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SU-Y 
It is shown how by using results from combinatory logic an applicative language, such as 
LISP, can be translated into a form from which all bound variables have been removed. 
A machine is described which can efficiently execute the resulting code. This implementation 
is compared with a conventional interpreter and found to have a number of advantages. Of 
these the most important is that programs which exploit higher order functions to achieve 
great compactness of expression are executed much more e5ciently. 
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INTRODUCTION 
A ubiquitous feature of applicative languages is the presence of bound variables. These 
include formal parameters, like the n in the following definition of the factorial function 

def fac n = 

n = 0 + 1; n x  fuc ( n -  1) 
and more simply local variables like the x in the following expression 

(x+ 1) x (x- 1) where x = 7 
(These and subsequent examples of applicative notation are written in SASL,l a more 
readable alternative to LISP used by the author for teaching purposes. The notation hope- 
fully requires no explanation other than to remark that the construction ‘A  + B ;  C’ means 
‘if A then B else C’.) 

Each bound variable has associated with it a region of text called its scope and within its 
scope the variable can be consistently replaced by any other variable, up to some rules about 
avoiding name clashes, without altering the meaning. Of course the use of bound variables 
is not confined to applicative Ianguages but is a feature also of high, level imperative lan- 
guages with their procedures and block structure, though here we have the added com- 
plication that variables denote not values but locations whose contents can be altered by 
assignment statements. 

As is well known the behaviour of bound variables can be explicated by associating with 
each region of the program text an environment2 that is a function whose domain consists 
of the variables currently in scope and which associates with each such variable its current 
value (or in the case of an imperative language a location containing its current value). On 
entering a scope the environment is extended to include the variable bindings local to that 
scope, on leaving a scope the old environment is restored. 

0038-0644/79/0109-003 l$Ol.OO Received 5 December 1977 
@ 1979 by John Wiley & Sons, Ltd. 

3 31 



32 D. A. TURNER 

Aside from its use in defining the semantics of languages with bound variables, the 
‘environments’ model can fairly be considered the basis of all the conventional methods of 
implementing this language feature. The apparently wide divergences between one imple- 
mentation technique and another are largely due to the choice of different concrete data 
structures to represent the abstract data type ‘environment’. The representation of the 
environment generally used in interpreters is a linked list of name-value pairs (an ‘associa- 
tion list’), see for example Landin’s SECD machine2 and of course the standard LISP 
in te r~re te r .~  Another strategy, used by most Algol compilers, is to keep variables on the 
stack and represent the environment by a small data structure, the ‘di~play’,~ which gives 
access to various reference points on the stack. These are the two commonest strategies 
though other variations occur. 

A radically different method of dealing with bound variables is possible, however, at 
least for purely applicative languages (those without assignment or side effects) and it is this 
that we describe here. I t  does not derive from the ‘environments’ model at all but rather 
from a curious result in logic which shows that variables, as they are used in logic and 
ordinary mathematics are not strictly necessary.5 Given a modest number of extra constants, 
called combinators, we can systematically translate whatever we have to say into a notation 
in which bound variables do not occur. This process of removing variables can be thought 
of as a kind of compilation and the resulting variable-free notation as a kind of object code. 
Although it is quite unreadable by human beings this code can be efficiently ‘executed’ by a 
machine of a very simple character. The author has found that it is possible along these 
lines to produce a viable implementation of an applicative language such as pure LISP 
(in fact SASL was used). I t  was found to be broadly comparable in speed and space 
utilization to a conventional interpreter using association lists but to have certain advantages. 

A number of recent authorslo-12 have advocated that the semantics of applicative lan- 
guages should be redefined so as to permit non-strict functions. (A non-strict function is one 
that can return an answer even if one of its arguments is undefined.) In  a conventional 
implementation the necessary changes are found to bring about a slowdown in execution 
speed of up to an order of magnitude. The implementation technique described here, 
however, provides this behaviour quite naturally and without any extra cost. The second 
principal advantage is that the combinatory ‘code’ turns out to have some remarkable self- 
optimizing properties including that constant calculations are automatically moved outside 
loops and that the overhead cost of calling a user-defined function falls to zero after the first 
occasion of its use. 

The remainder of the paper is organized as follows. In the first section we discuss the 
algorithm used for removing bound variables from the source text (‘compiling’). In  the 
second section we outline the strategy of the machine which executes the resulting code. 
Finally, in the third section we give some preliminary performance figures and discuss the 
properties of this kind of implementation. In order to make the article self-contained 
absolutely no technical knowledge of combinatory logic on the part of the reader has been 
assumed. The results developed in the first section are in fact well known and can be 
found in the standard text.6 

REMOVING VARIABLES FROM T H E  SOURCE TEXT 

We start by introducing a notion crucial to the whole plan-that of a higher order function. 
An ordinary function, say sin, returns for its result a number or similar simple object. 
But it is possible to conceive of a function which returns for its result another function. 
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The ‘differentiate’ operation of school calculus is a function of this kind, for example we 
might write 

D sin = cos 
showing that the (higher order) function D when applied to the argument sin returns for its 
result the function cos. Note the convention here that the application of a function to its 
argument is denoted simply by juxtaposition-we do not insist on enclosing the argument 
in brackets. We will further assume that juxtaposition associates to the left, so we can 
write, say 

D sin 0 = 1 
meaning 

( D  sin) 0 = 1, i.e. cos 0 = 1 
As an additional example of a higher order function consider the following definition of a 

function plus 

meaning that plus can be applied to an argument, x say, and returns a function which when 
applied to an argument, y say, returns the sum of x and y .  So 

plus x y = x-ty  

plus 2 3 = 5 
but it is read as ‘(plus 2) 3’. And ‘plus 2’ has a meaning in its own right-it is the function 
that adds two to things. (This device for reducing a first order function of several arguments 
to a higher order function of one argument is called cuyrying after the logician H. B. Curry. 
Thus we would say that plus is here a curried version of the + operation.) 

The basic algorithm 
We are now ready to begin removing variables from the source text. The source is in the 

form of a series of messages from the user to the SASL system (the system is interactive). 
Each message is either an expression to be evaluated, in which case its value is printed 
immediately, or else it is a definition to be stored for latter use, like 

def p i  = 3.141592 
or like the definition of factorial given earlier. 

function 

The aim is to eliminate the variable x obtaining a definition of the form 

T o  begin with a very simple example take the following definition of the successor 

(1) def suc x = x +  1 

def suc = ... 
where the right hand side is an expression containing only constants. The first step is to 
rewrite equation (1) using a curried version of the + operator 

def suc x = plus 1 x 

def suc = plus 1 

(2) 

(3) 

Now we can remove x from both sides of the equation obtaining 

which is an acceptable solution. (A good question is, why can we ‘cancel’ x in this way? 
The anwer is, because of the principle of extensionality which states that two functions f and 
g say, are equal if and only if: f x = g x for all x.)  
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The step from equation (2) to equation (3) was very easy in this case because the variable 
to be removed from the body of the function occurred only once, at the extreme right. 
To handle the general case we need to borrow some technical results from combinatory 
logic. We take as the typical definition 

where . . . is an expression built up from constants and the variable x using various operators. 
For a first step we replace all the operators by their curried versions, giving 

where E is an expression in which functional application is the only operation (such an 
expression is called a combination). We can now write the solution as 

where [x] E denotes the result of a textual operation to be defined shortly, pronounced 
‘abstract x from E’ and which removes all occurrences of x. For equation (6)  to be a correct 
solution we require that 

i.e. that abstraction be an exact inverse of application. We introduce three combinators, 
S, K and I, defined by the equations 

def f x = ... (4) 

deff x =  E ( 5 )  

def f = [x] E (6 )  

([XI E )  x = E (law of abstraction) 

S f  g x = f X (g 4 (S) 
K X J J = X  (K) 

I x = x  (1) 
and define the abstraction operation as follows 

[XI (El E2) * s (PI El) (1x1 E2) 
[XI x * I 

[XI Y K Y 
where y is a constant or a variable other than x. That abstraction thus defined obeys the 
law of abstraction given above can be proved by an induction on the size of the combination 
E-we leave this as an exercise for the interested reader. 

This is the basic algorithm for removing variables but if used without modification it 
tends to produce rather long-winded ‘code’. For the successor function we get 

def suc = [x] (plus 1 x) 

s ([XI (Plus 1)) ([XI x) 
S (S (K plus) (K 1)) I 

which while perfectly correct (as the reader may confirm by applying the above expression 
to an arbitrary x and checking that the result simplifies, by the use of the equations (S), 
(K) and (I), to ‘plus 1 x’) is much less compact than the ‘plus 1’ which we obtained earlier. 

T o  give one more example, from the definition of factorial given at the very beginning 
of this paper the basic algorithm yields the solution 

def fac = S (S (S (K c o n d )  (S (S (K e q )  (K 0)) I)) 
(K 1)) (S (S (K t i m e s )  I) (S (K fac) 

(S ( S  (K minus)II) (K 1)))) 
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where the constants c o d ,  eq, times and minus are the curried versions of the conditional, 
=, x and - operators respectively. 

Improving the algorithm 
To improve the performance of the algorithm we introduce the extra combinators B 

and C, defined by 

B f g x = f  (gx )  

C f  g x = f  x g  
and the optimizations (El and E,  stand for arbitrary combinations): 

s (K El) (K E2) =- K (El E2) 
S (K El)  I => El 

S (K El) E2 => B El E2 if no earlier rule applies 

S El (K E,) 3 C El E2 if no earlier rule applies 

(The interested reader can satisfy himself that the left and right hand sides G, each of these 
rules are always equal by applying both sides to an arbitrary x and simplifying.) 

The above rules recognize various special cases where the variable being abstracted is 
absent from one or more subexpressions. This brings about a considerable improvement 
in the quality of the code produced. The code above for suc reduces to plus 1 under the 
above rules and for fuc we get the much shortened version 

deffuc = S (C (B cond (eq 0)) 1) (S times (Bfuc  (C minus 1))) 
In  the author’s compiler these optimizations are incorporated as an integral part of the 
abstraction algorithm and the long-winded form of the code never comes into existence. 

Up to now we have been assuming that we have to deal only with definitions of functions 
of one argument and with no local definitions in the bQdy of the function. In fact the 
abstraction algorithm can be applied repeatedly to cope with more complex situations. In 
SASL functions of several arguments are normally defined as curried functions, for example 

which would compile to 

where the inner abstraction must of course be performed first. 

def f x y = E 

deff = [XI “1 E )  

Local variables, introduced by a where clause as in 

El where x = E,  
are removed by transforming an expression of the above form to 

So for example the expression 

would compile to 
S (B times (C plus 1)) (C minus 1) 7 

This transformation is applied repeatedly to handle arbitrary nestings of where inside 
where and inside function bodies-as always inner abstractions are performed first. 

([XI El) E2 

( x +  1) x (x- 1) where x = 7 
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Functions can be defined in where clauses also but this presents no new difficulties. 
For example 

would compile to 
... f ... where f x = E 

([fl ( * * -  f *-.N ( [ X I  El 

Data structures 

We represent this by an infix colon, thus 
Like LISP, SASL has only one method of data structuring namely a pairing operation. 

x : y  
is the data structure whose head is x and whose tail is y ;  in LISP it would be written 
‘(cons x y)’ .  As usual this operation can be cascaded to the right to form a linked list and a 
syntactic sugaring is provided for this. So, for example, a three list is written 

4 b’ c 
which is taken as shorthand for 

a : ( b  : (c : nil)) 

We introduce the combinator P as a curried version of the pairing operation and so the 
above expression compiles to 

P a (P b (P c nil)) 

In SASL the explicit use of the selectors hd and tl is generally avoided by using colons 
and commas on the left of definitions instead. For example it is permitted to write 

def a : b = x 

The compiler treats this as equivalent to 

def a = hd x 

def b = tl x 

It is permitted to write arbitrarily complicated ‘templates’ on the left of a definition in 
this way. Such templates can also occur on the left of where clauses and in formal para- 
meter positions. To  compile su,h constructions the author has introduced the new com- 
binator U (for ‘uncurry’) defined by the equation 

U f ( X : Y ) = f x Y  
and has generalized the abstraction algorithm to permit abstraction with respect to a 
template. We define 

to mean 
[ x  : Yl E 

u ( [ X I  ( [Yl  E l )  
By recursive application of the above rule we can abstract with respect to an arbitrary 

template (we leave it to the reader to check that this extended definition of abstraction 
satisfies a suitably generalized version of the law of abstraction). So for example 

El where a : b = E, 
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compiles to 

and 

compiles to 
def f (x, y ,  2) = E 

def f = [x, y, x] E 
=> [x : ( y  : (2 : nil))] E 

=> u ([XI (U ( [Yl  (U ([.I (K E)) ) ) ) )  
(A detail-in the actual implementation rather than K we would here use a combinator with 
a similar action but which checks that its second argument does in fact take the value nil.) 

Assembling the code 
Using the foregoing rules then, the compiler is able to transform each incoming expres- 

sion into a pure combination and each incoming def definition into one or more definitions 
of the form 

def name = combination 

The combinations are stored as binary trees, with the nodes representing functional 
applications. At the leaves of the tree there will be constants (like 1 or plus or S ) .  When an 
unbound variable occurs it is replaced by the combination with which it has been associated 
by a def definition, or it is so replaced as soon as such a definition is encountered. That is, 
outer level names (i.e. those defined by def) are handled by substituting their definitions as 
subtrees into the trees in which they occur. Subtrees are included by pointing not by 
copying, so combinations can share subtrees (since we have no assignment this is perfectly 
safe). A recursive definition will compile to a cyclic graph. For example, the definition of 
the factorial function given in the introduction will result in the namefac being associated 
with the graph shown in Figure 1. A subsequent request to evaluate, say fac 3, will compile 
to a tree whose left subtree is the structure shown in Figure 1 and whose right subtree is 3. 

(This seems a suitable place to make a comment on the conventions used in diagrams 
such as that in Figure 1. Letters and numbers will sometimes be drawn inside cells as here 
and sometimes drawn outside with a pointer to them shown originating from a field of the 
cell. There is absolutely no logical significance in our using sometimes the one convention 
and sometimes the other-it is dictated purely by what is topologically convenient when 
drawing the diagram. Whether, say, numbers are actually stored immediately or stored 
elsewhere and pointed to, is a low level implementation detail depending on, for example, 
the word length of the computer, with which this article is not concerned.) 

Local recursion 

recursion, as in 

This is transformed to 

where Y is the fixpoint combinator, defined by the equation 

There is one further complication which the compiler must be able to handle-local 

El where x = ... x ... 

([XI El)  (Y (1x1 ( * * .  x **.))) 

Yf =f (Yf) 
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9 ' 

WI mx 

Figure I .  The code compiled for factorial 

That  is, for any function f, Y f is a fixed point off. (See Burge' for further explanation of 
the use of Y in eliminating recursion.) 

Mutual recursion following a where is handled by combining all the definitions follow- 
ing the where into a single definition with a complex left hand side and then proceeding 
as above. So for example 

El where f~ = ... g ... 
g y = ... f ... 

g = [Yl ( * - .  f . - . I  

is first transformed to 
El where f = [XI (. . . g . . .) 

eliminating the variables x and y. Now the mutually recursive pair of definitions can be 
converted into a single recursive definition as follows 

which can be compiled as 

using the rules already given. 
I n  handling a moderately complicated definition then it is quite possible for the compiler 

to get a dozen or so levels deep in abstraction operations. I n  order that the code produced 
should continue to be reasonably compact under these circumstances it was found to be 
necessary to introduce some further optimizations into the abstraction algorithm. These 
take account of the way successive abstractions interact to bring about a considerable 
increase in the efficiency of nested abstraction. We omit the details here as they are fully 
described elsewhere.s 

El where ( f , g )  = ([XI (... g ... ), [YI (...f ... 1) 

(if, gl Ed (Y ([f,gl ([XI g .-.I,  Erl ( . - a  f .**))I) 
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T H E  S-K REDUCTION MACHINE 

Having described the action of the compiler we now pass to an account of the run time 
system. When the user submits to the SASL system an expression to be evaluated the 
compiler removes all the variables and passes to the run time system a binary graphical 
structure as described in the previous section. The run time system consists of a machine 
(currently implemented in software) which progressively transforms this structure by 
applying the following reduction rules until it has been reduced to a number or other 
printable object. (In these rules lower case letters stand for arbitrary structures unless 
otherwise specified.) 

s f g x => f x (g 4 
K x y - x  
Y h => (see Figure 3) 

C f g x = >  ( f 4 g  
B f g x = > f f g x )  

I x * x  

u f ( P x Y )  * f X Y  
cond true x y  3 x 

cond false x y 3 y 
plus m n * m + n  where m, n must already have been reduced to numbers. 

And similarly for times, minus, divide, etc. The  name of the machine is I aken from the 
first two rules. 

Figure 2. The efJect of an S-reduction. The dotted lines show the state after the reduction has been performed 

It should be understood that these reduction rules are implemented as graph-transforma- 
tion rules, that is to say that a node which matches the left hand side of a rule is over- 
written with the corresponding right hand side. By way of illustration the effect of the rule 
for S is shown in Figure 2. 

One rule in particular, that for Y, takes advantage of the graphical representation in an 
essential way. The  reduction rule for Y given in the textbooks is 

Y h * h (Y h) 
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Applying this rule again to the Y in the resulting expression we get h (h (Y h))  and one can 
imagine obtaining after an infinite number of steps the infinite expression 

h (h (h  (*.*))) 
whose finite representation as a cyclic graph is shown in Figure 3. Our reduction rule for Y 
produces this form directly in one step, with a considerable gain in efficiency. (Note then 
that a recursive definition whether local or global always results in the construction of a 
cyclic graph.) 

Figure 3. The result of reducing Y h 

Before going on to discuss further details of the working of the machine it may be helpful 
to follow right through the processing of a simple example. Suppose the user types on his 
console as an expression to be evaluated 

First of all the compiler transforms this to 

thereby producing the code 

The reduction machine progressively transforms this to 

suc 2 where suc x = 1 +x  

( b c l  (sue 2)) ([XI (1 + 4) 

c I 2  (plus 1) 

I (plus 1) 2 
plus 1 2 
3 using the plus-rule 

and the number 3 is then printed as the system's response to the user's request. The form 
of the compiled code and the first step in its reduction are shown in Figure 4. 

using the C-rule 
using the I-rule 

Figure 4. The code compiled for suc 2 where suc x = 1 + x and the first step in its reduction 

Quite apart from the use of combinators this machine is unconventional in that its 
operation consists in the progressive transformation of the compiled code. This is a very 
different mode of operation from that of a conventional 'fixed program' machine in which 
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the code is not normally altered once it has been compiled. In contrast we can call the kind 
of machine considered here a ‘substitution machine’ because it carries out literal sub- 
stitutions on the compiled program. What is usually considered the principal objection to 
self-modifying code, namely that it is not re-entrant (i.e. cannot be shared between different 
uses) does not apply here because the transformations consist always in the replacement of 
an expression by another to which it is mathematically equivalent (for example, ‘plus 1 2’ 
by ‘5’).  

Such a machine can be considered as a kind of simpl;fier, analogous to an algebraic 
simplifier. The program, in an applicative language, is an expression, which can be read 
as a mathematical description of the output the user desires to produce. The action of the 
machine consists in progressively simplifying this description, by applying rules known to 
preserve meaning, until it reaches a form from which the output can be printed directly. 

Normal graph reduction 
A major policy decision not yet touched on is the order in which the machine carries out 

the reductions, for in general more than one redex (redex = instance of the Ihs of a rule) 
will be present at any given stage. We know on theoretical grounds that the final outcome of 
a reduction sequence is independent of the order in which the reduction rules are applied. 
One reduction sequence will differ from another, however, in the number of steps taken to 
reach the final outcome, including for certain initial expressions the possibility that one 
sequence will terminate while another fails to do so (for example, by getting stuck in a loop). 

The ordering rule actually used is that at each stage we carry out reduction of the leftmost 
redex present. This is so called ‘normal order reduction’, which aside from being very 
simple and convenient to administer, as we shall see shortly, has the advantage that it is 
known to bring about termination whenever termination is possible. The other widely 
studied reduction regime is ‘applicative order reduction’ in which no redex is reduced until 
all redexes internal to it have been dealt with. To  see that this terminates less often, suppose 
that a function which discards its argument and returns a constant answer (for example 
‘K 2’) is applied to a non-terminating sub-expression. Here evaluation will terminate under 
normal order but not under appiicative order, where it will be attempted, in vain, to reduce 
the sub-expression completely before discarding it (i.e. normal order supports non-strict 
functions while applicative order does not). 

Normal order reduction, it should be noted, means that in general an argument is 
substituted into the body of a function in unevaluated form (because initially the redexes 
inside the argument are to the right of other redexes). Mechanisms of this sort have a 
reputation for being inefficient on the grounds that they lead to repeated re-evaluation of 
the argument (cf Algol call by name). Here it is necessary to stress the importance of the 
fact that we are working with graphs. After the substitution all occurrences of the argument 
in the body of the function will be pointers to a shared sub-expression and all simultaneously 
‘feel the benefits’ of any reductions carried out on the argument. So normalgraph reduction, 
which is what we have here, combines the safety advantage of normal order (arguments are 
not evaluated needlessly) with the efficiency advantage of applicative order (arguments are 
evaluated at most once). See Wadsworthg for a fuller discussion of the properties of normal 
order reduction on graphs. 

(It should be mentioned in passing that another possible reduction regime, with the 
same termination properties as normal order but a potentially enormous gain in speed, is at 
each stage to perform all available reductions in parallel. Foreseeable developments in 
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computer hardware might make this or some suitable variant an attractive possibility, but 
we shall not pursue this possibility here.) 

Controlling the sequence of reductions 
To schedule the sequence of reductions in normal order we use a ‘left ancestors stack’ 

which initially contains only (a pointer to) the expression to be evaluated. So long as the 
expression at the front of the stack is an application we keep taking its left subtree (the 
function of the function-argument pair) and pushing that onto the stack also. Eventually 
we shall get an atom at the front of the stack. If it is a combinator we apply the appropriate 
reduction rule, using the pointers in the stack to gain efficient access to its arguments (the 
nth argument of the combinator will be the right subtree of the object n places behind it on 
the stack). In  Figure 5 we show the state of the stack before and after applying the C-rule 

Stack 
Stack 
After 

Figure 5. Behaviour of the stack during a reduction 

of Figure 4 (stacks are drawn growing downwards). After applying a rule we resume stacking 
left components until we reach another atom. If the object at stack front is an arithmetic 
operator, say plus, we must call the reduction procedure recursively to reduce its arguments 
to numbers and then apply the appropriate rule. Note that the rules for U and cond also 
require reduction of one of their arguments before they can be used. 

The sequence of reductions continues in this way, being controlled at each stage by the 
form of the expression at stack front, until eventually we have only one item left in the 
stack and that is a number or some other printable object. For brevity we have omitted 
from this account the possibility of an error arising such as that a combinator is found to 
have too few arguments or that an operator has arguments of the wrong type or that a 
non-function turns up as the leftmost item of a combination. Unless the compiler includes 
complete type-checking of the input text, which the author’s currently does not, it is 
necessary to arrange to be able to detect such situations at run time and give appropriate 
error reports. 

The user may submit for evaluation an expression whose value is a data structure (a list 
or a list of lists or whatever) instead of a number or a truthvalue or similar simple object. 
In this case the reduction algorithm will leave residing on the stack a representation of the 
data structure in which the components will not yet have been reduced. The printing 
routine prints the data structure from right to left, calling up the reduction algorithm to 
simplify each component before it is printed (and in case the component is itself a data 
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structure this process will be recursive). So the whole process of normal graph reduction 
can be thought of as being driven by the need to print-nothing is evaluated until the 
printer requires to know its value. 

Among the intriguing possibilities to which this gives rise is that the user can submit an 
infinite list to be printed, for example the list of all prime numbers as defined by the SASL 
expression shown in Figure 6.  For a fuller discussion of this and other properties of normal 
order implementations of applicative languages see Turner.12 

sieve (from 2)  
where 
from n = n :  from (n  + 1) 
sieve (p : x) = p: sieve (filter x) 

where 
filter (n : x) = 

n remp = 0 +filter x; 
n: filter x 

Figure 6. The list of all the prime numbers 

Storage allocation and indirection nodes 
A11 the structures manipulated by the run-time system are built out of two-field cells 

which makes it convenient to use a LISP-style storage allocation scheme with markbits 
and a garbage collector. 

Whenever a reduction rule is applied, it will be recalled, the node to which the rule is 
being applied is overwritten with the result. A problem arises if the result of applying the 
rule is either at atom or an already existing expression rather than a new node, as occurs for 
example when applying the rule for K. In the first case we have a problem because we have 
to overwrite a two-field cell with an object that can only occupy one field; in the second 
case we have a problem because if we overwrite the subject node with a copy of the top 
node of the result we shall destroy the sharing properties on which the efficiency of normal 
graph reduction depends. 

The solution in both cases is to make the node into an indirection node with the identity 
combinator I in its left field and the result in question (an atom or a pointer to an existing 
expression) in its right field. On the stack of course we can leave the result itself rather than 
a pointer to the indirection node. Figure 7 shows by way of example the reduction of a 
redex of the form K x y. 

In order to save space and time, pointers via indirection nodes are elided whenever they are 
encountered during processing. That is to say whenever we come across a field containing a 
pointer to a node of the form I x we overwrite the field with x. When all references to the 
indirection node have been bypassed in this way the space it occupies will of courae be 
reclaimed by the garbage collector. It would also be possible to include a search for and 
elision of all pointers via indirection nodes during the mark phase of garbage collection. 

As a final point on storage allocation it should be noted that the use of mark-scan garbage 
collection rather than a reference count technique is necessitated by the fact that the 
graphs which constitute the code are in general cyclic, because of the way we handle 
recursion. The occurrence of cycles could be avoided if all recursion (global as well as local) 
were done via the use of Y and if the reduction rule use for Y were 

Y h = h (Y h) 
rather than the ‘knot-tying’ rule shown in Figure 3. The graphs would then be and remain 
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acyclic, permitting the use of reference count techniques of storage allocation. This would 
be, however, at the cost of a considerable loss of efficiency, especially in the implementation 
of global recursions. 

Before 

Stack 

1 * 
i After 

Stack 

R 

I K l  I 
I 

Figure 7. K-reduction, note that the cell marked * becomes an indirection node 

RESULTS AND CONCLUSIONS 

The compiler and the reduction machine described above have been implemented by the 
author and some measurements of performance taken, which we present in this section. 
An earlier implementation of the SASL language by means of a conventional interpreter 
using association lists was available for comparison.13 The two implementations are written 
in different languages for different machines so there are a number of incidental differences 
between them. Any inferences from the relative performance of the implementations to the 
relative merits of the techniques are therefore tentative. 

The first comparison made was in the compactness of the object code produced by the 
two compilers. The earlier implementation consists of an SECD machine together with a 
compiler for generating a suitable SECD machine-code. By way of illustration the code 
generated for the body of the factorial function (as defined in the introduction) is shown in 
Figure 8. Anyone familiar with SECD machines should find the code in Figure 8 self- 
explanatory-for details see Reference 13. Comparing this with the combinatory code 
shown for the same function in Figure 1 we see that the latter occupies 13 cells while the 
SECD code needs 24 cells, not counting the space occupied by the names ‘n’ and ‘fad. 

This ratio seems fairly typical-the author finds that in general the combinatory form is 
about twice as compact as the SECD code, not counting the latter’s extra storage require- 
ment for bound variables. Over several hundred lines of source the SECD compiler 
averaged 14 cells of object code per line of source, the combinatory compiler six cells per 
line (not counting space occupied by names in either case). It should be stressed that the 
optimizations for multiple abstraction described in Reference 9 proved essential to main- 
taining this degree of compactness. 

Execution speed 
The second comparison made was in the relative speeds of execution of the two object 

codes. A direct measurement of elapsed times would have been meaningless because of 
incidental differences between the implementations that would have greatly affected the 
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f a c n  = 

Figure 9. Three test programs 

return 

timings, not least that they were running on different computers under different operating 
systems. One possible approximation to a machine independent measure of elapsed time is 
to count the number of 'steps' taken-i.e. SECD instructions in the one case and reductions 
performed in the other. Three sample programs are shown in Figure 9+a) solves the 
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‘Towers of Hanoi’ problem with five disks, (b) prints a table of factorials and (c) is a calcula- 
tion to test the use of higher order functions. Table I compares the number of steps in the 
execution of these test programs under the two implementations. 

Table I. Number of steps 

Program SECD m/c Reduction m/c 
~~ ~ ~~ ~~ 

(a) Hanoi 1,488 3,067 
(b) Factorials 975 1,280 
(c)  Twice 158 92 

In general it seems to take the reduction machine rather more ‘steps’ to perform the 
same task, though this might be felt only to reflect the fact that the concept of a ‘step’ is here 
somewhat smaller. 

Since both machines compose all their structures from two-field cells an arguably more 
comparable measure of ‘work done’ would be to count in each case the cumulative total of 
cells claimed from the store manager during execution (i.e. in LISP terms we are counting 
the total number of times CONS is called at run-time). The results for the same three test 
programs are shown in Table 11. 

Table 11. Number of cells claimed during execution 
~ ~~ 

Program SECD m/c Reduction m/c 

(a) Hanoi 1,488 3,131 

(c)  Twice 128 65 
(b) Factorial 470 975 

In fact this measure can be seen to yield essentially the same results as those obtained by 
counting ‘steps’. Notice that the relative cost of program (c), which is very dense in function 
calls, is much lower for the combinatory implementation-a point to which we shall return 
shortly. 

We conclude then that the execution cost of programs is somewhat higher (perhaps by a 
factor of two) for the reduction machine than for the SECD machine (but for code dense in 
function calls the position is reversed). 

A reservation must be made, however, on this comparison of execution costs. The 
reduction machine gives a normaE order implementation, while the SECD machine gives an 
applicative order one. This means that the former implements a much more powerful 
version of the SASL language than the latter, for example in the ability to handle infinite 
data-structures. The SECD machine can be modified so that it also evaluates in (graphical) 
normal order. This is done by altering the parameter passing mechanism so that an actual 
parameter is passed as an unevaluated form (a ‘suspension’ containing pointers to the actual 
parameter expression and to the environment in which it is to be evaluated) and only later 
overwritten with its value if required. 

Such a machine has been called ‘procrastinating’’ or ‘lazy7.10 We show in Table 111 the 
results of repeating the measurements of Table I1 on a ‘lazy’ version of the SECD machine 
coded by the author. We see that this modification slows the SECD machine down by an 
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order of magnitude. Compared with a ‘lazy’ fixed program machine then, the S K-reduction 
machine is much superior in execution speed. 

Table 111. Number of cells claimed during execution 

Program SECD m/c LAZY SECD m/c 

(a) Hanoi 1,488 10,428 
(b) Factorial 470 5,565 
(c) Twice 128 1,206 

Self-optimizing properties 
I n  contrast to programs in a conventional ‘fixed program’ machine, programs in the 

S K-reduction machine exhibit a number of important self-optimizing properties. First 
consider the case of a function whose body contains a sub-expression not involving any 
parameters or local variables of the function. During the first call of the function which 
requires this sub-expression to be evaluated it will be replaced by its value. That  is to say 
the code for the function is permanently modified to that which would have been compiled 
if the user had written a constant in place of this sub-expression. As a consequence a con- 
stant calculation inside a loop is performed only once, regardless of how many times the 
body of the loop is executed. 

A second aspect of this self-optimization concerns the cost of introducing extra levels of 
functional abstraction into a program. Take the following definition of a function to sum the 
elements of a list 

def sum x = 

x = nil  + 0 ;  hd x+sum (tl x) 

This represents a commonly occurring pattern of recursion which can be captured in the 
following definition of a generic function for ‘folding a list to the right’ 

def foldr op a = f 
where 
f x =  

x = n i l + a ;  

OP (hd 4 ( f  ( t l x ) )  
Now sum can be defined succinctly as 

def sum = foldr p l u s  0 
and many other functions now lend themselves to compact definitions in terms of foldr, for 
example 

def product = foldr times 1 
def all = foldr and true 

def some = foldr or false 
It will readily be appreciated that a systematic policy of defining and using generic 

functions like foldr whenever there is a commonly occurring pattern of recursion leads to 
4 
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a programming style of great compactness and elegance-see for example Burge.’ Such a 
‘combinatory’ programming style involves of course a combinatorial increase in the number 
of function calls implied during the execution of the program. For a typical function 
instead of being defined directly is expressed as the application of a generic function to 
some previously defined functions, all of which may themselves have ‘combinatory’ defini- 
tions and so on to perhaps a considerable depth. 

Under a conventional implementation the overhead of all the extra function calls places 
a definite limit on the extent to which such techniques can be exploited without intolerable 
slowdown. With the implementation technique described here, however, the overhead 
disappears entirely. T o  take the example in question, the first time sum is called the expres- 
sion for sum, namely foldr plus 0 is replaced by the code associated with f in the body of 
foldr, with plus and 0 substituted for op and a. That is it is replaced by exactly the same 
code as would have been compiled from the direct definition of sum. So for the second and 
subsequent calls of sum the overhead associated with the programmer’s introduction of the 
extra abstraction foldr simply disappears. 

This property of the new implementation means that the programmer can freely introduce 
extra layers of abstraction whenever they contribute to modularity or to conciseness of 
expression without any loss in speed of execution. Such abstractions simply ‘expand 
themselves out’ the first time they are used. 

Such behaviour is not peculiar to the S K-reduction machine-it would be shown by any 
substitution (as opposed to $xed-program) machine. For example, we could simply desugar 
our functional notation to A-calculus at the compilation stage and have a machine which 
performed beta-reductions on the resulting A-expressions (see Wadsworths for a normal 
graph reducer for the A-calculus). This would display the same self-optimizing behaviour. 
The  advantage special to the use of combinators is that the associated reduction rules are 
much simpler and can be performed much faster than beta-reductions. 

Some drawbacks 
Under some circumstances the use of a substitution machine can have undesirable con- 

sequences for space utilization. It can be that the ‘expanded out’ form of an expression is so 
large that it would be preferable (or even essential) to lose it after each use and take the time 
to recreate it afresh from the original expression if it is needed again. (This is of course 
what always happens in a fixed-program machine.) I t  would be possible to give the pro- 
grammer some special syntax for marking areas of the source text where this behaviour was 
wanted. Such a machine-oriented feature, however, would sit most oddly in an otherwise 
very clean high level language. 

John Hammond, of the University of Kent, has suggested to the author that this problem 
couId be solved by having the machine automatically discard expanded out versions in 
favour of original code whenever it runs out of space, rather after the manner of throw-away 
~ompi1ing.l~ Such a machine could display a continuum of possible behaviours ranging from 
full self-optimization to conventional fixed-program, depending on the amount of space 
available. Clearly further investigation of this matter is required. 

The  other main difficulty with the present implementation is that run-time error reports 
are very opaque. Descriptions of the run-time state in terms of the configuration of com- 
binators on the stack are quite unintelligible to users. The  system keeps a record, however, 
of the association of user-coined names with combinations of combinators as established by 
the user’s def definitions. By using this ‘dictionary’ backwards, it should be possible to 
translate the information on the stack back into intelligible high level language expressions. 
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Here also further investigation is obviously needed. In fact the requirement for good run- 
time diagnostics will become less pressing in the future, since it is intended to introduce 
complete compile time type checking of the SASL source. Almost all programs that now 
cause run-time errors will then draw compile time diagnostics. 
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