
SOFTWARE-PRACTICE AND EXPERIENCE, VOL. 9, 31-49 (1979)

A New Implementation Technique for
Applicative Languages

D. A. TURNER

Computer Laboratory, University of Kent, Canterbury CT2 7NF

SU-Y
It is shown how by using results from combinatory logic an applicative language, such as
LISP, can be translated into a form from which all bound variables have been removed.
A machine is described which can efficiently execute the resulting code. This implementation
is compared with a conventional interpreter and found to have a number of advantages. Of
these the most important is that programs which exploit higher order functions to achieve
great compactness of expression are executed much more e5ciently.

WORDS Applicative languages Combinators Bracket abstraction Normal graph reduction
Lazy evaluation Substitution machine

INTRODUCTION
A ubiquitous feature of applicative languages is the presence of bound variables. These
include formal parameters, like the n in the following definition of the factorial function

def fac n =

n = 0 + 1; n x fuc (n - 1)
and more simply local variables like the x in the following expression

(x+ 1) x (x- 1) where x = 7
(These and subsequent examples of applicative notation are written in SASL,l a more
readable alternative to LISP used by the author for teaching purposes. The notation hope-
fully requires no explanation other than to remark that the construction ‘A + B ; C’ means
‘if A then B else C’.)

Each bound variable has associated with it a region of text called its scope and within its
scope the variable can be consistently replaced by any other variable, up to some rules about
avoiding name clashes, without altering the meaning. Of course the use of bound variables
is not confined to applicative Ianguages but is a feature also of high, level imperative lan-
guages with their procedures and block structure, though here we have the added com-
plication that variables denote not values but locations whose contents can be altered by
assignment statements.

As is well known the behaviour of bound variables can be explicated by associating with
each region of the program text an environment2 that is a function whose domain consists
of the variables currently in scope and which associates with each such variable its current
value (or in the case of an imperative language a location containing its current value). On
entering a scope the environment is extended to include the variable bindings local to that
scope, on leaving a scope the old environment is restored.

0038-0644/79/0109-003 l$Ol.OO Received 5 December 1977
@ 1979 by John Wiley & Sons, Ltd.

3 31

32 D. A. TURNER

Aside from its use in defining the semantics of languages with bound variables, the
‘environments’ model can fairly be considered the basis of all the conventional methods of
implementing this language feature. The apparently wide divergences between one imple-
mentation technique and another are largely due to the choice of different concrete data
structures to represent the abstract data type ‘environment’. The representation of the
environment generally used in interpreters is a linked list of name-value pairs (an ‘associa-
tion list’), see for example Landin’s SECD machine2 and of course the standard LISP
in te r~re te r .~ Another strategy, used by most Algol compilers, is to keep variables on the
stack and represent the environment by a small data structure, the ‘di~play’,~ which gives
access to various reference points on the stack. These are the two commonest strategies
though other variations occur.

A radically different method of dealing with bound variables is possible, however, at
least for purely applicative languages (those without assignment or side effects) and it is this
that we describe here. I t does not derive from the ‘environments’ model at all but rather
from a curious result in logic which shows that variables, as they are used in logic and
ordinary mathematics are not strictly necessary.5 Given a modest number of extra constants,
called combinators, we can systematically translate whatever we have to say into a notation
in which bound variables do not occur. This process of removing variables can be thought
of as a kind of compilation and the resulting variable-free notation as a kind of object code.
Although it is quite unreadable by human beings this code can be efficiently ‘executed’ by a
machine of a very simple character. The author has found that it is possible along these
lines to produce a viable implementation of an applicative language such as pure LISP
(in fact SASL was used). I t was found to be broadly comparable in speed and space
utilization to a conventional interpreter using association lists but to have certain advantages.

A number of recent authorslo-12 have advocated that the semantics of applicative lan-
guages should be redefined so as to permit non-strict functions. (A non-strict function is one
that can return an answer even if one of its arguments is undefined.) In a conventional
implementation the necessary changes are found to bring about a slowdown in execution
speed of up to an order of magnitude. The implementation technique described here,
however, provides this behaviour quite naturally and without any extra cost. The second
principal advantage is that the combinatory ‘code’ turns out to have some remarkable self-
optimizing properties including that constant calculations are automatically moved outside
loops and that the overhead cost of calling a user-defined function falls to zero after the first
occasion of its use.

The remainder of the paper is organized as follows. In the first section we discuss the
algorithm used for removing bound variables from the source text (‘compiling’). In the
second section we outline the strategy of the machine which executes the resulting code.
Finally, in the third section we give some preliminary performance figures and discuss the
properties of this kind of implementation. In order to make the article self-contained
absolutely no technical knowledge of combinatory logic on the part of the reader has been
assumed. The results developed in the first section are in fact well known and can be
found in the standard text.6

REMOVING VARIABLES FROM T H E SOURCE TEXT

We start by introducing a notion crucial to the whole plan-that of a higher order function.
An ordinary function, say sin, returns for its result a number or similar simple object.
But it is possible to conceive of a function which returns for its result another function.

A NEW IMPLEMENTATION TECHNIQUE 33

The ‘differentiate’ operation of school calculus is a function of this kind, for example we
might write

D sin = cos
showing that the (higher order) function D when applied to the argument sin returns for its
result the function cos. Note the convention here that the application of a function to its
argument is denoted simply by juxtaposition-we do not insist on enclosing the argument
in brackets. We will further assume that juxtaposition associates to the left, so we can
write, say

D sin 0 = 1
meaning

(D sin) 0 = 1, i.e. cos 0 = 1
As an additional example of a higher order function consider the following definition of a

function plus

meaning that plus can be applied to an argument, x say, and returns a function which when
applied to an argument, y say, returns the sum of x and y . So

plus x y = x-ty

plus 2 3 = 5
but it is read as ‘(plus 2) 3’. And ‘plus 2’ has a meaning in its own right-it is the function
that adds two to things. (This device for reducing a first order function of several arguments
to a higher order function of one argument is called cuyrying after the logician H. B. Curry.
Thus we would say that plus is here a curried version of the + operation.)

The basic algorithm
We are now ready to begin removing variables from the source text. The source is in the

form of a series of messages from the user to the SASL system (the system is interactive).
Each message is either an expression to be evaluated, in which case its value is printed
immediately, or else it is a definition to be stored for latter use, like

def p i = 3.141592
or like the definition of factorial given earlier.

function

The aim is to eliminate the variable x obtaining a definition of the form

T o begin with a very simple example take the following definition of the successor

(1) def suc x = x + 1

def suc = ...
where the right hand side is an expression containing only constants. The first step is to
rewrite equation (1) using a curried version of the + operator

def suc x = plus 1 x

def suc = plus 1

(2)

(3)

Now we can remove x from both sides of the equation obtaining

which is an acceptable solution. (A good question is, why can we ‘cancel’ x in this way?
The anwer is, because of the principle of extensionality which states that two functions f and
g say, are equal if and only if: f x = g x for all x.)

34 D. A. TURNER

The step from equation (2) to equation (3) was very easy in this case because the variable
to be removed from the body of the function occurred only once, at the extreme right.
To handle the general case we need to borrow some technical results from combinatory
logic. We take as the typical definition

where . . . is an expression built up from constants and the variable x using various operators.
For a first step we replace all the operators by their curried versions, giving

where E is an expression in which functional application is the only operation (such an
expression is called a combination). We can now write the solution as

where [x] E denotes the result of a textual operation to be defined shortly, pronounced
‘abstract x from E’ and which removes all occurrences of x. For equation (6) to be a correct
solution we require that

i.e. that abstraction be an exact inverse of application. We introduce three combinators,
S, K and I, defined by the equations

def f x = ... (4)

deff x = E (5)

def f = [x] E (6)

([XI E) x = E (law of abstraction)

S f g x = f X (g 4 (S)
K X J J = X (K)

I x = x (1)
and define the abstraction operation as follows

[XI (El E2) * s (PI El) (1x1 E2)
[XI x * I

[XI Y K Y
where y is a constant or a variable other than x. That abstraction thus defined obeys the
law of abstraction given above can be proved by an induction on the size of the combination
E-we leave this as an exercise for the interested reader.

This is the basic algorithm for removing variables but if used without modification it
tends to produce rather long-winded ‘code’. For the successor function we get

def suc = [x] (plus 1 x)

s ([XI (Plus 1)) ([XI x)
S (S (K plus) (K 1)) I

which while perfectly correct (as the reader may confirm by applying the above expression
to an arbitrary x and checking that the result simplifies, by the use of the equations (S),
(K) and (I), to ‘plus 1 x’) is much less compact than the ‘plus 1’ which we obtained earlier.

T o give one more example, from the definition of factorial given at the very beginning
of this paper the basic algorithm yields the solution

def fac = S (S (S (K c o n d) (S (S (K e q) (K 0)) I))
(K 1)) (S (S (K t i m e s) I) (S (K fac)

(S (S (K minus)II) (K 1))))

A NEW IMPLEMENTATION TECHNIQUE 35

where the constants c o d , eq, times and minus are the curried versions of the conditional,
=, x and - operators respectively.

Improving the algorithm
To improve the performance of the algorithm we introduce the extra combinators B

and C, defined by

B f g x = f (gx)

C f g x = f x g
and the optimizations (El and E, stand for arbitrary combinations):

s (K El) (K E2) =- K (El E2)
S (K El) I => El

S (K El) E2 => B El E2 if no earlier rule applies

S El (K E,) 3 C El E2 if no earlier rule applies

(The interested reader can satisfy himself that the left and right hand sides G, each of these
rules are always equal by applying both sides to an arbitrary x and simplifying.)

The above rules recognize various special cases where the variable being abstracted is
absent from one or more subexpressions. This brings about a considerable improvement
in the quality of the code produced. The code above for suc reduces to plus 1 under the
above rules and for fuc we get the much shortened version

deffuc = S (C (B cond (eq 0)) 1) (S times (Bfuc (C minus 1)))
In the author’s compiler these optimizations are incorporated as an integral part of the
abstraction algorithm and the long-winded form of the code never comes into existence.

Up to now we have been assuming that we have to deal only with definitions of functions
of one argument and with no local definitions in the bQdy of the function. In fact the
abstraction algorithm can be applied repeatedly to cope with more complex situations. In
SASL functions of several arguments are normally defined as curried functions, for example

which would compile to

where the inner abstraction must of course be performed first.

def f x y = E

deff = [XI “1 E)

Local variables, introduced by a where clause as in

El where x = E,
are removed by transforming an expression of the above form to

So for example the expression

would compile to
S (B times (C plus 1)) (C minus 1) 7

This transformation is applied repeatedly to handle arbitrary nestings of where inside
where and inside function bodies-as always inner abstractions are performed first.

([XI El) E2

(x + 1) x (x- 1) where x = 7

36 D. A. TURNER

Functions can be defined in where clauses also but this presents no new difficulties.
For example

would compile to
... f ... where f x = E

([fl (* * - f *-.N ([X I El

Data structures

We represent this by an infix colon, thus
Like LISP, SASL has only one method of data structuring namely a pairing operation.

x : y
is the data structure whose head is x and whose tail is y ; in LISP it would be written
‘(cons x y)’ . As usual this operation can be cascaded to the right to form a linked list and a
syntactic sugaring is provided for this. So, for example, a three list is written

4 b’ c
which is taken as shorthand for

a : (b : (c : nil))

We introduce the combinator P as a curried version of the pairing operation and so the
above expression compiles to

P a (P b (P c nil))

In SASL the explicit use of the selectors hd and tl is generally avoided by using colons
and commas on the left of definitions instead. For example it is permitted to write

def a : b = x

The compiler treats this as equivalent to

def a = hd x

def b = tl x

It is permitted to write arbitrarily complicated ‘templates’ on the left of a definition in
this way. Such templates can also occur on the left of where clauses and in formal para-
meter positions. To compile su,h constructions the author has introduced the new com-
binator U (for ‘uncurry’) defined by the equation

U f (X : Y) = f x Y
and has generalized the abstraction algorithm to permit abstraction with respect to a
template. We define

to mean
[x : Yl E

u ([X I ([Yl E l)
By recursive application of the above rule we can abstract with respect to an arbitrary

template (we leave it to the reader to check that this extended definition of abstraction
satisfies a suitably generalized version of the law of abstraction). So for example

El where a : b = E,

A NEW IMPLEMENTATION TECHNIQUE 37

compiles to

and

compiles to
def f (x, y , 2) = E

def f = [x, y, x] E
=> [x : (y : (2 : nil))] E

=> u ([XI (U ([Yl (U ([.I (K E))))))
(A detail-in the actual implementation rather than K we would here use a combinator with
a similar action but which checks that its second argument does in fact take the value nil.)

Assembling the code
Using the foregoing rules then, the compiler is able to transform each incoming expres-

sion into a pure combination and each incoming def definition into one or more definitions
of the form

def name = combination

The combinations are stored as binary trees, with the nodes representing functional
applications. At the leaves of the tree there will be constants (like 1 or plus or S) . When an
unbound variable occurs it is replaced by the combination with which it has been associated
by a def definition, or it is so replaced as soon as such a definition is encountered. That is,
outer level names (i.e. those defined by def) are handled by substituting their definitions as
subtrees into the trees in which they occur. Subtrees are included by pointing not by
copying, so combinations can share subtrees (since we have no assignment this is perfectly
safe). A recursive definition will compile to a cyclic graph. For example, the definition of
the factorial function given in the introduction will result in the namefac being associated
with the graph shown in Figure 1. A subsequent request to evaluate, say fac 3, will compile
to a tree whose left subtree is the structure shown in Figure 1 and whose right subtree is 3.

(This seems a suitable place to make a comment on the conventions used in diagrams
such as that in Figure 1. Letters and numbers will sometimes be drawn inside cells as here
and sometimes drawn outside with a pointer to them shown originating from a field of the
cell. There is absolutely no logical significance in our using sometimes the one convention
and sometimes the other-it is dictated purely by what is topologically convenient when
drawing the diagram. Whether, say, numbers are actually stored immediately or stored
elsewhere and pointed to, is a low level implementation detail depending on, for example,
the word length of the computer, with which this article is not concerned.)

Local recursion

recursion, as in

This is transformed to

where Y is the fixpoint combinator, defined by the equation

There is one further complication which the compiler must be able to handle-local

El where x = ... x ...

([XI El) (Y (1x1 (* * . x **.)))

Yf =f (Yf)

38 D. A. TURNER

9 '

WI mx

Figure I . The code compiled for factorial

That is, for any function f, Y f is a fixed point off. (See Burge' for further explanation of
the use of Y in eliminating recursion.)

Mutual recursion following a where is handled by combining all the definitions follow-
ing the where into a single definition with a complex left hand side and then proceeding
as above. So for example

El where f~ = ... g ...
g y = ... f ...

g = [Yl (* - . f . - . I

is first transformed to
El where f = [XI (. . . g . . .)

eliminating the variables x and y. Now the mutually recursive pair of definitions can be
converted into a single recursive definition as follows

which can be compiled as

using the rules already given.
I n handling a moderately complicated definition then it is quite possible for the compiler

to get a dozen or so levels deep in abstraction operations. I n order that the code produced
should continue to be reasonably compact under these circumstances it was found to be
necessary to introduce some further optimizations into the abstraction algorithm. These
take account of the way successive abstractions interact to bring about a considerable
increase in the efficiency of nested abstraction. We omit the details here as they are fully
described elsewhere.s

El where (f , g) = ([XI (... g ...), [YI (...f ... 1)

(if, gl Ed (Y ([f,gl ([XI g .-.I, Erl (. - a f .**))I)

A NEW IMPLEMENTATION TECHNIQUE 39

T H E S-K REDUCTION MACHINE

Having described the action of the compiler we now pass to an account of the run time
system. When the user submits to the SASL system an expression to be evaluated the
compiler removes all the variables and passes to the run time system a binary graphical
structure as described in the previous section. The run time system consists of a machine
(currently implemented in software) which progressively transforms this structure by
applying the following reduction rules until it has been reduced to a number or other
printable object. (In these rules lower case letters stand for arbitrary structures unless
otherwise specified.)

s f g x => f x (g 4
K x y - x
Y h => (see Figure 3)

C f g x = > (f 4 g
B f g x = > f f g x)

I x * x

u f (P x Y) * f X Y
cond true x y 3 x

cond false x y 3 y
plus m n * m + n where m, n must already have been reduced to numbers.

And similarly for times, minus, divide, etc. The name of the machine is I aken from the
first two rules.

Figure 2. The efJect of an S-reduction. The dotted lines show the state after the reduction has been performed

It should be understood that these reduction rules are implemented as graph-transforma-
tion rules, that is to say that a node which matches the left hand side of a rule is over-
written with the corresponding right hand side. By way of illustration the effect of the rule
for S is shown in Figure 2.

One rule in particular, that for Y, takes advantage of the graphical representation in an
essential way. The reduction rule for Y given in the textbooks is

Y h * h (Y h)

40 D. A. TURNER

Applying this rule again to the Y in the resulting expression we get h (h (Y h)) and one can
imagine obtaining after an infinite number of steps the infinite expression

h (h (h (*.*)))
whose finite representation as a cyclic graph is shown in Figure 3. Our reduction rule for Y
produces this form directly in one step, with a considerable gain in efficiency. (Note then
that a recursive definition whether local or global always results in the construction of a
cyclic graph.)

Figure 3. The result of reducing Y h

Before going on to discuss further details of the working of the machine it may be helpful
to follow right through the processing of a simple example. Suppose the user types on his
console as an expression to be evaluated

First of all the compiler transforms this to

thereby producing the code

The reduction machine progressively transforms this to

suc 2 where suc x = 1 +x

(b c l (sue 2)) ([XI (1 + 4)

c I 2 (plus 1)

I (plus 1) 2
plus 1 2
3 using the plus-rule

and the number 3 is then printed as the system's response to the user's request. The form
of the compiled code and the first step in its reduction are shown in Figure 4.

using the C-rule
using the I-rule

Figure 4. The code compiled for suc 2 where suc x = 1 + x and the first step in its reduction

Quite apart from the use of combinators this machine is unconventional in that its
operation consists in the progressive transformation of the compiled code. This is a very
different mode of operation from that of a conventional 'fixed program' machine in which

A NEW IMPLEMENTATION TECHNIQUE 41

the code is not normally altered once it has been compiled. In contrast we can call the kind
of machine considered here a ‘substitution machine’ because it carries out literal sub-
stitutions on the compiled program. What is usually considered the principal objection to
self-modifying code, namely that it is not re-entrant (i.e. cannot be shared between different
uses) does not apply here because the transformations consist always in the replacement of
an expression by another to which it is mathematically equivalent (for example, ‘plus 1 2’
by ‘5’).

Such a machine can be considered as a kind of simpl;fier, analogous to an algebraic
simplifier. The program, in an applicative language, is an expression, which can be read
as a mathematical description of the output the user desires to produce. The action of the
machine consists in progressively simplifying this description, by applying rules known to
preserve meaning, until it reaches a form from which the output can be printed directly.

Normal graph reduction
A major policy decision not yet touched on is the order in which the machine carries out

the reductions, for in general more than one redex (redex = instance of the Ihs of a rule)
will be present at any given stage. We know on theoretical grounds that the final outcome of
a reduction sequence is independent of the order in which the reduction rules are applied.
One reduction sequence will differ from another, however, in the number of steps taken to
reach the final outcome, including for certain initial expressions the possibility that one
sequence will terminate while another fails to do so (for example, by getting stuck in a loop).

The ordering rule actually used is that at each stage we carry out reduction of the leftmost
redex present. This is so called ‘normal order reduction’, which aside from being very
simple and convenient to administer, as we shall see shortly, has the advantage that it is
known to bring about termination whenever termination is possible. The other widely
studied reduction regime is ‘applicative order reduction’ in which no redex is reduced until
all redexes internal to it have been dealt with. To see that this terminates less often, suppose
that a function which discards its argument and returns a constant answer (for example
‘K 2’) is applied to a non-terminating sub-expression. Here evaluation will terminate under
normal order but not under appiicative order, where it will be attempted, in vain, to reduce
the sub-expression completely before discarding it (i.e. normal order supports non-strict
functions while applicative order does not).

Normal order reduction, it should be noted, means that in general an argument is
substituted into the body of a function in unevaluated form (because initially the redexes
inside the argument are to the right of other redexes). Mechanisms of this sort have a
reputation for being inefficient on the grounds that they lead to repeated re-evaluation of
the argument (cf Algol call by name). Here it is necessary to stress the importance of the
fact that we are working with graphs. After the substitution all occurrences of the argument
in the body of the function will be pointers to a shared sub-expression and all simultaneously
‘feel the benefits’ of any reductions carried out on the argument. So normalgraph reduction,
which is what we have here, combines the safety advantage of normal order (arguments are
not evaluated needlessly) with the efficiency advantage of applicative order (arguments are
evaluated at most once). See Wadsworthg for a fuller discussion of the properties of normal
order reduction on graphs.

(It should be mentioned in passing that another possible reduction regime, with the
same termination properties as normal order but a potentially enormous gain in speed, is at
each stage to perform all available reductions in parallel. Foreseeable developments in

42 D. A. TURNER

computer hardware might make this or some suitable variant an attractive possibility, but
we shall not pursue this possibility here.)

Controlling the sequence of reductions
To schedule the sequence of reductions in normal order we use a ‘left ancestors stack’

which initially contains only (a pointer to) the expression to be evaluated. So long as the
expression at the front of the stack is an application we keep taking its left subtree (the
function of the function-argument pair) and pushing that onto the stack also. Eventually
we shall get an atom at the front of the stack. If it is a combinator we apply the appropriate
reduction rule, using the pointers in the stack to gain efficient access to its arguments (the
nth argument of the combinator will be the right subtree of the object n places behind it on
the stack). In Figure 5 we show the state of the stack before and after applying the C-rule

Stack
Stack
After

Figure 5. Behaviour of the stack during a reduction

of Figure 4 (stacks are drawn growing downwards). After applying a rule we resume stacking
left components until we reach another atom. If the object at stack front is an arithmetic
operator, say plus, we must call the reduction procedure recursively to reduce its arguments
to numbers and then apply the appropriate rule. Note that the rules for U and cond also
require reduction of one of their arguments before they can be used.

The sequence of reductions continues in this way, being controlled at each stage by the
form of the expression at stack front, until eventually we have only one item left in the
stack and that is a number or some other printable object. For brevity we have omitted
from this account the possibility of an error arising such as that a combinator is found to
have too few arguments or that an operator has arguments of the wrong type or that a
non-function turns up as the leftmost item of a combination. Unless the compiler includes
complete type-checking of the input text, which the author’s currently does not, it is
necessary to arrange to be able to detect such situations at run time and give appropriate
error reports.

The user may submit for evaluation an expression whose value is a data structure (a list
or a list of lists or whatever) instead of a number or a truthvalue or similar simple object.
In this case the reduction algorithm will leave residing on the stack a representation of the
data structure in which the components will not yet have been reduced. The printing
routine prints the data structure from right to left, calling up the reduction algorithm to
simplify each component before it is printed (and in case the component is itself a data

A NEW IMPLEMENTATION TECHNIQUE 43

structure this process will be recursive). So the whole process of normal graph reduction
can be thought of as being driven by the need to print-nothing is evaluated until the
printer requires to know its value.

Among the intriguing possibilities to which this gives rise is that the user can submit an
infinite list to be printed, for example the list of all prime numbers as defined by the SASL
expression shown in Figure 6. For a fuller discussion of this and other properties of normal
order implementations of applicative languages see Turner.12

sieve (from 2)
where
from n = n : from (n + 1)
sieve (p : x) = p: sieve (filter x)

where
filter (n : x) =

n remp = 0 +filter x;
n: filter x

Figure 6. The list of all the prime numbers

Storage allocation and indirection nodes
A11 the structures manipulated by the run-time system are built out of two-field cells

which makes it convenient to use a LISP-style storage allocation scheme with markbits
and a garbage collector.

Whenever a reduction rule is applied, it will be recalled, the node to which the rule is
being applied is overwritten with the result. A problem arises if the result of applying the
rule is either at atom or an already existing expression rather than a new node, as occurs for
example when applying the rule for K. In the first case we have a problem because we have
to overwrite a two-field cell with an object that can only occupy one field; in the second
case we have a problem because if we overwrite the subject node with a copy of the top
node of the result we shall destroy the sharing properties on which the efficiency of normal
graph reduction depends.

The solution in both cases is to make the node into an indirection node with the identity
combinator I in its left field and the result in question (an atom or a pointer to an existing
expression) in its right field. On the stack of course we can leave the result itself rather than
a pointer to the indirection node. Figure 7 shows by way of example the reduction of a
redex of the form K x y.

In order to save space and time, pointers via indirection nodes are elided whenever they are
encountered during processing. That is to say whenever we come across a field containing a
pointer to a node of the form I x we overwrite the field with x. When all references to the
indirection node have been bypassed in this way the space it occupies will of courae be
reclaimed by the garbage collector. It would also be possible to include a search for and
elision of all pointers via indirection nodes during the mark phase of garbage collection.

As a final point on storage allocation it should be noted that the use of mark-scan garbage
collection rather than a reference count technique is necessitated by the fact that the
graphs which constitute the code are in general cyclic, because of the way we handle
recursion. The occurrence of cycles could be avoided if all recursion (global as well as local)
were done via the use of Y and if the reduction rule use for Y were

Y h = h (Y h)
rather than the ‘knot-tying’ rule shown in Figure 3. The graphs would then be and remain

44 D. A. TURNER

acyclic, permitting the use of reference count techniques of storage allocation. This would
be, however, at the cost of a considerable loss of efficiency, especially in the implementation
of global recursions.

Before

Stack

1 *
i After

Stack

R

I K l I
I

Figure 7. K-reduction, note that the cell marked * becomes an indirection node

RESULTS AND CONCLUSIONS

The compiler and the reduction machine described above have been implemented by the
author and some measurements of performance taken, which we present in this section.
An earlier implementation of the SASL language by means of a conventional interpreter
using association lists was available for comparison.13 The two implementations are written
in different languages for different machines so there are a number of incidental differences
between them. Any inferences from the relative performance of the implementations to the
relative merits of the techniques are therefore tentative.

The first comparison made was in the compactness of the object code produced by the
two compilers. The earlier implementation consists of an SECD machine together with a
compiler for generating a suitable SECD machine-code. By way of illustration the code
generated for the body of the factorial function (as defined in the introduction) is shown in
Figure 8. Anyone familiar with SECD machines should find the code in Figure 8 self-
explanatory-for details see Reference 13. Comparing this with the combinatory code
shown for the same function in Figure 1 we see that the latter occupies 13 cells while the
SECD code needs 24 cells, not counting the space occupied by the names ‘n’ and ‘fad.

This ratio seems fairly typical-the author finds that in general the combinatory form is
about twice as compact as the SECD code, not counting the latter’s extra storage require-
ment for bound variables. Over several hundred lines of source the SECD compiler
averaged 14 cells of object code per line of source, the combinatory compiler six cells per
line (not counting space occupied by names in either case). It should be stressed that the
optimizations for multiple abstraction described in Reference 9 proved essential to main-
taining this degree of compactness.

Execution speed
The second comparison made was in the relative speeds of execution of the two object

codes. A direct measurement of elapsed times would have been meaningless because of
incidental differences between the implementations that would have greatly affected the

A NEW IMPLEMENTATION TECHNIQUE
I / , II

load- . 1
const decl

45

- 0 1

- 1 t
load- - const - return

c *lookup -

D
load-

lookup * const * - 1 1

The SECD machine code for the body of factorial

minus * apply - times

hanoi 5 'a' 'b' 'c'
where
hanoi n a b c =

n = O + n i l ;
hanoi (n-1) a c b,
"move a disc from", a, "to", b, "\n",
hanoi (n- 1) c b a

for 1 10 line
where
line n = "factorial", n, "is", fac n, "\n"
f o r a b f =

a > b + n i l ;
f a : for (a + l) b f

n = O + l ;
n x fac (n - 1)

twice twice twice suc 0
where
twice f x = f (f x)
sucx =4x+l

f a c n =

Figure 9. Three test programs

return

timings, not least that they were running on different computers under different operating
systems. One possible approximation to a machine independent measure of elapsed time is
to count the number of 'steps' taken-i.e. SECD instructions in the one case and reductions
performed in the other. Three sample programs are shown in Figure 9+a) solves the

46 D. A. TURNER

‘Towers of Hanoi’ problem with five disks, (b) prints a table of factorials and (c) is a calcula-
tion to test the use of higher order functions. Table I compares the number of steps in the
execution of these test programs under the two implementations.

Table I. Number of steps

Program SECD m/c Reduction m/c
~~ ~ ~~ ~~

(a) Hanoi 1,488 3,067
(b) Factorials 975 1,280
(c) Twice 158 92

In general it seems to take the reduction machine rather more ‘steps’ to perform the
same task, though this might be felt only to reflect the fact that the concept of a ‘step’ is here
somewhat smaller.

Since both machines compose all their structures from two-field cells an arguably more
comparable measure of ‘work done’ would be to count in each case the cumulative total of
cells claimed from the store manager during execution (i.e. in LISP terms we are counting
the total number of times CONS is called at run-time). The results for the same three test
programs are shown in Table 11.

Table 11. Number of cells claimed during execution
~ ~~

Program SECD m/c Reduction m/c

(a) Hanoi 1,488 3,131

(c) Twice 128 65
(b) Factorial 470 975

In fact this measure can be seen to yield essentially the same results as those obtained by
counting ‘steps’. Notice that the relative cost of program (c), which is very dense in function
calls, is much lower for the combinatory implementation-a point to which we shall return
shortly.

We conclude then that the execution cost of programs is somewhat higher (perhaps by a
factor of two) for the reduction machine than for the SECD machine (but for code dense in
function calls the position is reversed).

A reservation must be made, however, on this comparison of execution costs. The
reduction machine gives a normaE order implementation, while the SECD machine gives an
applicative order one. This means that the former implements a much more powerful
version of the SASL language than the latter, for example in the ability to handle infinite
data-structures. The SECD machine can be modified so that it also evaluates in (graphical)
normal order. This is done by altering the parameter passing mechanism so that an actual
parameter is passed as an unevaluated form (a ‘suspension’ containing pointers to the actual
parameter expression and to the environment in which it is to be evaluated) and only later
overwritten with its value if required.

Such a machine has been called ‘procrastinating’’ or ‘lazy7.10 We show in Table 111 the
results of repeating the measurements of Table I1 on a ‘lazy’ version of the SECD machine
coded by the author. We see that this modification slows the SECD machine down by an

A NEW IMPLEMENTATION TECHNIQUE 47

order of magnitude. Compared with a ‘lazy’ fixed program machine then, the S K-reduction
machine is much superior in execution speed.

Table 111. Number of cells claimed during execution

Program SECD m/c LAZY SECD m/c

(a) Hanoi 1,488 10,428
(b) Factorial 470 5,565
(c) Twice 128 1,206

Self-optimizing properties
I n contrast to programs in a conventional ‘fixed program’ machine, programs in the

S K-reduction machine exhibit a number of important self-optimizing properties. First
consider the case of a function whose body contains a sub-expression not involving any
parameters or local variables of the function. During the first call of the function which
requires this sub-expression to be evaluated it will be replaced by its value. That is to say
the code for the function is permanently modified to that which would have been compiled
if the user had written a constant in place of this sub-expression. As a consequence a con-
stant calculation inside a loop is performed only once, regardless of how many times the
body of the loop is executed.

A second aspect of this self-optimization concerns the cost of introducing extra levels of
functional abstraction into a program. Take the following definition of a function to sum the
elements of a list

def sum x =

x = nil + 0 ; hd x+sum (tl x)

This represents a commonly occurring pattern of recursion which can be captured in the
following definition of a generic function for ‘folding a list to the right’

def foldr op a = f
where
f x =

x = n i l + a ;

OP (hd 4 (f (t l x))
Now sum can be defined succinctly as

def sum = foldr p l u s 0
and many other functions now lend themselves to compact definitions in terms of foldr, for
example

def product = foldr times 1
def all = foldr and true

def some = foldr or false
It will readily be appreciated that a systematic policy of defining and using generic

functions like foldr whenever there is a commonly occurring pattern of recursion leads to
4

48 D. A. TURNER

a programming style of great compactness and elegance-see for example Burge.’ Such a
‘combinatory’ programming style involves of course a combinatorial increase in the number
of function calls implied during the execution of the program. For a typical function
instead of being defined directly is expressed as the application of a generic function to
some previously defined functions, all of which may themselves have ‘combinatory’ defini-
tions and so on to perhaps a considerable depth.

Under a conventional implementation the overhead of all the extra function calls places
a definite limit on the extent to which such techniques can be exploited without intolerable
slowdown. With the implementation technique described here, however, the overhead
disappears entirely. T o take the example in question, the first time sum is called the expres-
sion for sum, namely foldr plus 0 is replaced by the code associated with f in the body of
foldr, with plus and 0 substituted for op and a. That is it is replaced by exactly the same
code as would have been compiled from the direct definition of sum. So for the second and
subsequent calls of sum the overhead associated with the programmer’s introduction of the
extra abstraction foldr simply disappears.

This property of the new implementation means that the programmer can freely introduce
extra layers of abstraction whenever they contribute to modularity or to conciseness of
expression without any loss in speed of execution. Such abstractions simply ‘expand
themselves out’ the first time they are used.

Such behaviour is not peculiar to the S K-reduction machine-it would be shown by any
substitution (as opposed to $xed-program) machine. For example, we could simply desugar
our functional notation to A-calculus at the compilation stage and have a machine which
performed beta-reductions on the resulting A-expressions (see Wadsworths for a normal
graph reducer for the A-calculus). This would display the same self-optimizing behaviour.
The advantage special to the use of combinators is that the associated reduction rules are
much simpler and can be performed much faster than beta-reductions.

Some drawbacks
Under some circumstances the use of a substitution machine can have undesirable con-

sequences for space utilization. It can be that the ‘expanded out’ form of an expression is so
large that it would be preferable (or even essential) to lose it after each use and take the time
to recreate it afresh from the original expression if it is needed again. (This is of course
what always happens in a fixed-program machine.) I t would be possible to give the pro-
grammer some special syntax for marking areas of the source text where this behaviour was
wanted. Such a machine-oriented feature, however, would sit most oddly in an otherwise
very clean high level language.

John Hammond, of the University of Kent, has suggested to the author that this problem
couId be solved by having the machine automatically discard expanded out versions in
favour of original code whenever it runs out of space, rather after the manner of throw-away
~ompi1ing.l~ Such a machine could display a continuum of possible behaviours ranging from
full self-optimization to conventional fixed-program, depending on the amount of space
available. Clearly further investigation of this matter is required.

The other main difficulty with the present implementation is that run-time error reports
are very opaque. Descriptions of the run-time state in terms of the configuration of com-
binators on the stack are quite unintelligible to users. The system keeps a record, however,
of the association of user-coined names with combinations of combinators as established by
the user’s def definitions. By using this ‘dictionary’ backwards, it should be possible to
translate the information on the stack back into intelligible high level language expressions.

A NEW IMPLEMENTATION TECHNIQUE 49

Here also further investigation is obviously needed. In fact the requirement for good run-
time diagnostics will become less pressing in the future, since it is intended to introduce
complete compile time type checking of the SASL source. Almost all programs that now
cause run-time errors will then draw compile time diagnostics.

ACKNOWLEDGEMENTS

The author would like to thank Peter Welch and John Hammond of the University of Kent
for many valuable suggestions made during frequent discussions during the course of the
above work, Peter Collinson of the University of Kent for invaluable assistance in negotiat-
ing the interface with the host operating system, and Anthony Davie and Michael Weatherill
of the University of St. Andrews for taking measurements on the earlier implementations
of SASL.

REFERENCES
1. D. A. Turner, SASL Language Manual, University of St. Andrews, 1976.
2. P. J. Landin, ‘The mechanical evaluation of expressions’, Comput. J . 6 , 308 (1963-4).
3. J. McCarthy et al., L I S P 1.5 Programmers Manual, M.I.T. Press, 1962.
4. B. Randell and L. J. Russell, The Implementation of Algol 60, Academic Press, 1964.
5. M. Schonfinkel, ‘Uber die Bausteine der mathematischen Logik‘, Math. Annalen, 92, 305 (1924).
6. H. B. Curry and R. Feys, Combinatory Logic, Vol. I, North Holland, 1958.
7. W. H. Burge, Recursive Programming Techniques, Addison-Wesley, 1975.
8 . D. A. Turner, ‘Another algorithm for bracket abstraction’, to appear in Journal of Symbolic Logic.
9. C. P. Wadsworth, Semantics and Pragmatics of the A-calculus, Chapter 4, Oxford University;

10. P. Henderson and J. M. Morris, A lazy evaluator, 3rd Symposium on Principles of Programming

11. D. P. Friedman and D. S. Wise, C O N S should not evaluate its arguments, 3rd int. colloq. Automata

12. D. A. Turner, Programming without Assignment (to appear).
13. D. A. Turner, A n Implementation of SASL, University of St. Andrews, Dept. of Comp. Science,

14. P. J. Brown, ‘Throw-away compiling’, Software-Practice and Experience, 6, 423-434 (1976).

DPhil. Thesis, 1971.

Languages, Altanta, 1976.

Languages and Programming, Edinburgh, 1976.

Report TR/75/4.

