
ar
X

iv
:2

30
7.

09
38

3v
1

 [
cs

.P
L

]
 1

8
Ju

l 2
02

3
Soundly Handling Linearity

WENHAO TANG, The University of Edinburgh, United Kingdom

DANIEL HILLERSTRÖM, Huawei Zurich Research Center, Switzerland

SAM LINDLEY, The University of Edinburgh, United Kingdom

J. GARRETT MORRIS, University of Iowa, USA

We propose a novel approach to soundly combining linear types with multi-shot effect handlers. Linear type

systems statically ensure that resources such as file handles and communication channels are used exactly

once. Effect handlers provide a rich modular programming abstraction for implementing features ranging

from exceptions to concurrency to backtracking. Whereas conventional linear type systems bake in the as-

sumption that continuations are invoked exactly once, effect handlers allow continuations to be discarded

(e.g. for exceptions) or invoked more than once (e.g. for backtracking). This mismatch leads to soundness

bugs in existing systems such as the programming language Links, which combines linearity (for session

types) with effect handlers. We introduce control flow linearity as a means to ensure that continuations are

used in accordance with the linearity of any resources they capture, ruling out such soundness bugs.

We formalise the notion of control flow linearity in a System F-style core calculus F◦
eff

equipped with

linear types, an effect type system, and effect handlers. We define a linearity-aware semantics in order to

formally prove that F◦
eff

preserves the integrity of linear values in the sense that no linear value is discarded

or duplicated. In order to show that control flow linearity can be made practical, we adapt Links based on

the design of F◦
eff
, in doing so fixing a long-standing soundness bug.

Finally, to better expose the potential of control flow linearity, we define an ML-style core calculus Q◦
eff
,

based on qualified types, which requires no programmer provided annotations, and instead relies entirely on

type inference to infer control flow linearity. Both linearity and effects are captured by qualified types. Q◦
eff

overcomes a number of practical limitations of F◦
eff
, supporting abstraction over linearity, linearity dependen-

cies between type variables, and a much more fine-grained notion of control flow linearity.

1 INTRODUCTION

Many programming languages support linear resources such as file handles, communication chan-
nels, network connections, and so forth. Special care must be taken to preserve the integrity of lin-
ear resources in the presence of first-class continuations that may be invokedmultiple times [Fried-
man and Haynes 1985], as a linear resource may be inadvertently be accessed more than once.
Java [Pressler 2018] and OCaml [Sivaramakrishnan et al. 2021] have each recently been retrofitted
with facilities for programming with first-class continuations that must be invoked exactly once,
partly in order to avoid such pitfalls. Nonetheless, multi-shot continuations are a compelling fea-
ture, supporting applications such as backtracking search [Friedman et al. 1984] and probabilistic
programming [Kiselyov and Shan 2009]. In this paper we explore how to soundly handle linearity
in the presence of multi-shot effect handlers [Plotkin and Pretnar 2013].
We first illustrate the issues with combining linearity with multi-shot effect handlers by exhibit-

ing a soundness bug in the programming language Links [Cooper et al. 2006], which is equipped
with linear session-typed channels [Lindley and Morris 2017] and effect handlers with multi-shot
continuations [Hillerström et al. 2020a]. We begin by defining a function outch that forks a child
process and returns an output channel for communicating with it. The idea is that we will use a
combination of exceptions and multi-shot continuations to send two integers, rather than an in-
teger followed by a string, along the endpoint (with session type !Int.!String.End) returned by
the function outch.

Authors’ addresses: Wenhao Tang, The University of Edinburgh, United Kingdom, wenhao.tang@ed.ac.uk; Daniel Hiller-

ström, Huawei Zurich Research Center, Switzerland, daniel.hillerstrom@ed.ac.uk; Sam Lindley, The University of Edin-

burgh, United Kingdom, sam.lindley@ed.ac.uk; J. Garrett Morris, University of Iowa, USA, garrett-morris@uiowa.edu.

2 Wenhao Tang, Daniel Hillerström, Sam Lindley, and J. Garre� Morris

sig outch : () ~> !Int.!String.End

fun outch() {

fork(fun(ic) {

var (i, ic) = receive(ic); # receive the integer

var (s, ic) = receive(ic); # receive the string

println(intToString(i) ^^ s); # convert, concat, and print

close(ic) # close the input channel

})

}

The primitive fork creates a child process and two endpoints of a session-typed channel. One
endpoint is passed to the child process and the other endpoint is returned to the caller. Here the
function returns an output endpoint of type !Int.!String.End and the child process is supplied
with an input endpoint of type ?Int.?String.End. The child receives an integer and a string on
the input endpoint, then prints them out before closing the endpoint.
Now we invoke outch in a context in which we exploit the power of multi-shot continuations

to return twice and the power of exceptions to abort the current computation.

handle({

var oc = outch();

var msg = if (do Choose) 42 else 84; # choose an integer message to send

var oc = send(msg, oc);

do Fail; # this is our exception

var oc = send("well-typed", oc);

close(oc)

}) {

case <Fail> -> ()

case <Choose => resume> -> resume(true); resume(false)

}

We handle a computation that performs two operations: 1) Choose : () => Bool; and 2) Fail :

forall a. () => a. The handled computation invokes outch, forking a child process and binding
the output endpoint of the resulting channel to oc. Next, it invokes the operation Choose to select
between two possible integer messages, which is sent on the channel. Then, it performs the Fail

operation, before sending a string along the channel and closing it. This is all very well and satisfies
the type-checker; however, the described control flow is not actually what happens, because in fact
the continuation of Choose is invoked twice and the continuation of Fail is never invoked. The
behaviours of Fail and Choose are defined by the corresponding operation clauses of the handler.
For Fail the captured continuation is discarded (it must be: it is never bound); for Choose the
continuation is bound to resume and invoked twice: first with true and then with false.
Running the program causes a segmentation fault when printing the received values, as it er-

roneously attempts to concatenate a string with an integer. To see why, follow the control flow
of the parent process. It performs Choose, which initially selects 42 and sends it over the channel.
The child process receives this integer and subsequently expects to receive a string. Back on the
parent process execution is aborted via Fail, which causes the initial invocation of resume to re-
turn, leading to the second invocation of resume, which restores the aborted context at the point
of selecting an integer. Now Choose selects 84 and sends it over the channel. The child process
receives this second integer, mistakenly treating it as a string.

Soundly Handling Linearity 3

In this paper we rule out such soundness bugs by tracking control flow linearity: a means to
statically assure how often a continuationmay be invoked, mediating between linear resources and
effectful operations to ensure that effect handlers cannot violate linearity constraints on resources.
The main contributions of this paper are:

• We give high-level overview of the main ideas of the paper through a series of worked
examples that illustrate the difficulties of combining effect handlers with linearity, how
they can be resolved by tracking control flow linearity, and how the approach can be refined
using qualified types [Jones 1994] (Section 2).
• We introduce F◦

eff
(pronounced “F-eff-pop”), a System F-style core calculus equipped with

linear types, an effect type system, and effect handlers (Section 3). We prove syntactic type
soundness and a semantic linear safety property.
• Inspired by F◦

eff
we implement control flow linearity in Links, fixing a long-standing type-

soundness bug (Section 4).
• Motivated by expressiveness limitations of F◦

eff
we introduceQ◦

eff
(pronounced “Q-eff-pop”),

an ML-style core calculus inspired by�ill [Morris 2016] and Rose [Morris and McKinna
2019], based on qualified types (Section 5). We prove soundness and completeness of type
inference for Q◦

eff
. Along the way, we identify a semantic soundness bug in �ill and

conjecture a fix.

Section 6 outlines how control flow linearity applies to shallow handlers [Hillerström and Lindley
2018]. Section 7 discusses related work and Section 8 conclude and discusses future work.

2 OVERVIEW

In this section we give a high-level overview of the main ideas of the paper by way of a series of
examples. We first compare standard value linearity with non-standard control flow linearity, illus-
trating how the latter may be tracked in an explicit calculus F◦

eff
(Section 3). For readability we omit

uninteresting syntactic artifacts from our examples.We show how control flow linearity allows lin-
ear resources andmulti-shot continuations to coexist peacefully.We then highlight two limitations
of F◦

eff
: linear types require syntactic overhead which harms modularity, and row-polymorphism

based effect types lead to coarse tracking of control flow linearity. We exploit qualified types to
relax both limitations in an ML-style calculus Q◦

eff
(Section 5).

2.1 Value Linearity

Value linearity classifies the use of values: linear values must be used exactly once whereas un-
limited values can be used zero, one, or multiple times.1 Equivalently, value linearity charac-
terises whether values contain linear resources: linear values can contain linear resources whereas
unlimited values cannot. Conventional linear type systems track value linearity. F◦

eff
adapts the

subkinding-based linear type system of F◦ [Mazurak et al. 2010]. The linearity . of a value type is
part of its kind Type. and can be either linear ◦ or unlimited •. For example, file handles are linear
resources (File : Type◦) and integers are unlimited resources (Int : Type•).
A linearity annotation on a _-abstraction defines the linearity of the function itself. Consider

the following function faithfulWritewhich takes a file handle 5 and returns another function that
takes a string B , faithfully writes B to 5 and then closes the file handle.

faithfulWrite : File→• (String→◦ ())
faithfulWrite = _• 5 .(_◦B.let 5 ′ ← write (B, 5) in close 5 ′)

1Linear types differ from uniqueness types, which instead track the number of references to a value.

4 Wenhao Tang, Daniel Hillerström, Sam Lindley, and J. Garre� Morris

The outer unlimited function (→•) yields a linear function (→◦) expecting a string. The linear type
system dictates that the inner function is linear as it captures the linear file handle 5 .
One important property of value linearity is that unlimited value types can be treated as linear

value types, as it is always safe to use unlimited values (which contain no linear resources) just
once. This property is embodied by the subkinding relation ⊢ Type• ≤ Type◦ in F◦

eff
. For instance,

consider the polymorphic identity function.

id : ∀`Row UType
◦
. U →• U ! {`}

id = Λ`Row UType
◦
. _•G. G

The return type of the function is a computation type U ! {`} where U is the linear type of values
returned (G is used exactly once) and ` is the row of effects performed by the function. (We chose
to omit the corresponding effect annotations in the signature of faithfulWrite because they are
empty, but henceforth we will write them explicitly.) Subkinding allows the identity function to
be applied to both linear and unlimited values. It is always sound to use an unlimited value exactly
once. Thus, we have both ⊢ Int : Type◦ and ⊢ File : Type◦, and if ' is an effect row type:

id ' File : File→• File ! {'}
id ' Int : Int→• Int ! {'}

2.2 Control Flow Linearity

Control flow linearity tracks how many times control may enter a local context: a control-flow-
linear context must be entered exactly once; a control-flow-unlimited context may be entered zero,
one, or multiple times. Equivalently, control flow linearity characterises whether a local context
captures linear resources: a control-flow-linear context can capture linear resources; a control-
flow-unlimited context cannot.
To better explain control flow linearity, we first reprise the soundness problem due to the interac-

tion of linear resources andmulti-shot continuations of Section 1 via a simpler example in F◦
eff
. Con-

sider the following function dubiousWrite✗, which takes a file handle and non-deterministically
writes "A" or "B" to it depending on the result of Choose. We ignore control flow linearity for now.

dubiousWrite✗ : File→• () ! {Choose : () ։ Bool}
dubiousWrite✗ = _• 5 .

let 1 ← (do Choose ()) {Choose:()։Bool} in

let B ← if 1 then "A" else "B" in
let 5 ′ ← write (B, 5) in close 5 ′

}

continuation of Choose

The do Choose () expression invokes operation Choosewith a unit argument. F◦
eff

adapts an effect
system based on Rémy-style row polymorphism [Hillerström and Lindley 2016; Lindley and Ch-
eney 2012]. Effect types in F◦

eff
are rows containing operation labels with their signatures and ended

with potential row variables. The effect type {Choose : () ։ Bool} denotes that dubiousWrite✗

may invoke the operation Choose, which takes a unit and returns a boolean value as indicated by
its signature () ։ Bool. The problem arises when we handle Choose using multi-shot continua-
tions.

let 5 ← open "C.txt" in handle (dubiousWrite✗ 5) with {Choose _ A ↦→ A true ; A false}

The file "C.txt" is opened and the file handle is bound to 5 before dubiousWrite✗ 5 is handled by an
effect handler that handles the Choose operation. In the handler clause, A binds the continuation
of Choose, which expects a parameter of type Bool. As A is invoked twice (first with true and then
with false), the file handle 5 is written and closed twice, which leads to a runtime error because it
is closed before the second write. The essential problem is that the continuation of�ℎ>>B4 should

Soundly Handling Linearity 5

be used linearly as it captures the linear file handle 5 , but it is invoked twice by the effect handler.
Conventional linear type systems cannot detect this kind of error as they only track value linearity.
Motivated by the observation that only a local context, reified as the continuation of an opera-

tion, may be captured by a multi-shot handler, we track control flow linearity at the granularity
of operations. We use the control flow linearity of an operation to represent the control flow lin-
earity of the continuation of the operation. Control-flow-linear operations can be used in contexts
which may contain linear resources, whereas control-flow-unlimited operations cannot. An oper-
ation signature � ։. � is annotated with a linearity . to denote its control flow linearity. The
dubiousWrite✗ function can now be rewritten to correctly track control flow linearity as follows.

dubiousWrite✓ : File→• () ! {Choose : () ։◦ Bool}
dubiousWrite✓ = _• 5 .

let◦1 ← (do Choose ()) {Choose:()։
◦Bool} in

let◦B ← if 1 then "A" else "B" in
let◦ 5 ′ ← write (B, 5) in close 5 ′

}

continuation of Choose

The type of dubiousWrite✓ now tracks that the operation Choose : () ։◦ Bool invoked by it is

control flow linear. We also annotate let-bindings with linearity information. In let.G ← " in # ,
the term # has control flow linearity . , and in particular the ◦ annotations on the let-bindings in
dubiousWrite✓ permit the use of the linear file handle throughout.
The linear type system of F◦

eff
uses the control flow linearity of operations to restrict the use of

continuations in handlers, which ensures that control-flow-linear contexts are entered only once.
For instance, consider the handling of dubiousWrite✓ with the same multi-shot handler.

let 5 ← open "C.txt" in handle (dubiousWrite✓ 5) with {Choose _ A ↦→ A true ; A false}

This is ill-typed: as Choose is control flow linear, the resumption A is given a linear function type
and cannot be invoked twice.
We lift the control flow linearity of operations to effect row types and reflect it in their kinds

Row. . Similar to value linearity, we also have a subkinding relation for control flow linearity.
Recall that the control flow linearity of (the operations in) effect row types is actually the control
flow linearity of their contexts, not themselves. This induces a duality between value linearity and
control flow linearity paralleling the duality between positive values and negative continuations.
As a consequence, the subkinding relation for control flow linearity is ⊢ Row◦ ≤ Row•, the reverse
of that for value linearity. Intuitively, this says that control-flow-linear operations can be treated
as control-flow-unlimited operations, because it is safe to use control-flow-linear operations in
unlimited contexts. For example, consider the following function tossCoinwhich takes a function
that returns a boolean and tosses a coin using this function.

tossCoin : ∀`Row
•
.(() →• Bool ! {`}) →• String ! {`}

tossCoin = Λ`Row
•
._•6. let• 1 ← 6 () in if 1 then "heads" else "tails"

As no linear resource is used, the effect type of tossCoin and its parameter is given by a control-
flow-unlimited row variable ` : Row•. Via subkinding, we can instantiate ` with operations with
either control flow linearity. For instance, suppose ⊢ '1 : Row

• and ⊢ '2 : Row
◦ for '1 = Choose :

() ։• Bool and '2 = Choose : () ։◦ Bool, then:

tossCoin '1 (_
•().(do Choose ()) {'1}) : String ! {'1}

tossCoin '2 (_
•().(do Choose ()) {'2}) : String ! {'2}

6 Wenhao Tang, Daniel Hillerström, Sam Lindley, and J. Garre� Morris

The subkinding relation of control flow linearity only influences how operations are used, not
how they are handled. We can use control-flow-linear operations as control-flow-unlimited opera-
tions (i.e., use them in unlimited contexts), but this does not imply that we can handle control-flow-
linear operations as control-flow-unlimited operations (i.e., handle them by resuming any number
of times). Our linear type system does not allow control-flow-linear operations to be handled by
multi-shot handlers despite the subkinding relation Row◦ ≤ Row•. This is because when handling,
we directly look at the control flow linearity on operation signatures instead of their kinds, where
no։◦ can be upcast to։•. This can be seen more clearly from the typing rules in Section 3.2. We
formally state the soundness of F◦

eff
in Sections 3.4 and 3.5.

2.3 �alified Linear Types

As we have seen from the examples so far, F◦
eff

requires linearity annotations on _-abstractions and
let-bindings. Though this can suffice for an explicit calculus, it can prove cumbersome for practical
programming languages and curtail themodularity of programs. Unfortunately, we cannot entirely
overcome these limitations by introducing subsumption relations between types, or using Hindley-
Milner type inference to infer them. The reason is that there are inner dependencies on the linearity.
For instance, consider the following function verboseId which is almost the same as the function
id in Section 2.1 but outputs the log message "id is called" using the operation Print : String։ ()
before returning.

verboseId : ∀`Row
.1
UType

.2
. U →.0 U ! {Print : String։.3 () ; `}

verboseId = Λ`Row
.1
UType

.2
. _.0G. let.4 () ← do Print "id is called" in G

Depending on different choices of .1, .2, .3 and .4, we can give ten well typed variations of
verboseId. Their types are shown as follows, omitting primary kinds and signatures for readability.

∀`• U• .U →• U ! {Print : • ; `}

∀`• U• .U →• U ! {Print : ◦ ; `}

∀`◦ U• .U →• U ! {Print : • ; `}

∀`◦ U• .U →• U ! {Print : ◦ ; `}

∀`◦ U◦ .U →• U ! {Print : ◦ ; `}

∀`• U• .U →◦ U ! {Print : • ; `}

∀`• U• .U →◦ U ! {Print : ◦ ; `}

∀`◦ U• .U →◦ U ! {Print : • ; `}

∀`◦ U• .U →◦ U ! {Print : ◦ ; `}

∀`◦ U◦ .U →◦ U ! {Print : ◦ ; `}

The key observation is that the control flow linearity of the operation Print (as well as the row
variable `) depends on the value linearity of the parameter type U , because the parameter G is used
in the continuation of Print. To express this kind of dependency, we use a linear type system based
on qualified types inspired by �ill [Morris 2016]. In the ML-style calculus Q◦

eff
with qualified

linear types, verboseId can be written and ascribed a principal type as follows.

verboseId : ∀U ` q q ′ . (U � q) ⇒ U →q ′ U ! {Print : q ; `}
verboseId = _G. do Print "42" ; G

The linearity variables q andq ′ quantify over ◦ and •. We do not use kinds to represent linearity of
types variables; instead, all linearity information is represented using predicates of the form g � g ′,
where g is a value type, row type or linearity type (◦, • or a linearity variable). The type scheme
of verboseId is extended with the predicate U � q , meaning that the value linearity of U is less
than that of q , which is the control flow linearity of Print. This type scheme succinctly expresses
all ten possibilities listed above. The type inference algorithm of Q◦

eff
(Section 5.4) infers all such

linearity dependency constraints without the need for any type, effect, or linearity annotations.

Soundly Handling Linearity 7

2.4 �alified Effect Types

In addition to the syntactic overhead of linear types, the row-based effect system of F◦
eff

is also not
entirely satisfying when tracking control flow linearity. Row-based effect systems have demon-
strated their practicality in research languages such as Links [Hillerström and Lindley 2016],
Koka [Leijen 2017], and Frank [Lindley et al. 2017]. In such effect systems, sequenced compu-
tations must have the same effect type, which can be smoothly realised by unification in systems
based on Hindley-Milner type inference. However, though fixing effect types between sequenced
computations is often acceptable, it does introduce some imprecision, and this can become more
pronounced when control flow linearity is brought into the mix.
To see the problem concretely in F◦

eff
, consider the following function verboseClosewhich takes

a file handle, reads a string using the operation Get : () ։ String, closes the file handle, and
outputs the string using the operation Print : String։ ().

verboseClose : File→• () ! {'}

verboseClose = _• 5 . let◦B ← (do Get ()) {'1 } in let•() ← close 5 in (do Print B) {'2 }

Note that the second let-binding does not need to be annotated as linear, because the linear
resource 5 does not appear after it. The linear resource 5 also does not appear in the continuation
of Print. Since '1, '2, and ' should be equal in the row-based effect system of F◦

eff
, omitting the full

operation signatures for simplicity, we could write ' = '1 = '2 = {Get : ◦, Print : •} in the ideal
case. However, this is actually ill-typed because all operations in '1 should be control flow linear,
as the linear resource 5 is used in their continuations.
An intuitive way to relax this limitation of F◦

eff
is to introduce a trivial subtyping relation on

concrete effect row types. We say '1 is a subtype of '2, if all operation labels in '1 are also in '2
with the same signatures, and when '1 ends with a row variable, '2 must end with the same row
variable. Then, in the verboseClose example, we can write '1 = {Get : ◦}, '2 = {Print : •}, and
' = {Get : ◦,Print : •}, which are safe given that '1 and '2 are both subtypes of '.

We call the subtyping relation trivial because it does not allow subtyping between row vari-
ables; an open row '1 is a subtype of '2 only if '2 contains the same row variable as '1. For
the above verboseClose example this works, but for other functions which make greater use of
polymorphism, it can still seem overly-restrictive. For instance, consider the following function
sandwichClosewhich takes two functions and a file handle, and makes a sandwich using them.

sandwichClose : (() →• () ! {'1}, File, () →
• () ! {'2}) →

• () ! {'}

sandwichClose = _•(6, 5 , ℎ). let◦() ← 6 () in let• () ← close 5 in ℎ ()

Using our trivial-subtyping workaround, we require both '1 and '2 to be subtypes of '. The prob-
lem appears when we try to be polymorphic over '1 and '2. Because they are subtypes of the same
row type ', their row variables must be the same, i.e., we can only write '1 = '2 = ` in F◦

eff
.

To support non-trivial subtyping relations between row variables, we may again use qualified
types, this time to express row subtyping constraints. In addition to qualified linear types,Q◦

eff
also

supports qualified effect types inspired by Rose [Morris and McKinna 2019]. In Q◦
eff
, the function

sandwichClose can be given the following type. Note that here we still choose to fix functions to
be unlimited for readability.

sandwichClose : ∀`1 `2 `.(`1 6 `, `2 6 `, File � `1)
⇒ (() →• () ! {`1}, File, () →

• () ! {`2}) →
• () ! {`}

sandwichClose = _•(6, 5 , ℎ). let () ← 6 () in let () ← close 5 in ℎ ()

The constraints `1 6 ` and `2 6 ` express that rows `1 and `2 are contained in `, and the constraint
File � `1 expresses that the value linearity of File is less than the control flow linearity of `1, which

8 Wenhao Tang, Daniel Hillerström, Sam Lindley, and J. Garre� Morris

essentially means that `1 is control flow linear. As in Section 2.3, the type inference algorithm of
Q◦
eff

infers these row subtyping constraints without the need for any annotation. The qualified
linear types and qualified effect types of Q◦

eff
are decidable. We give a constraint solving algorithm

which checks the satisfiability of both linearity constraints and row constraints in Section 5.6.

3 AN EXPLICIT HANDLER CALCULUSWITH LINEAR TYPES

In this section, we present the syntax, type-and-effect system, operational semantics and metathe-
ory of F◦

eff
, a System F-style fine-grain call-by-value calculus with linear types and effect handlers.

F◦
eff

is based on the core language of Linkswhich adapts the subkinding-based linear type system of
F◦ [Mazurak et al. 2010] and a row-based effect system [Hillerström and Lindley 2016; Lindley and
Cheney 2012]. The linear type system and effect system of F◦

eff
are extended to track control flow

linearity, which addresses the soundness problem arising from the interference of linear resources
andmulti-shot continuations. We show that F◦

eff
is truly linearity safe by defining a linearity-aware

semantics and proving that no linear resource is discarded or duplicated during evaluation in the
presence of multi-shot effect handlers.

3.1 Syntax and Kinding Rules

Figure 1 shows the syntax of types, kinds, contexts, values, and computations of F◦
eff
. We intro-

duce a syntactic category . for linearity consisting of • and ◦, which intuitively means unlimited
and linear, respectively. The meaning of linearity varies for values and effects; value types track
value linearity, and effect types track control flow linearity. Everything relevant to linearity is high-
lighted in the figure. The remaining part is a relatively standard fine-grain call-by-value calculus
with effect handlers and row-based effect system [Hillerström et al. 2020a].

Value types �, � ::= U | �→. � | ∀. U .�

Computation types �,� ::= � !�

Effect types � ::= {'}

Row types ' ::= ℓ : % ;' | ` | ·

Presence types % ::= Abs | �։. � | \

Handler types � ::=� ⇒ �

Types) ::= � | ' | % | � | � | �

Kinds ::= Type. | RowL
. | Presence. | Effect | Comp | Handler

Linearity . ::= • | ◦

Label sets L ::= ∅ | {ℓ} ⊎ L

Type contexts Γ ::= · | Γ, G : �

Kind contexts Δ ::= · | Δ, U :

Values + ,, ::= G | _. G�." | Λ.U ."

Computations ", # ::=+ , | +) | (return +)� | (do ℓ +)�

| let. G ← " in # | handle " with �

Handlers � ::= {return G ↦→ "} | {ℓ ? A ↦→ "} ⊎�

Fig. 1. Syntax of types, kinds, contexts, values and computations of F◦
eff
.

F◦
eff

explicitly distinguishes between value types and computation types as well as their terms.

Value types include type variables U , function types � →. � , and polymorphic types ∀.U .� .
Value terms include value variables G , _-abstractions _.G�." , and type abstractions Λ

.U ." .

Soundly Handling Linearity 9

Function types, polymorphic types, and abstractions are annotated with their value linearity . .
In examples we will freely make use of base types and algebraic data types whose treatment is
quite standard. We elect to allow polymorphic computation types rather than applying the value
restriction.
A computation type � !� comprises a result value type � and an effect type � specifying the

operations that the computation might perform. Effect types {'} are represented by row types '.
Each operation label in rows is annotated with a presence type % , which indicates that the label is
either absent Abs, present with signature �։. �, or polymorphic \ in its presence. An operation
signature � ։. � describes an operation with parameter of type � that returns a result of type
� and whose control flow linearity is . . Row types are either open (ending with a row variable `)
or closed (ending with ·, which we often omit). We identify rows up to reordering of labels and
ignore absent labels in closed row types [Rémy 1994]. Handler types � ⇒ � represent handlers
transforming computations of type � to computations of type � . By convention, we let U range
over value type variables, ` over row type variables, and \ over presence type variables, but we
also let U range over all over them (e.g. when binding quantifiers of unspecified kind).
Function application + , and type application +) are standard. A computation (return +)�

returns the value + . An operation invocation (do ℓ +)� invokes the operation ℓ with parameter

+ . They are both annotated with their effect types for deterministic typing. Sequencing let. G ←
" in # evaluates " and binds its result to G in # . The linearity . basically indicates the control
flow linearity of# . Handlinghandle " with � handles computation" with handler� . Handlers
are given by a return clause return G ↦→ " , which binds the returned value as G in " , and a list
of operation clauses ℓ ? A ↦→ " , which bind the operation parameter to ? and continuation to A in
" .

We have six kinds , one for each syntactic category of types. Kinds are parameterised by lin-
earity . . The kinds of value types Type. denote value linearity, and the kinds of presence types
Presence. and row types RowL

. denote control flow linearity. The label set L tracks the labels
that should not appear in a row, which is used to avoid duplicated labels in rows. The kinds of
effect, computation, and handler types are not annotated with any linearity information. Type
contexts Γ associate value variables with types, and kind contexts Δ associate type variables with
kinds.
Figure 2 gives the kinding rules. Linearity-relevant parts are highlighted. The kinding relation

Δ ⊢) : states that type) has kind in context Δ. The subkinding relation ⊢ ≤ ′ states
that is a subkind of ′ . We sometimes write simply Δ ⊢) : . for value, row and presence
types when the underlying kind is clear. The kinding rules for effect, computation, and handler
types are standard [Hillerström et al. 2020a] and irrelevant to linearity (K-Effect, K-Comp, and
K-Handler).
The kind context maintains kinds for variables (K-TyVar). The value linearity of function and

polymorphic types comes from their annotations (K-Forall andK-Fun). Base types have their own
value linearity, e.g., ⊢ File : ◦ and ⊢ Int : •. The value linearity of (omitted) algebraic datatypes like
pair types (�, �) is lifted from their components; ⊢ (�, �) : ◦ if either ⊢ � : ◦ or ⊢ � : ◦.
As shown in Section 2.1, for value linearity, we have a subkinding relation ⊢ Type• ≤ Type◦

given by subkinding rules S-Lin and S-Type. This allows us to use unlimited value types as lin-
ear value types since it is always safe to use unlimited values linearly (e.g., the function id in
Section 2.1).
We track control flow linearity at the granularity of operations, and lift it to the kinds of pres-

ence types and row types. Absent labels and empty rows can be given any control flow linearity
(K-Absent and K-EmptyRow). The control flow linearity of present labels comes directly from

10 Wenhao Tang, Daniel Hillerström, Sam Lindley, and J. Garre� Morris

⊢ . ≤ . ′ ⊢ ≤ ′

S-Lin

⊢ • ≤ ◦

S-Type

⊢ . ≤ . ′

⊢ Type. ≤ Type.
′

S-Pres

⊢ . ′ ≤ .

⊢ Presence. ≤ Presence.
′

S-Row

⊢ . ′ ≤ .

⊢ RowL
. ≤ RowL

. ′

Δ ⊢) :

K-TyVar

Δ, U : ⊢ U :

K-Forall
Δ, U : ⊢ � : Comp

Δ ⊢ ∀.U .� : Type.

K-Fun

Δ ⊢ � : Type.
′

Δ ⊢ � : Comp

Δ ⊢ �→. � : Type.

K-Comp

Δ ⊢ � : Type.

Δ ⊢ � : Effect

Δ ⊢ � !� : Comp

K-Effect
Δ ⊢ ' : Row∅

Δ ⊢ {'} : Effect

K-Present

Δ ⊢ �։. � : Presence.

K-Absent

Δ ⊢ Abs : Presence.

K-EmptyRow

Δ ⊢ · : RowL
.

K-ExtendRow

Δ ⊢ % : Presence.

Δ ⊢ ' : RowL⊎{ℓ }
.

Δ ⊢ ℓ : % ;' : RowL
.

K-Handler
Δ ⊢ � : Comp
Δ ⊢ � : Comp

Δ ⊢ � ⇒ � : Handler

K-Upcast
Δ ⊢) :

⊢ ≤ ′

Δ ⊢) : ′

Fig. 2. Kinding and subkinding rules for F◦
eff
.

operation signatures (K-Present). The control flow linearity of row extensions are given by the
labels and remaining rows (K-ExtendRow).
As shown in Section 2.2, control flow linearity is dual to value linearity in some sense: we have
⊢ RowL

◦ ≤ RowL
• and ⊢ Presence◦ ≤ Presence• given by subkinding rules S-Lin, S-Pres, and

S-Row. This allows linear effect rows to be used as unlimited effect rows as it is always safe to use
control-flow-linear operations in unlimited contexts (e.g., the function tossCoin in Section 2.2).

3.2 Typing Rules

We define two auxiliary relations in Figure 3 for typing rules. The judgement Δ ⊢ Γ : . states
that under kind context Δ all types in Γ have linearity . . As the subkinding relation for value
linearity holds that Type• ≤ Type◦, the relation Δ ⊢ Γ : • guarantees that all variables in Γ are
unlimited and the relation Δ ⊢ Γ : ◦ is a tautology. Dually, as the subkinding relation for control
flow linearity holds that Row◦ ≤ Row•, the relation Δ ⊢ ' : ◦ guarantees that all operations in '
are control flow linear and the relation Δ ⊢ ' : • is a tautology. The context splitting judgement
Δ ⊢ Γ = Γ1 + Γ2 states that under kind context Δ the type context Γ is well formed and can be split
into two contexts Γ1 and Γ2 such that each linear variable only appears in one of them. We write
Δ ⊢ Γ1 + Γ2 when we only care about splitting results, and write Γ1 + Γ2 in typing rules when the
kind context Δ is clear.
The typing rules for values, computations, and handlers are given in Figure 4. Linearity-relevant

parts are highlighted. The relations Δ; Γ ⊢ + : �, Δ; Γ ⊢ " : � , and Δ; Γ ⊢ � : � ⇒ � , state
respectively that: value + has type �, computation " has type � and handler � has type � ⇒ �

in contexts Δ and Γ. As usual, the type contexts and types are well formed under the kind contexts.

Soundly Handling Linearity 11

Δ ⊢ Γ : .
L-Empty

Δ ⊢ · : .

L-Extend

Δ ⊢ Γ : . Δ ⊢ � : Type.

Δ ⊢ (Γ, G : �) : .

Δ ⊢ Γ = Γ1 + Γ2

C-Empty

Δ ⊢ · = · + ·

C-Unl

Δ ⊢ � : Type• Δ ⊢ Γ = Γ1 + Γ2

Δ ⊢ Γ, G : � = (Γ1, G : �) + (Γ2, G : �)

C-LinLeft

Δ ⊢ � : Type◦ Δ ⊢ Γ = Γ1 + Γ2

Δ ⊢ Γ, G : � = (Γ1, G : �) + Γ2

C-LinRight

Δ ⊢ � : Type◦ Δ ⊢ Γ = Γ1 + Γ2

Δ ⊢ Γ, G : � = Γ1 + (Γ2, G : �)

Fig. 3. Linearity of contexts and context spli�ing.

Δ; Γ ⊢ + : � Δ; Γ ⊢ " : � Δ; Γ ⊢ � : � ⇒ �

T-Var

Δ ⊢ Γ : •

Δ; Γ, G : � ⊢ G : �

T-Abs

Δ ⊢ Γ : . Δ ⊢ � : Type.
′

Δ; Γ, G : � ⊢ " : �

Δ; Γ ⊢ _. G�. " : �→. �

T-TAbs

Δ ⊢ Γ : . U ∉ �v(Γ)
Δ, U : ; Γ ⊢ " : �

Δ; Γ ⊢ Λ.U . " : ∀.U .�

T-App

Δ; Γ1 ⊢ + : �→. �

Δ; Γ2 ⊢, : �

Δ; Γ1 + Γ2 ⊢ + , : �

T-TApp

Δ; Γ ⊢ + : ∀. U .�

Δ ⊢) :

Δ; Γ ⊢ +) : � [) /U]

T-Return
Δ; Γ ⊢ + : � Δ ⊢ � : Effect

Δ; Γ ⊢ (return +)� : � !�

T-Do

� = {ℓ : �։. �;'}

Δ; Γ ⊢ + : � Δ ⊢ � : Effect

Δ; Γ ⊢ (do ℓ +)� : � !�

T-Seq

Δ; Γ1 ⊢ " : � ! {'} Δ; Γ2, G : � ⊢ # : � ! {'}

Δ ⊢ Γ2 : . Δ ⊢ ' : .

Δ; Γ1 + Γ2 ⊢ let
. G ← " in # : � ! {'}

T-Handle
Δ; Γ1 ⊢ � : � ⇒ � Δ; Γ2 ⊢ " : �

Δ; Γ1 + Γ2 ⊢ handle " with � : �

T-Handler

� = {return G ↦→ "} ⊎ {ℓ8 ?8 A8 ↦→ #8 }8

� = � ! {(ℓ8 : �8 ։
.8 �8)8 ;'} � = � ! {(ℓ8 : %)8 ;'}

Δ ⊢ Γ : • Δ; Γ, G : � ⊢ " : �

[Δ; Γ, ?8 : �8 , A8 : �8 →
.8 � ⊢ #8 : �]8

Δ; Γ ⊢ � : � ⇒ �

Fig. 4. Typing rules for F◦
eff
.

The T-Var rule requires the remaining context to be unlimited. The T-Abs and T-TAbs rules
check the value linearity of functions and polymorphic computations against that of the context via
the premise Δ ⊢ Γ : . . The typing rules for function application and type application are standard

12 Wenhao Tang, Daniel Hillerström, Sam Lindley, and J. Garre� Morris

(T-App and T-TApp). Note that we need to split the context in the T-App rule to avoid duplicating
linear variables. The T-Return rule does not constrain the effects. The T-Do rule ensures that
the operation ℓ and its parameter + agree with the effect signature �. The T-Handle rule uses a
handler of type� ⇒ � to handle a computation of type� .
The T-Handler rule checks that (deep) handlers must not use any linear variables via the

premise Δ ⊢ Γ : • because they are recursively applied during evaluation. More importantly, it
connects the control flow linearity of operations with the value linearity of resumption functions.
In the typing judgement of each operation clause ℓ8 : �8 ։

.8 �8 , the continuation A8 is given the
value linearity .8 , which is exactly the control flow linearity of ℓ8 that restricts the use of ℓ8 ’s con-
tinuation. Concretely, when .8 = ◦, the continuation of ℓ8 may use some linear resources. Making
A8 linear guarantees that they are used exactly once. When .8 = •, the continuation of ℓ8 must not
use any linear resources and A8 is unlimited. Note that the subkinding relation Row◦ ≤ Row• does
not influence the handling behaviour, because the T-Handler rule uses the linearity annotations
on operation signatures.
The T-Seq rule for sequencing is the most important rule for tracking control flow linearity,

because this is the primary source of sequential control flow in a fine-grain call-by-value calculus.
Though handling is another source of sequential control flow, deep handlers are unlimited and
cannot influence control flow linearity. We will discuss the extension of shallow handlers which
may capture linear resources and influence control flow linearity in Section 6.

Remember that for let.G ← " in # , the linearity annotation . indicates the control flow
linearity of# which determines howmany times the control can enter # . Concretely, when. = ◦,
may use some linear variables bound outside (Δ ⊢ Γ2 : ◦), and all operations in " should be
control flow linear (Γ ⊢ ' : ◦); when . = •, # cannot use any linear variables from the context
(Δ ⊢ Γ2 : •), and operations in" have no restriction on their control flow linearity (Δ ⊢ ' : •). The
dubiousWrite✓ in Section 2.2 is an example. Note that technically, the third sequencing let◦ 5 ′ ←
write (B, 5) in close 5 ′ can be changed to let• because no linear variable bound outside is used by
the context let 5 ′ ← _ in close 5 ′.
As we observed by the function verboseClose in Section 2.4, the fact that the T-Seq rule requires

the" and # to have the same effect type is too restrictive for tracking control flow linearity. We
can improve it by defining a trivial subtyping relation on effect row types as shown in Figure 5.

Δ ⊢ ' 6 '′ :

Δ ⊢ ' :

Δ ⊢ ' 6 ' :

Δ ⊢ '1 6 '2 : Δ ⊢ '2 6 '3 :

Δ ⊢ '1 6 '3 :

Δ ⊢ ` :

Δ ⊢ · 6 ` :

Δ ⊢ % : Presence.

Δ ⊢ '1 6 '2 : RowL⊎{ℓ }
.

Δ ⊢ ℓ : Abs;'1 6 ℓ : % ;'2 : RowL
.

Δ ⊢ % : Presence.

Δ ⊢ '1 6 '2 : RowL⊎{ℓ }
.

Δ ⊢ ℓ : % ;'1 6 ℓ : % ;'2 : RowL
.

Fig. 5. Trivial subtyping for effect row types.

The subtyping relation Δ ⊢ ' 6 '′ : makes it explicit that ' and '′ are well kinded and
can be given kind under kind context Δ. It simply requires that all operation labels with their
signatures and row variable in ' must also appear in '′. The slightly more precise typing rule for

Soundly Handling Linearity 13

sequencing is shown as follows.

T-SeqSub

Δ; Γ1 ⊢ " : � ! {'1} Δ; Γ2, G : � ⊢ # : � ! {'2}

Δ ⊢ Γ2 : . Δ ⊢ '1 : . Δ ⊢ '1 6 ' : Δ ⊢ '2 6 ' :

Δ; Γ1 + Γ2 ⊢ let
.G ← " in # : � ! {'}

This subtyping relation does not allow non-trivial subtyping between row variables. We consider
a more expressive alternative using qualified types in Section 5.

3.3 Operational Semantics

E-App (_.G� .")+ { " [+ /G]

E-TApp (Λ.U .")) { " [) /U]

E-Seq let.G ← (return +)� in # { # [+ /G]

E-Ret handle (return +)� with � { # [+ /G], where (return G ↦→ #) ∈ �

E-Op handle E[(do ℓ +)�] with � { # [+ /?, (_.~� .handle E[(return ~)�] with �)/A],

where ℓ ∉ bl(E), (ℓ ? A ↦→ #) ∈ �, and (ℓ : �→. �) ∈ �

E-Lift E["] { E[#], if " { #

Evaluation contexts E ::= [] | let.G ← E in # | handle E with �

bl([]) = ∅ bl(let.G ← E in #) = bl(E) bl(handle E with �) = bl(E) ∪ dom(�)

Fig. 6. Small-step operational semantics of F◦
eff
.

Figure 6 gives a standard small-step operational semantics for F◦
eff

[Hillerström et al. 2020a]. It is
clear from the definition of evaluation contexts that let-binding and handling are indeed the only
two constructs that influence the control flow.

3.4 Metatheory

We now prove a type soundness result for F◦
eff
. First we define normal forms of computations.

Definition 3.1 (Computation normal forms). We say a computation " is in a normal form with
respect to �, if it is either of the form " = (return +)�

′
or " = E[(do ℓ +)�

′
] for ℓ ∈ � and

ℓ ∉ bl(E).

Syntactic type soundness of F◦
eff

relies on progress and subject reduction. The proofs can be
found in Appendices A.2 and A.3.

Theorem 3.2 (Progress). If ⊢ " : � !�, then either there exists # such that " { # or" is in a

normal form with respect to �.

Theorem 3.3 (Subject reduction). If Δ; Γ ⊢ " : � and " { # , then Δ; Γ ⊢ # : � .

We now show that our tracking of value linearity and control flow linearity in the type system
is sound, by proving that linear variables never appear in terms that are claimed to be unlimited. In
F◦
eff
, a term is claimed to be unlimited if it appears in an unlimited value, a control-flow-unlimited

context, or a deep handler. The following theorem covers all three of these cases.

Theorem 3.4 (Unlimited is unlimited).

1. Unlimited values are unlimited: if Δ; Γ ⊢ + : � and Δ ⊢ � : •, then Δ ⊢ Γ : •.

14 Wenhao Tang, Daniel Hillerström, Sam Lindley, and J. Garre� Morris

2. Unlimited continuations are unlimited: if Δ; Γ ⊢ E[(do ℓ +)�] : � for � = {ℓ : �։• � ;'}

and ℓ ∉ bl(E), then there exists Δ ⊢ Γ = Γ1 + Γ2 such that Δ ⊢ Γ1 : • and Δ; Γ1, ~ : � ⊢

E[(return ~)�] : � .

3. Deep handlers are unlimited: if Δ; Γ ⊢ � : � ⇒ � , then Δ ⊢ Γ : •.

The proof can be found in Appendix A.1.
However, Theorem 3.4 only cares about the static tracking of linear variables. It says nothing

about the use of linear values during evaluation directly. In the next section, we prove that in F◦
eff

no linear value is ever discarded or duplicated during evaluation, by defining a linearity-aware
semantics inspired by Walker [2005], Mazurak et al. [2010], and Morris [2016].

3.5 Linearity Safety of Evaluation

In this section, we design a linearity-aware semantics of F◦
eff
, extending the small-step operational

semantics to track the introduction and elimination of linear values, and prove that all linear values
are used exactly once during evaluation.
We first extend the syntax of values with values marked with linear tags + ◦ to indicate linear

values during evaluation. The typing rules simply ignore the linear tags.

Values + ::= · · · | + ◦

We restrict attention to closed computations and define two auxiliary functions lin(+) and tag(+)
for closed values as follows.

lin(+) =

{

true if ·; · ⊢ + : � and · 0 � : •

false otherwise

tag(+) =

{

(+ ◦, {+ ◦}) if lin(+) and + ≠, ◦ for any,
(+ , ∅) otherwise

The predicate lin(+) holds when+ is a genuine linear value as opposed to an unlimited value that
has been upcast to be linear by subkinding. The operation tag(+) tags a value as linear if it is and
has not been tagged, and yields a pair of the possibly tagged+ and a multiset containing the value
if it is newly tagged and nothing otherwise.
The linearity-aware semantics is given in Figure 7. We augment the previous reduction relation

" { # with two multi-sets " S
T
{ # , where S contains the linear values introduced by this

reduction step, and T contains the linear values eliminated by this reduction step. Note that in F◦
eff
,

we cannot duplicate or discard a value before we bind it. We introduce linear values at the first
time they are bound to variables (L-App, L-Seq, L-Ret and L-Op). Take L-App for example. When
+ is a non-tagged real linear value (the first case of tag(+)), we tag it and add it to the multiset of
introduced linear values. Otherwise,+ is either not really linear or has been tagged already (which
implies that we have already introduced it). We do not need to update the multisets. We eliminate
linear values when they are destructed (L-Remove). As we only have term abstraction and type
abstraction as value constructors, the tag-removing contexts F capture the elimination of these
two cases. It is easy to extend the linearity-aware semantics with other value constructors.
We writeℒ("),ℒ(+),ℒ(E) andℒ(F) for the multisets of tagged linear values within" ,+ ,
E, and F , respectively. They are given by the homomorphic extension of the following equation.

ℒ(+ ◦) = {+ ◦} ∪ℒ(+)

We define the notion of linear safety similarly to Theorem 3.4. A term is linear safe if there are
no tagged linear values in terms that are claimed to be unlimited.

Definition 3.5 (Linear safety). A well-typed computation " or value + is linear safe if and only
if:

Soundly Handling Linearity 15

L-App (_.G�.")+ S
∅
{ " [+ ′/G], where (+ ′,S) = tag(+)

L-TApp (Λ.U .")) ∅
∅
{ " [) /U]

L-Seq let.G ← return + in # S
∅
{ # [+ ′/G], where (+ ′,S) = tag(+)

L-Ret handle (return +)� with � S
∅
{ # [+ ′/G],

where (return G ↦→ #) ∈ �, (+ ′,S) = tag(+)

L-Op handle E[(do ℓ +)�] with � S
∅
{ # [+ ′/?,, ′/A],

where ℓ ∉ bl(E), (ℓ ? A ↦→ #) ∈ �, (ℓ : �։. �) ∈ �,

, = _.~� .handle E[(return ~)�] with �,

(+ ′,S1) = tag(+), (, ′,S2) = tag(,),S = S1 ∪ S2

L-Remove F [+ ◦] ∅
{+ ◦ }
{ F [+]

L-Lift E["] S
T
{ E[#], if " S

T
{ #

Evaluation contexts E ::= [] | let.G ← E in # | handle E with �

Tag-removing contexts F ::= [] + | [])

Fig. 7. Linearity-aware small-step operational semantics of F◦
eff
.

(1) For every value subterm, of the form _•G�.# or Λ•U .# , ℒ(,) = ∅. 2

(2) For every computation subterm # of the form E[(do ℓ +) {ℓ :�։
•� ;'}] where ℓ ∉ bl(E),

ℒ(E) = ∅.
(3) For every handler subterm � ,ℒ(�) = ∅.

Finally, the following theorem states that linear safety is preserved by evaluation, and tagged
linear values are not duplicated or discarded during evaluation.

Theorem 3.6 (Reduction safety). For any closed, well-typed and linear safe computation " in

F◦
eff
, if" S

T
{ # , then # is linear safe andℒ(") ∪ S = ℒ(#) ∪ T .

The proof can be found in Appendix A.4.

4 CONTROL FLOW LINEARITY IN LINKS

In this section we describe our implementation of control flow linearity tracking in Links. The
implementation fixes a long-standing type soundness bug in Links arising from the interaction
between session types and effect handlers, as we described in the introduction.
Links is an ML-style language with type inference, linearly typed session types (based on

F◦ [Lindley and Morris 2017]), and a row-based effect type system [Hillerström and Lindley 2016].
In Links we write Unl for • and Any for ◦. The latter is Any as any value can be soundly used once.
The subkinding relation ⊢ Type• ≤ Type◦ (Unl ≤ Any) allows type variables of kind Any to be uni-
fied with types of either kind. This allows us to write functions that may accept both linear and
nonlinear values, e.g. the identity function fun id(x){x} : (a::Any) -> (a::Any). Here, we can
instantiate the type variable a to a linear type, such as !Int.End, or an unlimited type, such as Int.
To make type inference deterministic, Links makes use of two different keywords for defining

unlimited functions and linear functions, which are fun and linfun respectively. For instance, we
can define a channel version of the function faithfulWrite in Section 2.1 as follows.

fun faithfulSend(c) { linfun (s) { var oc = send(s, c); close(c) } }

2Equivalently, we can say that “for every value subterm, with an unlimited type”.

16 Wenhao Tang, Daniel Hillerström, Sam Lindley, and J. Garre� Morris

The inferred type is (!(a::Any).End) -> (a::Any) ~@ (). The faithfulSend function takes a poly-
morphic channel c and returns a linear function (indicated by ~@ instead of the usual arrow ~>)
that sends a polymorphic value B over the channel c. If we wanted to we could restrict the inferred
type of the channel c and the input B by supplying a type annotation to either.
To track control flow linearity we repurpose the existing effect system and add two new control

flow kinds Any (for •) and Lin (for ◦) to signify whether a given context allows control flow to be
unlimited or linear. We further add a new effectful operation space for control-flow-linear opera-
tions, which is syntactically denoted by the arrow =@, in addition to the existing operation space
denoted by =>. The subkinding relation ⊢ Row◦ ≤ Row• (Lin ≤ Any) is implemented by allowing
row variables of kind Any to be unified with both control-flow-linear and unlimited operations and
other row variables of arbitrary kinds. In contrast, row variables of kind Lin can only be unified
with control-flow-linear operations and row variables of kind Lin. The change from Unl to Lin is
consistent with the duality between value linearity and control flow linearity.
Since Links is a practical programming language, sequencing is often implicit. Instead of writing

linearity annotations on all sequencing, we assume that control flow linearity is unlimited by
default, and introduce the keyword xlin to switch the control flow linearity to linear. We also
add the construct lindo to invoke control-flow-linear operations in addition to the existing do

for control-flow-unlimited operations. To illustrate the use of these extensions, let us consider a
channel version of the function dubiousWrite✓ from Section 2.2.

sig dubiousSend : (!String.End) {Choose:() =@ Bool|_::Lin}~> ()

fun dubiousSend(c) {xlin; var c = send(if (lindo Choose) "A" else "B", c); close(c)}

The dubiousSend takes a channel c, non-deterministically sends "A" or "B" through it depending
on the result of the operation Choose, and closes the remaining channel. We use xlin to switch the
control flow linearity to linear so that we can use the linear channel c and must use the control-
flow-linear operation Choose:() =@ Boolwith the keyword lindo. If we replace lindowith do then
Links correctly rejects the code as the continuation captures the linear endpoint c. The example
from the introduction will be rejected for the same reason. For linear effect handlers, we use the
linear arrow syntax =@ to bind linear continuations of control-flow-linear operations.

fun(c) {handle ({xlin; dubiousSend(c)}) {case <Choose =@ r> -> xlin; r(true)} }

Here, we interpret the operation Choose as true. The use of xlin in the Choose-clause is necessary
because the reified continuation A is linear. As the continuation is used linearly, Links correctly
accepts this program.
Our implementation works well with previous programs using the effect handler feature in

Links and fixes the type soundness bug. However, being based on F◦, Links suffers from the limita-
tions outlined in Section 2. In the next section, we present a considerably more expressive calculus,
Q◦
eff
, which uses qualified types for both linearity and effects, enabling a much more fine-grained

analysis of control flow linearity, and avoiding the need to distinguish between linear and non-
linear variants of term syntax.

5 AN IMPLICIT CALCULUSWITH QUALIFIED TYPES

In this section, we propose Q◦
eff
, an ML-style calculus which enhances F◦

eff
(and its implementation

in Links) in two directions: minimising syntactic overheads and improving accuracy of control
flow linearity tracking. The core idea is to use qualified types for both linear types and effect
types. The qualified linear type system is inspired by �ill [Morris 2016], which eliminates the
linearity annotations on terms and supports principal types. The qualified effect system is inspired
by the row containment predicate of Rose [Morris and McKinna 2019] and the subtyping-based

Soundly Handling Linearity 17

effect system of Eff [Karachalias et al. 2020; Pretnar 2014], which allows non-trivial subtyping
constraints between row variables.

5.1 Syntax

Figure 8 shows the syntax of qualified types ofQ◦
eff
. We name some syntactic categories for defining

meta functions. The remaining syntax is given in full in Appendix B.1, which is mostly identical
to that of F◦

eff
, except that we introduce generalising let-bindings let G = + in " to replace

explicit type abstraction and implicit instantiation in place of type application and remove all type
annotations and linearity annotations.

Linearity . ::= q | • | ◦

Types g ::= � | ' | .

Predicates Pred ∋ c ::= g1 � g2 | '1 6 '2
| ' ⊥L

Qualified types d ::= � | c ⇒ d

Type schemes TySch ∋ f ::= d | ∀U.f

Type contexts Env ∋ Γ ::= · | Γ, G : f

Predicate sets PSet ∋ % ::= · | %, c

Fig. 8. Syntax of qualified types of Q◦
eff
.

Linearity. In addition to concrete linearities ◦ and •, Q◦
eff

has linearity variables q . This is essen-
tial to have principal types and more expressive constraints. For example, the identity function
_G.return G can be given the principal type ∀U ` q. U →q U ! {`}, which can be instantiated to
either a linear function (by instantiating q to ◦) or an unlimited function (by instantiating q to •).

Qualified types. The syntactic category g includes value types, row types, and linearity types.
Qualified types d restrict value types by predicates. The linearity predicate g1 � g2 means the
linearity of g1 is less than g2 (e.g., • � ◦). Note that we allow directly using value types and row
types in the linearity predicates, since every value type has its value linearity, and every effect row
type has its control flow linearity. The row predicates '1 6 '2 means '1 is a sub-row of '2, and
' ⊥L means ' does not contain labels in L.

Kinding. For conciseness we omit kinds and infer the kind of a type variable from its name. As
usual, we let U range over value types, ` range over row types, and q range over linearity types.
We also let U range over all of them in the definition of type schemes ∀U.f . All rows are assumed
to be well-formed (no duplicated labels). To simplify type inference, the predicate ` ⊥L will be
used in place of kinds RowL to track labels that may not occur in rows. This is just a convenience,
though, as the corresponding kinds of row type variables can be computed from the inferred types.

5.2 Typing

Figure 9 gives representative syntax-directed typing rules for Q◦
eff
; the remaining rules are given

in full in Appendix B.2. The judgement % | Γ ⊢ " : � states that, under predicate assumptions %
and typing assumptions Γ, the term" has type� , and similarly for the judgements for values and
handlers. As usual for qualified type systems, the typing rules depend on an entailment relation
% ⊢ c (and an auxiliary relation % ⊢ Γ � g), discussed in the following section.

Rule Q-Let demonstrates the treatment of linearity in Q◦
eff
. We divide the context in three: Γ1

is used exclusive in the bound term + , Γ2 is used exclusively in the body" , and Γ is used in both
(and so its types must be unlimited).

Rule Q-Do demonstrates the use of constraints in Q◦
eff

to generalise subtyping between effect
rows. It states that if + is a value of type �ℓ , then do ℓ + has result type �ℓ and effect row '. We
assume that the parameter and result types of operations are given by an implicit global context

18 Wenhao Tang, Daniel Hillerström, Sam Lindley, and J. Garre� Morris

% | Γ ⊢ + : � % | Γ ⊢ " : � % | Γ ⊢ � : � ⇒ �

Q-Let

& | Γ1, Γ ⊢ + : � f = gen((Γ1, Γ),& ⇒ �)

% | Γ2, Γ, G : f ⊢ " : � % ⊢ Γ � •

% | Γ1, Γ2, Γ ⊢ let G = + in " : �

Q-Do

% | Γ ⊢ + : �ℓ
% ⊢ {ℓ : �ℓ ։

. �ℓ } 6 '

% | Γ ⊢ do ℓ + : �ℓ ! {'}

Q-Seq

% | Γ1, Γ ⊢ " : � ! {'1}

% | Γ2, Γ, G : � ⊢ # : � ! {'2}

% ⊢ '1 6 ' % ⊢ '2 6 '

% ⊢ Γ2 � '1 % ⊢ Γ � •

% | Γ1, Γ2, Γ ⊢ let G ← " in # : � ! {'}

Q-Handler

� = {return G ↦→ "} ⊎ {ℓ8 ?8 A8 ↦→ #8 }8
� = � ! {(ℓ8 : �8 ։

.8 �8)8 ;'1} � = � ! {'2}

% | Γ, G : � ⊢ " : �

[% | Γ, ?8 : �8 , A8 : �8 →
.8 � ⊢ #8 : �]8

% ⊢ Γ � • % ⊢ '1 6 '2 % ⊢ '1 ⊥ {ℓ8 }8

% | Γ ⊢ � : � ⇒ �

where gen(Γ, d) = ∀(�v(d)\�v(Γ)).d .

Fig. 9. Selected syntax-directed Typing Rules for Q◦
eff

Π = {ℓ1 : �ℓ1 ։ �ℓ1 , · · · }. ' must license effect ℓ . We again rely on entailment: the constraints %
must be sufficient to show that the singleton row {ℓ : �ℓ ։

. �ℓ } is contained within '.
Rule Q-Seq demonstrates the remaining novelty of qualified types in Q◦

eff
. Several of its uses

of entailment follow the previous patterns. The bindings in Γ are available in both " and # , so
% ⊢ Γ � • requires that their types be unlimited. We want flexibility in combining the effects in
" and # , so the conditions % ⊢ '8 6 ' assure that the effects of each are included in the effects
of the entire computation. This allows us to avoid having to unify row types in examples like
sandwichClose (Section 2.4) which causes inaccuracy for tracking control flow linearity. Finally,
is in the continuation of all operations in " , so the value linearity of types in Γ2 must be less
than the control flow linearity of operations in '1. Note that the two kinding judgements in T-Seq

in Figure 4 are now combined into one entailment judgement % ⊢ Γ2 � '1. The duality we have
identified between value linearity and control flow linearity is reflected by the fact that value types
appear on the left of � and effect row types appear on the right.
RuleQ-Handler uses the lacking predicate % ⊢ '1 ⊥ {ℓ8 }8 to ensure that the handled operations

are not in the remaining part of the input effect row '1, and requires '1 to be a sub-row of the
output effect row '2. This is used to allow the handled operations ℓ8 to appear in '2.

5.3 Entailment

Figure 10 defines the entailment relations between predicates % ⊢ & . It also defines an auxiliary
entailment relation % ⊢ Γ � g which compares the linearity of all variables in Γ and g .
These two entailment relations are both defined as the conjunction of sub-relations as indicated

by P-PredSet and P-Context. For % ⊢ & , we only need to use entailment relations of the form
% ⊢ c . The P-Subsume is standard. The linearity predicate � is reflexive (P-Refl), with ◦ as top
(P-Lin) and • as bottom (P-Unl) elements. The two-way rules P-Fun and P-Row define the linearity
of functions and rows. We make use of the fact that in the linearity predicates generated by typing
rules, functions only appear on the left, and rows only appear on the right. Here we do not include
entailment rules for base types, but in practice we would have axioms like % ⊢ Int � • and

Soundly Handling Linearity 19

% ⊢ c % ⊢ & % ⊢ f � g % ⊢ Γ � g

P-Subsume
c ∈ %

% ⊢ c

P-Refl

% ⊢ g � g

P-Lin

% ⊢ g � ◦

P-Unl

% ⊢ • � g

P-Fun
% ⊢ . � g

% ⊢ (�→. �) � g
============================

P-Row
[% ⊢ g � .] (; :�։.�) ∈'

% ⊢ g � ` when ` ∈ '

% ⊢ g � '
==================================

P-Sub
set('1) ⊆ set('2)

% ⊢ '1 6 '2

P-Lack
dom(') ∩ L = ∅

% ⊢ ' ⊥L

P-PredSet
[% ⊢ c]c∈&

% ⊢ &

P-�antifier

% ⊢ [g ′/U]f � g for some g ′

% ⊢ (∀U.f) � g

P-�alifier

% ⊢ c % ⊢ d � g

% ⊢ (c ⇒ d) � g

P-Context
[% ⊢ f � g] (G :f) ∈Γ

% ⊢ Γ � g

Fig. 10. Entailment relations for predicates and other judgement relations.

% ⊢ ◦ � File. For row predicates, we write set(') for the set of all elements (comprising operation
labels with their signatures and row variables) of ', and dom(') for the set of all labels of '. We
define the row predicates directly by set operations (P-Sub and P-Lack).
The entailment relation % ⊢ Γ � g is defined using % ⊢ f � g which compares the linearity

of a type scheme f and a type g . Our treatment of the linearity of type schemes is novel, and
addresses a soundness bug in �ill. The rule P-�antifier which characterises the linearity of
polymorphic types may be surprising. It states that the linearity of a polymorphic type ∀U.f is less
than g if there exists an instantiation of it whose linearity is less than g . This is because the linearity
of a polymorphic type should capture the linearity of values that inhabit that type. A value of a
polymorphic type can be understood as the intersection of values of all possible instantiations
of the type. If one of these instantiation gives a type that is less linear than g , then the value
itself must be less linear than g no matter what other instantiations are. For example, consider the
identity function id = _G.return G which is obviously unlimited. We give id a polymorphic type
∀q U `. U →q U ! {`} to make it possible to use it as both a linear function (by instantiating q to ◦)
and an unlimited function (by instantiating q to •). Thus, we have expressive principal types for
id without adding subtyping between linearity types to the type system.
The rule P-�alifiermay also be surprising. To compare the linearity of a qualified type c ⇒ d

with g , we require the predicate c to hold and then compare the linearity of the remaining part d
with g . At first glance, the condition % ⊢ c may seem unnecessary: if c must hold in instantiations
of this type, surely we can assume it in checking the type’s linearity. However, particularly in
local definitions, predicates may mention type variables not quantified in those schemes. We do
not want to assume anything about the instantiation of those variables. Consider the following
function.

_G.let 5 = _().G in return (5 , 5)

The polymorphic function 5 can be given the principal type f = ∀q `.(U � q) ⇒ () →q U ! {`}

where U is the type of G . Note that the constraint mentions U , which is bound outside this type
scheme. Then, since 5 is duplicated in return (5 , 5), the typing of it collects the constraint f � •.
Obviously, we want to know from f � • that U should be unlimited since G is also duplicated. One

20 Wenhao Tang, Daniel Hillerström, Sam Lindley, and J. Garre� Morris

possible derivation of % ⊢ f � • is shown as follows.

% ⊢ U � q ′

% ⊢ q ′ � •

% ⊢ () →q ′ U ! {`′} � •
P-Function

% ⊢ (U � q ′) ⇒ () →q ′ U ! {`′} � •
P-�alifier

% ⊢ (∀q `.(U � q) ⇒ () →q U ! {`}) � •
P-�antifier

In P-�antifier we instantiate q and ` with variables q ′ and `′ . In order to prove f � • from
% , we must then prove U � q ′ and q ′ � •. Note that q ′ and `′ are not fresh, but should instead
appear in % , e.g., we might have % = {U � q ′, q ′ � •}. If we instead assumed U � q , or removed
the condition entirely from P-�alifier, then % would not need to restrict U at all. We could later
instantiate U with a linear type, say File, and use this term to unsoundly copy file handles.
Readers may worry that the P-�alifier rule is as general as it could be, because it always

requires % ⊢ c . For example, consider let 5 = + in " where 5 : f does not appear freely in " .
We collect the constraint f � •. Constraints of+ that are captured in f do not necessarily need to
be satisfied, because 5 is not used. However, we believe that binding unsatisfiable values has little
benefits and can hide potential bugs in practice.
Note that these entailment rules are intentionally made as simple as possible. For example, we

do not include any transitivity rules. The entailment rules also do not check potentially conflicted
predicates in predicate sets since the rule P-Subsume allows collecting any predicates. We say that
predicate set % is satisfiable if there exists a substitution \ such that · ⊢ \% , and define the solutions
of it as J%KB0C = {\ | · ⊢ \%}. Transitivity of � is admissible when considering the solutions of
predicates, e.g., Jq1 � q2, q2 � •KB0C = Jq1 � q2, q2 � •, q1 � •KB0C = {[•/q1, •/q2]}. In Section 5.6,
we will give an algorithm to check the satisfiability of constraint sets.

5.4 Type Inference

Figure 11 shows representative type inference rules for Q◦
eff
; the remainder are given in full in

Appendix B.3. Our type inference algorithm is based on Algorithm W [Damas and Milner 1982]
extended for qualified types [Jones 1994]. In Γ ⊢ + : � ⊣ \, %, Σ, the input includes the current
context Γ and value + , and the output includes the inferred type �, substitution \ , predicate set
% , and variable set Σ of used term variables. Note that the predicates % are an output of inference,
not an input; rather than checking entailment, as the syntax-directed type rules do, we will emit
a constraint set sufficient to guarantee typing. In the next section, we discuss our algorithm to
guarantee that inferred constraint sets are not unsatisfiable. As usual, the substitution \ has been
already applied to � and % .
Rule Q-LetW demonstrates the treatment of linearity. We write Γ |Σ for the type context gen-

erated by restricting Γ to variables in Σ. We begin by inferring types for + and " . Variable sets
Σ1 and Σ2 capture those variables used in each; any variable in Σ1 ∪ Σ2 must be unlimited. We
also account for the possibility that the variable G may not be used in "—that is to say, that it
may appear in Σ

c

2, the complement of the used variables Σ2. We generate the corresponding un-

limitedness constraints using the auxiliary function factorise, discussed next. Rule Q-DoW emits
the constraint that the singleton effect row be included in the output row. Rule Q-SeqW combines
these techniques.
We prove soundness and completeness of type inference with respect to the syntax-directed

type system. We write \ |Γ for the substitution generated by restricting the domain of \ to the free
variables in Γ and (\ = \ ′) |Γ for \ |Γ = \ ′ |Γ .

Soundly Handling Linearity 21

Γ ⊢ + : � ⊣ \, %, Σ Γ ⊢ " : � ⊣ \, %, Σ Γ ⊢ � : � ⇒ � ⊣ \, %, Σ

Q-LetW

Γ ⊢ + : � ⊣ \1, %1, Σ1 f = gen(\1Γ, %1 ⇒ �)

\1Γ, G : f ⊢ " : � ⊣ \2, %2, Σ2

& = un(\2\1Γ |Σ1∩Σ2) ∪ un(\2(G : f) |Σc2)

Γ ⊢ let G = + in " : � ⊣ \2\1, %2 ∪&, Σ1 ∪ (Σ2\G)

Q-DoW

Γ ⊢ + : � ⊣ \1, %, Σ � ∼ �ℓ : \2
`, q fresh & = sub((ℓ : �ℓ ։

q �ℓ), `)

Γ ⊢ do ℓ + : �ℓ ! {`} ⊣ \2\1, \2% ∪&, Σ

Q-SeqW

Γ ⊢ " : � ! {'1} ⊣ \1, %1, Σ1 \1Γ, G : � ⊢ # : � ! {'2} ⊣ \2, %2, Σ2 ` fresh

& = un(\2\1Γ |Σ1∩Σ2) ∪ un(\2(G : �) |Σc2) ∪ leq(\2\1Γ |Σ2 , \2'1) ∪ sub(\2'1, `) ∪ sub('2, `)

Γ ⊢ let G ← " in # : � ! ` ⊣ \2\1, \2%1 ∪ %2 ∪&, Σ1 ∪ (Σ2\G)

leq(Γ, g) = factorise(Γ � g) un(Γ) = leq(Γ, •) sub('1, '2) = factorise('1 6 '2)

Fig. 11. Selected type inference rules for Q◦
eff

Theorem 5.1 (Soundness). If Γ ⊢ + : � ⊣ \, %, Σ, then % | \Γ |Σ ⊢ + : �. The same applies to

computation and handler typing.

Theorem 5.2 (Completeness). If % | \Γ ⊢ + : �, then Γ ⊢ + : �′ ⊣ \ ′,&, Σ and there exists

\ ′′ such that � = \ ′′�′, % ⊢ \ ′′& , and (\ = \ ′′\ ′) |Γ . The same applies to computation and handler

typing.

The proofs can be found in Appendix C.3 and depend on the correctness of factorise, discussed
next. Note that we do not need to incorporate the subtyping relation into the statement of the com-
pleteness theorem because we only have subtyping between row types and do not allow implicit
subsumption (unlike traditional subtyping systems).

5.5 Factoring Predicates

factorise : Pred→ PSet
factorise(g � g) = ∅
factorise(g � ◦) = ∅
factorise(• � g) = ∅
factorise(�→. � � g) = factorise(. � g)
factorise(g � ; `) =

factorise(g �) ∪ factorise(g � `)
factorise(g �) =
⋃

(ℓ :�։.�) ∈ factorise(g � .)
factorise('1 6 '2) = ∅, when set('1) ⊆ set('2)
factorise(' ⊥L) = ∅, when dom(') ∩ L = ∅

factorise(c) = c

factorise : (TySch � Type) → PSet
factorise((∀U.f) � g) =
factorise([V/U]f � g) for some fresh V

factorise((c ⇒ f) � g) =

factorise(c) ∪ factorise(f � g)

factorise : (Env � Type) → PSet
factorise(Γ � g) =

⋃

(G :f) ∈Γ factorise(f � g)

factorise : PSet→ PSet
factorise(%) =

⋃

c∈% factorise(c)

Fig. 12. Factorisation of constraints.

22 Wenhao Tang, Daniel Hillerström, Sam Lindley, and J. Garre� Morris

The factorise function is defined in Figure 12; it factors constraints into simpler predicates follow-
ing the entailment rules in Figure 10. We use to represent rows consisting of only operation
labels.
The only surprising case is for (∀U.f) � g . Rule P-�antifier requires that we find some

instance such thatf [g ′/U] � g . Rather than search for such an instance, we simply pick a fresh type
variable V . As a result, our type inference algorithm is likely to produce ambiguous type schemes, in
which quantified type variables appear only in predicates. Such type schemes are typically rejected
[Jones 1994], as the meaning of ambiguously typed terms is undefined. However, as our linearity
predicates do not have any intrinsic semantics, but only constrain the use of terms, we do not
believe these constraints lead to semantic ambiguity. One interesting property of factorise is that
the linearity predicates in its results are only between value type variables U , row type variables
`, and linearity types . .
We prove the correctness of factorisewith respect to the entailment rules in Figure 10. The proof

can be found in Appendix C.1.

Theorem 5.3 (Correctness of factorisation). If factorise(%) = & , then & ⊢ % and % ⊢ & . If

factorise(Γ � g) = & , then & ⊢ Γ � g and for any % ⊢ Γ � g , there exists \ such that % ⊢ \& .

5.6 Constraint Solving

Finally, we must check that inferred constraint sets are satisfiable; we do not want to conclude
that a program is well-typed, but only under the assumption that a linear type is unlimited.
We define a constraint solving algorithm solve(%) for checking the satisfiability of the predicate

set % , inspired by solving algorithms for general subtyping constraints [Pottier 1998, 2001; Pretnar
2014]. The tricky part compared to solving usual subtyping constraints is that we need to carefully
deal with the interaction between row subtyping constraints and linearity constraints. For instance,
'1 6 '2 and g � '2 actually implies g � '1. To resolve the interaction, the algorithm proceeds by
first transforming row subtyping constraints to those of the forms ` 6 ', so that we can always
simply instantiate ` on the left to the empty row · forwhich g � · always holds. Then, the algorithm
computes the transitive closure of linearity constraints and rejects ◦ � •. The full algorithm is
given in Appendix B.4. We have the following theorem on the correctness of the constraint solving
algorithm, in which we write J%KB0C\ for the substitution set {\ ′\ | \ ′ ∈ J%KB0C }.

Theorem 5.4 (Correctness of constraint solving). For any constraint set % generated by the

type inference of Q◦
eff
, solve(%) always terminates.

• If it fails, then % is not satisfiable.

• If it returns (\,&), then % is satisfiable and J%KB0C = J&KB0C\ .

The proof can be found in Appendix C.4, whose main idea is to show that every step of the
algorithm preserves solutions, and the output predicate set has one solution.
We leave the design of constraint simplification algorithms as practice concerns. Some existing

algorithms on simplifying general subtyping constraints [Pottier 1998, 2001] are promising.

6 SHALLOW HANDLERS

Up to now we have concentrated on deep effect handlers, which wrap the original handler around
the body of captured continuations. Given this automatic reuse of the handler, the handler itself
cannot capture any linear resources. In contrast, shallow handlers [Hillerström and Lindley 2018;
Kammar et al. 2013] do not wrap the original handler around the body of captured continuations,
which means shallow handlers can capture linear resources and thus influence control flow linear-
ity.

Soundly Handling Linearity 23

Let us first consider shallow handlers in F◦
eff
. We write � † for a shallow handler. The only dif-

ference in the operational semantics is the new E-Op† rule for handling with shallow handlers.

E-Op† handle E[(do ℓ +)�] with � † { # [+ /?, (_.~� .E[(return ~)�])/A],

where ℓ ∉ bl(E), (ℓ ? A ↦→ #) ∈ � † and (ℓ : �→. �) ∈ �

Unlike in E-Op, the body of the continuation is not handled by � †. Whereas deep handlers per-
form a fold over a computation trees shallow handlers perform a case-split. As such, we know
that exactly one operation clause or the return clause will be invoked, and providing all allowed
operations are linear each clause may capture the same linear resources. The typing rule is as
follows.

T-ShallowHandler

� = {return G ↦→ "} ⊎ {ℓ8 ?8 A8 ↦→ #8 }8
� = � ! {(ℓ8 : �8 ։

.8 �8)8 ;'} � = � ! {(ℓ8 : %)8 ;'}

Δ ⊢ Γ : . Δ ⊢ ' : . Δ; Γ, G : � ⊢ " : �

[Δ; Γ, ?8 : �8 , A8 : �8 →
.8 � ⊢ #8 : �]8

Δ; Γ ⊢ � † : � ⇒ �

Instead of requiring value linearity of Γ to be unlimited as in the deep handler rule T-Handler,
we require the value linearity of Γ to coincide with the control flow linearity of ', the effect row
of the unhandled operations. The is because the shallow handler may be captured as part of the
continuations of these unhandled operations in outer handlers. Concretely, when . = ◦, the shal-
low handler may use linear variables from the context, and unhandled operations are control flow
linear; when . = •, the shallow handler cannot use any linear variables from the context, and we
have no restriction on the control flow linearity of unhandled operations.
We can also easily extend Q◦

eff
with shallow handlers.

Q-ShallowHandler

� = {return G ↦→ "} ⊎ {ℓ8 ?8 A8 ↦→ #8 }8
� = � ! {(ℓ8 : �8 ։

.8 �8)8 ;'1} � = � ! {'2}

% | Γ, G : � ⊢ " : � [% | Γ, ?8 : �8 , A8 : �8 →
.8 � ⊢ #8 : �]8

% ⊢ Γ � '1 % ⊢ '1 6 '2 % ⊢ '1 ⊥ {ℓ8 }8

% | Γ ⊢ � : � ⇒ �

In place of % ⊢ Γ � • in Q-Handler, we have % ⊢ Γ � '1, which restricts the value linearity of the
type context to be less than the control flow linearity of unhandled operations in '1.
Shallow handlers are typically used together with recursive functions to implement more gen-

eral recursive behaviours than the structural recursion of deep handlers. It is straightforward to
extend F◦

eff
and Q◦

eff
with recursive functions. Obviously recursive functions are themselves unlim-

ited so cannot capture linear resources, but that does not preclude explicitly threading a linear
resource through a recursive function that installs a shallow handler. In addition to our two new
typing rules, shallow handlers can actually introduce more challenges to tracking control flow lin-
earity, especially because shallow handlers do not handle all invocations of the same operation
uniformly. As a result, we can give different control flow linearity to them. We defer a full analysis
of the interaction between shallow handlers and control flow linearity to future work.

7 RELATED WORK

In this section, we discuss related work on linear types, effect types, multi-shot continuations, and
effect handlers.

24 Wenhao Tang, Daniel Hillerström, Sam Lindley, and J. Garre� Morris

Linear resources and control effects. Exception handlers with finally clauses are a common way
of managing linear resources. Exception handlers provide a form of unwind protection, which en-
ables the programmer to supply the logic to release acquired resources in the finally clause, which
gets executed irrespective of whether a fault occurs. Similarly, the defer statement in Go [Donovan
and Kernighan 2015] defers the execution of its operand until the defining function returns either
successfully or via a fault. Thus the programmer can conveniently acquire a particular resource
and include the deferred logic for releasing it on the next line of code. Another variation on is au-
tomatic resource block management as in the C++ RAII idiom [Combette and Munch-Maccagnoni
2018] and Java’s try-with-resource [Gosling et al. 2023], both of which offer a means for automat-
ically acquiring and releasing resources in the static scope. In Scheme the fundamental resource
protection mechanism is the procedure dynamic-wind [Friedman and Haynes 1985]. It is a generali-
sation of unwind protection intended to be used in the presence of first-class control, where control
may enter and leave the same computation multiple times. It takes three functional arguments: the
first is the resource acquisition procedure, which gets applied when control enters dynamic-wind;
the second is the main computation, which may use the acquired resources; and the third is the
resource release procedure, which is applied when control is about to leave dynamic-wind. Leijen
and Brachthäuser [2018] present a constraint system based on qualified types for programming
with multi-shot effect handlers and linear resources in Koka. They use these constraints to mark
some effects as linear. However, they do not include a linear type system and instead rely on pre-
declaring the linearity of operations and a syntactic check to ensure that resumptions are not
invoked more than once.

Structural types and control effects. Tov and Pucella [2011b] propose a calculus _URAL(�) which
extends the substructural _-calculus _URAL [Ahmed et al. 2005] with abstract control effects �
given by a set of effects, a pure effect, and an effect-sequencing operator. They show how to in-
stantiate _URAL(�) with concrete control effects including exceptions and shift/reset [Danvy and
Filinski 1990] separately. Similar to F◦

eff
and Q◦

eff
, the _URAL(�) calculus also uses type-and-effect

system to check that control effects do not violate the substructural usage guarantees for values.
It includes a judgement on effect types to determine whether control effects may discard or dupli-
cate their continuations, which roughly corresponds to our notion of control flow linearity. The
main difference between our work and _URAL (�) is that we consider the tracking of control flow
linearity in the presence of algebraic effects and effect handlers, which are more involved than
exceptions and shift/reset both statically and dynamically. While it is theoretically possible to in-
stantiate _URAL(�) to effect handlers, this task is itself highly non-trivial due to the richer effect
systems of effect handlers. Conversely, we can also easily encode exceptions and shift/reset as
user-defined effects in F◦

eff
and Q◦

eff
using effect handlers [Forster et al. 2019; Piróg et al. 2019].

Linear type systems. Type inferencewith linear types is awell-studied area. Mazurak et al. [2010]
propose using kinds to track linearity, using subkinding to enable polymorphism over linearities.
Tov and Pucella [2011a] develop an expanded approach to tracking structural restrictions in kinds;
among other differences they introduce subtyping for function types and require fewer explicit
linearity annotations thanMazurak et al.. Gan et al. [2014] use qualified types to characterise types
that admit structural rules in a substructural type system: for example, in a linear type system,
unlimited types are exactly types g that support operations dup : g → (g, g) and drop : g → ().
Morris [2016] extends the approach of Tov and Pucella to generalise the treatment of function
types, introducing the linearity ordering constraint g � h; he also generalises their description of
unlimited types to type schemes, but does so unsoundly. In contrast, the current work does not
interpret unlimited types via operations like dup and drop; we also avoid Morris’s unsoundness
in the treatment of type schemes. An alternative approach tracks linearity exclusively in function

Soundly Handling Linearity 25

types, rather than in kinds. This approach is developed by Ghica and Smith [2014], McBride [2016],
and Atkey [2018], and has been implemented in Idris [Brady 2021] and an extension to the GHC
Haskell compiler [Bernardy et al. 2018].

Row-based effect types. Row types and row polymorphism are a popular way of implementing
effect systems in programming languages. Links [Hillerström and Lindley 2016] adopts Rémy style
row polymorphism [Rémy 1994], where the row types are able to represent the absence of labels
and each label is restricted to appear at most once. Koka [Leijen 2017] and Frank [Lindley et al.
2017] use row polymorphism based on scoped labels [Leijen 2005] which allows duplicated labels.
We believe the idea of tracking control flow linearity in F◦

eff
should work well with all kinds of

different row-based effect systems.

Subtyping-based effect types. Some versions of Eff [Bauer and Pretnar 2013; Pretnar 2014] use
an effect system based on subtyping. Karachalias et al. [2020] describe an explicit target calcu-
lus ExEff with a subtyping-based effect system and a type inference algorithm that elaborates
Eff source code into it. Eff uses a row-like representation of effect types and defines a subtyp-
ing relation for effect types similar to the that of Q◦

eff
. One difference is that Eff incorporates

full subtyping relations between all types and implicit subsumption, whereas we only introduce
subtyping between row types and allow explicit subsumption in necessary positions (like Q-Seq
and Q-Handle). In this respect our qualified effect system is more lightweight. Algebraic subtyp-
ing [Dolan 2016; Dolan andMycroft 2017] combines subtyping and parametric polymorphismwith
elegant principal types. It would be interesting to explore the possibility of combining linear types
and effect types based on algebraic subtyping with control flow linearity.

One-shot effect handlers. OCaml 5 [Sivaramakrishnan et al. 2021], the C++-effects library [Ghica
et al. 2022], and the typed continuations proposal for adding effect handlers toWebAssembly [Hiller-
ström et al. 2022] all implement dynamically-checked one-shot effect handlers. Continuations cap-
tured by such effect handlers can be thought of as linear resources themselves, and thus play nicely
with other linear resources. Any attempt to invoke a continuation more than once throws a run-
time error. In contrast, our type systems can be used to statically ensure that handlers are one-shot.
In fact, its considerably easier to build a system that ensures that all handlers are uniformly one-
shot than a system like ours that supports both one-shot and multi-shot handlers, as in the former
case there is no need to track the use of linear resources specially. Another advantage of one-shot
continuations is that they admit efficient implementations which are compatible with linear re-
sources, as a one-shot continuation need not copy its underlying stack [Bruggeman et al. 1996].
Hillerström et al. [2023] present a substructural type system for a calculus with effect handlers
based on dual intuitionistic linear logic [Barber 1996] which restricts all effect handlers to be one-
shot (actually one- or zero-shot). They use it to show an asymptotic performance gap between
one-shot and multi-shot effect handlers, but are not concerned with linear resources other than
continuations.

Multi-shot effect handlers. Eff [Bauer and Pretnar 2015], Effekt [Brachthäuser et al. 2020],
Koka [Leijen 2017], and Helium [Biernacki et al. 2019] are research programming languages with
multi-shot handlers. In contrast to one-shot handlers, multi-shot handlers can invoke the captured
continuations an arbitrary number of times. This enables a range of interesting applications. For in-
stance, asymptotic efficient backtracking search [Hillerström et al. 2020b], nondeterminism [Kam-
mar et al. 2013], and UNIX fork-style concurrency [Hillerström 2022] can all be given a direct
semantics in terms of multi-shot handlers. However, one obstacle is that the aforementioned lan-
guages cannot statically optimise uses of one-shot continuations, as they must conservatively ex-
pect the ambient context to have nonlinear control flow, and as a consequence they must copy the

26 Wenhao Tang, Daniel Hillerström, Sam Lindley, and J. Garre� Morris

continuation a priori [Hillerström et al. 2016]. Our type systems can enable static optimisation of
one-shot continuations as they statically distinguish linear from nonlinear contexts.

8 CONCLUSION AND FUTUREWORK

We have explored the interplay between effect handlers and linear types. We have demonstrated
that in order to soundly combine potentially non-linear effect handlers with linear types, it is
necessary to add a mechanism for tracking control flow linearity too. We incorporated control
flow linearity into two quite different core languages as well as realising control flow linearity in
Links.
Directions for future work include: implementing a programming language based on Q◦

eff
; de-

veloping more precise type systems for combining control flow linearity with shallow handlers;
combining control flow linearity with other forms of effect type systems, such as those that support
generative effects, duplicate effects, capabilities, and modal effect types; adapting the constraints
of Q◦

eff
to algebraic subtyping [Dolan and Mycroft 2017]; and adapting control flow linearity for

uniqueness types and for quantitive type theory [Atkey 2018; McBride 2016].

ACKNOWLEDGMENTS

This work was supported by the UKRI Future Leaders Fellowship “Effect Handler Oriented Pro-
gramming” (reference number MR/T043830/1).

REFERENCES

Amal J. Ahmed, Matthew Fluet, and Greg Morrisett. 2005. A step-indexed model of substructural state. In Proceedings of

the 10th ACM SIGPLAN International Conference on Functional Programming, ICFP 2005, Tallinn, Estonia, September 26-28,

2005, Olivier Danvy and Benjamin C. Pierce (Eds.). ACM, 78–91. https://doi.org/10.1145/1086365.1086376

Robert Atkey. 2018. Syntax and Semantics of Quantitative Type Theory. In Proceedings of the 33rd Annual ACM/IEEE

Symposium on Logic in Computer Science, LICS 2018, Oxford, UK, July 09-12, 2018, Anuj Dawar and Erich Grädel (Eds.).

ACM, 56–65. https://doi.org/10.1145/3209108.3209189

Andrew Barber. 1996. Dual Intuitionistic Linear Logic. Technical report ECS-LFCS-96-347, University of Edinburgh.

Andrej Bauer and Matija Pretnar. 2013. An Effect System for Algebraic Effects and Handlers. In Algebra and Coalgebra in

Computer Science, Reiko Heckel and Stefan Milius (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 1–16.

Andrej Bauer andMatija Pretnar. 2015. Programming with algebraic effects and handlers. J. Log. AlgebraicMethods Program.

84, 1 (2015), 108–123.

Jean-Philippe Bernardy, Mathieu Boespflug, Ryan R. Newton, Simon Peyton Jones, and Arnaud Spiwack. 2018. Linear

Haskell: practical linearity in a higher-order polymorphic language. Proc. ACM Program. Lang. 2, POPL (2018), 5:1–5:29.

https://doi.org/10.1145/3158093

Dariusz Biernacki, Maciej Piróg, Piotr Polesiuk, and Filip Sieczkowski. 2019. Abstracting algebraic effects. Proc. ACM

Program. Lang. 3, POPL (2019), 6:1–6:28.

Jonathan Immanuel Brachthäuser, Philipp Schuster, and Klaus Ostermann. 2020. Effects as Capabilities: Effect Handlers

and Lightweight Effect Polymorphism. Proc. ACM Program. Lang. 4, OOPSLA, Article 126 (Nov. 2020), 30 pages.

https://doi.org/10.1145/3428194

Edwin C. Brady. 2021. Idris 2: Quantitative Type Theory in Practice. In 35th European Conference on Object-

Oriented Programming, ECOOP 2021, July 11-17, 2021, Aarhus, Denmark (Virtual Conference) (LIPIcs, Vol. 194),

Anders Møller and Manu Sridharan (Eds.). Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 9:1–9:26.

https://doi.org/10.4230/LIPIcs.ECOOP.2021.9

Carl Bruggeman, Oscar Waddell, and R. Kent Dybvig. 1996. Representing Control in the Presence of One-Shot

Continuations. In Proceedings of the ACM SIGPLAN’96 Conference on Programming Language Design and Im-

plementation (PLDI), Philadephia, Pennsylvania, USA, May 21-24, 1996, Charles N. Fischer (Ed.). ACM, 99–107.

https://doi.org/10.1145/231379.231395

Guillaume Combette and Guillaume Munch-Maccagnoni. 2018. A resource modality for RAII. In LOLA 2018: Workshop on

Syntax and Semantics of Low-Level Languages. 1–4.

Ezra Cooper, Sam Lindley, Philip Wadler, and Jeremy Yallop. 2006. Links: Web Programming Without Tiers. In FMCO

(Lecture Notes in Computer Science, Vol. 4709). Springer, 266–296.

Soundly Handling Linearity 27

Luis Damas and Robin Milner. 1982. Principal Type-Schemes for Functional Programs. In Proceedings of the 9th ACM

SIGPLAN-SIGACT Symposium on Principles of Programming Languages (Albuquerque, New Mexico) (POPL ’82). Associ-

ation for Computing Machinery, New York, NY, USA, 207–212. https://doi.org/10.1145/582153.582176

Olivier Danvy and Andrzej Filinski. 1990. Abstracting Control. In LISP and Functional Programming. ACM, 151–160.

Stephen Dolan. 2016. Algebraic Subtyping. Ph. D. Dissertation. Computer Laboratory, University of Cambridge, United

Kingdom.

Stephen Dolan and Alan Mycroft. 2017. Polymorphism, subtyping, and type inference in MLsub. In POPL. ACM, 60–72.

Alan A.A. Donovan and Brian W. Kernighan. 2015. The Go Programming Language (1st ed.). Addison-Wesley Professional.

Yannick Forster, Ohad Kammar, Sam Lindley, and Matija Pretnar. 2019. On the expressive power of user-

defined effects: Effect handlers, monadic reflection, delimited control. J. Funct. Program. 29 (2019), e15.

https://doi.org/10.1017/S0956796819000121

Daniel P. Friedman and Christopher T. Haynes. 1985. Constraining Control. In POPL. ACM Press, 245–254.

Daniel P. Friedman, Christopher T Haynes, and Eugene Kohlbecker. 1984. Programming with Continuations. In Program

Transformation and Programming Environments, Peter Pepper (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg, 263–

274.

Edward Gan, Jesse A. Tov, and Greg Morrisett. 2014. Type Classes for Lightweight Substructural Types. In Proceedings

Third International Workshop on Linearity, LINEARITY 2014, Vienna, Austria, 13th July, 2014. 34–48.

Dan R. Ghica, Sam Lindley, Marcos Maroñas Bravo, and Maciej Piróg. 2022. High-level effect handlers in C++. Proc. ACM

Program. Lang. 6, OOPSLA2 (2022), 1639–1667.

Dan R. Ghica and Alex I. Smith. 2014. Bounded Linear Types in a Resource Semiring. In Programming Languages and

Systems - 23rd European Symposium on Programming, ESOP 2014, Held as Part of the European Joint Conferences on

Theory and Practice of Software, ETAPS 2014, Grenoble, France, April 5-13, 2014, Proceedings (Lecture Notes in Computer

Science, Vol. 8410), Zhong Shao (Ed.). Springer, 331–350. https://doi.org/10.1007/978-3-642-54833-8_18

James Gosling, Bill Joy, Guy Steele, Gilad Bracha, Alex Buckley, Daniel Smith, and Gavin Bierman. 2023. The Java Language

Specification: Java SE 20 Edition. https://docs.oracle.com/javase/specs/jls/se20/html/index.html. [Accessed 2023-07-11].

Daniel Hillerström. 2022. Foundations for Programming and Implementing Effect Handlers. Ph. D. Dissertation. School of

Informatics, The University of Edinburgh, UK.

Daniel Hillerström, Daan Leijen, Sam Lindley, Matija Pretnar, Andreas Rossberg,

and KC Sivamarakrishnan. 2022. WebAssembly Typed Continuations Proposal.

https://github.com/effect-handlers/wasm-spec/proposals/continuations/Explainer.md.

Daniel Hillerström and Sam Lindley. 2016. Liberating Effects with Rows and Handlers (TyDe 2016). Association for Com-

puting Machinery, New York, NY, USA, 15–27. https://doi.org/10.1145/2976022.2976033

Daniel Hillerström and Sam Lindley. 2018. Shallow Effect Handlers. InAPLAS (Lecture Notes in Computer Science, Vol. 11275).

Springer, 415–435.

Daniel Hillerström, Sam Lindley, and Robert Atkey. 2020a. Effect handlers via generalised continuations. J. Funct. Program.

30 (2020), e5. https://doi.org/10.1017/S0956796820000040

Daniel Hillerström, Sam Lindley, and John Longley. 2020b. Effects for efficiency: asymptotic speedup with first-class control.

Proc. ACM Program. Lang. 4, ICFP (2020), 100:1–100:29.

Daniel Hillerström, Sam Lindley, and John Longley. 2023. Asymptotic Speedup with Effect Handlers. Draft.

Daniel Hillerström, Sam Lindley, and KC Sivaramakrishnan. 2016. Compiling Links Effect Handlers to the OCaml Backend.

ML Workshop.

Mark P. Jones. 1994. A Theory of Qualified Types. Sci. Comput. Program. 22, 3 (1994), 231–256.

https://doi.org/10.1016/0167-6423(94)00005-0

Ohad Kammar, Sam Lindley, and Nicolas Oury. 2013. Handlers in action. In ICFP. ACM, 145–158.

Georgios Karachalias, Matija Pretnar, Amr Hany Saleh, Stien Vanderhallen, and Tom Schrijvers. 2020. Explicit effect sub-

typing. J. Funct. Program. 30 (2020), e15. https://doi.org/10.1017/S0956796820000131

Oleg Kiselyov and Chung-chieh Shan. 2009. Embedded Probabilistic Programming. In DSL (Lecture Notes in Computer

Science, Vol. 5658). Springer, 360–384.

Daan Leijen. 2005. Extensible records with scoped labels. Trends in Functional Programming 6 (2005), 179–194.

Daan Leijen. 2008. HMF: simple type inference for first-class polymorphism. In Proceeding of the 13th ACM SIGPLAN

international conference on Functional programming, ICFP 2008, Victoria, BC, Canada, September 20-28, 2008, James Hook

and Peter Thiemann (Eds.). ACM, 283–294. https://doi.org/10.1145/1411204.1411245

Daan Leijen. 2017. Type Directed Compilation of Row-Typed Algebraic Effects. In Proceedings of the 44th ACM SIGPLAN

Symposium on Principles of Programming Languages (Paris, France) (POPL ’17). Association for Computing Machinery,

New York, NY, USA, 486–499. https://doi.org/10.1145/3009837.3009872

Daan Leijen and Jonathan Immanuel Brachthäuser. 2018. Taming Control Flow through Linear Effect Handlers.

https://www.youtube.com/watch?v=yozwdQ4f8G4. HOPE@ICFP’18 talk. [Accessed 2023-07-11].

28 Wenhao Tang, Daniel Hillerström, Sam Lindley, and J. Garre� Morris

Sam Lindley and James Cheney. 2012. Row-based effect types for database integration. In Proceedings of the 8th ACM SIG-

PLAN Workshop on Types in Languages Design and Implementation, TLDI 2012, Philadelphia, PA, USA, Saturday, January

28, 2012, Benjamin C. Pierce (Ed.). ACM, 91–102. https://doi.org/10.1145/2103786.2103798

Sam Lindley, Conor McBride, and Craig McLaughlin. 2017. Do Be Do Be Do. In Proceedings of the 44th ACM SIGPLAN

Symposium on Principles of Programming Languages (Paris, France) (POPL 2017). Association for Computing Machinery,

New York, NY, USA, 500–514. https://doi.org/10.1145/3009837.3009897

Sam Lindley and J Garrett Morris. 2017. Lightweight functional session types. Behavioural Types: from Theory to Tools.

River Publishers (2017), 265–286.

AlbertoMartelli and Ugo Montanari. 1982. An Efficient Unification Algorithm. ACM Trans. Program. Lang. Syst. 4, 2 (1982),

258–282. https://doi.org/10.1145/357162.357169

Karl Mazurak, Jianzhou Zhao, and Steve Zdancewic. 2010. Lightweight Linear Types in System F> (TLDI ’10). Association

for Computing Machinery, New York, NY, USA, 77–88. https://doi.org/10.1145/1708016.1708027

Conor McBride. 2016. I Got Plenty o’ Nuttin’. In A List of Successes That Can Change the World - Essays Dedicated to Philip

Wadler on the Occasion of His 60th Birthday (Lecture Notes in Computer Science, Vol. 9600), Sam Lindley, Conor McBride,

Philip W. Trinder, and Donald Sannella (Eds.). Springer, 207–233. https://doi.org/10.1007/978-3-319-30936-1_12

J. Garrett Morris. 2016. The Best of Both Worlds: Linear Functional Programming without Compromise. In Proceedings of

the 21st ACM SIGPLAN International Conference on Functional Programming (Nara, Japan) (ICFP 2016). Association for

Computing Machinery, New York, NY, USA, 448–461. https://doi.org/10.1145/2951913.2951925

J. Garrett Morris and James McKinna. 2019. Abstracting Extensible Data Types: Or, Rows by Any Other Name. Proc. ACM

Program. Lang. 3, POPL, Article 12 (jan 2019), 28 pages. https://doi.org/10.1145/3290325

Maciej Piróg, Piotr Polesiuk, and Filip Sieczkowski. 2019. Typed Equivalence of Effect Handlers and Delimited Control. In

FSCD (LIPIcs, Vol. 131). Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 30:1–30:16.

Gordon D. Plotkin and Matija Pretnar. 2013. Handling Algebraic Effects. Log. Methods Comput. Sci. 9, 4 (2013).

François Pottier. 1998. Type inference in the presence of subtyping: from theory to practice. Ph. D. Dissertation. INRIA.

François Pottier. 2001. Simplifying Subtyping Constraints: A Theory. Inf. Comput. 170, 2 (2001), 153–183.

https://doi.org/10.1006/inco.2001.2963

Ron Pressler. 2018. Project Loom: Fibers and Continuations for the Java Virtual Machine.

https://cr.openjdk.org/~rpressler/loom/Loom-Proposal.html. Accessed 2023-04-14.

Matija Pretnar. 2014. Inferring Algebraic Effects. Log. Methods Comput. Sci. 10, 3 (2014).

https://doi.org/10.2168/LMCS-10(3:21)2014

Didier Rémy. 1994. Type Inference for Records in a Natural Extension of ML. In Theoretical Aspects of Object-Oriented

Programming: Types, Semantics, and Language Design. Citeseer.

K. C. Sivaramakrishnan, Stephen Dolan, Leo White, Tom Kelly, Sadiq Jaffer, and Anil Madhavapeddy. 2021. Retrofitting

effect handlers onto OCaml. In PLDI ’21: 42nd ACM SIGPLAN International Conference on Programming Language Design

and Implementation, Virtual Event, Canada, June 20-25, 2021, Stephen N. Freund and Eran Yahav (Eds.). ACM, 206–221.

https://doi.org/10.1145/3453483.3454039

Jesse A. Tov and Riccardo Pucella. 2011a. Practical affine types. In Proceedings of the 38th ACM SIGPLAN-SIGACT Symposium

on Principles of Programming Languages, POPL 2011, Austin, TX, USA, January 26-28, 2011, Thomas Ball and Mooly Sagiv

(Eds.). ACM, 447–458. https://doi.org/10.1145/1926385.1926436

Jesse A. Tov and Riccardo Pucella. 2011b. A theory of substructural types and control. In Proceedings of the 26th Annual

ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Languages, and Applications, OOPSLA 2011, part of

SPLASH 2011, Portland, OR, USA, October 22 - 27, 2011, Cristina Videira Lopes and Kathleen Fisher (Eds.). ACM, 625–642.

https://doi.org/10.1145/2048066.2048115

David Walker. 2005. Substructural type systems. Advanced topics in types and programming languages (2005), 3–44.

A PROOFS OF F◦
eff

In this section, we prove the theorems in Section 3.

A.1 Unlimited is Unlimited

Theorem 3.4 (Unlimited is unlimited).

1. Unlimited values are unlimited: if Δ; Γ ⊢ + : � and Δ ⊢ � : •, then Δ ⊢ Γ : •.

2. Unlimited continuations are unlimited: if Δ; Γ ⊢ E[(do ℓ +)�] : � for � = {ℓ : �։• � ;'}

and ℓ ∉ bl(E), then there exists Δ ⊢ Γ = Γ1 + Γ2 such that Δ ⊢ Γ1 : • and Δ; Γ1, ~ : � ⊢

E[(return ~)�] : � .

Soundly Handling Linearity 29

3. Deep handlers are unlimited: if Δ; Γ ⊢ � : � ⇒ � , then Δ ⊢ Γ : •.

Proof.

1. Unlimited values are unlimited. By induction on the typing derivation Δ; Γ ⊢ + : �.

Case T-Var. Trivial.
Case T-Abs. Δ ⊢ �→. � : • gives . = •, which then gives Δ ⊢ Γ : •.
Case T-TAbs. Δ ⊢ ∀.U .� : • gives . = •, which then gives Δ ⊢ Γ : •.

2. Unlimited continuations are unlimited. By ℓ ∉ bl(E) and straightforward induction on typing
derivations, we have � = _ ! {ℓ : �։• � ; _}. By induction on Δ; Γ ⊢ E[(do ℓ +)�] : � .

Case

T-Do

� = {ℓ : �։. � ;'}

Δ; Γ ⊢ + : � Δ ⊢ � : Effect

Δ; Γ ⊢ (do ℓ +)� : � !�

Immediately, we have Δ;~ : � ⊢ (return ~)� : � !� and Δ ⊢ · : •.
Case

T-Seq

Δ; Γ1 ⊢ E
′ [(do ℓ +)�] : �′ !�′ (1) Δ; Γ2, G : �′ ⊢ # : �′ !�′

�′ = {ℓ : �։• � ;'′} Δ ⊢ Γ2 : . (2) Δ ⊢ (ℓ : �։• � ;'′) : . (3)

Δ; Γ1 + Γ2 ⊢ let
.G ← E′ [(do ℓ +)�] in # : �′ !�′

By (3), we have . = •. Then, by (2), we have Δ ⊢ Γ2 : •. By the IH on (1), there exists
Δ ⊢ Γ1 = Γ11 + Γ12 such that Δ ⊢ Γ11 : • and Δ; Γ11,~ : � ⊢ E′ [(return ~)�] : �′ !�′.

Applying T-Seq to it, we have Δ; Γ3,~ : � ⊢ let.G ← E′ [(return ~)�] in # : �′ !�′,
Δ ⊢ Γ = Γ12 + Γ3 and Δ ⊢ Γ3 : • where Δ ⊢ Γ3 = Γ2 + Γ11.

Case

T-Handle

Δ; Γ1 ⊢ E
′ [(do ℓ +)�] : �′ !�′ (1) Δ; Γ2 ⊢ � : �′ !�′ ⇒ �′ ! � ′ (2)

Δ; Γ1 + Γ2 ⊢ handle E
′ [(do ℓ +)�] with � : �′ ! � ′

By (2), we have Δ ⊢ Γ2 : •. By the IH on (1), there exists Δ ⊢ Γ1 = Γ11 + Γ12 such that
Δ ⊢ Γ11 : • and Δ; Γ11,~ : � ⊢ E′ [(return ~)�] : �′ !�′. Applying T-Handle to it, we have
Δ; Γ3,~ : � ⊢ handle E′ [(return ~)�] with � : �′ ! � ′, Δ ⊢ Γ = Γ12 + Γ3 and Δ ⊢ Γ3 : •

where Δ ⊢ Γ3 = Γ2 + Γ11.

3. Deep handlers are unlimited. Directly follows from T-Handler.
�

A.2 Progress

Lemma A.1 (Canonical forms).

1. If ⊢ + : �→. �, then + is of shape _.G� ." .

2. If ⊢ + : ∀.U .� , then + is of shape Λ.U ." .

Proof. Directly follows from the typing rules. �

Theorem 3.2 (Progress). If ⊢ " : � !�, then either there exists # such that " { # or" is in a

normal form with respect to �.

Proof. By induction on the typing derivation ⊢ " : � !�.

30 Wenhao Tang, Daniel Hillerström, Sam Lindley, and J. Garre� Morris

Case

T-App

⊢ + : �→. � ⊢, : �

⊢ + , : �

By Lemma A.1, we have + = _.G�." . Reduced by E-App.
Case

T-TApp

Δ; Γ ⊢ + : ∀.U .� Δ ⊢) :

Δ; Γ ⊢ +) : � [) /U]

By Lemma A.1, we have + = Λ
.U ." . Reduced by E-TApp.

Case T-Return. In a normal form with respect to �.
Case T-Do. In a normal form with respect to �.
Case

T-Seq

Δ; Γ1 ⊢ " : � !� Δ; Γ2, G : � ⊢ # : � !�

� = {'} Δ ⊢ Γ2 : . Δ ⊢ ' : .

Δ; Γ1 + Γ2 ⊢ let
.G ← " in # : � !�

By a case analysis on" .
Subcase " = (return #)� . Reduced by E-Seq.
Subcase Otherwise. By the IH, if " { # , then the original term is reduced by E-Lift.

Otherwise, " is in a normal form with respect to �, which implies the original term
is also in a normal form with respect to �.

Case

T-Handle
Δ; Γ1 ⊢ � : � ⇒ � Δ; Γ2 ⊢ " : � � = � !�′ � = � !�

Δ; Γ1 + Γ2 ⊢ handle " with � : �

By a case analysis on" .
Subcase " = (return #)�

′
. Reduced by E-Ret.

Subcase " = E[(do ℓ +)�
′′
] with ℓ ∉ bl(E) and (ℓ ? A ↦→ #) ∈ � . The original term is

reduced by E-Op.
Subcase Otherwise. By the IH, if" { # , then the original term is reduced by E-Lift. Oth-

erwise," is in a normal formwith respect to �′. By Definition 3.1," = E[(do ℓ +)�
′′
]

for ℓ ∈ �′ and ℓ ∉ bl(E). By the last subcase, ℓ is also not handled by � . Thus, the
original term is also in a normal form with respect to �.

�

A.3 Subject Reduction

Lemma A.2 (Substitution).

1. Preservation of kinds under type substitution: if Δ, U : ′ ⊢) : and Δ ⊢) ′ : ′, then

Δ ⊢) [) ′/U] : .

2. Preservation of types under type substitution: if Δ ⊢) : , then Δ, U : ; Γ ⊢ " : � implies

Δ; Γ [) /U] ⊢ " [) /U] : � [) /U], and Δ, U : ; Γ ⊢ + : � implies Δ; Γ [) /U] ⊢ + [) /U] :

�[) /U], and Δ, U : ; Γ ⊢ � : � ⇒ � implies Δ; Γ [) /U] ⊢ � [) /U] : (� ⇒ �) [) /U].

Soundly Handling Linearity 31

3. Preservation of types under value substitution: if Δ ⊢ Γ1 : . , Δ; Γ1 ⊢ + : � and Δ ⊢ � : . ,

then Δ; Γ2, G : � ⊢ " : � implies Δ; Γ1 + Γ2 ⊢ " [+ /G] : � , and Δ; Γ2, G : � ⊢ , : � implies

Δ; Γ1 + Γ2 ⊢, [+ /G] : �, and Δ; Γ2, G : � ⊢ � : � ⇒ � implies Δ; Γ1 + Γ2 ⊢ � [+ /G] : � ⇒ � .

Proof. We apply various structural lemmas like weakening, permutation of contexts, and prop-
erties of context splitting in the following proofs.
1. Preservation of kinds under type substitution. Straightforward induction on the kinding deriva-
tions.
2. Preservation of types under type substitution. By Lemma A.2.1 and straightforward mutual induc-
tion on the typing derivations.
3. Preservation of types under value substitution. Bymutual induction on the typing derivations. �

Theorem 3.3 (Subject reduction). If Δ; Γ ⊢ " : � and " { # , then Δ; Γ ⊢ # : � .

Proof. By induction on the typing derivation Δ; Γ ⊢ " : � .

Case

T-App

Δ; Γ1 ⊢ + : �→. � (1) Δ; Γ2 ⊢, : � (2)

Δ; Γ1 + Γ2 ⊢ + , : �

The reduction can only be derived using E-App, which implies+ = _.G�.# and (_.G� .#), {
[, /G]. Inversion on (1) gives Δ; Γ1, G : � ⊢ # : � (3). Case analysis on the linearity of �:
Subcase Δ ⊢ � : • (4). Applying Theorem 3.4.1 to (2) gives Δ ⊢ Γ2 : • (5). Applying

Lemma A.2.3 to (2), (3), (4) and (5) gives Δ; Γ1 + Γ2 ⊢ # [, /G] : � .
Subcase Δ ⊢ � : ◦ (4). We always have Δ ⊢ Γ2 : ◦ (5). Applying Lemma A.2.3 to (2), (3), (4)

and (5) gives Δ; Γ1 + Γ2 ⊢ # [, /G] : � .
Case

T-TApp

Δ; Γ ⊢ + : ∀.U .� (1) Δ ⊢) : (2)

Δ; Γ ⊢ +) : � [) /U]

The reduction can only be derived using E-TApp, which implies + = Λ
.U .# and

(Λ.U .#)) { # [) /U]. Inversion on (1) gives Δ, U : ; Γ ⊢ # : � (3). By U ∉ �v(Γ),
applying Lemma A.2.2 to (2) and (3) gives Δ; Γ ⊢ # [) /U] : � [) /U].

Case T-Return. No reduction." is in a normal form.
Case T-Do. No reduction." is in a normal form.
Case

T-Seq

Δ; Γ1 ⊢ " : � ! {'} (1) Δ; Γ2, G : � ⊢ # : � ! {'} (2)

Δ ⊢ Γ2 : . Δ ⊢ ' : .

Δ; Γ1 + Γ2 ⊢ let
.G ← " in # : � ! {'}

By a case analysis on the next rule used by reduction:
Subcase E-Lift. Suppose " { "′ . The IH on (1) gives Δ; Γ1 ⊢ "

′ : � ! {'}. Then, by

T-Seq we have Δ; Γ1 + Γ2 ⊢ let
.G ← "′ in # : � ! {'2}.

Subcase E-Seq. " = (return +) {'} . Inversion on (1) gives Δ; Γ1 ⊢ + : � (3). With (2) and
(3), our goal follows from a case analysis on the linearity of � similar to the T-App

case.

32 Wenhao Tang, Daniel Hillerström, Sam Lindley, and J. Garre� Morris

Case

T-Handle
Δ; Γ1 ⊢ " : � (1) Δ; Γ2 ⊢ � : � ⇒ � (2)

Δ; Γ1 + Γ2 ⊢ handle " with � : �

By a case analysis on the next rule used by reduction:
Subcase E-Lift. Suppose" { "′ . The IH on (1) gives Δ; Γ1 ⊢ "

′ : � . Then, by T-Handle
we have Δ; Γ1 + Γ2 ⊢ handle "

′ with � : � .
Subcase E-Ret." = (return +)� and (return G ↦→ #) ∈ � . Suppose� = � !�. Inversion

on (1) gives Δ; Γ1 ⊢ + : � (3). Inversion on (2) gives Δ; Γ2, G : � ⊢ # : � (4). With (3)
and (4), our goal follows from a case analysis on the linearity of� similar to the T-App
case.

Subcase E-Op. " = E[(do ℓ +)�], ℓ ∉ bl(E) and (ℓ ? A ↦→ #) ∈ � . Suppose (ℓ :

� →. �) ∈ � and, = _.~� .handle E[(return ~)�] with � . The reduction is
handle " with � { # [+ /?,, /A]. Inversion on (2) gives Δ; Γ2, ? : �, A : � →. � ⊢

: � (3). By a straightforward induction on (1) similar to the proof of Theorem 3.4.2,
it is easy to show that there exists Δ ⊢ Γ1 = Γ11 + Γ12 such that Δ; Γ11 ⊢ + : � (4)
and Δ; Γ12,~ : � ⊢ E[(return ~)�] : � (5). With (3) and (4), by a case analysis on the
linearity of � similar to the T-App case, we have Δ; Γ11 + (Γ2, A : � →

. �) ⊢ # [+ /?] :

� (6). Then by another case analysis on . :
subcase . = •. By Theorem 3.4.2 we have Δ ⊢ Γ12 : •. Applying T-Handle and

T-Abs to (5), we have Δ; Γ12 + Γ2 ⊢, : � →. � (7). Applying Theorem 3.4.3 to
(2) we have Δ ⊢ Γ2 : •. Finally, applying Lemma A.2.3 to (6) and (7), we have
Δ; Γ11 + Γ12 + Γ2 ⊢ # [+ /?,, /A] : � .

subcase . = ◦. Applying T-Handle and T-Abs to (5), we have Δ; Γ12 + Γ2 ⊢, : � →.

� (7). We always have Δ ⊢ Γ12 + Γ2 : ◦. Finally, applying Lemma A.2.3 to (6) and
(7), we have Δ; Γ11 + Γ12 + Γ2 ⊢ # [+ /?,, /A] : � .

�

A.4 Linearity Safety of Evaluation

Lemma A.3 (Linear variables appear exactly once). If Δ; Γ, G : � ⊢ + : � and Δ 0 � : •, then

G appears exactly once in + . If Δ; Γ, G : � ⊢ " : � and Δ 0 � : •, then G appears exactly once in" .

Proof. By the definition of the context splitting relation and straightforward induction on typ-
ing derivations. �

Lemma A.4 (Preservation of linear safety under substitution). Given closed and linear

safe + and " , if ⊢ + : � and ·; G : � ⊢ " : � , then" [+ ′/G] is linear safe where (+ ′, _) = tag(+).

Proof. Case analysis on the linearity of �.

Case ⊢ � : •. We have + ′ = + . By the linear safety of + , we have ℒ(+) = ∅. The linear safety of
" [+ ′/G] follows from the linear safety of " .

Case 0 � : •. By Theorem 3.4, G does not appear in unlimited values, continuations and handlers
of" . Thus,+ ′ does not appear in unlimited values, continuations and handlers of" [+ ′/G].
The linear safety of" [+ ′/G] then directly follows from the linear safety of" and + .

�

Theorem 3.6 (Reduction safety). For any closed, well-typed and linear safe computation " in

F◦
eff
, if" S

T
{ # , then # is linear safe andℒ(") ∪ S = ℒ(#) ∪ T .

Soundly Handling Linearity 33

Proof. We proceed by induction on the linearity-aware reduction rules defined in Figure 7. To

avoid name conflicts, we consider "̂ S
T
{ #̂ .

Case

L-App (_.G�.") + S
∅
{ " [+ ′/G], where (+ ′,S) = tag(+)

The linear safety of "̂ gives the linear safety of " and + . The linear safety of #̂ follows

from Lemma A.4. By inversion on "̂ , + has type �. Case analysis on the linearity of �:
Subcase ⊢ � : •. We have lin(+) = false and tag(+) = {+ , ∅}. By the fact that + is closed

and linear safe, we have ℒ(+) = ∅. Our goal follows from ℒ("̂) ∪ ∅ = ℒ(") =

ℒ(#̂) ∪ ∅.
Subcase 0 � : •. We have lin(+) = true. By LemmaA.3,G appears in" exactly once. If+ =

, ◦ for some, , then we haveℒ("̂)∪∅ = ℒ(")∪ℒ(+) = ℒ(" [+ /G]) = ℒ(#̂)∪∅.
Otherwise, we have ℒ("̂) ∪ {+ ◦} = ℒ(") ∪ℒ(+) ∪ {+ ◦} = ℒ(") ∪ ℒ(+ ◦) =

ℒ(" [+ ◦/G]) = ℒ(#̂) ∪ ∅.
Case

L-TApp (Λ.U .")) ∅
∅
{ " [) /U]

The linear safety of #̂ directly follows from the linear safety of "̂ . We have ℒ("̂) ∪ ∅ =

ℒ(") = ℒ(#̂) ∪ ∅.
Case

L-Seq let.G ← return + in # S
∅
{ # [+ ′/G], where (+ ′,S) = tag(+)

The linear safety of "̂ gives the linear safety of # and + . The linear safety of #̂ follows
from Lemma A.4. Suppose ⊢ + : �. Our goal follows from a case analysis on the linearity
of � similar to the L-App case.

Case

L-Ret handle (return +)� with � S
∅
{ # [+ ′/G],

where (return G ↦→ #) ∈ �, (+ ′,S) = tag(+)

The linear safety of "̂ gives the linear safety of+ ,� and # . The linear safety of #̂ follows
from Lemma A.4. Suppose ⊢ + : �. Our goal follows from a case analysis on the linearity
of � similar to the L-App case.

Case

L-Op handle E[(do ℓ +)�] with � S
∅
{ # [+ ′/?,, ′/A],

where ℓ ∉ bl(E), (ℓ ? A ↦→ #) ∈ �, (ℓ : � ։. �) ∈ �,

, = _.~� .handle E[(return ~)�] with �,

(+ ′,S1) = tag(+), (, ′,S2) = tag(,),S = S1 ∪ S2

The linear safety of "̂ gives the linear safety of+ ,� , # and E. We need to show the linear
safety of, . If . = ◦, the linear safety of, directly follows from the linear safety of E and
� . If . = •, by the linear safety of E[(do ℓ +)�] we have ℒ(E) = ∅. By the linear safety
of � we have ℒ(�) = ∅. Thus, ℒ(,) = ∅, which gives us the linear safety of, . The

linear safety of #̂ follows from Lemma A.4. Then, we prove the equation. By inversion on
(do ℓ +)� , we have ⊢ + : �. Suppose ⊢ , : � →. � . By the linear safety of � , we have
ℒ(�) = ℒ(#) = ∅. By a case analysis on the linearity of �.
Subcase ⊢ � : •. We have lin(+) = false and tag(+) = {+ , ∅}. By the fact that + is closed

and linear safe, we have ℒ(+) = ∅. By a case analysis on the linearity of � →. � .
subcase ⊢ � →. � : •. We have lin(,) = false and tag(,) = {,, ∅}. By the fact

that, is closed and linear safe, we have ℒ(,) = ∅. Our goal follows from

ℒ("̂) ∪ ∅ = ∅ = ℒ(#̂) ∪ ∅.

34 Wenhao Tang, Daniel Hillerström, Sam Lindley, and J. Garre� Morris

subcase ⊢ � →. � : ◦. We have lin(,) = true and tag(,) = {, ◦, {, ◦}}. By

Lemma A.3, A appears in # exactly once. We have ℒ("̂) ∪ {, ◦} = ℒ(E) ∪

{, ◦} = ℒ(, ◦) = ℒ(#̂).
Subcase 0 � : •. We have lin(+) = true. By Lemma A.3, ? appears in # exactly once.

If + = +1
◦ for some +1, we have + ◦ = (+ , ∅). By a case analysis on the linearity of

� →. � .
subcase ⊢ � →. � : •. We have lin(,) = false and tag(,) = {,, ∅}. By the fact

that, is closed and linear safe, we have ℒ(,) = ∅. Our goal follows from

ℒ("̂) ∪ ∅ = ℒ(+) = ℒ(#̂) ∪ ∅.
subcase ⊢ � →. � : ◦. We have lin(,) = true and tag(,) = {, ◦, {, ◦}}. By

Lemma A.3, A appears in # exactly once. We have ℒ("̂) ∪ {, ◦} = ℒ(+) ∪

ℒ(E) ∪ {, ◦} = ℒ(+) ∪ℒ(, ◦) = ℒ(#̂).
Otherwise, we have + ◦ = (+ ◦, {+ ◦}). By a case analysis on the linearity of � →. � .
subcase ⊢ � →. � : •. We have lin(,) = false and tag(,) = {,, ∅}. By the fact

that, is closed and linear safe, we have ℒ(,) = ∅. Our goal follows from

ℒ("̂) ∪ ∅ = ℒ(+) ∪ {+ ◦} = ℒ(+ ◦) = ℒ(#̂) ∪ ∅.
subcase ⊢ � →. � : ◦. We have lin(,) = true and tag(,) = {, ◦, {, ◦}}. By

Lemma A.3, A appears in # exactly once. We haveℒ("̂) ∪ {, ◦,+ ◦} = ℒ(+) ∪

ℒ(E) ∪ {, ◦,+ ◦} = ℒ(+ ◦) ∪ℒ(, ◦) = ℒ(#̂).
Case

L-Remove F [+ ◦] ∅
{+ ◦ }
{ F [+]

The linear safety of #̂ directly follows from the linear safety of "̂ . We have ℒ("̂) ∪ ∅ =

ℒ(F) ∪ℒ(+ ◦) = ℒ(F) ∪ℒ(+) ∪ {+ ◦} = ℒ(#̂) ∪ {+ ◦}.
Case

L-Lift E["] S
T
{ E[#], if " S

T
{ #

The linear safety of "̂ gives the linear safety of E and" . By IH, we have the linear safety

of # . The linear safety of #̂ follows from the linear safety of E and # . By IH, we have

ℒ(") ∪ S = ℒ(#) ∪ T . Our goal follows from ℒ("̂) ∪ S = ℒ(E) ∪ ℒ(") ∪ S =

ℒ(E) ∪ℒ(#) ∪ T = ℒ(#̂) ∪ T .

�

B FULL SPECIFICATION OF Q◦
eff

In this section, we give the full syntax, typing rules, type inference, and constraint solving algo-
rithm of Q◦

eff
in Section 5.

B.1 Full Syntax

The full syntax of Q◦
eff

is given in Figure 13. Note that we introduce the syntactic category of
concrete rows to simplify the presentation of the constraint solving algorithm.

B.2 Full Typing Rules

The full syntax-directed typing rules for Q◦
eff

is given in Figure 14. Note that in the qualified ef-
fect system of Q◦

eff
, we only have subtyping between row types and use them in Q-Do, Q-Seq,

Q-Handle, and Q-Handler. This is different from other type systems with general subtyping,
where the subtyping relation is used everywhere. For example, in the Q-App rule, we require the
argument type to be equal to the parameter type of the function, instead of requiring a subtyping

Soundly Handling Linearity 35

Value types �, � ::= U | �→. �

Computation types �,� ::= � !�

Handler types � ::=� ⇒ �

Effect types � ::= {'}

Concrete row types CRow ∋ ::= · | ℓ : �։. � ;

Row types Row ∋ ' ::= ` | | ;'

Linearity types . ::= q | • | ◦

Types g ::= � | ' | .

Predicates Pred ∋ c ::= g1 � g2 | '1 6 '2 | ' ⊥L

Qualified types d ::= � | c ⇒ d

Type schemes TySch ∋ f ::= d | ∀U.f

Label sets L ::= ∅ | {ℓ} ⊎ L

Type contexts Env ∋ Γ ::= · | Γ, G : f

Predicate sets PSet ∋ % ::= · | %, c

Values + ,, ::= G | _G."

Computations ", # ::=+ , | return + | do ℓ + | let G = + in "

| let G ← " in # | handle " with �

Handlers � ::= {return G ↦→ "} | {ℓ ? A ↦→ "} ⊎�

Fig. 13. The syntax of Q◦
eff
.

relation. Having a full subtyping relation between any types does not help improve the accuracy
of tracking control flow linearity; subtyping between effect rows is enough.

B.3 Type Inference Algorithm

The full type inference of Q◦
eff

is given in Figure 16. It uses the unification relations g ∼ g ′ : \
which states that \ is the principal unifier of types g and g ′, and � ∼ �′ : \ which states that \ is
the principal unifier for computation types� and�′. The unification relations are directly defined
by the unification function.

U-Type
unify(g ∼ g ′) = \

g ∼ g ′ : \

U-Comp
unify(� ∼ �′) = \

� ∼ �′ : \

Figure 15 gives unification function unify(*) which takes a set of unification predicates and
returns the principal unifiers of them. It is relatively standard [Martelli and Montanari 1982]. The
arrow ⇀ indicates a meta function that might fail. Following Leijen [2008] we explicitly indicate
the successful return of a result by return. The auxiliary functions urow and ulin are given and
explained in . The unification predicates and predicate sets are defined as follows.

Unification predicates UPred ∋ D ::= g ∼ g ′ | � ∼ �′

Unification sets USet ∋ * ::=* ,D

Note that it is possible to postpone the solving of unification constraints to the constraint solving
algorithm. We opt for this mixed style presentation for Q◦

eff
in order to keep close to the original

presentation of qualified types [Jones 1994], and to keep the constraint set cleaner.

36 Wenhao Tang, Daniel Hillerström, Sam Lindley, and J. Garre� Morris

% | Γ ⊢ + : � % | Γ ⊢ " : � % | Γ ⊢ � : � ⇒ �

Q-Var

% ⊢ Γ � •

(% ⇒ �) ⊑ f

% | Γ, G : f ⊢ G : �

Q-Abs

% | Γ, G : � ⊢ " : �

% ⊢ Γ � .

% | Γ ⊢ _G." : �→. �

Q-App

% | Γ1, Γ ⊢ + : �→. �

% | Γ2, Γ ⊢, : � % ⊢ Γ � •

% | Γ1, Γ2, Γ ⊢ + , : �

Q-Let

& | Γ1, Γ ⊢ + : � f = gen((Γ1, Γ),& ⇒ �)

% | Γ2, Γ, G : f ⊢ " : � % ⊢ Γ � •

% | Γ1, Γ2, Γ ⊢ let G = + in " : �

Q-Return

% | Γ ⊢ + : �

% | Γ ⊢ return + : � ! {'}

Q-Do

% | Γ ⊢ + : �ℓ
% ⊢ {ℓ : �ℓ ։

. �ℓ } 6 '

% | Γ ⊢ do ℓ + : �ℓ ! {'}

Q-Seq

% | Γ1, Γ ⊢ " : � ! {'1} % | Γ2, Γ, G : � ⊢ # : � ! {'2}

% ⊢ '1 6 ' % ⊢ '2 6 ' % ⊢ Γ2 � '1 % ⊢ Γ � •

% | Γ1, Γ2, Γ ⊢ let G ← " in # : � ! {'}

Q-Handle

% | Γ1, Γ ⊢ � : � ! {'1} ⇒ �

% | Γ2, Γ ⊢ " : � ! {'}

% ⊢ Γ � • % ⊢ ' 6 '1

% | Γ1, Γ2, Γ ⊢ handle " with � : �

Q-Handler

� = {return G ↦→ "} ⊎ {ℓ8 ?8 A8 ↦→ #8 }8
� = � ! {(ℓ8 : �8 ։

.8 �8)8 ;'1} � = � ! {'2}

% | Γ, G : � ⊢ " : �

[% | Γ, ?8 : �8 , A8 : �8 →
.8 � ⊢ #8 : �]8

% ⊢ Γ � • % ⊢ '1 6 '2 % ⊢ '1 ⊥ {ℓ8 }8

% | Γ ⊢ � : � ⇒ �

Fig. 14. Syntax-directed Typing Rules for Q◦
eff

B.4 Constraint Solving Algorithm

The constraint solving algorithm of Q◦
eff

is given in Figure 17.
The function ulin unifies two linearity types. The function ulab unifies the signatures of shared

labels of two concrete rows. The function urow wraps ulab. The function trlin computes the tran-
sitive closure of linearity constraints.
The function srow(\, %, &) solves row constraints. It takes the current substitution \ and the

currently solved predicate set % , and solves the predicates in & . The basic idea is to transform the
row subtyping predicates to forms of ` 6 ' and row lacking predicates to forms of ` ⊥L, which
we call solved forms. It does a case analysis on the first predicate in & . For instance, consider
the most complicated case 1 ; `1 6 2 ; `2. It first unifies the common labels of 1 and 2. When
 1 is a subset of 2, we can directly transform it to the solved form; otherwise, we allocate a
fresh row variable to substitute `2 and transform it to the solved form. Note that we also need to
move all previously solved predicates to the unsolved predicate set, because the row variable `2 is
substituted, which might turn some predicates in solved forms to unsolved forms.
Themain function solve sequentially solves row constraints using srow and linearity constraints

using trlin. Note that we use factorise to factorise the output predicate set to transform the linear-
ity constraints into the simplest form (i.e., only between value type variables, row variables, and
linearity), which is suitable for computing the transitive closure using trlin.

Soundly Handling Linearity 37

unify : USet ⇀ Subst

unify(·) = return]

unify(U ∼ U,*) = unify(*)

unify(U ∼ g,*) =
assert U ∉ �v(g)
let \ = [g/U]

unify(*)\

unify(g ∼ U,*) =
unify(U ∼ g,*)

unify(� ! {'} ∼ �′ ! {'′},*) =

unify(� ∼ �′, ' ∼ '′,*)

unify((�→. �) ∼ (�′ →. ′ �′),*) =

unify(� ∼ �′,� ∼ �′, . ∼ . ′,*)

unify(. ∼ . ′,*) =
let \ = ulin(.,. ′)
unify(*)\

unify(1 ∼ 2,*) =

let (′1,
′
2, \) = urow(1, 2)

assert set(′1) = set(′2)
unify(*)\

unify(1 ; `1 ∼ 2,*) =

let (′1,
′
2, \) = urow(1, 2)

assert set(′1) ⊆ set(2)

assume fresh `
let \ ′ = [((′2\

′
1) ; `)/`1]

unify(\ ′*)\ ′\

unify(2 ∼ 1 ; `1,*) =

unify(1 ; `1 ∼ 2,*)

unify(1 ; `1 ∼ 2 ; `2,*) =

let (′1,
′
2, \) = urow(1, 2)

assume fresh `
let \ ′ = [((′2\

′
1) ; `)/`1,

((′1\
′
2) ; `)/`2]

unify(\ ′*)\ ′\

Fig. 15. Unification of Q◦
eff
.

38 Wenhao Tang, Daniel Hillerström, Sam Lindley, and J. Garre� Morris

Γ ⊢ + : � ⊣ \, %, Σ Γ ⊢ " : � ⊣ \, %, Σ Γ ⊢ � : � ⇒ � ⊣ \, %, Σ

Q-VarW

(G : ∀U.% ⇒ �) ∈ Γ

V fresh \ = [V/U]

Γ ⊢ G : \� ⊣ \, \%, {G}

Q-LetW

Γ ⊢ + : � ⊣ \1, %1, Σ1 f = gen(\1Γ, %1 ⇒ �)

\1Γ, G : f ⊢ " : � ⊣ \2, %2, Σ2

& = un(\2\1Γ |Σ1∩Σ2) ∪ un(\2(G : f) |Σc2)

Γ ⊢ let G = + in " : � ⊣ \2\1, %2 ∪&, Σ1 ∪ (Σ2\G)

Q-AbsW

U,q fresh Γ, G : U ⊢ " : � ⊣ \, %, Σ

& = leq(\Γ |Σ, q) ∪ un(\ (G : U) |Σc)

Γ ⊢ _G." : \U →q � ⊣ \, % ∪&, Σ\G

Q-AppW

Γ ⊢ + : � ⊣ \1, %1, Σ1 \1Γ ⊢, : � ⊣ \2, %2, Σ2

U, `, q fresh \2� ∼ (� →
q U ! `) : \3

% = \3(\2%1 ∪ %2) & = un(\3\2\1Γ |Σ1∩Σ2)

Γ ⊢ + , : \3(U ! `) ⊣ \3\2\1, % ∪&, Σ1 ∪ Σ2

Q-SeqW

Γ ⊢ " : � ! {'1} ⊣ \1, %1, Σ1 \1Γ, G : � ⊢ # : � ! {'2} ⊣ \2, %2, Σ2 ` fresh

& = un(\2\1Γ |Σ1∩Σ2) ∪ un(\2(G : �) |Σc2) ∪ leq(\2\1Γ |Σ2 , \2'1) ∪ sub(\2'1, `) ∪ sub('2, `)

Γ ⊢ let G ← " in # : � ! ` ⊣ \2\1, \2%1 ∪ %2 ∪&, Σ1 ∪ (Σ2\G)

Q-ReturnW

Γ ⊢ + : � ⊣ \, %, Σ ` fresh

Γ ⊢ return + : � ! {`} ⊣ \, %, Σ

Q-DoW

Γ ⊢ + : � ⊣ \1, %, Σ � ∼ �ℓ : \2
`, q fresh & = sub((ℓ : �ℓ ։

q �ℓ), `)

Γ ⊢ do ℓ + : �ℓ ! {`} ⊣ \2\1, \2% ∪&, Σ

Q-HandleW

Γ ⊢ � : � ! {'1} ⇒ � ⊣ \1, %1, Σ1 \1Γ ⊢ " : �′ ! {'} ⊣ \2, %2, Σ2

\2� ∼ �
′ : \3 % = \3(\2%1 ∪ %2) & = sub(\3', \3\2'1) ∪ un(\3\2\1Γ |Σ1∩Σ2)

Γ ⊢ handle " with � : \3\2� ⊣ \3\2\1, % ∪&, Σ1 ∪ Σ2

Q-HandlerW

U, q8, ` fresh Γ, G : U ⊢ " : � ⊣ \0, %0, Σ0

[\8−1(Γ, ?8 : �ℓ8 , A8 : �ℓ8 →
q8 �) ⊢ #8 : �8 ⊣ \

′
8 , %8 , Σ8 �8 ∼ \

′
8\8−1� : \ ′′8 \8 = \

′′
8 \
′
8\8−1]

=
8=1

� = \= (U ! {(ℓ8 : �ℓ8 ։
q8 �ℓ8)8 ; `}) � ! {'} = \=�

Σ = (Σ0\{G}) ∪ (∪
=
8=1(Σ8\{?8 , A8})) % = (∪=8=0\=%8) ∪ un(\=Γ |Σ) ∪ sub(`, ') ∪ lack(`, {ℓ8 }8)

& = un(\= (G : U) |Σc0) ∪ (∪
=
8=1un(\= (?8 : �ℓ8 , A8 : �ℓ8 →

q8 �)))

Γ ⊢ {return G ↦→ "} ⊎ {ℓ8 ?8 A8 ↦→ #8 }
=
8=1 : � ⇒ \=� ⊣ \=, % ∪&, Σ

leq(Γ, g) = factorise(Γ � g)

un(Γ) = leq(Γ, •)

sub('1, '2) = factorise('1 6 '2)

lack(',L) = factorise(' ⊥L)

Fig. 16. Type inference of Q◦
eff

Soundly Handling Linearity 39

srow : (Subst × PSet × PSet)
⇀ (Subst × PSet)

srow(\, %, ·) = return (\, %)

srow(\, %, (g1 � g2,&)) =
srow(\, (%, g1 � g2),&)

srow(\, %, (1 6 2,&)) =

let (′1,
′
2, \
′) = urow(1, 2)

assert set(′1) ⊆ set(′2)
srow(\ ′\, \ ′%, \ ′&)

srow(\, %, (1 ; ` 6 2 ; `, &)) =

let (′1,
′
2, \
′) = urow(1, 2)

assert set(′1) ⊆ set(′2)
srow(\ ′\, \ ′%, \ ′&)

srow(\, %, (1 ; ` 6 2, &)) =

let (′1,
′
2, \
′) = urow(1, 2)

assert set(′1) ⊆ set(′2)
srow(\ ′\, (\ ′%, ` 6 (′2\

′
1)), \

′&)

srow(\, %, (1 6 2 ; `2,&)) =

let (′1,
′
2, \
′) = urow(1, 2)

if set(′1) ⊆ set(′2)
then srow(\ ′\, \ ′%, \ ′&)
else assume fresh `

let \ ′′ = [((′1\
′
2) ; `)/`2]\

′

srow(\ ′′\, ·, \ ′′ (&, %))

srow(\, %, (1 ; `1 6 2 ; `2, &)) =

let (′1,
′
2, \
′) = urow(1, 2)

if set(′1) ⊆ set(′2)
then srow(\ ′\, (\ ′%, `1 6 (

′
2\

′
1) ; `2), \

′&)

else assume fresh `
let \ ′′ = [((′1\

′
2) ; `)/`2]\

′

srow(\ ′′\, `1 6 (
′
2\

′
1) ; `, \

′′ (&, %))

srow(\, %, (⊥L,&)) =
assert dom() ∩ L = ∅

srow(\, %,&)

srow(\, %, (; ` ⊥L,&)) =

assert dom() ∩ L = ∅

srow(\, (%, ` ⊥L),&)

urow : (CRow × CRow)
⇀ (CRow × CRow × Subst)

urow(, ′) =
let \ = ulab(, ′)
return (\ , \ ′, \)

ulab : (CRow × CRow) ⇀ Subst
ulab(·,) = return]
ulab(, ·) = return]
ulab((ℓ : .1 ; 1), (ℓ : .2 ; 2)) =

let \ = ulin(.1, .1)
let \ ′ = ulab(\ 1, \ 2)

return \ ′\
ulab((ℓ : . ; 1), 2) = ulab(1, 2)

ulab(1, (ℓ : . ; 2)) = ulab(1, 2)

ulin : (Lin × Lin) ⇀ Subst
ulin(.,.) = return]
ulin(•, ◦) = fail
ulin(◦, •) = fail
ulin(q,.) = return [./q]
ulin(., q) = return [./q]

trlin : (PSet × PSet) → PSet
trlin(%, ·) = %
trlin(%, ('1 6 '2,&)) = trlin(%,&)
trlin(%, (g1 � g2,&)) = trlin(% ∪ % ′′,&)
where
% ′ = % ∪ {g1 � g1, g2 � g2}

% ′′ = {g ′1 � g
′
2 | {g

′
1 � g1, g2 � g

′
2} ⊆ %

′}

solve : PSet ⇀ (Subst × PSet)
solve(%) =
let (\,&) = srow(], ·, %)
let & ′ = trlin(·, factorise(&))
assert (◦ � •) ∉ & ′

return (\,&)

Fig. 17. Constraint solving of Q◦
eff
.

40 Wenhao Tang, Daniel Hillerström, Sam Lindley, and J. Garre� Morris

C PROOFS OF Q◦
eff

In this section, we prove the theorems in Section 5.

C.1 Correctness of Factorisation

We first prove some useful properties of the entailment relations.

Theorem C.1 (Properties of the entailment relation). The entailment relation between

predicate sets satisfies the following properties:

• Monotonicity. If & ⊆ % , then % ⊢ & .

• Transitivity. If %1 ⊢ %2 and %2 ⊢ %3, then %1 ⊢ %3.

• Closure property. If % ⊢ & , then \% ⊢ \& .

• Weakening. If % ⊢ & , then %, % ′ ⊢ & .

Proof.

Monotonicity. Directly follows from P-Subsume and P-PredSet.
Transitivity. By P-PredSet, we only need to prove that if %1 ⊢ %2 and %2 ⊢ c , then %1 ⊢ c . By
straightforward induction on %2 ⊢ c .
Closure property. By P-PredSet, we only need to prove that if % ⊢ c then \% ⊢ \c . By straightfor-
ward induction on % ⊢ c .
Weakening. By P-PredSet, we only need to prove that if % ⊢ c then %, % ′ ⊢ c . By straightforward
induction on % ⊢ c .

�

Lemma C.2 (Inverse closure property). If % ⊢ \ (f � g), then there exists % ′ ⊢ f � g such that

% ⊢ \% ′.

Proof. By induction on the entailment relations.

Case

P-�antifier

% ⊢ [g ′/U]\ (f � g) (1) for some g ′

% ⊢ \ ((∀U.f) � g)

Assume that U ∉ dom(\) and U ∉ �v(g) without loss of generality. We can commute
[g ′/U] and \ in (1). By the IH on (1), there exists % ′ ⊢ [g ′/U] (f � g) such that % ⊢ \% ′. By
P-�antifier, we have % ′ ⊢ (∀U.f) � g .

Case

P-�alifier

% ⊢ \c (1) % ⊢ \ (d � g) (2)

% ⊢ \ ((c ⇒ d) � g)

By the IH on (1), there exists %1 ⊢ c such that % ⊢ \%1. By the IH on (2), there exists
%2 ⊢ d � g such that % ⊢ \%2. By P-�alifier, we have %1 ∪ %2 ⊢ (c ⇒ d) � g . By
P-PredSet, we have % ⊢ \ (%1 ∪ %2).

Case For all other cases of % ⊢ \c , just take % ′ = c .

�

Theorem 5.3 (Correctness of factorisation). If factorise(%) = & , then & ⊢ % and % ⊢ & . If

factorise(Γ � g) = & , then & ⊢ Γ � g and for any % ⊢ Γ � g , there exists \ such that % ⊢ \& .

Proof. The first part of the theorem is kind of obvious because factorise(%) is almost directly
defined from the entailment rules in Figure 10.We prove the auxiliary lemma that if factorise(c) =

Soundly Handling Linearity 41

& , then & ⊢ c and c ⊢ & . Both directions follow from straightforward induction on the definition
of factorise. Note that in the proof of c ⊢ & , we apply the bottom-up direction of the two-way
rules P-Fun and P-Row. Then, given factorise(%) =

⋃

c∈% factorise(c), by the lemma we have
factorise(c) ⊢ c for all c ∈ % , which then give

⋃

c∈% factorise(c) ⊢ % by P-PredSet and the
weakening of Theorem C.1. We also have that c ⊢ factorise(c) for all c ∈ % , which then give
% ⊢

⋃

c∈% factorise(c) by P-PredSet and the weakening of Theorem C.1.
For the second part of the theorem, we prove the auxiliary lemma that if factorise(f � g) = & ,

then& ⊢ f � g and for any % ⊢ f � g , there exists \ such that % ⊢ \& . The& ⊢ f � g follows from
straightforward induction on the definition of factorise. The other direction is more involved. We
proceed by induction on the definition of factorise.

Case

factorise((∀U.f) � g) = factorise([V/U]f � g) (1) for some fresh V

Suppose factorise((∀U.f) � g) = & . We want to show that for any % ⊢ (∀U.f) � g (2),
there exists \ such that % ⊢ \& . By (2) and P-�antifier, there exists \1 = [g ′/U] such
that % ⊢ \1f � g . Let \2 = [g

′/V]. We have % ⊢ \2 [V/U]f � g . By Lemma C.2, there exists
% ′ such that % ′ ⊢ [V/U]f � g (3) and % ⊢ \2%

′ . By (3) and the IH on (1), there exists \3
such that % ′ ⊢ \3& . Then, by the closure property and transitivity of Theorem C.1, we have
% ⊢ \2\3& .

Case

factorise((c ⇒ f) � g) = factorise(c) (1) ∪ factorise(f � g) (2)

Suppose factorise(c) = &1 and factorise(f � g) = &2. For any % ⊢ (c ⇒ f) � g , by
P-�alifier, we have % ⊢ c and % ⊢ f � g . By the IH on (1), there exists \1 such that % ⊢
\1&1. By the IH on (2), there exists \2 such that % ⊢ \2&2. Note that dom(\1) ∩dom(\2) = ∅.
Thus, we have % ⊢ \1\2(&1 ∪&2).

Case

factorise(c) = &

By the first part of the theorem which has been proved, we have c ⊢ & . For any % ⊢ c , by
the transitivity of Theorem C.1, we have % ⊢ & .

With this lemma, our goal follows from a similar analysis to the proof of the first part of the
theorem since P-Context and P-PredSet are both conjunction rules.

�

C.2 Principal Unifier

We have the following lemmas for the unification function in Figure 15 and its auxiliary functions.

Lemma C.3 (Principal auxiliary unifiers). Given 1 and 2, let
′
1 = (1 |dom (1)∩dom(2)) and

 ′2 = (2 |dom(1)∩dom(2)). If ulab(1, 2) = \ , then for any \ ′ ′1 = \ ′ ′2, there exists \
′′ such that

\ ′ = \ ′′\ ; if it fails, then ′1 and
′
2 cannot be unified.

Proof. By straightforward induction on the definition of urow, ulab and ulin. �

Lemma C.4 (Principal unifiers). If � ∼ � : \ , then for any \ ′� = \ ′�, there exists \ ′′ such that

\ ′ = \ ′′\ ; if it fails, then � and � cannot be unified. The same applies to computation types.

Proof. By straightforward induction on the definition of unify(*). �

42 Wenhao Tang, Daniel Hillerström, Sam Lindley, and J. Garre� Morris

C.3 Soundness and Completeness of Type Inference

We prove the soundness and completeness of type inference as well as auxiliary lemmas.

Lemma C.5 (Closure property of typing). If % | Γ ⊢ + : �, then \% | \Γ ⊢ + : \�. The same

applies to computation and handler typing.

Proof. By the closure property of Theorem C.1 and straightforward induction on the typing
derivations. �

Lemma C.6 (Weakening of predicates). If % | Γ ⊢ + : �, then %, % ′ | Γ ⊢ + : �. The same

applies to computation and handler typing.

Proof. By theweakening property of TheoremC.1 and straightforward induction on the typing
derivations. �

Lemma C.7 (Extra is unlimited). If % | Γ ⊢ + : �, then % ′ | Γ, G : f ⊢ + : � for any % ′ ⊢ % and

% ′ ⊢ f � •. The same applies to computation and handler typing.

Proof. By straightforward induction on the typing derivations. �

Theorem 5.1 (Soundness). If Γ ⊢ + : � ⊣ \, %, Σ, then % | \Γ |Σ ⊢ + : �. The same applies to

computation and handler typing.

Proof. By mutual induction on the type inference derivations Γ ⊢ + : � ⊣ \, %, Σ, Γ ⊢ " : � ⊣

\, %, Σ, and Γ ⊢ � : � ⇒ � ⊣ \, %, Σ.

Case

Q-VarW

(G : ∀U.% ⇒ �) ∈ Γ V fresh \ = [V/U] (1)

Γ ⊢ G : \� ⊣ \, \%, {G}

By (1), we have \% ⇒ \� ⊑ \ (∀U.% ⇒ �). Our goal then follows from Q-Var.
Case

Q-LetW

Γ ⊢ + : � ⊣ \1, %1, Σ1 (1) f = gen(\1Γ, %1 ⇒ �)

\1Γ, G : f ⊢ " : � ⊣ \2, %2, Σ2 (2)

& = un(\2\1Γ |Σ1∩Σ2) ∪ un(\2 (G : f) |Σc2)

Γ ⊢ let G = + in " : � ⊣ \2\1, %2 ∪&, Σ1 ∪ (Σ2\G)

By the IH on (1), we have %1 | \1Γ |Σ1 ⊢ + : �. By Lemma C.5, we have \2%1 | \2\1Γ ⊢
+ : \2� (3). By the IH on (2), we have %2 | \2(\1Γ, G : f) |Σ2 ⊢ " : \2� (4). Let f ′ =

gen(\2\1Γ, \2%1 ⇒ \2�). Notice that \2 is generated by the type inference judgement (2),
which cannot substitute any variables bound by f (i.e., variables in �v(%1 ⇒ �)\�v(\1Γ)).
Thus, we have \2f = f ′. Let Σ′2 = Σ2\G , Γ1 = (\2\1Γ) |Σ1\Σ′2 , Γ2 = (\2\1Γ) |Σ′2\Σ1 , Γ

′
=

(\2\1Γ) |Σ1∩Σ′2 . By (3) and (4), we have \2%1 | Γ1, Γ
′ ⊢ + : \2� (5) and %2 | Γ2, Γ

′, (G : f ′) |Σ2 ⊢

" : \2� . By Lemma C.7 we have %2 ∪ un((G : f ′) |Σc2) | Γ2, Γ
′, G : f ′ ⊢ " : \2� (6). By

Theorem 5.3, we have & ⊢ Γ′ � •. Our goal follows from Q-Let, (5), (6) and Lemma C.6.
Case

Q-AbsW

U,q fresh Γ, G : U ⊢ " : � ⊣ \, %, Σ (1)

& = leq(\Γ |Σ, q) ∪ un(\ (G : U) |Σc)

Γ ⊢ _G." : \U →q � ⊣ \, % ∪&, Σ\G

Soundly Handling Linearity 43

By the IH on (1), we have % | (\Γ, G : \U) |Σ ⊢ " : � . Our goal follows from Lemma C.7,
Theorem 5.3 and Q-Abs.

Case

Q-AppW

Γ ⊢ + : � ⊣ \1, %1, Σ1 (1) \1Γ ⊢, : � ⊣ \2, %2, Σ2 (2)

U, `, q fresh \2� ∼ (� →
q U ! `) : \3 (3)

% = \3(\2%1 ∪ %2) & = un(\3\2\1Γ |Σ1∩Σ2)

Γ ⊢ + , : \3 (U ! `) ⊣ \3\2\1, % ∪&, Σ1 ∪ Σ2

By the IH on (1), we have %1 | \1Γ ⊢ + : �. By the IH on (2), we have %2 | \2\1Γ ⊢, : �.
By Lemma C.5, we have \3\2%1 | \3\2\1Γ ⊢ + : \3\2� (4) and \3%2 | \3\2\1Γ ⊢, : \3� (5).
By (3), we have \3\2� = \3(� →

q U ! `). Let Γ1 = (\3\2\1Γ) |Σ1\Σ2 , Γ2 = (\3\2\1Γ) |Σ2\Σ1 ,
Γ
′
= (\3\2\1Γ) |Σ1∩Σ2 . By (4) and (5), we have \3\2%1 | Γ1, Γ

′ ⊢ + : \3\2� (6) and \3%2 |
Γ2, Γ

′ ⊢, : \3� (7). By Theorem 5.3, we have& ⊢ Γ′ � •. Our goal follows from Q-App, (6),
(7), and Lemma C.6.

Case

Q-ReturnW

Γ ⊢ + : � ⊣ \, %, Σ (1) ` fresh

Γ ⊢ return + : � ! {`} ⊣ \, %, Σ

Our goal follows from the IH on (1) and Q-Return.
Case

Q-DoW

Γ ⊢ + : � ⊣ \1, %, Σ (1) � ∼ �ℓ : \2
`, q fresh & = sub((ℓ : �ℓ ։

q �ℓ), `)

Γ ⊢ do ℓ + : �ℓ ! {`} ⊣ \2\1, \2% ∪&, Σ

Our goal follows from the IH on (1), Q-Do, Theorem 5.3, and Lemma C.5.
Case

Q-SeqW

Γ ⊢ " : � ! {'1} ⊣ \1, %1, Σ1 (1) \1Γ, G : � ⊢ # : � ! {'2} ⊣ \2, %2, Σ2 (2) ` fresh

& = un(\2\1Γ |Σ1∩Σ2) ∪ un(\2(G : �) |Σc2) ∪ leq(\2\1Γ |Σ2 , \2'1) ∪ sub(\2'1, `) ∪ sub('2, `)

Γ ⊢ let G ← " in # : � ! ` ⊣ \2\1, \2%1 ∪ %2 ∪&, Σ1 ∪ (Σ2\G)

Similar to theQ-LetW andQ-AppW cases. Let Σ′2 = Σ2\G , Γ1 = (\2\1Γ) |Σ1\Σ′2 , Γ2 = (\2\1Γ) |Σ
′
2\Σ1

,
Γ
′
= (\2\1Γ) |Σ1∩Σ′2 . By the IH on (1) and LemmaC.5,we have\2%1 | Γ1, Γ

′ ⊢ " : \2(� ! {'1}) (3).
By the IH on (2), we have %2 | Γ2, Γ

′, (G : �) |Σ2 ⊢ # : � ! {'2} (4). Our goal follows from
Q-Seq, (3), (4), Theorem 5.3, Lemma C.6 and Lemma C.7.

Case

Q-HandleW

Γ ⊢ � : � ! {'1} ⇒ � ⊣ \1, %1, Σ1 (1) \1Γ ⊢ " : �′ ! {'} ⊣ \2, %2, Σ2 (2)

\2� ∼ �
′ : \3 % = \3(\2%1 ∪ %2) & = sub(\3', \3\2'1) ∪ un(\3\2\1Γ |Σ1∩Σ2)

Γ ⊢ handle " with � : \3\2� ⊣ \3\2\1, % ∪&, Σ1 ∪ Σ2

By a similar proof to the Q-App case, our goal follows from the IHs on (1) and (2), Theo-
rem 5.3, Lemma C.5 and Lemma C.6.

44 Wenhao Tang, Daniel Hillerström, Sam Lindley, and J. Garre� Morris

Case

Q-HandlerW

U, q8, ` fresh Γ, G : U ⊢ " : � ⊣ \0, %0, Σ0 (1)

[\8−1(Γ, ?8 : �ℓ8 , A8 : �ℓ8 →
q8 �) ⊢ #8 : �8 ⊣ \

′
8 , %8 , Σ8 (2)

�8 ∼ \
′
8\8−1� : \ ′′8 \8 = \

′′
8 \
′
8\8−1]

=
8=1

� = \= (U ! {(ℓ8 : �ℓ8 ։
q8 �ℓ8)8 ; `}) � ! {'} = \=�

Σ = (Σ0\{G}) ∪ (∪
=
8=1(Σ8\{?8 , A8}))

% = (∪=8=0\=%8) ∪ un(\=Γ |Σ) ∪ sub(`, ') ∪ lack(`, {ℓ8 }8)

& = un(\= (G : U) |Σc0) ∪ (∪
=
8=1un(\= (?8 : �ℓ8 , A8 : �ℓ8 →

q8 �)))

Γ ⊢ {return G ↦→ "} ⊎ {ℓ8 ?8 A8 ↦→ #8 }
=
8=1 : � ⇒ \=� ⊣ \=, % ∪&, Σ

The type inference for handlers is the most complicated, but there is nothing really new
about the proof compared to previous cases. By the IH on (1), we have %0 | \0(Γ, G : U) |Σ0 ⊢

" : � . By the IH on (2), we have %8 | \
′
8\8−1(Γ, ?8 : �ℓ8 , A8 : �ℓ8 →

q8 �) |Σ8 ⊢ #8 : �8 . By

Lemma C.5, we have \=%0 | \= (Γ, G : U) |Σ0 ⊢ " : \=� and \=%8 | \= (Γ, ?8 : �ℓ8 , A8 : �ℓ8 →
q8

�) |Σ8 ⊢ #8 : \=�8 . By Lemma C.7, we have

\=%0 ∪ un(\=Γ |Σ) ∪ un(\= (G : U) |Σc0) | \= (Γ |Σ, G : U) ⊢ " : \=� (3)

and

\=%8 ∪ un(\=Γ |Σ) ∪ un(\= (?8 : �ℓ8 , A8 : �ℓ8 →
q8 �)) | \= (Γ |Σ, ?8 : �ℓ8 , A8 : �ℓ8 →

q8 �) ⊢ #8 : \=�8 (4)

By Theorem 5.3, we have % ∪& ⊢ {` 6 ', ` ⊥ {ℓ8 }8 }. Our goal follows from Q-Handler, (3),
(4), and Lemma C.6.

�

Lemma C.8 (More general contexts). If % | Γ, G : f ⊢ + : � and f ⊑ f ′, then % | Γ, G : f ′ ⊢ + :

�. The same applies to computation and handler typing.

Proof. By straightforward induction on the typing derivation. �

LemmaC.9 (Zero is unlimited). If % | Γ, G : f ⊢ + : � and G does not appear in+ , then % ⊢ f � •.

The same applies to computation and handler typing.

Proof. By straightforward induction on the typing derivation. �

Lemma C.10 (Closure property of factorisation). If factorise(%) = & , then factorise(\%) =
\& . If factorise(Γ � g) = & , then factorise(\ (Γ � g)) = \& .

Proof. By the closure property of TheoremC.1 and straightforward induction on the definition
of factorise. �

Theorem 5.2 (Completeness). If % | \Γ ⊢ + : �, then Γ ⊢ + : �′ ⊣ \ ′,&, Σ and there exists

\ ′′ such that � = \ ′′�′, % ⊢ \ ′′& , and (\ = \ ′′\ ′) |Γ . The same applies to computation and handler

typing.

Proof. By mutual induction on the syntax-directed typing derivations % | Γ ⊢ + : �, % | Γ ⊢
" : � , and % | Γ ⊢ � : � ⇒ � .

Case

Q-Var

% ⊢ Γ � • % ⇒ � ⊑ ∀U.& ⇒ �

% | \ (Γ, G : ∀U.& ⇒ �) ⊢ G : �

Soundly Handling Linearity 45

By % ⇒ � ⊑ ∀U.& ⇒ �, there exists \1 such that � = \1� and % ⊢ \1& . By Q-VarW, we
have the following derivation

Q-VarW

V fresh \ ′ = [V/U]

Γ, G : ∀U.& ⇒ � ⊢ G : \ ′� ⊣ \ ′, \ ′&, {G}

Let \ ′′ = \\1 [U/V], we have � = \1� = \ ′′\ ′�, % ⊢ \1& = \ ′′\ ′& , and (\ = \ ′′\ ′) |Γ .
Case

Q-Let

%1 | \ (Γ1, Γ) ⊢ + : � (1) f = gen(\ (Γ1, Γ), %1 ⇒ �)

%2 | \ (Γ2, Γ), G : f ⊢ " : � (2) %2 ⊢ \Γ � •

%2 | \ (Γ1, Γ2, Γ) ⊢ let G = + in " : �

By the IH on (1), we have Γ1, Γ ⊢ + : �′ ⊣ \1, %
′
1, Σ1 and there exists \ ′1 such that � =

\ ′1�
′, %1 ⊢ \

′
1%
′
1, and (\ = \ ′1\1) |Γ1,Γ . By context weakening, we have Γ1, Γ2, Γ ⊢ + : �′ ⊣

\1, %
′
1, Σ1 (3). We also have f = gen(\ (Γ1, Γ2, Γ), %1 ⇒ �). Let f ′ = gen(\1(Γ1, Γ2, Γ), %

′
1 ⇒

�′). By (\ = \ ′1\1) |Γ1,Γ , it is easy to see that f ⊑ \ ′1f
′. Then by (2) and Lemma C.8, we have

%2 | \ (Γ2, Γ), G : \ ′1f
′ ⊢ " : � , which further implies %2 | \3\

′
1\1(Γ2, Γ, G : f ′) ⊢ " : � (4)

for some \3 with \ = \3\
′
1\1. By the IH on (4), we have \1 (Γ2, Γ, G : f ′) ⊢ " : �′ ⊣

\2, %
′
2, Σ2 and there exists \ ′2 such that � = \ ′2�

′, %2 ⊢ \
′
2%
′
2, and (\3\

′
1 = \ ′2\2) |Γ2,Γ . By

context weakening and \1f
′
= f ′, we have \1(Γ1, Γ2, Γ), G : f ′ ⊢ " : �′ ⊣ \2, %

′
2, Σ2 (5). Let

& = un(\2\1(Γ1, Γ2, Γ) |Σ1∩Σ2) ∪ un(\2 (G : f) |Σc2). By Q-LetW, (3) and (5), we have

Γ1, Γ2, Γ ⊢ let G = + in " : �′ ⊣ \2\1, %
′
2 ∪&, Σ1 ∪ (Σ2\G)

With \ ′ = \ ′1\
′
2, we have (\ = \ ′\2\1) |Γ1,Γ2,Γ3 . By Σ1∩Σ2 ⊆ dom(Γ), LemmaC.9, LemmaC.10

and Theorem 5.3, there exists \? such that %2 ⊢ \?\
′& (6). Let \ ′′ = \?\

′. Our goal follows
from (\ = \ ′′\2\1) |Γ1,Γ2,Γ3 , � = \ ′′�′, and %2 ⊢ \

′′ (% ′2 ∪&).
Case

Q-Abs

% | \Γ, G : � ⊢ " : � (1) % ⊢ \Γ � .

% | \Γ ⊢ _G." : �→. �

Take a fresh variable U and let \1 = \ [�/U]. By (1), we have % | \1(Γ, G : U) ⊢ " : � (2). By
the IH on (2), we have Γ, G : U ⊢ " : �′ ⊣ \ ′, % ′, Σ (3) and there exists \ ′′ such that� = \ ′′�′,
% ⊢ \ ′′% ′ , and (\1 = \ ′′\ ′) |Γ,G :U . Let & = leq(\ ′Γ |Σ, q) ∪ un(\ ′ (G : U) |Σc) By Q-AbsW and
(3), taking a fresh variable q , we have

Γ ⊢ _G." : \ ′U →q �′ ⊣ \ ′, % ′ ∪&, Σ\G

With \2 = \ ′′ [./q], we have (\ = \2\
′) |Γ,G :U . By % ⊢ \Γ � . , Lemma C.9, Lemma C.10,

and Theorem 5.3, there exists \? such that % ⊢ \?\2& . Let \3 = \?\2. Our goal follows from

(\ = \3\
′) |Γ,G :U , �→

. � = \3(\
′U →q �′) and % ⊢ \3(%

′ ∪&).
Case

Q-App

% | \ (Γ1, Γ) ⊢ + : � →. � (1) % | \ (Γ2, Γ) ⊢, : � (2) % ⊢ \Γ � •

% | \ (Γ1, Γ2, Γ) ⊢ + , : �

By the IH on (1), we have Γ1, Γ ⊢ + : �′ ⊣ \1, %1, Σ1 (3) and there exists \ ′1 such that

� →. � = \ ′1�
′, % ⊢ \ ′1%1, and (\ = \ ′1\1) |Γ1,Γ . Let \ = \ ′\ ′1\1 where \

′ only substitutes type
variables only appearing in Γ2. By the IH on (2), we have \1(Γ2, Γ) ⊢, : �′ ⊣ \2, %2, Σ2 (4)

46 Wenhao Tang, Daniel Hillerström, Sam Lindley, and J. Garre� Morris

and there exists \ ′2 such that � = \ ′2�
′, % ⊢ \ ′2%2, and (\

′\ ′1 = \ ′2\2) |Γ2,Γ (5). Take fresh

variables U, `, q . By � →. � = \ ′1�
′, the unification \2�

′ ∼ �′ →q U ! ` : \3 succeeds. By

Lemma C.4 and (5), there exists \4 such that \4\3(\2�
′) = \4\3 (�

′ →q U ! `) = � →. � .
Let %3 = \3(\2%1 ∪ %2) and & = un(\3\2\1(Γ1, Γ2, Γ) |Σ1∩Σ2). By Q-AppW, (3), (4) and context
weakening, we have Γ1, Γ2, Γ ⊢ + , : \3(U ! `) ⊣ \3\2\1, %3 ∪ &, Σ1 ∪ Σ2. With \ ′′ = \4\

′
2\
′
1,

we have (\ = \ ′′\3\2\1) |Γ1,Γ2,Γ . By Σ1 ∩ Σ2 ⊆ dom(Γ), % ⊢ \Γ � •, Lemma C.10, and
Theorem 5.3, we have % ⊢ \?\

′′& . Let \5 = \?\
′′. Our goal follows from � = \5\3(U ! `),

% ⊢ \5(%3 ∪&) and (\ = \5\3\2\1) |Γ1,Γ2,Γ .
Case

Q-Return

% | \Γ ⊢ + : � (1)

% | \Γ ⊢ return + : � ! {'}

Our goal follows from the IH on (1).
Case

Q-Do

% | \Γ ⊢ + : �ℓ (1) % ⊢ {ℓ : �ℓ ։
. �ℓ } 6 '

% | \Γ ⊢ do ℓ + : �ℓ ! {�}

Similar to previous cases. Our goal follows from the IH on (1), LemmaC.4, and Theorem 5.3.
Case

Q-Seq

% | \ (Γ1, Γ) ⊢ " : � ! {'1} (1) % | \ (Γ2, Γ), G : � ⊢ # : � ! {'2} (2)

% ⊢ '1 6 ' % ⊢ '2 6 ' % ⊢ \Γ2 � '1 % ⊢ \Γ � •

% | \ (Γ1, Γ2, Γ) ⊢ let G ← " in # : � ! {'}

By the IH on (1), we have Γ1, Γ ⊢ " : �′ ! {'′1} ⊣ \1, %1, Σ1 (4) and there exists \ ′1 such that
� ! {'1} = \

′
1(�
′ ! {'′1}), % ⊢ \

′
1%1, and (\ = \ ′1\1) |Γ1,Γ . Let \ = \ ′\ ′1\1 where \

′ substitutes
type variables only appearing in Γ2. By (2),we have % | \

′\ ′1\1(Γ2, Γ, G : �′) ⊢ # : � ! {'2} (3).
By the IH on (3), we have \1(Γ2, Γ, G : �′) ⊢ # : �′ ! {'′2} ⊣ \2, %2, Σ2 (5) and there exists \ ′2
such that� ! {'2} = \

′
2(�
′ ! {'′2}), % ⊢ \

′
2%2 and (\

′\ ′1 = \
′
2\2) |Γ2,Γ . Take a fresh variable `. Let

& = un(\2\1(Γ1, Γ2, Γ) |Σ1∩Σ2)∪un(\2 (G : �) |Σc2)∪leq(\2\1(Γ1, Γ2, Γ) |Σ2 , \2'1)∪sub(\2'1, `)∪

sub('2, `). ByQ-Seq
W, (4), (5), and contextweakening, we have Γ1, Γ2, Γ ⊢ let G ← " in # :

�′ ! {'2} ⊣ \2\1, \2%1∪%2∪&, Σ1∪(Σ2\G).With \ ′′ = ['/`]\ ′2\
′
1, we have (\ = \ ′′\2\1) |Γ1,Γ2,Γ .

By Σ1 ∩ Σ2 ⊆ dom(Γ), % ⊢ \Γ � •, Lemma C.9, Γ2 = Γ |Σ2 , % ⊢ \Γ2 � '1, % ⊢ '1 6 ', % ⊢
'2 6 ', Lemma C.10 and Theorem 5.3, there exists \? such that % ⊢ \?\

′′& . Let \3 = \?\
′′.

Our goal follows from � ! {'2} = \3(�
′ ! {`}), % ⊢ \3(\2%1 ∪ %2), and (\ = \3\2\1) |Γ1,Γ2,Γ .

Case

Q-Handle

% | \ (Γ1, Γ) ⊢ � : � ! {'1} ⇒ � (1) % | \ (Γ2, Γ) ⊢ " : � ! {'} (2)

% ⊢ \Γ � • % ⊢ ' 6 '1 (3)

% | \ (Γ1, Γ2, Γ) ⊢ handle " with � : �

By a similar proof to theQ-App case, our goal follows from the IHs on (1) and (2), LemmaC.10,
Theorem5.3, and LemmaC.4. The only difference is the subtyping constraint sub(\3', \3\2'1)
used by Q-HandleW, which follows from (3).

Soundly Handling Linearity 47

Case

Q-Handler

� = � ! {(ℓ8 : �ℓ8 ։
.8 �8)8 ;'1} � = � ! {'2}

% | \Γ, G : � ⊢ " : � (1) [% | \Γ, ?8 : �8 , A8 : �8 →
.8 � ⊢ #8 : �]8 (2)

% ⊢ \Γ � • % ⊢ '1 6 '2 % ⊢ '1 ⊥ {ℓ8 }8

% | \Γ ⊢ {return G ↦→ "} ⊎ {ℓ8 ?8 A8 ↦→ #8 }
=
8=1 : � ⇒ �

The typing rule for handler is the most complicated one, but there is actually nothing new
of the proof compared to previous cases for other rules. For each typing derivation on the
handler clauses, we do a similar proof to the Q-Abs case. Take fresh variables U, q8 , and `.
First, by (1) we have % | \ [�/U] (Γ, G : U) ⊢ " : � . By the IH on it, we have Γ, G : U ⊢ " :

� ′ ⊣ \0, %0, Σ0 (3) and there exists \
′
0 such that� = \ ′0�

′, % ⊢ \ ′0%0 and (\ [�/U] = \
′
0\0) |Γ,G :U .

Let \00 = \0 and \
1
0 = \ ′0. We have (\10\

0
0 = \) |Γ .

By the typing derivation on the first handler clause in (2), we have % | \10 [.1/q1]\
0
0 (Γ, ?1 :

�1, A1 : �1 →
q1 �) ⊢ #1 : � . By the IH on it, we have \00 (Γ, ?1 : �1, A1 : �1 →

q1 �) ⊢ #1 :

�1 ⊣ \1, %1, Σ1 and\
′
1 such that� = \ ′1�1, % ⊢ \

′
1%1 and (\

1
0 [.1/q1] = \

′
1\1) | (Γ,?1 :�1,A1:�1→q1�) .

By � = \ ′1�1, the unification �1 ∼ \
′
1\1�

′ : \G1 succeeds. By Lemma C.4, there exists \
~
1

such that \
~
1�1 = � . Set \

0
1 = \G\1\

0
0 and \11 = \ ′1\

~
1 . We have (\11\

0
1 = \) |Γ .

Repeating the above process for every 8 from 2 to =, we have \08−1(Γ, ?8 : �8 , A8 : �8 →
q8

�) ⊢ #8 : �8 ⊣ \8 , %8 , Σ8 (4) and (\
1
8 \

0
8 = \) |Γ . Let

�′ = \0= (U ! {(ℓ8 : �ℓ8 ։
q8 �ℓ8)8 ; `})

�′ ! {'} = \0=�
′

Σ = (Σ0\{G}) ∪ (∪
=
8=1(Σ8\{?8 , A8}))

% ′ = (∪=8=0\
0
=%8) ∪ un(\

0
=Γ |Σ) ∪ sub(`, ') ∪ lack(`, {ℓ8 }8)

& ′ = un(\0= (G : U) |Σc0) ∪ (∪
=
8=1un(\

0
= (?8 : �ℓ8 , A8 : �ℓ8 →

q8 �)))

By Q-HandlerW, (3), and (4), we have Γ ⊢ {return G ↦→ "} ⊎ {ℓ8 ?8 A8 ↦→ #8 }
=
8=1 :

�′ ⇒ \0=�
′ ⊣ \0=, %

′ ∪ & ′, Σ. With \ ′ = \1= ['1/`], we have (\ = \ ′\0=) |Γ . By Lemma C.9,
Lemma C.10, and Theorem 5.3 there exists \? such that % ⊢ \?\

′(% ∪ &). Let \ ′′ = \?\
′.

Our goal follows from � ⇒ � = \ ′′ (�′ ⇒ \0=�
′), % ⊢ \ ′′ (% ∪&), and (\ = \ ′′\0=) |Γ .

�

C.4 Correctness of Constraint Solving

Lemma C.11. If urow(1, 2) returns (
′
1,
′
2, \), then J 1 6 2KB0C = J ′1 6

′
2KB0C\ ; if it fails, then

 1 6 2 is not satisfiable.

Proof. By Lemma C.3, the substitution \ returned by urow(1, 2) is the principal unifier that
unifies the linearity types of the same labels in 1 and 2, which is a necessary condition for any
solution of 1 6 2. �

Lemma C.12. If factorise(%) = & , then J%KB0C = J&KB0C .

Proof. By Theorem 5.3, we have % ⊢ & and & ⊢ % . For any \ ∈ J%KB0C , we have · ⊢ \% . By the
closure property of Theorem C.1, we have \% ⊢ \& . By the transitivity of Theorem C.1, we have
· ⊢ \& , which implies \ ∈ J&KB0C . Symmetrically, for any \ ∈ J&KB0C , we can prove \ ∈ J%KB0C .
Finally, we have J%KB0C = J&KB0C . �

Theorem 5.4 (Correctness of constraint solving). For any constraint set % generated by the

type inference of Q◦
eff
, solve(%) always terminates.

48 Wenhao Tang, Daniel Hillerström, Sam Lindley, and J. Garre� Morris

• If it fails, then % is not satisfiable.

• If it returns (\,&), then % is satisfiable and J%KB0C = J&KB0C\ .

Proof. The termination of trlin and factorise is obvious. It may be not very obvious that srow
always terminates since the srow(\, %, &) moves the solved predicates in % to the set of unsolved
constraints & in some cases. Note that only row subtyping constraints of forms 1 6 2 ; `2 and
 1 ; `1 6 2 ; `2 might require resolving previously solved constraints because they substitute row
variables. In both cases, when set(′1) * set(′2), we substitute `2 with (′1\

′
2) ; `. Notice that

the number of labels used in the whole predicate set is finite, and the srow fails when there are
duplicated labels in the same row, which implies that this kind of substitution terminates. Finally,
we can conclude that srow terminates.

For the correctness, the idea is to show that every step preserves solutions. We first show
srow preserves solutions by proving a lemma that if srow(\, %,&) returns (\ ′\,& ′), then we have
J% ∪&KB0C = J& ′KB0C\

′; if it fails, then % ∪ & is not satisfiable. We prove by induction on the
definition of srow.

Case

srow(\, %, ·) = return (\, %)

Our goal follows from J%KB0C = J%KB0C].
Case

srow(\, %, (g1 � g2,&)) = srow(\, (%, g1 � g2),&) (1)

Our goal follows from the IH on (1) and J% ∪ (g1 � g2, &)KB0C = J(%, g1 � g2) ∪&KB0C .
Case

srow(\, %, (1 6 2, &)) =

let (′1,
′
2, \
′) = urow(1, 2) (2)

assert set(′1) ⊆ set(′2) (3)
srow(\ ′\, \ ′%, \ ′&) (1)

Obviously (3) fails when ′1 6
′
2 is not satisfiable. Our goal follows from the IH on (1),

Lemma C.11 on (2), and J% ∪ (1 6 2, &)KB0C = J\ ′% ∪ \ ′&KB0C\
′.

Case

srow(\, %, (1 ; ` 6 2 ; `, &)) =

let (′1,
′
2, \
′) = urow(1, 2) (2)

assert set(′1) ⊆ set(′2) (3)
srow(\ ′\, \ ′%, \ ′&) (1)

Obviously (3) fails when ′1 6
′
2 is not satisfiable. Our goal follows from the IH on (1),

Lemma C.11 on (2), and J% ∪ (1 ; ` 6 2 ; `, &)KB0C = J\ ′% ∪ \ ′&KB0C\
′.

Case

srow(\, %, (1 ; ` 6 2,&)) =

let (′1,
′
2, \
′) = urow(1, 2) (2)

assert set(′1) ⊆ set(′2) (3)
srow(\ ′\, (\ ′%, ` 6 (′2\

′
1)), \

′&) (1)

Obviously (3) fails when ′1 6
′
2 is not satisfiable. Our goal follows from the IH on (1),

Lemma C.11 on (2), and J% ∪ (1 ; ` 6 2,&)KB0C = J(\ ′%, ` 6 (′2\
′
1)) ∪ \

′&KB0C\
′.

Soundly Handling Linearity 49

Case

srow(\, %, (1 6 2 ; `2,&)) =

let (′1,
′
2, \
′) = urow(1, 2)

assume fresh `
if set(′1) ⊆ set(′2)
then srow(\ ′\, \ ′%, \ ′&) (1)
else let \ ′′ = [((′1\

′
2) ; `)/`2]\

′

srow(\ ′′\, ·, \ ′′(&, %)) (2)

For the true branch, our goal follows from the IH on (2), Lemma C.3, and

J% ∪ (1 6 2 ; `2,&)KB0C = J\ ′% ∪ \ ′&KB0C\
′

. For the false branch, our goal follows from the IH on (2), Lemma C.3, and

J% ∪ (1 6 2 ; `2, &)KB0C = J\ ′′ (&, %)KB0C\
′′

. Both of the above equations follow from the fact that in order to solve 1 6 2 ; `2, it is
necessary to unify the linearity types of the same labels in 1 and 2, and instantiate `2
with at least other labels only in 1 (no instantiation needed when set(′1) ⊆ set(′2)).

Case

srow(\, %, (1 ; `1 6 2 ; `2,&)) =

let (′1,
′
2, \
′) = urow(1, 2)

assume fresh `
if set(′1) ⊆ set(′2)
then srow(\ ′\, (\ ′%, `1 6 (

′
2\

′
1) ; `2), \

′&) (1)

else let \ ′′ = [((′1\
′
2) ; `)/`2]\

′

srow(\ ′′\, `1 6 (
′
2\

′
1) ; `, \

′′ (&, %)) (2)

For the true branch of if, our goal follows from the IH on (1), Lemma C.3, and

J% ∪ (1 ; `1 6 2 ; `2,&)KB0C = J(\ ′%, `1 6 (
′
2\

′
1) ; `2) ∪ \

′&)KB0C\
′

For the false branch of if, our goal follows from the IH on (1), Lemma C.3, and

J% ∪ (1 ; `1 6 2 ; `2, &)KB0C = J(`1 6 (
′
2\

′
1) ; `) ∪ \

′′ (&, %)KB0C\
′′

Both of the above two equations follow from the fact that in order to solve 1 ; `1 6 2 ; `2 ,
it is necessary to unify the linearity types of the same labels in 1 and 2, and instantiate
`2 with at least other labels only in 1 (no instantiation needed when set(′1) ⊆ set(′2)).

Case

srow(\, %, (⊥L,&)) =
assert dom() ∩ L = ∅ (2)

srow(\, %,&) (1)

Obviously (2) fails when ⊥L is not satisfiable. Our goal follows the IH on (1).
Case

srow(\, %, (; ` ⊥L,&)) =

assert dom() ∩ L = ∅ (2)

srow(\, (%, ` ⊥L),&) (1)

Obviously (2) fails when ; ` ⊥L is not satisfiable. Our goal follows the IH on (1).

50 Wenhao Tang, Daniel Hillerström, Sam Lindley, and J. Garre� Morris

Then, we can conclude that if srow], ·, % returns (\,&), then we have J%KB0C = J&KB0C\ ; if it fails,
then % is not satisfiable. Moreover, in & , row subtyping constraints are all in the forms of ` 6
and ` 6 ; `′ .
By Lemma C.12, we have J&KB0C = Jfactorise(&)KB0C . Moreover, in factorise(&), linearity con-

straints are all in atomic forms, which means they are only between type variables, row variables,
and linearity types . .
Let & ′′ = factorise(&). For trlin(·,& ′′) = & ′, we want to show that J& ′KB0C = Jfactorise(&)KB0C .

Notice that trlin(·,& ′′) essentially computes the transitive closure of the linearity constraints in
& ′′. Obviously we have J& ′′KB0C ⊆ J& ′KB0C . For the other direction, we need to show that for any
{g1 � g2, g2 � g3} ⊆ & ′ and \ ∈ Jg1 � g2, g2 � g3KB0C , we have · ⊢ \ (g1 � g3). Notice that the
type inference of Q◦

eff
only generates linearity constraints of forms Γ � g , which means rows only

appear on the RHS. Thus, after factorisation, \g2 can only be � or . . The · ⊢ \ (g1 � g3) follows
from a straightforward case analysis on \g2.
Finally, if ◦ � • ∈ & ′, then& ′ is obviously not satisfiable. Otherwise, we have a trivial solution by

substituting all row variables with the empty row ·, value variables with (), and linearity variables
with •. We also have J%KB0C = J& ′KB0C\ , which further implies the trivial solution of & ′ also gives
a solution of % . These results also hold for & since J& ′KB0C = Jfactorise(&)KB0C = J&KB0C . �

