

let spawn = Ay -
let controller = nil in
let subcomp = create ic-Ci[f(c)] in
let subcont = Ax - resume subcomp x in
letinvokecontroller = Ag - (
subcont := (Ax - resume subcomp x);
controller := nil;
C,lyield rx - g(x)]) in
let reinstate = nil in
reinstate := Ax - (controller := invokecontroller;C.[subcont x]);
reinstate(\}, - controller h)
inspawn

Our definition of spawn makes use of three auxiliary contexts. The context C;
implements the actions that need to be performed when a subcomputation ter-
minates: the invalidation of its controller and the return of the value produced
by the subcomputation to its (re)activation point. Its definition is given next.

let x = O in controller ;= nil; Ly - x

The context C, represents a continuation point of a subcomputation; it is ex-
ecuted when a subcontinuation is invoked, signaling that the subcontinuation
has been shot. It is defined as follows.

let x = O in subcont := nil; x

The context C, is the continuation point of a subcomputation (re)activation; it
is executed when the subcomputation ends or invokes a controller. In order to
express subcontinuations that are composed by an arbitrary number of nested
subcomputations, we need to determine the subcomputation that corresponds
to the invoked controller and successively suspend all its nested subcomputa-
tions until the controller root is reached. By doing this, we include these nested
subcomputations in the captured subcontinuation. When this subcontinuation
is invoked we can reinstate its corresponding subcomputation by successively
resuming the suspended subcomputations, in the reverse order of their suspen-
sion, until the original controller invocation point is reached. To express this
behavior, we define the context C,. as in the following.

letx =0 in
if controller then reinstate(invokecontroller(x)) else x(reinstate)

Figure 7 shows a direct translation of the definition of spawn in 1, to Lua code.
Again, we may prove the correctness of this definition by mapping states in Ay,
to states in A,, and showing that the transition rules preserve the mapping.
In Ierusalimschy and de Moura [2008] we sketch a proof of correctness for this
definition.

The basic idea of our implementation of one-shot subcontinuations using
asymmetric coroutines is somewhat similar to the implementation described



function spawn(f)
local controller, subcont, reinstate, invokecontroller

local subcomp = coroutine.wrap(function(c)
local x = f(c)
controller = nil
return function() return x end
end)
subcont = function(x) return subcomp(x) end

function invokecontroller(g)
subcont = function(x) return subcomp(x) end
controller = nil
local x = coroutine.yield(function(x) return g(x) end)
subcont = nil
return x

end

function reinstate(val)
controller = invokecontroller
local ret = subcont(val)
if controller == nil then
return ret(reinstate)
else
return reinstate(invokecontroller(ret))
end
end

return reinstate(function(h) return controller(h) end)
end

Fig. 7. Implementing one-shot subcontinuations with Lua asymmetric coroutines.

by Kumar et al. [1998]. In their work, a subcomputation is represented by a
child thread which is created when spawn is invoked; synchronization mech-
anisms based on condition variables and a mutex support the suspension and
(re)activation of the subcomputation and its invoker.

6. FINAL REMARKS

After a period of intense investment, from the middle 1960’s to the early 1980’s,
the research interest in coroutines as a general control abstraction virtually
stopped. Besides the absence of a precise definition of the concept, which led to
considerably different implementations of coroutine facilities, the other factors
that greatly contributed to the discard of this interesting construct were the in-
troduction of first-class continuations (and the general belief that they were far
more expressive than coroutines), and the adoption of threads as a “standard”
concurrent construct.

We now observe a renewal of interest in coroutines, notably in two different
scenarios. The first corresponds to research efforts that explore the advantages
of cooperative task management as an alternative to multithreading. In this
scenario, some forms of coroutines are provided by libraries or system resources,
and are solely used as concurrent constructs. Another resurgence of coroutines



is in the context of scripting languages, such as Python and Perl. In this case, re-
stricted forms of coroutines support the implementation of simple iterators and
generators, but these are not powerful enough to constitute a general control
abstraction; in particular, they cannot be used as a concurrent construct.

In this article we argued in favor of the revival of full asymmetric coroutines
as a convenient general control construct which can replace both one-shot con-
tinuations and multithreading with a single, and simpler, concept. In order to
support this proposition, we provided the contributions described next.

To fulfill the need of an adequate definition of the concept of a coroutine,
we proposed a classification of coroutines based on three main issues: whether
coroutines are symmetric or asymmetric, whether they are first-class objects,
and whether they are stackful constructs. We discussed the influence of each
of these issues on the expressive power of a coroutine facility, and introduced
the concept of full coroutines as first-class, stackful objects. We also discussed
the advantages of full asymmetric coroutines versus full symmetric coroutines,
which are equivalent in power, but not in ease of use.

Next we provided a precise definition of a full asymmetric coroutine con-
struct, supported by the development of an operational semantics for this
mechanism. We also provided a collection of programming examples that il-
lustrate the use of full asymmetric coroutines to support concise and elegant
implementations of several useful control behaviors, including some of the most
relevant examples of the use of continuations.

Finally, we demonstrated that full asymmetric coroutines can express sym-
metric coroutines and vice versa. We also demonstrated that full coroutines
can express both one-shot continuations and one-shot delimited continuations;
therefore, they can provide any sort of control structure implemented by those
constructs. We also discussed the similarities between one-shot continuations
and full symmetric coroutines and between one-shot delimited continuations
and full asymmetric coroutines. Like delimited continuations, asymmetric
coroutines are composable; this similar behavior provides similar benefits: eas-
iness to manage and understand, and support for elegant and concise imple-
mentations of several control behaviors.

As with any formal model, it is important to understand the limitations of
our model. One limitation is that it does not address the problem of interlan-
guage calls, wherein one of the languages does not support coroutines (which
is the case of programs written in Lua and C, for instance). We could model
this situation by defining a new kind of context (to represent pending calls in
the foreign language), and a restriction that contexts of this new kind cannot
be saved in the store. This model would make clear that any program using
symmetric coroutines that have pending calls to the foreign language in its
main coroutine cannot do any transfer, because this would involve saving an
invalid context in the store. Nevertheless, this restriction does not exist when
the same program runs simulated with asymmetric coroutines because the sim-
ulation never saves the main continuation (instead, it keeps this continuation
in the main expression).

Another point not addressed by our model is performance. In our imple-
mentation of one-shot continuations, a single coroutine (i.e., a single stack



“segment”) is sufficient to implement a continuation. Therefore, with a language
that implements full coroutines we can provide one-shot continuation mecha-
nisms that perform as efficiently as a simple direct implementation of this
abstraction (e.g., the implementation described by Bruggeman et al. [1996]).
On the other hand, the implementation of coroutines with multi-shot continu-
ations, as developed by Haynes et al. [1986], typically requires the capture of
a new continuation each time a coroutine is suspended. This implementation
thus involves the allocation of a new stack segment for each control transfer;
hence, it may perform less efficiently and use more memory than a direct im-
plementation of coroutines.

It is interesting to compare our notion of expressive power with Felleisen
[1990]. His definition allows transformations in the leaves of a program (what
he calls macro expressibility), while ours allows transformations at the root
(therefore allowing function expressibility). It is clear that both definitions keep
intact the program structure; the enclosing of a program e in a fixed context
to bring Cle] clearly does not require “a global reorganization of the entire
program.” For our purposes Felleisen’s definition is not sufficient because we
need some form of global state for some simulations (e.g., to keep the current
coroutine label when implementing symmetric coroutines).

Our work uses the external context only to introduce global bindings. Hieb
et al. [1994] present a different case where our framework can be used.
There, to implement full continuations using subcontinuations, they need to
enclose the whole program in a call to spawn, “to establish the root of the
entire computation.” This enclosing (plus a suitable definition for call/cc)
can be expressed using an enclosing context, but cannot be expressed using
macros.

One thing we did not explore is negative results. For instance, we did not
prove that we cannot express full coroutines using restricted forms of corou-
tines, such as nonfirst-class or nonstackful coroutines. We also did not prove
that we cannot express multishot continuations using coroutines. Intuitively,
we can argue for both results based on how these languages handle contexts.
For instance, while the rewrite rule for callec duplicates a context, no rule in
Aq ever does so. With such negative results, we could formalize a hierarchy of
control constructs, from restricted forms of coroutines to full coroutines (and
one-shot continuations) to multishot continuations.
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