
Ad-hoc polymorphic delimited continuations
unifying monads and continuations

YANG, BO, ThoughtWorks, Inc

We designed and implemented a framework for creating extensible domain-specific languages that consists of
library-defined keywords. First-class language features in other programming languages can be implemented
as libraries with the help of our framework.

The core concept in our framework is the type class Dsl, which can be considered as both the ad-hoc
polymorphic version of a delimited continuation and a more generic version of Monad. Thus it can be also used
as a statically typed extensible effect system that is more efficient and more concise than existing Monad-based
effect systems.

Additional Key Words and Phrases: type class, scala, delimited continuation, monad, haskell

1 INTRODUCTION
Traditionally, the capacity of a general purpose language can be extended to a special domain
by creating an embedded Domain-Specific Language (eDSL) [Fowler 2010] . For example, Akka
provides a DSL to create finite-state machines [Lightbend, Inc. 2017], which consists of some
domain-specific operators including when, goto, stay, etc. Although those operators looks similar
to native control flow, they are not embeddable in native if, while or try blocks, because the DSL
code is split into small closures, preventing ordinary control flow from crossing the boundary of
those closures. Thus, this kind of DSLs reinvent incompatible control flow to the meta-languages.
TensorFlow’s control flow operations [Abadi et al. 2016] and Caolan’s async library [McMahon
2017] are other examples of reinventing control flow in eDSLs.
Instead of reinventing the whole set of control flow for each DSL, a more general approach

is designing a common protocol for control flow operators of all domains. In Haskell, Scala, and
other functional programming language, monads are used as the generic protocol of control flow
operators [Jones and Duponcheel 1993; Wadler 1990, 1992]. Scala implementations of monads are
provided by Scalaz [Yoshida et al. 2017], Cats [Typelevel 2017], Monix [Nedelcu et al. 2017] and
Algebird [Twitter, Inc. 2016]. A DSL author only has to implement >>= and return operators in
Monad type class, and all the derived control flow operations like whileM or ifM are available. In
addition, those monadic data types can be created and composed from do-notation [Jones et al.
1998] or for-comprehension [Odersky et al. 2004]. For example, in Scala, you can use the same
scalaz.syntax or for-comprehension to create random value generators [Nilsson 2015] and data-
binding expressions [Yang 2016], as long as there are Monad instances for those domain-specific
monadic data types respectively.
An idea to avoid incompatible domain-specific control flow is converting direct style control

flow to domain-specific control flow at compile time. For example, Scala Async provides a macro to
generate asynchronous control flow [Haller and Zaugg 2013], allowing normal sequential code
inside a scala.async block to run asynchronously. This approach can be generalized to any
monadic data types. ThoughtWorks Each [Yang 2015], Monadless [Brasil 2017], effectful [Crockett
2013] and !-notation in Idris [Brady 2013] are compiler-time transformers to convert source code
of direct style control flow to monadic control flow. For example, with the help of ThoughtWorks

Author’s address: Yang, Bo, ThoughtWorks, Inc, atryyang@thoughtworks.com.

2023. XXXX-XXXX/2023/8-ART $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

, Vol. 1, No. 1, Article . Publication date: August 2023.

ar
X

iv
:2

30
7.

16
07

3v
1

 [
cs

.P
L

]
 2

9
Ju

l 2
02

3

:2 Yang, Bo

Each, Binding.scala [Yang 2016] can be used to create reactive HTML template from ordinary direct
style code.
Another generic protocol of control flow is delimited continuation, which is known as the

mother of all monads [Filinski 1994; Piponi 2008], where specific control flow in specific domain
can be supported by specific answer types of continuations [Asai and Kameyama 2007]. Scala
Continuations [Rompf et al. 2009] and Stateless Future [Yang 2014a] are two delimited continuation
implementations in Scala. Both projects can convert direct style control flow to continuation-passing
style closure chains at compile time. For example, Stateless Future Akka [Yang 2014b], based on
Stateless Future, provides a special answer type for akka actors. Unlike reinvented control flow
in akka.actor.AbstractFSM, users can create complex finite-state machines from simple direct
style control flow along with Stateless Future Akka’s domain-specific operator nextMessage.
All the previous approaches lack of the ability to collaborate with other DSLs. Each of the

above DSLs can be exclusively enabled in a code block. Scala Continuations enables calls to @cps
method in reset blocks, and ThoughtWorks Each enables the magic each method [Yang 2015] for
scalaz.Monad in monadic blocks. It was impossible to enable both DSL in one function.

Monad transformers [Liang et al. 1995] is a popular technique to solve the collaboration problem.
The basic idea is to use an ad-hoc polymorphic lift function to convert different monadic type into
the same transformed monadic type. Thus a do block of a transformed monadic type can contain
different DSL operations as long as they can be lifted. With the help of additional type classes,
those lift operations can be performed automatically.

However, a deeply nested transformed monad was considered inefficient due to the nested lift.
An alternative approach proposed by [Kiselyov et al. 2013] is effect handlers. In the effect handler
approach, the DSL “script” is written in a universal monadic type Eff, which allows for multiple
DSLs in one do block. Each DSL is considered as an effect, which is dispatched by Eff to the specific
Handler. This approach is heavy-weight, since only expressions written in Eff script are able to
use DSLs defined in effect handlers. Additional conversion is required to retrieve the “raw” data
type from an Eff do block.

This paper proposes a new type class Dsl, which can be considered as both the ad-hoc polymor-
phic version of a delimited-continuation and a more generic version of Monad. The Scala definition
of the type class is shown in listing 1.

trait Dsl[Keyword, Domain, Value] {
def cpsApply(keyword: Keyword, handler: Value => Domain): Domain

}

Listing 1. The definition of Dsl type class

Because Dsl is more generic than Monad, it allows a code block to contain interleaved het-
erogeneous Keywords, interpreted by different Dsl type class instances. Instead of returning an
intermediate script type like Eff [Kiselyov et al. 2013], the return types of a DSL code block are
the final result type, which can vary as long as where are corresponding Dsl instances for all
operators inside the DSL code block. No intermediate Monad for dispatching is used. The difference
of architecture between effect handler approach and our approach is shown in figs. 1 and 2.

Our approach is more flexible than ordinary delimited continuation, too. An ordinary delimited
continuation [Danvy and Filinski 1989] can be defined as a CPS (Continuation-Passing Style)
functions to register a callback function (listing 2), which is similar to the signature of Dsl type
class.

type Continuation[Domain, Value] = (Value => Domain) => Domain

, Vol. 1, No. 1, Article . Publication date: August 2023.

Ad-hoc polymorphic delimited continuations :3

a code block that returns an Eff

𝐸𝑓 𝑓 𝑒𝑐𝑡0

𝐸𝑓 𝑓 𝑒𝑐𝑡1

...

𝐸 𝑓 𝑓 𝑒𝑐𝑡𝑛

𝐸𝑓 𝑓

𝐻𝑎𝑛𝑑𝑙𝑒𝑟0

𝐻𝑎𝑛𝑑𝑙𝑒𝑟1

...

𝐻𝑎𝑛𝑑𝑙𝑒𝑟𝑛

interpreted by

interpreted by

interpreted by

dispatched to

dispatched to

dispatched to

Fig. 1. The architecture of Eff approach

a code block that returns any Domain

𝐾𝑒𝑦𝑤𝑜𝑟𝑑0

𝐾𝑒𝑦𝑤𝑜𝑟𝑑1

...

𝐾𝑒𝑦𝑤𝑜𝑟𝑑𝑛

𝐷𝑠𝑙0

𝐷𝑠𝑙1

...

𝐷𝑠𝑙𝑛

interpreted by

interpreted by

interpreted by

Fig. 2. The architecture of Dsl approach

Listing 2. The definition of a delimited continuation

Since a Continuation is a function, it contains the hard-coded implementation of an operation.
As a result, a delimited continuation can only be used in a function that returns the specified
Domain. In contrast, in our approach, each Keyword is ad-hoc polymorphic to the Domain, thus it
can be interpreted differently according to the enclosing Domain.
In the remaining sections of this paper, we will present the design and use cases of Dsl type

class, including:
(1) Simulating some first-class features in Python, C#, ECMAScript and C++, as library-defined

keywords;
(2) Simulating Monad to create imperative code blocks;
(3) Composing delimited continuations with less closure creation than Monad for continuations;

, Vol. 1, No. 1, Article . Publication date: August 2023.

:4 Yang, Bo

(4) Making Continuation stack safe, in a non-intrusive way;
(5) Using any combination of the features of items 1 to 4, in a single code block.
All code examples except section 7 are written in our Scala library Dsl.scala, which provides

some built-in instances of Dsl type class, along with a Scala compiler plug-in to perform a CPS-
transformation. The compiler plug-in avoids the “callback hell” problem, allowing Idris-like !-
notation [Brady 2013] direct style DSL in Scala, which can be used for not only monadic data type
but also other operations.

2 FROM DELIMITED CONTINUATION TO THE DSL TYPE CLASS
Our goal is making the control flow of a programming language to be extensible. In this section,
we will introduce the Dsl type class and the concept of name-based CPS transformation. We will
also demonstrate how to use these techniques to port first class Python language features to Scala,
as library-defined keywords (LDK) 1. The term LDK denotes language features implemented by
libraries. No metaprogramming knowledge is required for either LDK authors or LDK users 2, while,
in other languages, they are used to be implemented as compiler built-in first-class features.
The remaining parts of this section are organized as following. Firstly, in sections 2.1 and 2.2,

we will present how to port yield to Scala in the ordinary delimited continuation approach. Then
in section 2.3, we will present how to port await to Scala in a monad-like interface. Finally, in
sections 2.4 and 2.5, we will introduce the type class Dsl to unifying all the previous approaches,
and in addition, allowing for the use of multiple LDKs like yield and await together.

2.1 Implementing LDKs as ordinary delimited continuations
In Python, ECMAScript, and C#, a generator is a function that returns an Iterator or an IEnumerator
. The yield keyword is available inside the generator to lazily produce one element, which can
be consumed by the Iterator / IEnumerator user. Listing 3 is a Python example to create an
xorshift [Marsaglia et al. 2003] pseudo-random number generator that returns an infinite iterator
of generated numbers. Note that NumPy 3 is used for 32-bit integers, and type hinting 4 is used for
clarity.

def xor_shift_random_generator(seed: np.uint32) -> Iterator[np.uint32]:
tmp1 = np.uint32(seed ^ (seed << 13))
tmp2 = np.uint32(tmp1 ^ (tmp1 >> 17))
tmp3 = np.uint32(tmp2 ^ (tmp2 << 5))
yield tmp3
yield from xor_shift_random_generator(tmp3)

generated_numbers = xor_shift_random_generator(seed = np.uint32(2463534242))

print(generated_numbers.__next__()) // The first generated random number
print(generated_numbers.__next__()) // The second generated random number

Listing 3. An Xorshift pseudo-random number generator in Python 3.5+

1Code listings shown in section 2 are not exactly the same as the implementation in Dsl.scala, instead, these implementations
of LDKs are modified or simplified for the purpose of introducing the concept of the LDK approach more clearly.
2Though, Scala LDKs need the common compiler plug-ins to perform CPS transformation and Haskell LDKs need
RebindableSyntax described in section 7
3http://www.numpy.org/
4https://docs.python.org/3/library/typing.html

, Vol. 1, No. 1, Article . Publication date: August 2023.

Ad-hoc polymorphic delimited continuations :5

This generator feature can be ported to Scala as an LDK. In our LDK-based generator, the return
type is replaced to scala.Stream, which can be considered as the immutable version of Iterator,
and the compiler-defined keyword yield is replaced to library-defined keyword Yield. Listing 4 is
an example to create an Xorshift [Marsaglia et al. 2003] pseudo-random number generator that
returns an infinite stream of generated numbers.

xorShiftRandomGenerator does not throw a StackOverflowError, because the execution of
xorShiftRandomGenerator will be paused at Yield, and it will be resumed when the caller is
looking for the next number.

def xorShiftRandomGenerator(seed: Int): Stream[Int] = {
val tmp1 = seed ^ (seed << 13)
val tmp2 = tmp1 ^ (tmp1 >>> 17)
val tmp3 = tmp2 ^ (tmp2 << 5)
Yield(tmp3) { _: Unit =>
xorShiftRandomGenerator(tmp3)

}
}

val generatedNumbers = xorShiftRandomGenerator(seed = 2463534242)

println(generatedNumbers(0)) // The first generated random number
println(generatedNumbers(1)) // The second generated random number

Listing 4. An Xorshift pseudo-random number generator with the help of the LDK Yield

Despite of the implementation of Yield, which will be revealed in upcoming sections, the above
use case demonstrates some basic concepts in our approach:
(1) xorShiftRandomGenerator, and any other functions that contain nested continuation-

passing style (CPS) calls, are considered as written in some kind of eDSL.
(2) The word “domain” in the term “Domain-Specific Language” stands for the return type of the

enclosing function. For example, Stream[Int] is the domain of xorShiftRandomGenerator.

(3) The domain-specific language used by the enclosing function consists of some domain-specific
“library-defined keywords” (LDK). For example, Yield is an LDK available for Stream domains.

(4) Along with LDK, DSLs written in Dsl.scala also support native Scala control flows and
expressions.

For a simple use case such as xorShiftRandomGenerator, LDKs can be implemented as ordinary
delimited continuations. Listing 5 shows an implementation of the Yield LDK, as a delimited
continuation, in which the Yield LDK creates infinite Streams by capturing handler into a lazily
evaluated Stream.Cons.

case class Yield[A](element: A) extends Continuation[Stream[A], Unit] {
def apply(handler: Unit => Stream[A]): Stream[A] = {
new Stream.Cons(element, handler(()))

}
}

Listing 5. Implementing Yield LDK as an ordinary delimited continuation

, Vol. 1, No. 1, Article . Publication date: August 2023.

:6 Yang, Bo

2.2 Auto-reset name-based CPS transformation
The syntax of listing 4 differs from first-class generators in Python, as the code block contains
some manually created CPS closures. Ideally, the “rest” program after a Yield operation should be
indented at the same level of Yield, not in a nested closure. This coding style can be achieved by the !-
notation provided byDsl.scala’s built-in compiler plug-ins. The function xorShiftRandomGenerator
can be written as listing 6 with the help of the !-notation plug-ins.

def xorShiftRandomGenerator(seed: Int): Stream[Int] = {
val tmp1 = seed ^ (seed << 13)
val tmp2 = tmp1 ^ (tmp1 >>> 17)
val tmp3 = tmp2 ^ (tmp2 << 5)
!Yield(tmp3)
xorShiftRandomGenerator(tmp3)

}

Listing 6. TheXorshift pseudo-random number generator, in the style of !-notation

Our compiler plug-ins performs CPS-transform in a similar approach to reset/shift control
operators in Scala Continuations [Rompf et al. 2009]. Our domain type corresponds to the answer
type in delimited continuations; our ! prefix corresponds to the shift control operator; and the
reset control operator will be automatically injected to every function body. Thus the above
xorShiftRandomGenerator is equivalent to listing 7 in Scala Continuations.

def xorShiftRandomGenerator(seed: Int): Stream[Int] = reset {
val tmp1 = seed ^ (seed << 13)
val tmp2 = tmp1 ^ (tmp1 >>> 17)
val tmp3 = tmp2 ^ (tmp2 << 5)
shift(Yield(tmp3))
xorShiftRandomGenerator(tmp3)

}

Listing 7. TheXorshift pseudo-random number generator, in Scala Continuations

Because of the automatically injected reset control operator, the boundary of a delimited
continuation can never be escaped from a function in our approach. Therefore, our plug-ins are able
to eliminate the internal context of delimited continuations. Scala Continuations’ ControlContext
and cps type annotations are not necessary any more.

There is another difference between our compiler plug-ins and Scala Continuation. Our compiler
plug-ins are name-based instead of type-based, allowing CPS-transformation in monadic blocks,
which will be discussed in next section.

2.3 Monadic blocks
In previous sections, we have demonstrated how to port the compiler-defined keyword yield to
Scala, as a library-defined keyword. In this section, we will demonstrate how to import another
compiler-defined keyword, await, to Scala, as a library-defined keyword.

await is available in Python, ECMAScript, or C#, to compose multiple asynchronous tasks
into one task. The compiler-defined keyword await in Python is available in functions marked
as async. Each await pauses the execution until the awaiting operation is completed, and each

, Vol. 1, No. 1, Article . Publication date: August 2023.

Ad-hoc polymorphic delimited continuations :7

return keyword in an async function will turn the return value into an Awaitable. An example
of creating an Awaitable to download two web pages by aiohttp 5 is shown in listing 8.

async def download_two_pages() -> Awaitable[Tuple[bytes, bytes]]:
session = aiohttp.ClientSession()
response1 = await session.get('http://example.com')
content1 = await response1.read()
response2 = await session.get('http://example.net')
content2 = await response2.read()
return (content1, content2)

Listing 8. Asynchronously downloading two web pages in Python

When porting await feature to Scala, we replaced the compiler-defined keyword await to a
library-defined keyword Await, and replaced Awaitable to Future 6 as shown in listing 9. Note that
ByteString, Http, HttpMethods, HttpRequest in downloadTwoPages are asynchronous HTTP
library provided by Akka 7 and Akka HTTP 8.

def downloadTwoPages(): Future[(ByteString, ByteString)] = {
Await(Http().singleRequest(HttpRequest(HttpMethods.GET, "http://example.com")

)) { response1 =>
Await(response1.entity.toStrict(timeout = 5.seconds)) { content1 =>

Await(Http().singleRequest(HttpRequest(HttpMethods.GET, "http://example.
net"))) { response2 =>

Await(response2.entity.toStrict(timeout = 5.seconds)) { content2 =>
Future((content1.data, content2.data))

}
}

}
}

}

Listing 9. Asynchronously downloading two web pages in Dsl.scala

Await should accept a handler to handle the incoming value in an asynchronous Future, and it
can be implemented as a forwarder of flatMap on Future, as shown in listing 10.

case class Await[A](future: Future[A]) {
def apply[B](handler: A => Future[B])(implicit ec: ExecutionContext): Future[

B] = {
future.flatMap(handler)

}
}

Listing 10. Implementing Await LDK as a forwarder to flatMap

5https://docs.aiohttp.org/
6https://docs.scala-lang.org/overviews/core/futures.html
7https://akka.io/
8https://akka.io/akka-http/

, Vol. 1, No. 1, Article . Publication date: August 2023.

:8 Yang, Bo

Similar to CPS-transformation in listing 6, the nested callback functions registered to Await
in the downloadTwoPages method can be replaced to !-notation with the help of our compiler
plug-ins. The direct style version of downloadTwoPages is shown in listing 11.

def downloadTwoPages(): Future[(ByteString, ByteString)] = Future {
val response1 = !Await(Http().singleRequest(HttpRequest(HttpMethods.GET, "

http://example.com")))
val content1 = !Await(response1.entity.toStrict(timeout = 5.seconds))
val response2 = !Await(Http().singleRequest(HttpRequest(HttpMethods.GET, "

http://example.net")))
val content2 = !Await(response2.entity.toStrict(timeout = 5.seconds))
(content1.data, content2.data)

}

Listing 11. Asynchronously downloading two web pages, in the style of !-notation

Note that listing 11 are unable to be expressed in Scala Continuation because the shift control
operator accepts only CPS-functions, while the signature of flatMap differs from CPS-functions,
due to the additional type parameter B and the additional implicit parameter of ExecutionContext.

Fortunately our CPS-transformation compiler plug-ins are name-based. Given any expression 𝑒0,
𝑒1, ..., 𝑒𝑛 , variable name 𝑣0, 𝑣1, ..., 𝑣𝑛 and the final expression 𝑟 in a function f, as shown in listing 12,
our compiler plug-ins will convert the code block to listing 13. The plug-ins convert ! prefixes to call-
back functions registrations, regardless what the signatures of those expressions are. Both delimited
continuation and monad-like operations are supported. The behavior of our CPS-transformation
compiler plug-ins is similar to !-notation in Idris or do-notation with RebindableSyntax in Haskell.

def f = {
val 𝑣0 = !𝑒0;
val 𝑣1 = !𝑒1;
. . .

val 𝑣𝑛 = !𝑒𝑛;
𝑟;

}

Listing 12. A function with !-notation

def f = {
𝑒0 { 𝑣0 =>
𝑒1 { 𝑣1 =>
. . .

𝑒𝑛 { 𝑣𝑛 =>
𝑟

}
}

}
}

Listing 13. The code converted from !-notation by our name-based CPS-transformation plug-ins

While Await implemented in listing 10 can “extract” the value of a Future, it can be generalized
to any Monads as shown in listing 14.

, Vol. 1, No. 1, Article . Publication date: August 2023.

Ad-hoc polymorphic delimited continuations :9

trait Monad[F[_]] {
def bind[A, B](fa: F[A])(f: A => F[B])
def point[A](a: A): F[A]

}
object Monad {

implicit def futureMonad(implicit ec: ExecutionContext) = new Monad[Future] {
def bind[A, B](fa: Future[A])(f: A => Future[B]) = fa.flatMap(f)
def point[A](a: A): Future[A] = Future(a)

}
}

case class Monadic[F[_], A](fa: F[A]) {
def apply[B](handler: A => F[B])(implicit monad: Monad[F]): F[B] = {
monad.bind(fa)(handler)

}
}

Listing 14. Implementing Monadic LDK as a forwarder to Monad

Monadic is an LDK more generic than Await, able to “extract” any monadic value, not only
future, as long as the corresponding Monad type class instance exists.

2.4 Collaborative library-defined keywords
In previous sections, we ported Python’s compiler-defined keywords yield and await to Scala, as
library-defined keywords. However, those keywords are not collaborative. LDK Yield and Await
implemented in previous sections cannot be present in the same function, while Python 3.5 allows
using yield and await together to create asynchronous generators [Selivanov 2016].
In this section, we will present a use case of Python’s yield and await in one function, and

then modify the previous implementation of LDK Yield and Await to gain the same ability of
collaboration as Python.

async def download_two_pages_generator() -> AsyncGenerator[bytes, None]:
session = aiohttp.ClientSession()
response1 = await session.get('http://example.com')
content1 = await response1.read()
yield content1
response2 = await session.get('http://example.net')
content2 = await response2.read()
yield content2

Listing 15. Downloading two web pages as an asynchronous generator in Python

Listing 15 shows an example of downloading two web pages with combination of yield and
await. In Python, when an async function like download_two_pages_generator contains both
yield and await keywords, the return type becomes AsyncGenerator.
The corresponding type of AsyncGenerator[bytes, None] in Scala could be Stream[Future

[ByteString]], which should be the return type of apply in the modified version of Yield and
Await. Therefore, the modified version of Yield and Await can be implemented as listings 16
and 17, and the usage of asynchronous generator with !-notation is shown in listing 18.

, Vol. 1, No. 1, Article . Publication date: August 2023.

:10 Yang, Bo

case class Yield[A](element: A) {
def apply(handler: Unit => Stream[Future[A]])(implicit ec: ExecutionContext):

Stream[Future[A]] = {
new Stream.Cons(Future(element), handler(()))

}
}

Listing 16. Implementing modified version of Yield LDK for creating asynchronous generators

case class Await[A](future: Future[A]) {
def apply[B](handler: A => Stream[Future[B]])(implicit ec: ExecutionContext):

Stream[Future[B]] = {
val ff = future.map(handler)
new Stream.Cons(ff.flatMap(_.head), result(ff, Duration.Inf).tail)

}
}

Listing 17. Implementing a modified version of Await LDK for creating asynchronous generators

def downloadTwoPagesGenerator(): Stream[Future[ByteString]] = {
// The following Await and Yield LDKs will create a Future to download the

page at example.com, as the first element of the output Stream
val response1 = !Await(Http().singleRequest(HttpRequest(HttpMethods.GET, "

http://example.com")))
val content1 = !Await(response1.entity.toStrict(timeout = 5.seconds))
!Yield(content1.data)

// The following Await and Yield LDKs will create a Future to download the
page at example.net, as the second element of the output Stream

val response2 = !Await(Http().singleRequest(HttpRequest(HttpMethods.GET, "
http://example.net")))

val content2 = !Await(response2.entity.toStrict(timeout = 5.seconds))
!Yield(content2.data)

// Remaining elements after yielded futures
Stream.empty[Future[ByteString]]

}

Listing 18. Downloading two web pages as an asynchronous generator, in the style of !-notation

Semantically, each Yield LDK “prepend” a value at the head of the output Stream, and the
remaining parts of the output Stream is a Stream.empty. Any asynchronous Await operations
performed before a Yield are collected as the asynchronous Future for the yielded element.

The modified version of Yield and Await LDKs are collaborative, as they are both available for
the domain of Stream[Future[ByteString]], thus they can be used together in one function.

2.5 Adaptive library-defined keywords
In previous sections, we presented two different implementations of Yield in listings 5 and 16,
and two different implementations of Await in listings 10 and 17, for creating asynchronous value

, Vol. 1, No. 1, Article . Publication date: August 2023.

Ad-hoc polymorphic delimited continuations :11

and asynchronous generators, respectively. However, the collaborative version of Yield and Await
still lack of adaptivity, as the semantics the Yield and Await are not automatically determined by
their context like Python. In this section, we will introduce the type class Dsl for creating adaptive
library-defined keywords to solve the adaptivity problem.

InDsl.scala, the Dsl type class as defined in listing 1 is usually used alongwith Keyword (listing 19),
which should be the super type of all adaptive LDKs.

trait Keyword[Self, Value] { this: Self =>
@inline def cpsApply[Domain](handler: Value => Domain)(implicit dsl: Dsl[Self

, Domain, Value]): Domain = {
dsl.cpsApply(this, handler)

}

def apply[Domain](handler: Value => Domain)(implicit dsl: Dsl[Self, Domain,
Value]): Domain = cpsApply(handler)

}

Listing 19. Keyword, the super type of all adaptive LDKs

An apply call is an alias of cpsApply, which registers a callback to handle the Value, and finally
returns a Domain. The self type (Self) and the value of the keyword (Value) are defined in sub
types of Keyword. The actually implementation of a keyword is resolved by the multi-parameter
type class Dsl, which varies according to Domain, which is the return type of the enclosing function
of the keyword’s call site. For example, the adaptive version of Yield and Await can be defined as
listings 20 and 21.

case class Yield[A](element: A) extends Keyword[Yield[A], Unit]

Listing 20. The Yield LDK, the adaptive version

case class Await[Value](future: Future[Value]) extends Keyword[Await[Value],
Value]

Listing 21. The Await LDK, the adaptive version

When performing !-notation on a Keyword to produce a Value inside a function whose return
type is Domain, the type class instance of Dsl[Keyword, Domain, Value] is required. For example,
adaptive version of LDKs in listings 5, 10, 16 and 17 requires Dsl instances implemented in listings 22
to 25.

implicit def yieldDsl[A, B >: A]: Dsl[Yield[A], Stream[B], Unit] =
new Dsl[Yield[A], Stream[B], Unit] {
def cpsApply(keyword: Yield[A], mapper: Unit => Stream[B]): Stream[B] = {

new Stream.Cons(keyword.element, mapper(()))
}

}

Listing 22. The Dsl type class instance of Yield for creating generators

, Vol. 1, No. 1, Article . Publication date: August 2023.

:12 Yang, Bo

implicit def futureYieldDsl[A, B >: A]: Dsl[Yield[A], Stream[Future[B]], Unit]
=

new Dsl[Yield[A], Stream[Future[B]], Unit] {
def cpsApply(keyword: Yield[A], handler: Unit => Stream[Future[B]]): Stream

[Future[B]] = {
new Stream.Cons(Future.successful(keyword.element), handler(()))

}
}

Listing 23. The Dsl type class instance of Yield for creating asynchronous generators

implicit def awaitDsl[A, B](implicit ec: ExecutionContext): Dsl[Await[A],
Future[B], A] =

new Dsl[Await[A], Future[B], A] {
def cpsApply(keyword: Await[A], handler: A => Future[B]): Future[B] = {
keyword.future.flatMap(handler)

}
}

Listing 24. The Dsl type class instance of Await for creating asynchronous values

implicit def streamAwaitDsl[A, B](implicit ec: ExecutionContext): Dsl[Await[A],
Stream[Future[B]], A] =

new Dsl[Await[A], Stream[Future[B]], A] {
def cpsApply(keyword: Await[A], handler: A => Stream[Future[B]]): Stream[

Future[B]] = {
val ff = keyword.future.map(handler)
new Stream.Cons(ff.flatMap(_.head), result(ff, Duration.Inf).tail)

}
}

Listing 25. The Dsl type class instance of Await for creating asynchronous generators

By introducing the type class Dsl, the calls to Keyword are ad-hoc polymorphic to the specific
domain of the call site. As a result, library-defined keywords like Yield and Await are now adaptive
like first-class keywords.

3 IMPLEMENTATION
We implemented the LDK approach in the Scala library Dsl.scala, which consists of the following
parts:
The core library contains the definition of the Dsl type class and Keyword, the common super

type of LDKs. They are slightly different from the definition in listings 1 and 19:
• There is an additional dummy method unary_! annotated as @shift defined in Keyword.
The unary_! method (or any other @shift-annotated methods) will be specially treated
by our compiler plug-ins, and it will be considered as an ordinary method for !-notation,
from the point view of type checker when our compiler plug-ins are not enabled. The
definition of the unary_! method is especially useful for IntelliJ IDEA 9’s built-in type

9https://www.jetbrains.com/idea/

, Vol. 1, No. 1, Article . Publication date: August 2023.

Ad-hoc polymorphic delimited continuations :13

checker, preventing the edit window in the IDE from being red marked, even though the
type checker does not load compiler plug-ins.

• Keyword is a universal trait 10, allowing its subtypes to be value classes, which involves
lower memory overhead in most of LDK use cases.

Compiler plug-ins performs CPS-transformation as described in section 2.2. There are two com-
piler plug-ins in Dsl.scala: ResetEverywhere and BangNotation. The ResetEverywhere
plug-in adds a hidden @reset annotation to the code block of every method in source
code, and the BangNotation plug-in perform CPS-transformation according to the unary_!
method (or any method annotated as @shift) and @reset annotation, which are equivalent
to shift and reset control operators [Danvy and Filinski 1989], respectively.
In addition to block expressions mentioned in listing 13, all other first-class control flows in
Scala 11 are transformed to CPS form by the BangNotation plug-in in the metacontinuation
[Danvy and Filinski 1990] approach.
Unlike other typed delimited continuation implementations, the BangNotation plug-in per-
forms name-based CPS-transformation. Each !-notation in a transformed function can be
converted to an arbitrary cpsApply method call as long as it accepts a callback function
parameter. Type checking for the transformed function will be performed once the transfor-
mation is done.
Although the Dsl type class does not allow changing the domain of a DSL code block,
the BangNotation plug-in itself allows domain changing when the cpsApply method is
implemented without Dsl type class. Thus, the printf problem can be trivially resolved by
our compiler plug-ins as described in appendix A.1.

Built-in library-defined keywords are shipped with Dsl.scala, to provide many language fea-
tures that are not available natively in Scala, including:
• The Await LDK for asynchronous programming with Scala Future, similar to the await
and async keywords in C#, Python and JavaScript.

• The Shift LDK for asynchronous programming with delimited continuations, similar to
the shift operator in Scala Continuations.

• The AsynchronousIo LDKs for perform I/O on an asynchronous channel.
• The Yield LDK for generating lazy streams, similar to the yield keyword in C#, Python
and JavaScript.

• The Each LDK for traversing each element of a collection, similar to for, yield keywords
for Scala collections.

• The Continue LDK to skip an element in a LDK-based collection comprehension, similar
to continue keyword in many languages.

• The Fork LDK for duplicating current thread, similar to the fork system call in POSIX.
• The AutoClose LDK to automatically close resources when exiting a scope, similar to the
destructor feature in C++.

• The Monadic LDK for creating Scalaz [Yoshida et al. 2017] or Cats [Typelevel 2017] monadic
control flow, similar to the !-notation in Idris [Brady 2013].

Asynchronous task utilities contains a Task type and related utility functions, for stack-safe
asynchronous programming with the ability of exception handling and auto-closeable re-
source management. Task is a type alias of delimited continuation whose answer type is

10https://docs.scala-lang.org/overviews/core/value-classes.html
11Note that the for expression is not converted as it is not a first-class control flow but a group of nested method calls in
AST (Abstract Syntax Tree) of the Scala compiler.

, Vol. 1, No. 1, Article . Publication date: August 2023.

:14 Yang, Bo

composed of TailRec and Throwable in the approach described in section 5, and the use
case of our Task can be found in appendix A.4.
According to the result of the benchmarks shown in appendix B, the computational perfor-
mance of Task in Dsl.scala is comparable to state-of-the-art Scala asynchronous programming
libraries when running in HotSpot Server VM, and it achieves significant higher performance
than state-of-the-art libraries when running in GraalVM.

4 THE UNDERSCORE TRICK
As described in section 3, our compiler plug-ins automatically perform reset control operation for
every function. However, a complex continuation is usually executed across multiple functions,
which requires an approach to prevent the automatically performed reset control operation.

Wewill propose two approaches to resolve the problem. The first solution is called the “underscore
trick”, which will be discussed in this section. Another solution is automatically derived Return
LDK, which will be described in section 5.
For example, in addition to yield, Python generators also allow the return and yield from

keywords. A generator that contains both yield and return keywords can be invoked by yield
from from another generator. The elements being yielded in the former generator will be added
into the latter generator, and the return value of the former generator can be used in the latter
generator, too. An example of return and yield from is shown in listing 26.

def returnable_generator() -> Generator[str, None, int]:
yield 'inside␣returnable_generator'
return 1

def generator_test() -> Iterator[str]:
yield 'before␣returnable_generator'
v = yield from returnable_generator()
yield 'after␣returnable_generator'
yield f'the␣return␣value␣of␣returnable_generator␣is␣{v}'

Output:
before returnable_generator
inside returnable_generator
after returnable_generator
the return value of returnable_generator is 1
print(*generator_test(), sep='\n')

Listing 26. Use yield from and return in Python generators

Unlike generators introduced in section 2.1, returnable_generator has the additional ability
of returning values, therefore its return type becomes Generator[str, None, int], where str
is the iterator element type and int is the type to return 12.

When porting return and yield from to Scala, the return type should indicate both the element
type and the type to return, thus Stream is not applicable for return type any more. We can instead
use the return type Continuation[Stream[String], Int], as shown in listing 27. It accepts a
callback function k, which can handle the Int value being returned and resume the rest program
12Note that the declared return type and the type to return are different in Python generators. In other words, the return
keyword in Python “lifts” the plain value to a Generator.

, Vol. 1, No. 1, Article . Publication date: August 2023.

Ad-hoc polymorphic delimited continuations :15

in generatorTest. Note that the underscore character is a Scala parameter placeholder for the
callback function of the created Continuation closure.

def returnableGenerator(): Continuation[Stream[String], Int] = _ {
!Yield("inside␣returnableGenerator")
1

}

def generatorTest(): Stream[String] = {
!Yield("before␣returnableGenerator")
val v = !Shift(returnableGenerator())
!Yield("after␣returnableGenerator")
!Yield(s"the␣return␣value␣of␣returnableGenerator␣is␣$v")
Stream.empty

}

generatorTest.foreach(println)

Listing 27. Returning an additional value in LDK-based generators

We also create Shift, an additional ad-hoc polymorphic LDK used in generatorTest, to perform
the continuation 13. It can be considered as the LDK-based replacement of Python’s yield from
keyword, which is defined as listing 28.

case class Shift[Domain, Value](continuation: Continuation[Domain, Value])
extends Keyword[Shift[Domain, Value], Value]

Listing 28. The definition of Shift LDK

As described in section 2.5, we had split the LDK declaration (i.e. a subtype of Keyword) from its
implementation (i.e. a Dsl type class instance). A Dsl type class instance of Dsl[Shift[Stream[
String], Int], Stream[String], Int] is required to perform !Shift in the domain of Stream
[String]. The implementation should forward cpsApply call to the underlying continuation of
the Shift LDK, as shown in listing 29.

implicit def shiftDsl[Domain, Value] =
new Dsl[Shift[Domain, Value], Domain, Value] {
def cpsApply(keyword: Shift[Domain, Value], handler: Value => Domain) =
keyword.continuation(handler)

}

Listing 29. The Dsl instance of Shift LDK, to forward cpsApply to the underlying continuation

The Shift LDK can be considered as a simple wrapper of Continuation that forward cpsApply
calls to the underlying continuation.

Semantically, the automatically performed reset control operator is prevented by the prepending
underscore character. We call this usage of the underscore character the “underscore trick”.
This “underscore trick” can also be applied on not only monomorphic delimited continuation,

but also polymorphic delimited continuation [Asai and Kameyama 2007]. More examples can be
found in appendix A.2.
13There is an implicit conversion from Continuation to Shift LDK in Dsl.scala, thus the explicit Shift() call can be
omitted. We keep the explicit instantiation of Shift in this section for clarity.

, Vol. 1, No. 1, Article . Publication date: August 2023.

:16 Yang, Bo

5 DSL DERIVATION
Another solution to allow continuations to cross functions is Dsl Derivation.

In section 2.5, we have present how to create an LDK for different domains, interpreted by
different implementations of Dsl type class instances. In this section, we will discuss derived Dsl
type class instances for an LDK, available in derived domains.
A derived domain means a domain whose type signature contains another domain, and a

derived Dsl means a Dsl whose implementation internally invokes another Dsl. For example, the
domain Continuation[Stream[String], Int], which we used in section 4, can be considered
as a derived domain of Stream[String]. We will present a derived Dsl to automatically “lift” the
original domain Stream[String] to the derived domain Continuation[Stream[String], Int],
instead of manually creating CPS functions in the “underscore trick”. In addition, Dsl derivation
approach supports early return, which is impossible in “underscore trick”.

For example, the native keyword return in Python can early return from a function, as shown
in listing 30.

def early_generator(early_return: bool) -> Generator[str, None, int]:
yield 'inside␣early_generator'
if early_return:
yield 'early␣return'
return 1

yield 'normal␣return'
return 0

def early_generator_test() -> Iterator[str]:
yield 'before␣early_generator'
v = yield from early_generator(True)
yield 'after␣early_generator'
yield f'the␣return␣value␣of␣early_generator␣is␣{v}'

Output:
before early_generator
inside early_generator
early return
after early_generator
the return value of early_generator is 1
print(*early_generator_test(), sep='\n')

Listing 30. Use yield from and return in Python generators

The ability of early return is impossible with Scala native keyword return, because the above
return 0 does not compile in a function whose type is not a Int. Instead we defined a new Return
LDK to port Python return to Scala, as shown in listings 31 and 32.

case class Return[A](returnValue: A) extends Keyword[Return[A], Nothing]

Listing 31. The definition of Return LDK

def earlyGenerator(earlyReturn: Boolean): Continuation[Stream[String], Int] = {
!Yield("inside␣earlyGenerator")
if (earlyReturn) {

, Vol. 1, No. 1, Article . Publication date: August 2023.

Ad-hoc polymorphic delimited continuations :17

!Yield("early␣return")
!Return(1)

}
!Yield("normal␣return")
!Return(0)

}

def earlyGeneratorTest(): Stream[String] = {
!Yield("before␣earlyGenerator")
val v = !Shift(earlyGenerator(true))
!Yield("after␣earlyGenerator")
!Yield(s"the␣return␣value␣of␣earlyGenerator␣is␣$v")
Stream.empty

}

earlyGeneratorTest.foreach(println)

Listing 32. Use Shift and Return in LDK-based generators

Unlike the “underlying trick” approach, the domain of LDKs used in earlyGenerator is the
return type Continuation[Stream[String], Int], which requires some Dsl instances listed
below:
(1) Dsl[Yield[String], Stream[String], Unit]

(required by !Yield in earlyGeneratorTest)
(2) Dsl[Shift[Stream[String], Int], Stream[String], Int]

(required by !Shift in earlyGeneratorTest)
(3) Dsl[Yield[String], Continuation[Stream[String], Int], Unit]

(required by !Yield in earlyGenerator)
(4) Dsl[Return[Int], Continuation[Stream[String], Int], Nothing]

(required by !Return in earlyGenerator)
As discussed in section 4, items 1 and 2 can be resolved by yieldDsl and shiftDsl, respectively,

but Items 3 and 4 are instances that have not been defined.
Item 3 should register a callback handler and then return a new continuation, whose answer

type is Stream[String]. Thus, the Yield[String] keyword can be performed inside the newly
created continuation, interpreted by the existing Dsl instance yieldDsl[String, String]. The
extracted value v and the final handler k is then passed to handler to continue the execution of
rest program, as shown in listing 33.

implicit def yieldContinuationDsl = {
new Dsl[Yield[String], Continuation[Stream[String], Int], Unit] {
def cpsApply(keyword: Yield[String], handler: Unit => Continuation[Stream[

String], Int]): Continuation[Stream[String], Int] = { k =>
val v = !keyword
handler(v)(k)

}
}

}

Listing 33. The derived Dsl instance for Yield LDK, which can be used in a Continuation

, Vol. 1, No. 1, Article . Publication date: August 2023.

:18 Yang, Bo

As described in section 3, !keyword will be desugared to keyword.cpsApply { v => . . . },
which is equivalent to yieldDsl[String, String].cpsApply(keyword, { v => . . . }) after
inlining. Therefore, yieldContinuationDsl can be considered as a derived Dsl instance of implic-
itly resolved yieldDsl.

Also the implementation of yieldContinuationDsl can be generalized to not only Yield LDK,
but also any other LDKs, since yieldContinuationDsl does not depend on internal details of
Yield. Any instances of Dsl[Keyword, State => Domain, Value] can be derived from Dsl[
Keyword, Domain, Value] as shown in listing 34. The implementation is the same to listing 33
except we manually desugared !keyword and switched the instance to a more generalized type
signature.

implicit def derivedFunction1Dsl[Keyword, State, Domain, Value](
implicit restDsl: Dsl[Keyword, Domain, Value]

): Dsl[Keyword, State => Domain, Value] =
new Dsl[Keyword, State => Domain, Value] {
def cpsApply(keyword: Keyword, handler: Value => State => Domain): State =>

Domain = { k =>
restDsl.cpsApply(keyword, { v =>
handler(v)(k)

})
}

}

Listing 34. Derived Dsl instance in a curried function

Now the required Dsl instance of item 3 can be resolved from either yieldContinuationDsl, or,
more generically, derivedFunction1Dsl[Yield[String], Int => Stream[String], Stream[
String], Unit](yieldDsl[String, String]).
Similarly, since a !Return LDK immediately returns from the current function, the implemen-

tation of Dsl instance for !Return should skip the rest part of the function, which is captured as
a callback function passed to cpsApply, as shown in listing 35. Then, item 4 can be resolved as
derivedContinuationDsl(returnDsl).

implicit def returnDsl[A] =
new Dsl[Return[A], A, Nothing] {
def cpsApply(keyword: Return[A], handler: Nothing => A) =
keyword.returnValue

}

Listing 35. The Dsl instance of Return LDK, to skip the registered callback function

Dsl derivation enables heterogeneous LDKs to be present in one function, whose return type is a
derived domain composed from the required domain of LDKs in use. We provided more examples of
this approach, including multiple mutable states, asynchronous tasks, and some advanced varieties
of collection comprehension, as shown in appendices A.3.2, A.4 and A.5.

6 RELATEDWORKS
Previous works related to Dsl.scala can be divided into two categories:
Generic protocols of control flow operators are motivated by the goal similar to our Dsl type

class. Operators of specific purposes can be implemented in single protocol, therefore, users of

, Vol. 1, No. 1, Article . Publication date: August 2023.

Ad-hoc polymorphic delimited continuations :19

those operators can use a common interface for different domains. Monads and CPS functions
are notable examples of such protocols.

Direct style notations provide similar syntaxes to our name-based CPS transformation. Those
notations allow users to write sequential imperative style code that will be translated to
CPS or monadic style that consist of nested closures. yield, async / await, reset / shift,
for-comprehension, do-notation and !-notation are notable examples of such notations.

6.1 Generators
A generator is a special procedure to lazily produce values, which can be consumed as an iterator.
Early implementation of generators are shipped in Alphard [Shaw et al. 1977] and CLU [Liskov et al.
1977], and the feature is now available in Python, ECMAScript, C#, and many other programming
languages.

The execution of a generator will be paused at the yield statement, and can be resumed when
the consumer side of the generator asks for the next value. The yield statement can be considered
as a direct style notation for producer / consumer pattern.

Generators can be used for creating eDSLs in the following approach:
• The producer side yields command objects of the DSL.
• The consumer side interprets these produced command objects to actually perform operations.

However, the producer side can be only executed once, therefore generators cannot represent
eDSLs for collection comprehension or “thread” forking, though they are supported in our approach,
as described in appendices A.4.2 and A.5.
Another limitation of producer / consumer approach is that the type of the command object

is a part of the protocol, and must be determined in advance. Therefore, the number of available
commands in a generator is fixed. A generator eDSL is not composable with other generator eDSLs.
In addition, generators are traditionally implemented as a first class feature by the compiler, thus
they do not collaborate with other direct style notation unless changing the compiler.
In contrast, our LDK-based generators can be used along with other LDKs, including but not

limited to Shift (section 4), Return (section 5), Await (section 2.4), Each (appendix A.5.4), without
modifying the compiler or existing Dsl implementations.

6.2 async and await

async and await are compiler-defined keywords in Python, ECMAScript, or C#, to compose
multiple asynchronous tasks into one task. Similar to generators, async and await provide a
special purpose direct style notation, which does not support forking and does not collaborate with
other direct style notations, unless modifying the implementation of the compiler like [Selivanov
2016] did.
Alternatively, we provide Await,Shift LDK in Dsl.scala for asynchronous programming with

Scala Futures and Continuation, respectively. Those asynchronous LDKs collaborate with other
LDK as demonstrated in section 2.4 and appendices A.4 and A.5.3.

6.3 Delimited continuations
Delimited continuations operators of shift and reset [Danvy and Filinski 1990] are direct style no-
tations for performing CPS-transformation. The underlying data structures are either monomorphic
[Danvy and Filinski 1989] or polymorphic [Asai and Kameyama 2007], which can be considered as
a generic protocol of control flow operators.
Our BangNotation compiler plug-ins described in section 3 can be considered as a simplified

version of delimited continuations operators, disallowing delimited continuations across multiple

, Vol. 1, No. 1, Article . Publication date: August 2023.

:20 Yang, Bo

functions. Fortunately, this limitation can be overcame by the “underscore trick” as described in
section 4.

An ordinary delimited continuation is a CPS function whose implementation is predetermined.
In contrast, we introduced the Dsl type class as an ad-hoc polymorphic CPS function, adaptive to
the enclosing domain, as described in section 2.5.

6.4 for-comprehension
for-comprehension is a Scala language feature, originally used to produce collections. It is a
general form of list comprehension. The Scala compiler internally translates for-comprehension
expressions into method calls to map, flatMap and withFitler. Like our BangNotation compiler
plug-in, The translation is also name-based, therefore, for-comprehension can be used not only for
collection generation, but also as a general direct style notation for asynchronous programming
14, resource management 15, or creating monadic expression [Twitter, Inc. 2016; Typelevel 2017;
Yoshida et al. 2017].

However, complex imperative procedures that contain native Scala control flow statements are
not supported in for-comprehensions. In addition, for-comprehensions always end with a map,
preventing tail call optimization when composing multiple for-comprehensions, consuming more
memory and resulting worse computational performance than manually written flatMap calls,
according to our benchmarks in appendix B.1.2.

6.5 do-notation
do-notation was originally introduced in Haskell [Jones et al. 1998] as a direct style notation for
creating monadic expressions in an imperative style. do-notation in Idris or RebindableSyntax in
Haskell are name-based, as they can be used with type classes other than monads.

The <- expression is similar to the shift operator in first-class delimited continuations. However,
programs written in do-notation can be unnecessarily verbose, since <- is not an expression that
can be nested in other expressions, instead, each <- must be present in an individual statement.

6.6 !-notation
!-notation is a direct style notation in Idris [Brady 2013], to make up nested expressions in an
effectful block. Our BangNotation and ResetEverywhere compiler plug-ins are re-implementation
of Idris’s !-notation in Scala, with some minor differences. Our compiler plug-ins support more
native control flow expressions, including do/while and try/catch/finally/throw.

Since Idris’s !-notation is also name-based, our Dsl type class can be port to Idris and work with
!-notation as well.

6.7 Monads
A monad is a generic protocol of control flow operators used in Haskell and many other functional
programming languages. A monad defines two primary operators for creating monadic expressions
of a certain type. (1) The return operator 16 lifts a plain value to a monadic value. (2) The >>=
operator 17 composes two steps monadic expressions into one monadic value, where the second
step is a handler to “flat-map” the value of the first step into a new monadic value.

Since a monad is specified to a certain monadic data type, the capacity of a monadic data type is
predetermined, unless introducing an additional abstract layer of interpreters. For example, the
14SIP-14 - Futures and Promises
15Scala ARM
16Also called point or pure.
17Also called flatMap or bind.

, Vol. 1, No. 1, Article . Publication date: August 2023.

Ad-hoc polymorphic delimited continuations :21

List monad in Haskell 18 can be used to create a List based on Lists, but it cannot create a List
based on other collection types, nor creating a List from a generator.

In our LDK approach, we remove the limitation of monads by separating the concept of monadic
value into two orthogonal concepts: domain (concept 2) and LDK (concept 3). A domain is the
return type of the enclosing function, and an LDK is an operation allowed in the domain. Therefore,
any collections can be created from any collections or generators, because in our approach the types
of the source collection and the output collection are not necessarily the same, as demonstrated in
appendices A.5.1 and A.5.4.

In addition, decoupling domains and LDKs can lead simpler implementation. Our state LDKs can
be used to create ordinary functions with multiple mutable states, while State and StateTmonads
are more complicated, as discussed in appendices A.3.1 and A.3.2. Also, the implementation of a
Cont monad [Dyvbig et al. 2007], as defined in eqs. (1) and (2), is more complicated, as it creates
two more additional closures – 𝜆𝜅.𝑡1 (𝜆𝑣 .𝑡2𝑣𝜅) and 𝜆𝑣 .𝑡2𝑣𝜅 – for each >>= operator. In contrast, our
Shift LDK for delimited continuation runs as a simple forwarder, which creates no closure, as
defined in listing 29 of section 4.

𝑟𝑒𝑡𝑢𝑟𝑛𝑘 = 𝜆𝑡 .𝜆𝜅.𝜅𝑡 (1)
»=𝑘 = 𝜆𝑡1 .𝜆𝑡2 .𝜆𝜅.𝑡1 (𝜆𝑣.𝑡2𝑣𝜅) (2)

In fact, the >>= operator of a monad is equivalent to a special case of Dsl when the domain type
and the LDK type are the same, and the return operator of a monad can be considered another
special case of Dsl when the LDK is a Return, which holds a plain value of the domain type, as
discussed in section 5.

There are other workarounds to overcome the limitation of monads, which will be discussed in
sections 6.7.1 and 6.7.2.

6.7.1 Monad transformers. Monad transformers [Liang et al. 1995] are monads derived from
other monads. “Monad transformer” is to “monad” as “Dsl derivation” is to “Dsl”. The monadic data
type can be composed at type level as a chain of monad transformers, so that various operations
can be lifted to the same nested transformed monadic data type, which can be then used in a single
monadic code block. The process to perform an operation in a monad transformer requires two
steps:
(1) Performing the derived lift, in order to transform an operation to the lifted monadic value.
(2) Performing the derived >>=, in order to reduce to the final monadic value.
However, as [Kiselyov et al. 2013] pointed out, lifting an atomic type to a deeply nested trans-

formed monadic data type is inefficient, because each step has to iterate through derived type class
stack. The overhead of lifting a single operation is high if there is a large number of nested monad
transformers.
The inefficient lifting can be avoided in our Dsl derivation approach, since an LDK already

represents an operation for any compatible domains. Only one step – the cpsApply method – in
the Dsl type class is derived, as shown in fig. 2. The LDK is executed in one step without creating
an intermediate nested monadic data value. The performance improvement can be observed in the
benchmark at appendix B.2.2.

6.7.2 Effect handlers. Effect handler [Kiselyov et al. 2013] is an alternative approach to monad
transformers. An eDSL code block is considered as a script of Eff, which is composed of effects. A

18A Haskell List is lazy by default, equivalent to a Scala Stream.

, Vol. 1, No. 1, Article . Publication date: August 2023.

:22 Yang, Bo

generic Eff monad type class instance composes individual effects into a larger script Eff, which
is then interpreted by a stack of Handlers for each type of effect.
The effect handler approach is more efficient than monad transformer because Eff is a light-

weight script instead of the underlying data structure. Lifting an atomic effect to an Eff is faster than
lifting real data structures. However, this approach lacks of straightforwardness and keyword-wise
extensibility in comparison to our LDK approach.

Straightforwardness determines how easy an eDSL is to interoperate with native types and
functions of the hosting language. Effect handlers are not straightforward because Eff is
an additional intermediate script, which is unable to directly collaborate with the hosting
language, instead, every eDSL written Eff requires two steps of type classes, Monad and
Handler, in order to produce native data structures, as shown in fig. 1. What is worse is, two
Effs cannot invoke each other if they contain different effect stacks.
Our LDK approach is more straightforward, as only one type class Dsl is used to interpret
the eDSL, as shown in fig. 2. Instead of producing indirect scripts, LDKs directly produces
the underlying data structures, which can be easily used in the hosting language. In addition,
an eDSL block can be used in another eDSL block of a different domain as long as the
underlying data types are compatible. For example, in section 4, the generatorTest function
can internally call the returnableGenerator function even when the return types of the
two functions are different.

Keyword-wise Extensibility determines whether a new keyword or operator can be introduced
into an eDSL without changing the original domain type. Unfortunately, the effect handler
approach is not extensible in keyword-wise because an Eff consists of a stack of effects,
and each effect is specially designed for only a fix number of supported operators. It is only
extensible in the domain-wise by appending a new effect, which will change the return type
of an Eff script.
In contrast, our LDK approach is extensible in both domain-wise and keyword-wise.

(1) Domain-wise extensibility is achieved by Dsl derivation as described in section 5;
(2) Keyword-wise extensibility is achieved by providing a Dsl instance for the new LDK and

the existing domain. For example, we introduced Yield LDK in LDK-based collection
comprehension in listing 67 without changing the return type nor the implementation of
existing Each LDK.

7 HASKELL IMPLEMENTATION
We ported Dsl.scala to Haskell as the package control-dsl 19. The Dsl type class in Haskell is defined
in listing 36. The type of cpsApply is slightly different from Scala version Dsl defined in listing 1,
as k is an arity-2 type parameter while Keyword is a first-order type parameter 20. The additional
type parameters for k improve the ability of type inference in do notation.
We also provided some helper functions for Dsl based do-notation, as shown in listing 37.

RebindableSyntax language extension is required to enable those functions for do-notation.

19https://hackage.haskell.org/package/control-dsl/docs/Control-Dsl.html
20We use shorter identifiers in control-dsl to confirm Haskell naming conventions, as shown below:

Identifiers in Dsl.scala Identifiers in control-dsl
Keyword k
Domain r
Value a
Continuation Cont
handler f

, Vol. 1, No. 1, Article . Publication date: August 2023.

Ad-hoc polymorphic delimited continuations :23

class Dsl k r a where
cpsApply :: k r a -> (a -> r) -> r

Listing 36. Dsl type class in control-dsl

(>>=) k = cpsApply k
k >> a = k >>= const a

data Return r' r a where Return :: r' -> Return r' r Void

return r = Return r >>= absurd
fail r = return (userError r)

Listing 37. Helpers for Dsl based do-notation

Unfortunately, the additional r type parameter prevents Dsl derivation, since the an LDK whose
type is k r a can only be present in do blocks of type r. As a result, we are not able to port derived
Dsls to Haskell like instance Dsl k r a => Dsl k (s -> r) a.

To allow derived keywords, we introduced a new type class PolyCont, which looses the restriction
in Dsl. Instead of deriving Dsl, an LDK author creates derived PolyCont, and finally resolves Dsl
from derived PolyCont, as shown in listing 38.

class PolyCont k r a where
runPolyCont :: k r' a -> (a -> r) -> r

instance PolyCont k r a => PolyCont k (s -> r) a where
runPolyCont k f s = runPolyCont k (\a -> f a s)

instance PolyCont k r a => Dsl k r a where
cpsApply = runPolyCont

Listing 38. PolyCont derivation

Yield and Return LDKs are ported to Haskell with the help of PolyCont, as shown in listing 39
We created another Dsl instance for monomorphic delimited continuation Cont, which is used

to created control flow operators with nested do-notation, as shown in listings 40 and 41.
With the help of the above control flow operators, we are able to create direct style DSL in

do-notation, as shown in listing 42
f is a do block that contains LDKs Yield, Get and Return (invoked by return internally). With

the help of built-in PolyCont instances for those keywords, f can be used as a function that accepts
a boolean parameter, as shown in listing 43
In fact, f can be any types as long as PolyCont instances for the types are provided. The type

can be inferred by GHC, as shown in listing 44
For example, f can be interpreted as an impure IO () (listing 46), providing the instances defined

in listing 45.
In brief, the Haskell implementation control-dsl can infer type better than Dsl.scala, while the

do-notation is more verbose than !-notation in Dsl.scala.

, Vol. 1, No. 1, Article . Publication date: August 2023.

:24 Yang, Bo

data Get r a where Get :: forall s r. Get r s

instance PolyCont Get (s -> r) s where
runPolyCont Get f s = f s s

data Yield x r a where Yield :: x -> Yield x r ()

instance PolyCont (Yield x) [x] () where
runPolyCont (Yield x) f = x : f ()

instance PolyCont (Return r) r Void where
runPolyCont (Return r) _ = r

Listing 39. PolyCont instances for Get, Yield and Return

newtype Cont r a = Cont { runCont :: (a -> r) -> r }

instance Dsl Cont r a where
cpsApply = runCont

Listing 40. Dsl instance for Cont

when :: Bool -> Cont r () -> Cont r ()
when True k = k
when False _ = Cont ($ ())

Listing 41. Control flow operator when

f = do
Yield "foo"
config <- Get @Bool
when config $ do
Yield "bar"
return ()

return "baz"

Listing 42. Nested Dsl do blocks

> f False :: [String]
["foo","baz"]

> f True :: [String]
["foo","bar","baz"]

Listing 43. Running f purely in REPL

, Vol. 1, No. 1, Article . Publication date: August 2023.

Ad-hoc polymorphic delimited continuations :25

> :type f
f :: (PolyCont (Yield [Char]) r (),

PolyCont (Return [Char]) r Void, PolyCont Get r Bool) =>
r

Listing 44. The inferred type of a do block

instance PolyCont (Yield String) (IO ()) () where
runPolyCont (Yield a) = (Prelude.>>=) (putStrLn $ "Yield␣" ++ a)

instance PolyCont Get (IO ()) Bool where
runPolyCont Get f = putStrLn "Get" Prelude.>> f False

instance PolyCont (Return String) (IO ()) Void where
runPolyCont (Return r) _ = putStrLn $ "Return␣" ++ r

Listing 45. Custom effectful instances for built-in LDKs

> f :: IO ()
Yield foo
Get
Return baz

Listing 46. Running f effectfuly in REPL

8 CONCLUSION
We have presented a novel approach to create direct style embedded domain specific languages
that are more extensible, more straightforward and more efficient than existing monad based and
continuation based approaches. The main highlights of our approaches are:
(1) the ability to define LDKs that work with existing native types, as if they are first-class

features;
(2) the extensibility in both keyword-wise and domain-wise;
(3) Dsl derivation, allowing an LDK to be adaptive to various domains.
The capacity of LDKs is the superset of both monads and ordinary delimited continuations,

thus LDKs can be used in various domains as they can be, including asynchronous or parallel
programming, lazy stream generation, collection manipulation, resource management, etc. But
unlike monads or ordinary delimited continuations, an LDK user can use multiple LDKs for
different domains at once, along with ordinary control flow and ordinary types. No manually lifting
is required, just like first-class features. This approach has been implemented in both Scala and
Haskell, and can be implemented in Idris or other languages that support type classes or implicit
parameters.

8.1 Future work
Two types of polymorphism are involved in this paper. We implemented a BangNotation Scala
compiler plug-in to perform name-based CPS-transformation, which support answer type modifi-
cation, or polymorphic delimited continuation; we introduced Dsl type class, which allows
running an LDK as a CPS function adaptive to the predetermined answer type, or ad-hoc poly-
morphic delimited continuation. In the future, we will investigate how to represent a delimited
continuation that is both polymorphic and ad-hoc polymorphic.

, Vol. 1, No. 1, Article . Publication date: August 2023.

:26 Yang, Bo

A USE CASES
We will present some use cases of name-based CPS transformation and LDK in this section, to
illustrate the simplicity of our approach, in comparison to previous solutions.

A.1 Resolve the printf problem, trivially
The type-safe printf problem [Danvy 1998] is often used to demonstrate the ability of modifying
the answer type of a typed delimited continuation. The problem can be also resolved by Dsl.scala’s
CPS-transformation plug-ins as shown in listing 47.

object IntPlaceholder {
@shift def unary_! : String = ???
def cpsApply[Domain](f: String => Domain): Int => Domain = { i: Int =>
f(i.toString)

}
}

object StringPlaceholder {
@shift def unary_! : String = ???
def cpsApply[Domain](f: String => Domain): String => Domain = f

}

def f1 = "Hello␣World!"
def f2 = "Hello␣" + !StringPlaceholder + "!"
def f3 = "The␣value␣of␣" + !StringPlaceholder + "␣is␣" + !IntPlaceholder + "."

println(f1) // Output: Hello World!
println(f2("World")) // Output: Hello World!
println(f3("x")(3)) // Output: The value of x is 3.

Listing 47. A solution of the type-safe printf problem in Dsl.scala

This solution works because our plug-ins performs CPS-transformation for f1, f2 and f3, as
shown in listing 48.

// The type of f1 is inferred as `String`
def f1 = "Hello␣World!"

// The type of f2 is inferred as `String => String`
def f2 = StringPlaceholder.cpsApply { tmp =>

"Hello␣" + tmp + "!"
}

// The type of f3 is inferred as `String => Int => String`
def f3 = StringPlaceholder.cpsApply { tmp0 =>

IntPlaceholder.cpsApply { tmp1 =>
"The␣value␣of␣" + tmp0 + "␣is␣" + tmp1 + "."

}
}

Listing 48. The translated source code of Dsl.scala-base solution of printf problem

, Vol. 1, No. 1, Article . Publication date: August 2023.

Ad-hoc polymorphic delimited continuations :27

Our solution is more concise than the solution with Scala Continuations [Rompf et al. 2009],
because: (1) No explicit reset is required, as reset is automatically added by the ResetEverywhere
plug-in. (2) No explicit @cps type annotation is required, since the BangNotation plug-in is
name-based. The type of f1, f2 and f3 can be inferred automatically, according to Scala’s type
inference algorithm for closures.

A.2 The prefix problem
The prefix problem introduced in [Asai and Kameyama 2007] is a problem that requires poly-
morphic delimited continuations, which is a CPS function whose answer type can be modified,
i.e. (A => B) => C where B and C differ. We provide a PolymorphicShift LDK to perform shift
control operator for polymorphic delimited continuations, as defined in listing 49. Note that
PolymorphicShift is not interpreted by Dsl, hence it is not ad-hoc polymorphic.

final case class PolymorphicShift[A, B, C](cpsApply: (A => B) => C) {
@shift def unary_! : A = ???

}

implicit def implicitPolymorphicShift[A, B, C](cpsApply: (A => B) => C) =
PolymorphicShift(cpsApply)

Listing 49. The definition of PolymorphicShift

The solution to prefix problem uses “underscore trick” along with PolymorphicShift, as
shown in listing 50.

def visit[A](lst: List[A]): (List[A] => List[A] @reset) => List[List[A]] = _ {
lst match {
case Nil =>
!{ (h: List[A] => List[A]) =>
Nil

}
case a :: rest =>
a :: !{ (k: List[A] => List[A] @reset) =>
k(Nil) :: k(!visit(rest))

}
}

}

def prefix[A](lst: List[A]) = !visit(lst)

// Output: List(List(1), List(1, 2), List(1, 2, 3))
println(prefix(List(1, 2, 3)))

Listing 50. The solution to prefix problem by the “underscore trick”

Traditional polymorphic delimited continuations performs CPS transformation across functions.
In contrast, with the help of the “underscore trick”, we achieve the same ability of answer type
modification as polymorphic delimited continuations, by performing function-local CPS-translation.

, Vol. 1, No. 1, Article . Publication date: August 2023.

:28 Yang, Bo

A.3 Mutable states
Purely functional programming languages usually do not support first-class mutable variables.
In those languages, mutable states can be implemented in state monads. In this section, we will
present an alternative approach based on LDK to simulate mutable variable in a pure language
21. Unlike state monads, our LDK-based approach is more straightforward, and supports multiple
mutable states without manually lifting.

A.3.1 Single mutable state. We use unary function as the domain of mutable state. The parameter
of the unary function can be read from Get LDK, and changed by Put LDK, which are defined in
listings 51 and 52, respectively.

case class Get[S]() extends Keyword[Get[S], S]

Listing 51. The definition of Get LDK

case class Put[S](value: S) extends Keyword[Put[S], Unit]

Listing 52. The definition of Put LDK

Listing 53 is an example of a unary function that accepts a string parameter and returns the
upper-cased last character of the parameter. The initial value is read from Get LDK, then it is
changed to upper-case by Put LDK. At last, another Get LDK is performed to read the changed
value, whose last character is then returned.

def upperCasedLastCharacter: String => Char = {
val initialValue = !Get[String]()
!Put(initialValue.toUpperCase)

val upperCased = !Get[String]()
Function.const(upperCased.last)

}

// Output: O
println(upperCasedLastCharacter("foo"))

Listing 53. Using Get and Put in a unary function

The Dsl instances for Get and Put used in upperCasedLastCharacter are shown in listings 54
and 55. The Dsl instance for Get LDK passes the currentValue to the handler of current LDK, and
then continues the enclosing unary function; the Dsl instance for Put LDK ignores previousValue
and continues the enclosing unary function with the new value in Put.

implicit def getDsl[S0, S <: S0, A] =
new Dsl[Get[S0], S => A, S0] {
def cpsApply(keyword: Get[S0], handler: S0 => S => A): S => A = {

currentValue =>
handler(currentValue)(currentValue)

}
}

21Scala is an impure language, but we don’t use Scala’s native var or other impure features when simulating mutable states,
therefore, our approach can be ported to Haskell or other pure languages as described in section 7.

, Vol. 1, No. 1, Article . Publication date: August 2023.

Ad-hoc polymorphic delimited continuations :29

Listing 54. The Dsl instance for Get LDK

implicit def putDsl[S0, S >: S0, A] =
new Dsl[Put[S0], S => A, Unit] {
def cpsApply(keyword: Put[S0], handler: Unit => S => A): S => A = {

previousValue =>
handler(())(keyword.value)

}
}

Listing 55. The Dsl instance for Put LDK

Traditionally, the data type of state monad is an opaque type alias of S => (S, A), which is more
complicated than our domain type S => A, indicating state monads are potentially less efficient
than LDK-based implementation. We will discuss the reason why monad-based DSL are more
complicated and less efficient than LDK-based DSL in section 6.7.

A.3.2 Multiple mutable states. Get and Put LDKs can be performed on multiple mutable states
as well. The domain types are curried functions in those use cases.

In listing 56, we present an example to create a formatter that performs Put on a Vector[Any]
to store parts of the string content. At last, a Return LDK is performed at last to concatenate
those parts. The formatter internally performs Get LDKs of different types to retrieve different
parameters.

def formatter: Double => Int => Vector[Any] => String = {
!Put(!Get[Vector[Any]] :+ "x=")
!Put(!Get[Vector[Any]] :+ !Get[Double])
!Put(!Get[Vector[Any]] :+ ",y=")
!Put(!Get[Vector[Any]] :+ !Get[Int])

!Return((!Get[Vector[Any]]).mkString)
}

// Output: x=0.5,y=42
println(formatter(0.5)(42)(Vector.empty))

Listing 56. Using Get and Put in a curried function

Since we had introduced Dsl instance for Get and Put LDKs in unary functions, now we only
need a derived Dsl instance to port these LDKs in curried functions, which is defined in listing 34.
By combining getDsl and derivedFunction1Dsl together, the Scala compiler automatically

searches matched type in the curried function when resolving the implicit Dsl instance for a Get
LDK. For example, !Get[Vector[Any]]() reads the third parameter of the formatter. It will be
translated to Get[Vector[Any]]().cpsApply { _ => . . . }, where the cpsApply call requires
an instance of type Dsl[Get[Vector[Any]], Double => Int => Vector[Any] => String,
Vector[Any]], which will be resolved as derivedFunction1Dsl(derivedFunction1Dsl(getDsl
)). Similarly, the Dsl instance for reading the first parameter and the second parameter can be
resolved as getDsl and derivedFunction1Dsl(getDsl), respectively.

, Vol. 1, No. 1, Article . Publication date: August 2023.

:30 Yang, Bo

Derived Dsl instance for Put and Return can be resolved similarly. Since all the !Put LDK in
formatterwrite the third parameter, their Dsl instances are derivedFunction1Dsl(derivedFunction1Dsl
(putDsl)); the Dsl instance for !Return are derivedFunction1Dsl(derivedFunction1Dsl(

derivedFunction1Dsl(returnDsl))).
Now we had demonstrated a simple and straightforward solution for the feature of multiple

mutable states, with the help of nested Dsl derivation.

A.4 Asynchronous programming
With the help of Dsl derivation, a complex DSL can be composed of simple features. In this section
we will present a sophisticated implementation of asynchronous task, which is composed of three
independent features: (1) asynchronous result handling (2) exception handling (3) stack safety,
as defined in listing 57. A new infix type alias !! is used instead of Continuation, as a shorter
notation for nested Continuation types.

type !![Domain, Value] = Continuation[Domain, Value]
type Task[A] = TailRec[Unit] !! Throwable !! A

Listing 57. The definition of asynchronous Task

Task supports the features of tail call optimization and exception handling. Each feature cor-
responds to a part the type signature. scala.util.control.TailCalls.TailRec is used for tail
call optimization, and scala.Throwable is used to represent the internal exceptional state.

We create some derived Dsls to handle exceptions, which support domains whose types match
the pattern of (𝐿𝑖 !! . . . !! 𝐿0 !! Throwable !! 𝑅0 !! . . . !! 𝑅𝑖), and some derived Dsls
to optimize tail calls as trampolines, which support domains whose types match the pattern of
(TailRec[. . .] !! 𝑅0 !! . . . !! 𝑅𝑖), where 𝐿0 . . . 𝐿𝑖 and 𝑅0 . . . 𝑅𝑖 are arbitrary number of types
22. Therefore, Dsl instances for Task are composed from these orthogonal features.
In appendix A.4.1, we will present how to create an asynchronous HTTP client from Task; in

appendix A.4.2, we will introduce the usage of Task[Seq[A]], which collects the results of multiple
tasks into a Seq, either executed in parallel or sequentially.

A.4.1 An asynchronous HTTP client. Listing 58 is an example of an HTTP client built from
low-level Java NIO.2 asynchronous IO operations. Note that the “underscore trick” is used to allow
Task to be executed across functions.

def readAll(channel: AsynchronousByteChannel, destination: ByteBuffer): Task[
Unit] = _ {

if (destination.remaining > 0) {
val numberOfBytesRead: Int = !Read(channel, destination)
numberOfBytesRead match {
case -1 =>
case _ => !readAll(channel, destination)

}
} else {
throw new IOException("The␣response␣is␣too␣big␣to␣read.")

}
}

22Those Dsls are implemented in the Dsl derivation technique described in section 5. Check the artifact for the complete
implementation

, Vol. 1, No. 1, Article . Publication date: August 2023.

Ad-hoc polymorphic delimited continuations :31

def writeAll[Domain](channel: AsynchronousByteChannel, destination: ByteBuffer)
: Task[Unit] = _ {

while (destination.remaining > 0) {
!Write(channel, destination)

}
}

def asynchronousHttpClient(url: URL): Task[String] = _ {
val socket = AsynchronousSocketChannel.open()
try {
val port = if (url.getPort == -1) 80 else url.getPort
val address = new InetSocketAddress(url.getHost, port)
!Connect(socket, address)
val request = ByteBuffer.wrap(s"GET␣${url.getPath}␣HTTP/1.1\r\nHost:${url.

getHost}\r\nConnection:Close\r\n\r\n".getBytes)
!writeAll(socket, request)
val MaxBufferSize = 100000
val response = ByteBuffer.allocate(MaxBufferSize)
!readAll(socket, response)
response.flip()
io.Codec.UTF8.decoder.decode(response).toString

} finally {
socket.close()

}
}

Listing 58. An asynchronous HTTP client

We defined Connect, Read and Write LDKs to register handlers to Java NIO.2 asynchronous IO
operators. In addition to Task domain, those LDKs also support any domains that match types of
(. . . !! Unit !! Throwable !! . . .) or (. . . !! TailRec[Unit] !! Throwable !! . . .) 23.

!readAll(. . .) and !writeAll(. . .) are equivalent to !Shift(readAll(. . .)) and !Shift(
writeAll(. . .)). The explicit Shift calls are omitted because we provided an implicit conversion
from any Continuations(including Tasks) to Shift LDKs.
We also provided a blockingAwait method, to block the current thread until the result of the

asynchronous task is ready, therefore, asynchronousHttpClient can be used synchronously, as
shown in listing 59.

val httpResponse = Task.blockingAwait(asynchronousHttpClient(new URL("http://
example.com/")))

httpResponse should startWith("HTTP/1.1␣200␣OK")

Listing 59. Using the example HTTP client

A.4.2 Parallel execution. Another useful LDK for asynchronous programming is Fork, which
duplicate the current control flow, and the child control flow are executed in parallel, similar to the
POSIX fork system call, as shown in listing 60.

23Check the artifact for complete implementation.

, Vol. 1, No. 1, Article . Publication date: August 2023.

:32 Yang, Bo

val Urls = Seq(
new URL("http://example.com/"),
new URL("http://example.org/")

)
def parallelTask: Task[Seq[String]] = {

val url: URL = !Fork(Urls)
val content: String = !httpClient(url)
!Return(content)

}

val Seq(fileContent0, fileContent1) = Task.blockingAwait(parallelTask)
assert(fileContent0.startsWith("HTTP/1.1␣200␣OK"))
assert(fileContent1.startsWith("HTTP/1.1␣200␣OK"))

Listing 60. Using HTTP client in parallel

Since the execution of parallelTask is forked, the two URLs will be downloaded in parallel.
The results are then collected into a Task of Seq at the !Return LDK.

A.4.3 Modularity and performance. Our approach achieved both better modularity and better
performance than previous implementation.

Most of previous asynchronous programing libraries, including Scala Future [Haller et al. 2012],
Monix [Nedelcu et al. 2017], and Cats effects [Typelevel 2017], are built from a solid implementation,
along with some callback scheduler for custom behaviors. In contrast, our approach separate atomic
features into independent Dsl type classes.
Scalaz Concurrent [Yoshida et al. 2017] or other monad transformer [Liang et al. 1995] based

approach can separate asynchronous programing features intomonad of asynchronous handling and
monad transformer of exception handling. Even though, trampolines are not able to implemented
as monad transformers, as a result, intrusive code for trampolines must be present in each monad
instance and monad transformer instance, or the call stack may overflow. In contrast, our approach
allows non-intrusive Dsl derivation for TailRec[Unit], then the ability of stack safety will be
added on previously stack unsafe Dsls.
According to our benchmarks in appendix B, on HotSpot JVM, our Task implementation is

much faster than monad transformer based implementations, and has similar performance in
comparison to solid implementations. On GraalVM, our Task implementation is faster than all
other implementations.

A.5 Collection comprehensions
List comprehension or array comprehension is a feature to create a collection based on some other
collections, which has been implemented as first class feature in many programming languages
including Scala. In this section, we will present the Each LDK, which allows collection compre-
hensions for arbitrary collection types. Unlike other first class comprehension, our LDK-based
collection comprehension collaborates with other LDKs, thus allowing creating complex code of
effects or actions along with collection comprehensions.

A.5.1 Heterogeneous comprehensions. Suppose we want to calculate all composite numbers
below 𝑛, the program can be written in Scala’s native for-comprehension as shown in listing 61.

def compositeNumbersBelow(n: Int) = (for {

, Vol. 1, No. 1, Article . Publication date: August 2023.

Ad-hoc polymorphic delimited continuations :33

i <- 2 until math.ceil(math.sqrt(n)).toInt
j <- 2 * i until n by i

} yield j).to[Set]

Listing 61. Calculating all composite numbers below 𝑛 with for-comprehension

The compositeNumbersBelow can be ported to LDK-based collection comprehension with the
following steps:
(1) Replacing the for keyword and the trailing .to[𝐶𝑜𝑙𝑙𝑒𝑐𝑡𝑖𝑜𝑛𝑇𝑦𝑝𝑒] by the heading𝐶𝑜𝑙𝑙𝑒𝑐𝑡𝑖𝑜𝑛𝑇𝑦𝑝𝑒 .
(2) Replacing every 𝑝 <- 𝑒 by val 𝑝 = !Each(𝑒).
(3) Moving the value to yield to the last expression position of the comprehension block.
Therefore, listing 61 can be rewrite to listing 62 with the help of the Each LDK, or listing 63 after

removing the temporary variable j.

def compositeNumbersBelow(n: Int): Set[Int] = Set {
val i = !Each(2 until math.ceil(math.sqrt(n)).toInt)
val j = !Each(2 * i until n by i)
j

}

// Output: Set(10, 14, 6, 9, 12, 8, 4)
println(compositeNumbersBelow(15))

Listing 62. Calculating all composite numbers below 𝑛 with Each LDK

def compositeNumbersBelow(n: Int): Set[Int] = Set {
val i = !Each(2 until math.ceil(math.sqrt(n)).toInt)
!Each(2 * i until n by i)

}

Listing 63. Calculating all composite numbers below 𝑛 with Each LDK, the simplicied version

Note that compositeNumbersBelow creates a Set, which is different from the type of source
collection. Our LDK-base collection comprehension allows heterogeneous source collection types.
Even other collection-like types, including Array and String, are supported, as shown in listing 64.

def heterogeneous = List { !Each(Array("foo", "bar", "baz")) + !Each("LDK") }

// Output: List(fooL, fooD, fooK, barL, barD, barK, bazL, bazD, bazK)
println(heterogeneous)

Listing 64. LDK-based heterogeneous collection comprehension based on Array and String

A.5.2 Filters. We also provides the Continue LDK to skip an element from the source collections.
It provides the similar feature to the if clause in Scala’s native for-comprehension. An example of
using Continue LDK to calculate prime numbers is shown in listing 65.

def primeNumbersBelow(maxNumber: Int) = List {
val compositeNumbers = compositeNumbersBelow(maxNumber)
val i = !Each(2 until maxNumber)
if (compositeNumbers(i)) !Continue
i

, Vol. 1, No. 1, Article . Publication date: August 2023.

:34 Yang, Bo

}

// Output: List(2, 3, 5, 7, 11, 13)
println(primeNumbersBelow(15))

Listing 65. Calculating all prime numbers below 𝑛 with Each and Continue LDK

The implementation of Continue LDK is similar to Return, except is pass an empty collection
to the handler instead of the given value.

A.5.3 Asynchronous comprehensions. The Each LDK can be used in Task of collections as well,
with the help of Dsl derivation. The usage of Each is very similar to the Fork keyword. The only
difference is that Each sequentially executes tasks while Fork executes tasks in parallel. For example,
if we replace the Fork LDK in listing 60 by Each, those URLs will be fetched sequentially, as shown
in listing 66.

def sequentialTask: Task[Seq[String]] = {
val url: URL = !Each(Urls)
val content: String = !httpClient(url)
!Return(content)

}

Listing 66. Using HTTP client in parallel

A.5.4 Generator comprehensions. Since the Each LDK works in any function that returns a
collection, it can be also used in Stream functions, which support the Yield LDK as well. As a
result, generator and collection comprehension can be used together.
Suppose we are creating a function to prepare flags for invoking the gcc command line tool.

Given a source file and a list of include paths, it should return a Stream of the command line. It
can be implemented from the Yield, Each and Continue as shown in listing 67.

def gccFlagBuilder(sourceFile: String, includes: String*): Stream[String] = {
!Yield("gcc")
!Yield("-c")
!Yield(sourceFile)
val include = !Each(includes)
!Yield("-I")
!Yield(include)
!Continue

}

// Output: List(gcc, -c, main.c, -I, lib1/include, -I, lib2/include)
println(gccFlagBuilder("main.c", "lib1/include", "lib2/include").toList)

Listing 67. Build a command-line by using generator and collection comprehension together

B BENCHMARKS
We created some benchmarks to evaluate the computational performance of code generated by our
compiler plug-in for LDKs, especially, we are interesting how our name-based CPS transformation
and other direct style DSL affect the performance in an effect system that support both asynchronous
and synchronous effects.

, Vol. 1, No. 1, Article . Publication date: August 2023.

Ad-hoc polymorphic delimited continuations :35

Our benchmarks measured the performance of LDKs in the Task domain mentioned in appen-
dix A.4, along with other combination of effect system with direct style DSL, listed in table 1:

Effect System direct style DSL
The Task LDK name-based CPS transformation provided by Dsl.scala
Scala Future [Haller et al. 2012] Scala Async [Haller and Zaugg 2013]
Scala Continuation library [Rompf et al. 2009] Scala Continuation compiler plug-in
Monix tasks [Nedelcu et al. 2017] for-comprehension
Cats effects [Typelevel 2017] for-comprehension
Scalaz Concurrent [Yoshida et al. 2017] for-comprehension

Table 1. The combination of effect system and direct style DSL being benchmarked

B.1 The performance of recursive functions in effect systems
The purpose of the first benchmark is to determine the performance of recursive functions in
various effect system, especially when a direct style DSL is used.

B.1.1 The performance baseline. In order to measure the performance impact due to direct style
DSLs, we have to measure the performance baseline of different effect systems at first. We created
some benchmarks for the most efficient implementation of a sum function in each effect system.
These benchmarks perform the following computation:

• Creating a List[X[Int]] of 1000 tasks, where X is the data type of task in the effect system.
• Performing recursive right-associated “binds” on each element to add the Int to an accumu-
lator, and finally produce a X[Int] as a task of the sum result.

• Running the task and blocking awaiting the result.

Note that the tasks in the list is executed in the current thread or in a thread pool. We keep each
task returning a simple pure value, because we want to measure the overhead of effect systems,
not the task itself.

The “bind” operation means the primitive operation of each effect system. For Monix tasks, Cats
effects, Scalaz Concurrent and Scala Continuations, the “bind” operation is flatMap; for Dsl.scala,
the “bind” operation is Shift LDK, which may or may not be equivalent to flatMap according to the
type of the current domain. In Continuation domain, the Dsl instance for Shift LDK is resolved
as derivedContinuationDsl(shiftDsl), whose cpsApply method flat maps a Continuation to
another Continuation; when using “underscore trick”, the Dsl instance for Shift LDK is resolved
as shiftDsl, which just forwards cpsApply to the underlying CPS function as a plain function
call.

We use the !-notation to perform the cpsApply in Dsl.scala. The !-notation results the exact same
Java bytecode to manually passing a callback function to cpsApply, as shown in listing 68.

However, direct style DSLs for other effect systems are not used in favor of raw flatMap calls,
in case of decay of the performance. Listing 69 shows the benchmark code for Scala Futures. The
code for all the other effect systems are similar to it.

The benchmark result is shown in table 2 (larger score is better):
The Task alias of continuation-passing style function used with Dsl.scala is quite fast. Dsl.scala,

Monix and Cats Effects score on top 3 positions for either tasks running in the current thread or in
a thread pool.

, Vol. 1, No. 1, Article . Publication date: August 2023.

:36 Yang, Bo

def loop(tasks: List[Task[Int]], accumulator: Int = 0)(callback: Int =>
TaskDomain): TaskDomain = {

tasks match {
case head :: tail =>
// Expand to: Shift(head).cpsApply(i => loop(tail, i + accumulator)(

callback))
loop(tail, !head + accumulator)(callback)

case Nil =>
callback(accumulator)

}
}

Listing 68. The most efficient implementation of sum based on ordinary CPS function

def loop(tasks: List[Future[Int]], accumulator: Int = 0): Future[Int] = {
tasks match {
case head :: tail =>
head.flatMap { i =>
loop(tail, i + accumulator)

}
case Nil =>
Future.successful(accumulator)

}
}

Listing 69. The most efficient implementation of sum based on Scala Futures

Benchmark executedIn size Score, ops/s
RawSum.cats thread-pool 1000 799.072 ± 3.094

RawSum.cats current-thread 1000 26932.907 ± 845.715

RawSum.dsl thread-pool 1000 729.947 ± 4.359

RawSum.dsl current-thread 1000 31161.171 ± 589.935

RawSum.future thread-pool 1000 575.403 ± 3.567

RawSum.future current-thread 1000 876.377 ± 8.525

RawSum.monix thread-pool 1000 743.340 ± 11.314

RawSum.monix current-thread 1000 55421.452 ± 251.530

RawSum.scalaContinuation thread-pool 1000 808.671 ± 3.917

RawSum.scalaContinuation current-thread 1000 17391.684 ± 385.138

RawSum.scalaz thread-pool 1000 722.743 ± 11.234

RawSum.scalaz current-thread 1000 15895.606 ± 235.992

Table 2. The benchmark result of sum for performance baseline

B.1.2 The performance impact of direct style DSLs. In this section, we will present the perfor-
mance impact when different syntax notations are introduced. For ordinary CPS functions, we
added one more !-notation to avoid manually passing the callback in the previous benchmark (list-
ings 70 and 71). For other effect systems, we refactored the previous sum benchmarks to use Scala

, Vol. 1, No. 1, Article . Publication date: August 2023.

Ad-hoc polymorphic delimited continuations :37

Async, Scala Continuation’s @cps annotations, and for-comprehension, respectively (listings 72
to 77).

def loop(tasks: List[Task[Int]]): Task[Int] = _ {
tasks match {
case head :: tail =>
!head + !loop(tail)

case Nil =>
0

}
}

Listing 70. Left-associated sum based on LDKs of Dsl.scala

def loop(tasks: List[Task[Int]], accumulator: Int = 0): Task[Int] = _ {
tasks match {
case head :: tail =>
!loop(tail, !head + accumulator)

case Nil =>
accumulator

}
}

Listing 71. Right-associated sum based on LDKs of Dsl.scala

def loop(tasks: List[Future[Int]]): Future[Int] = async {
tasks match {
case head :: tail =>
await(head) + await(loop(tail))

case Nil =>
0

}
}

Listing 72. Left-associated sum based on Scala Async

Note that reduced sum can be implemented in either left-associated recursion or right-associated
recursion. The above code contains benchmark for both cases. The benchmark result is shown in
tables 3 and 4:

The result demonstrates that the name-based CPS transformation provided by Dsl.scala is faster
than all other direct style DSLs in the right-associated sum benchmark. The Dsl.scala version sum
consumes a constant number of memory during the loop, because we implemented a tail-call
detection in our CPS-transform compiler plug-in, and the Dsl interpreter for Task use a trampoline
technique [Tarditi et al. 1992]. On the other hand, the benchmark result of Monix Tasks, Cats Effects
and Scalaz Concurrent posed a significant performance decay, because they costs O(n) memory
due to the map call generated by for-comprehension, although those effect systems also built in
trampolines. In general, the performance of recursive monadic binds in a for-comprehension is
always underoptimized due to the inefficient map.

, Vol. 1, No. 1, Article . Publication date: August 2023.

:38 Yang, Bo

def loop(tasks: List[Future[Int]], accumulator: Int = 0): Future[Int] = async {
tasks match {
case head :: tail =>
await(loop(tail, await(head) + accumulator))

case Nil =>
accumulator

}
}

Listing 73. Right-associated sum based on Scala Async

def loop(tasks: List[() => Int @suspendable]): Int @suspendable = {
tasks match {
case head :: tail =>
head() + loop(tail)

case Nil =>
0

}
}

Listing 74. Left-associated sum based on Scala Continuation plug-in

def loop(tasks: List[() => Int @suspendable], accumulator: Int = 0): Int @
suspendable = {

tasks match {
case head :: tail =>
loop(tail, head() + accumulator)

case Nil =>
accumulator

}
}

Listing 75. Right-associated sum based on Scala Continuation plug-in

def loop(tasks: List[Task[Int]]): Task[Int] = {
tasks match {
case head :: tail =>
for {
i <- head
accumulator <- loop(tail)

} yield i + accumulator
case Nil =>
Task(0)

}
}

Listing 76. Left-associated sum based on for-comprehension

, Vol. 1, No. 1, Article . Publication date: August 2023.

Ad-hoc polymorphic delimited continuations :39

def loop(tasks: List[Task[Int]], accumulator: Int = 0): Task[Int] = {
tasks match {
case head :: tail =>
for {
i <- head
r <- loop(tail, i + accumulator)

} yield r
case Nil =>
Task.now(accumulator)

}
}

Listing 77. Right-associated sum based on for-comprehension

Benchmark executedIn size Score, ops/s
LeftAssociatedSum.cats thread-pool 1000 707.940 ± 10.497

LeftAssociatedSum.cats current-thread 1000 16165.442 ± 298.072

LeftAssociatedSum.dsl thread-pool 1000 729.122 ± 7.492

LeftAssociatedSum.dsl current-thread 1000 19856.493 ± 386.225

LeftAssociatedSum.future thread-pool 1000 339.415 ± 1.486

LeftAssociatedSum.future current-thread 1000 410.785 ± 1.535

LeftAssociatedSum.monix thread-pool 1000 742.836 ± 9.904

LeftAssociatedSum.monix current-thread 1000 19976.847 ± 84.222

LeftAssociatedSum.scalaContinuation thread-pool 1000 657.721 ± 9.453

LeftAssociatedSum.scalaContinuation current-thread 1000 15103.883 ± 255.780

LeftAssociatedSum.scalaz thread-pool 1000 670.725 ± 8.957

LeftAssociatedSum.scalaz current-thread 1000 5113.980 ± 110.272

Table 3. The benchmark result of left-associated sum in direct style DSLs

Benchmark executedIn size Score, ops/s
RightAssociatedSum.cats thread-pool 1000 708.441 ± 9.201

RightAssociatedSum.cats current-thread 1000 15971.331 ± 315.063

RightAssociatedSum.dsl thread-pool 1000 758.152 ± 4.600

RightAssociatedSum.dsl current-thread 1000 22393.280 ± 677.752

RightAssociatedSum.future thread-pool 1000 338.471 ± 2.188

RightAssociatedSum.future current-thread 1000 405.866 ± 2.843

RightAssociatedSum.monix thread-pool 1000 736.533 ± 10.856

RightAssociatedSum.monix current-thread 1000 21687.351 ± 107.249

RightAssociatedSum.scalaContinuation thread-pool 1000 654.749 ± 7.983

RightAssociatedSum.scalaContinuation current-thread 1000 12080.619 ± 274.878

RightAssociatedSum.scalaz thread-pool 1000 676.180 ± 7.705

RightAssociatedSum.scalaz current-thread 1000 7911.779 ± 79.296

Table 4. The benchmark result of right-associated sum in direct style DSLs

, Vol. 1, No. 1, Article . Publication date: August 2023.

:40 Yang, Bo

B.2 The performance of collection manipulation in effect systems
The previous sum benchmarks measured the performance of manually written loops, but usually we
may want to use higher-ordered functions to manipulate collections. We want to know how those
higher-ordered functions can be expressed in direct style DSLs, and how would the performance
be affected by direct style DSLs.
In this section, we will present the benchmark result for computing the Cartesian product of

lists.

B.2.1 The performance baseline. As we did in sum benchmarks, we created some benchmarks
to maximize the performance for Cartesian product. Our benchmarks create the Cartesian product
from traverseM for Scala Future, Cats Effect, Scalaz Concurrent and Monix Tasks. Listing 78 shows
the benchmark code for Scala Future.

def cellTask(taskX: Future[Int], taskY: Future[Int]): Future[List[Int]] = async
{

List(await(taskX), await(taskY))
}

def listTask(rows: List[Future[Int]], columns: List[Future[Int]]): Future[List[
Int]] = {

rows.traverseM { taskX =>
columns.traverseM { taskY =>
cellTask(taskX, taskY)

}
}

}

Listing 78. Cartesian product for Scala Future, based on Scalaz’s traverseM

Scala Async or for-comprehension is used in element-wise task cellTask, but the collection
manipulation listTask is kept as manually written higher order function calls, because neither
Scala Async nor for-comprehension supports traverseM.

The benchmark for Dsl.scala is entirely written in LDKs as shown in listing 79:

def cellTask(taskX: Task[Int], taskY: Task[Int]): Task[List[Int]] = _ {
List(!taskX, !taskY)

}

def listTask(rows: List[Task[Int]], columns: List[Task[Int]]): Task[List[Int]]
= {

cellTask(!Each(rows), !Each(columns))
}

Listing 79. Cartesian product for ordinary CPS functions, based on Dsl.scala

The Each LDK is available here because it is adaptive. Each LDK can be used in not only List[_]
domain, but also (_ !! Coll[_]) domain as long as Coll is a Scala collection type that supports
CanBuildFrom type class.

, Vol. 1, No. 1, Article . Publication date: August 2023.

Ad-hoc polymorphic delimited continuations :41

We didn’t benchmark Scala Continuation here because all higher ordered functions for List do
not work with Scala Continuation.

The benchmark result is shown in table 5.

Benchmark executedIn size Score, ops/s
RawCartesianProduct.cats thread-pool 50 136.415 ± 1.939

RawCartesianProduct.cats current-thread 50 1346.874 ± 7.475

RawCartesianProduct.dsl thread-pool 50 140.098 ± 2.062

RawCartesianProduct.dsl current-thread 50 1580.876 ± 27.513

RawCartesianProduct.future thread-pool 50 100.340 ± 1.894

RawCartesianProduct.future current-thread 50 93.678 ± 1.829

RawCartesianProduct.monix thread-pool 50 142.071 ± 1.299

RawCartesianProduct.monix current-thread 50 1750.869 ± 18.365

RawCartesianProduct.scalaz thread-pool 50 78.588 ± 0.623

RawCartesianProduct.scalaz current-thread 50 357.357 ± 2.102

Table 5. The benchmark result of Cartesian product for performance baseline

Monix tasks, Cats Effects and ordinary CPS functions created from Dsl.scala are still the top 3
scored effect systems.

B.2.2 The performance of collection manipulation in direct style DSLs. We then refactored the
benchmarks to direct style DSLs. Listing 80 is the code for Scala Future, written in ListT monad
transformer provided by Scalaz. The benchmarks for Monix tasks, Scalaz Concurrent are also
rewritten in the similar style.

def listTask(rows: List[Future[Int]], columns: List[Future[Int]]): Future[List[
Int]] = {

for {
taskX <- ListT(Future.successful(rows))
taskY <- ListT(Future.successful(columns))
x <- taskX.liftM[ListT]
y <- taskY.liftM[ListT]
r <- ListT(Future.successful(List(x, y)))

} yield r
}.run

Listing 80. Cartesian product for Scala Future, based on ListT transformer

With the help of ListT monad transformer, we are able to merge cellTask and listTask into
one function in a direct style for-comprehension, avoiding any manual written callback functions.
We also merged cellTask and listTask in the Dsl.scala version of benchmark as shown in

listing 81.
This time, Cats Effects are not benchmarked due to lack of ListT in Cats. The benchmark result

are shown in table 6.
Despite the trivial manual lift calls in for-comprehension, the monad transformer approach

causes terrible computational performance in comparison tomanually called traverseM. In contrast,
the performance of Dsl.scala even got improved when cellTask is inlined into listTask.

, Vol. 1, No. 1, Article . Publication date: August 2023.

:42 Yang, Bo

def listTask: Task[List[Int]] = reset {
List(!(!Each(inputDslTasks)), !(!Each(inputDslTasks)))

}

Listing 81. Cartesian product for ordinary CPS functions, in one function

Benchmark executedIn size Score, ops/s
CartesianProduct.dsl thread-pool 50 283.450 ± 3.042

CartesianProduct.dsl current-thread 50 1884.514 ± 47.792

CartesianProduct.future thread-pool 50 91.233 ± 1.333

CartesianProduct.future current-thread 50 150.234 ± 20.396

CartesianProduct.monix thread-pool 50 28.597 ± 0.265

CartesianProduct.monix current-thread 50 120.068 ± 17.676

CartesianProduct.scalaz thread-pool 50 31.110 ± 0.662

CartesianProduct.scalaz current-thread 50 87.404 ± 1.734

Table 6. The benchmark result of Cartesian product in direct style DSLs

, Vol. 1, No. 1, Article . Publication date: August 2023.

Ad-hoc polymorphic delimited continuations :43

ACKNOWLEDGMENTS
We are very grateful to Marisa Kirisame for many helpful comments and discussions.

REFERENCES
Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat,

Geoffrey Irving, Michael Isard, et al. 2016. TensorFlow: A System for Large-Scale Machine Learning.. In OSDI, Vol. 16.
265–283.

Kenichi Asai and Yukiyoshi Kameyama. 2007. Polymorphic delimited continuations. In Asian Symposium on Programming
Languages and Systems. Springer, 239–254.

Edwin Brady. 2013. Idris, a general-purpose dependently typed programming language: Design and implementation. Journal
of Functional Programming 23, 5 (2013), 552–593.

Flavio Brasil. 2017. Monadless: Syntactic sugar for monad composition. http://monadless.io/
Tom Crockett. 2013. Effectful: A syntax for type-safe effectful computations in Scala. https://github.com/pelotom/effectful
Olivier Danvy. 1998. Functional unparsing. Journal of functional programming 8, 6 (1998), 621–625.
O. Danvy and A. Filinski. 1989. A Functional Abstraction of Typed Contexts. Technical Report 89/12. DIKU, University of

Copenhagen, Copenhagen, Denmark.
Olivier Danvy and Andrzej Filinski. 1990. Abstracting Control. In LISP and Functional Programming.
R Kent Dyvbig, Simon Peyton Jones, and Amr Sabry. 2007. A monadic framework for delimited continuations. Journal of

Functional Programming 17, 6 (2007), 687–730.
Andrzej Filinski. 1994. Representing monads. In Proceedings of the 21st ACM SIGPLAN-SIGACT symposium on Principles of

programming languages. ACM, 446–457.
Martin Fowler. 2010. Domain-specific languages. Pearson Education.
Philipp Haller, Aleksandar Prokopec, Heather Miller, Viktor Klang, Roland Kuhn, , and Vojin Jovanovic. 2012. SIP-14 -

Futures and Promises. (2012). https://docs.scala-lang.org/sips/futures-promises.html
Philipp Haller and Jason Zaugg. 2013. SIP-22 - Async. (2013). http://docs.scala-lang.org/sips/pending/async.html
Mark P Jones and Luc Duponcheel. 1993. Composing monads. Technical Report. Technical Report YALEU/DCS/RR-1004,

Department of Computer Science. Yale University.
S Peyton Jones, John Hughes, Lennart Augustsson, Dave Barton, Brian Boutel, Warren Burton, Joseph Fasel, Kevin Hammond,

Ralf Hinze, Paul Hudak, et al. 1998. Haskell 98 report. Technical Report. https://www.haskell.org/onlinereport/
Oleg Kiselyov, Amr Sabry, and Cameron Swords. 2013. Extensible effects: an alternative to monad transformers. In ACM

SIGPLAN Notices, Vol. 48. ACM, 59–70.
Sheng Liang, Paul Hudak, and Mark Jones. 1995. Monad transformers and modular interpreters. In Proceedings of the 22nd

ACM SIGPLAN-SIGACT symposium on Principles of programming languages. ACM, 333–343.
Lightbend, Inc. 2017. Akka FSM. Lightbend, Inc. https://doc.akka.io/docs/akka/2.5.10/fsm.html
Barbara Liskov, Alan Snyder, Russell Atkinson, and Craig Schaffert. 1977. Abstraction mechanisms in CLU. Commun. ACM

20, 8 (1977), 564–576.
George Marsaglia et al. 2003. Xorshift RNGs. Journal of Statistical Software 8, 14 (2003), 1–6.
Caolan McMahon. 2017. TensorFlow Control Flow. https://www.tensorflow.org/api_guides/python/control_flow_ops
Alexandru Nedelcu, Sorin Chiprian, Mihai Soloi, Andrei Opris,an, Jisoo Park, Dawid Dworak, Omar Mainegra, Piotr Gawryś,

A. Alonso Dominguez, Leandro Bolivar, Ryo Fukumuro, Ian McIntosh, Denys Zadorozhnyi, and Oleg Pyzhcov. 2017.
Monix: Asynchronous, Reactive Programming for Scala and Scala.js. https://monix.io/

Rickard Nilsson. 2015. ScalaCheck: Property-based testing for Scala. (2015). https://www.scalacheck.org/
Martin Odersky, Philippe Altherr, Vincent Cremet, Burak Emir, Stphane Micheloud, Nikolay Mihaylov, Michel Schinz,

Erik Stenman, and Matthias Zenger. 2004. The Scala language specification. https://www.scala-lang.org/docu/files/
ScalaReference.pdf

Dan Piponi. 2008. The Mother of all Monads. (2008). https://www.schoolofhaskell.com/user/dpiponi/
the-mother-of-all-monads

Tiark Rompf, Ingo Maier, and Martin Odersky. 2009. Implementing first-class polymorphic delimited continuations by a
type-directed selective CPS-transform. In ACM Sigplan Notices, Vol. 44. ACM, 317–328.

Yury Selivanov. 2016. PEP 525 – Asynchronous Generators. Python.org (2016). https://www.python.org/dev/peps/pep-0525/
Mary Shaw, William A Wulf, and Ralph L London. 1977. Abstraction and verification in Alphard: Defining and specifying

iteration and generators. Commun. ACM 20, 8 (1977), 553–564.
David Tarditi, Peter Lee, and Anurag Acharya. 1992. No assembly required: Compiling Standard ML to C. ACM Letters on

Programming Languages and Systems (LOPLAS) 1, 2 (1992), 161–177.
Twitter, Inc. 2016. Algebird: Abstract Algebra for Scala. Twitter, Inc. https://twitter.github.io/algebird/

, Vol. 1, No. 1, Article . Publication date: August 2023.

:44 Yang, Bo

Typelevel 2017. typelevel/cats: Lightweight, modular, and extensible library for functional programming. Typelevel. https:
//github.com/typelevel/cats

Philip Wadler. 1990. Comprehending monads. In Proceedings of the 1990 ACM conference on LISP and functional programming.
ACM, 61–78.

Philip Wadler. 1992. The essence of functional programming. In Proceedings of the 19th ACM SIGPLAN-SIGACT symposium
on Principles of programming languages. ACM, 1–14.

Bo Yang. 2014a. Stateless Future. Shenzhen QiFun Network Corp., LTD. https://github.com/qifun/stateless-future
Bo Yang. 2014b. Stateless Future Akka. Shenzhen QiFun Network Corp., LTD. https://github.com/qifun/stateless-future-akka
Bo Yang. 2015. ThoughtWorks Each: A macro library that converts native imperative syntax to scalaz’s monadic expressions.

ThoughtWorks, Inc. https://github.com/ThoughtWorksInc/each
Bo Yang. 2016. Binding.scala: Reactive data-binding for Scala. ThoughtWorks, Inc. https://github.com/ThoughtWorksInc/

Binding.scala
Kenji Yoshida, Alexey Romanov, Derek Williams, Edward Kmett, Heiko Seeberger, retronym, Mark Hibberd, Nick Partridge,

runarorama, Richard Wallace, void, and Tony Morris. 2017. Scalaz: An extension to the core scala library. https:
//scalaz.github.io/scalaz/

, Vol. 1, No. 1, Article . Publication date: August 2023.

