MECHANISMS FOR COMPILE-TIME ENFORCEMENT OF SECURITY

Kobert E. Strom
IBM Thom?s J. Watson Research Center
P.0O. Bov 218
Yorktown Heights, N.Y. 10598

ABSTRACT

This paper discusses features of a <ecure systems
programming language designed and implemented at
IBM's Watson Research Lab. Two features of the lan-
guage design were instrumental in permitting securi-
ty to be eunforced with minimum run-time cost: (1)
Language constructs (e.g. pointer variables) which
could result in aliasing were removed from the pro-
grammer's direct control and replaced by higher lev-
el primitive types; and (2) traditional strong type
checking was enhanced with typestate checking, a new
mechanism in which the compiler guarantees that for
all execution paths, the sequence of operations on
each variable obeys a finite state grammar associ-
ated with that variable's type. Examples are given
te illustrate the application of these mechanisms.

INTRODUCTION

A system 1is secure if every program's behavior
depends only on its code and its inputs in a manner
defined by the programming language semantics. A
system is insecure 1f certain program executions can
cause other programs not to behave according to the
defined semantics. For example, a system which
claims to support independent "virtual machines' 1s
insecure 1f under particular conditions, a program
running 1n one virtual machine can overwrite data
belonging to another virtual machine.

It is potentially easier te provide security for a
semantics defined in terms of a high-level language,
because compilers can detect and reject illegal pro-
graths before they go into execution, and because
compilers can avoid generating certain unusual exe-
cution seaquences which otherwise would have to be

anticipated by a run-time security mechanism. Fur-
thermore, compile-time protection can extend to
units as small as a single module, whereas such fine
granularity 1is impractical for assembly level pro-
gramming, at least on machines with conventional
architectures.

Enforcement of security has been a goal of a number
of high-level languages and proposals, ([DAH 70],
{POP 77]. [AMB 76], [LGG 61]), and its desirability
has been emphasized by a number of writers ([HOA
§1]). However, existing compiled languages still
suffer from one or more of the following shortcom-
ings:

¢ There are illegal programs which cannot be
detected by the compiler and which if executed
may violate security. Examples include "errone-
ous” programs in ADA (TM), the use of undiscrim-
inated type unions in PASCAL, the derefercncing
of uninitialized pointers in most languages.

. In some languages, constructs which are diffi-
cult to implement both securely and cheaply are
omitted, even though these constructs can be
useful in systems programming. (e g. procedure
variables in ADA, explicit deallocation in
ALGOL-68, dynamic creation of process, dynawic
connection of 1nterprocess communications
ports);

. Certain secure language features either require
extra execution time overhead or special hard-
ware (e.g. garbage collection, message passing
by data copying, checks for dereferencing null
pointers, or for dangling references).

The mechanisms proposed in this paper to deal with
these problems include:

. The design of a set of abstract types which
eliminate direct manipulation of pointers while
providing all the useful functions supported by
proper use of pointers.

Permission to make digital or hard copies of part or al of this work or

persona or classroom use is granted without fee provided that copies are * Augmenting type-checking with typestate check-

not made or distributed for profit or commercial advantage and that copies ing, a static verification that a variable is in
bear this notice and the full citdion on thefirst page. To copy otherwise, to the appropriate state to perform an operation on

republish, to post on servers, or to redistribute to lists, requires prior it. These two mechanisms will be discussed
specific permission and/or afee. together, since neither appears to be useful for

© 1983 ACM 0-89791-090-7...$5.00 security without the other.

The concepts discussed in this paper are taken from
the programming language NIL, which has been
designed and implemented at IBM's T.J. Watson
Research Center and is being used to develop proto-
types for communications subsystems and distributed
operating systems. NIL's design objectives include
(1) information hiding, (2) support for concurrency,
(3) feasibility of secure implementations with mini-
mal run-time cost, (4) efficient implementation on a
wide range of machine architectures, (5) concealment
of the underlying operating system by supporting
process creation, access control, and modnle inter-
connection as language primitives. NIL is more ful-
ly described in [NIL 82}, ([PAR 81], [PAR 82], [HAL
82], [PAR 83].

HIDING POINTERS: EXAMPLE

The NIL approach to security can be illustrated by
studying the design of the message type
constructor.,

The message type constructor defines individual mes-
sage types. Each message tvpe consists of a number
of fields, which may themselves be of any type.
Fields in messages may be named using the standard
selected component notation. In this respect, NIL
messages are just like records in PASCAL, ADA, or
ALGOL-68., However, in these other languages, the
user builds records dynamically by using pointers.
The pointer has a different name from the record
itself and may be assigned to other pointer vari-
ables, thereby introducing potential aliasing within
a process, or sharing of data between processes. In
NIL, messages may likewise be built dynamically, but
no pointer is visible to the programmer. It is guar-
anteed that no two message variables reference the
same data. The following operations are applicable
to NIL message variables:

allocate obtains resources for an empty message

receive dequeues a message sent from another proc-
ess over a port (another NIL type
constructor).

send FIFO-enqueues a message to another process
via a port.

discard disposes of an empty message

It is not permitted to read or update ficlds of a
message after it has been sent. This rule ("de-
structive" sending), was deliberately chosen over an
alternative semantics of send in which the sender
could retain access to the message data. A language
taking an alternative viewpoint must define either
(1) that the sender keeps an independent copy of the
data, or (2) that both sender and receiver share the
message. Both definitions are unattractive: The
first alternative requires that send copy the mes-
sage, which on most hardware will be needlessly
expensive. In addition, if the language has vari-
ables of types for which copying is not supported,
these variables could not be passed in messages.
The second alternative involves the introduction of
shared data, and the danger that both sender and
receiver may choose to discard the same message.

By contrast, the "destriuctive send” semantics allows
flexibility in the choice of implementation. A very
efficient implementation‘ on a uniprocessor imple-
ments a message variable as a pointer to a block of
storage containing: (1) the data fields, and (2) a
chain pointer used when the message is enqueued on a
port. The allocate operation initializes the pointer
by obtaining storage from a heap or a quickcell
list. Access to sclected components involves deref-
erencing the pointer. Sending and receiving involve
updating the chain poiunter fields without physically
copying any data.

TYPESTATE

DEFINITION AND EXAMPLE

The above definition of message semantics makes
sense only if the above operations are performed in
a particular sequence. For example: a field may not
be written until the message has been allocated; a
field may not been read until it has been written; a
message once sent may not be read, written, or sent
again, etc. It is undesirable to attempt to define
the results of other orders of execution of the
operations, such as send of an already sent message
or update of a field in a message which has already
been sent. In fact, the suggested "efficient"
implementation of send will fail in the event that
the same message is sent twice.

In NIL, typestate rules explicitly define the legal
operation sequences. Conformity to the typestate
rules 1is checked at compile time as follows: For
every type in the language, there is a finite-state
grammar (called a typestate grammar) which defines
the valid operation sequences on variables of that
type. The states of such a grammar are called its
typestates. Every variable has a typestate which
may vary from statement to statement within the pro-
gram. The typestate of each variable is required 1o
be a program invariant at each statement. 1nitially
the typestate is UNINITIALIZED. Typcestates of suc-
cessive statements can be determined by applying the
rules of the typestate grammar to the program. If
the typestate on entry to a statement A is known,
then the typestate on entry to statement B imme-
diately following A can be determined by applying
the typestate transition for the operation associ-
ated with statement A. If two statements have the
same successor, then the statements must yield iden-
tical typestates for all variables. A program is
illegal if either (1) it contains a statement con-
taining an operation which is not permitted in the
typestate known to hold on entry to that statement,
or (2) some pair of statements S1 and S2 yield dis-
tinct typestate outcomes but have the identical suc-
cessor statement.

For example, Figure 1 illustrates the typestate
grammar for a typical message type containing two
scalar fields, Fl1 and F2. The typestates are UNINI-
TIALIZED, EMPTY, F1 INIT, F2 INIT, and ALL INIT. The
state transitions are labeled with operations on a
sample message variable M and its fields M.F1l and

ALL INIT

TH‘AH

R/W M.F1

F1 INIT

[

R/W M.F1

send M

& Giscard M.F2 Init M F2 discard M.F1 Init n" F1 W MF

I
R/W MF2

CFZ INIT R/W M.F2

discard M.F1 it M discar MF2
| I |

T
init M.F2
receive M

EMPTY

discard M

| {

i

aliocate M

UNINITIALIZED

Figure 1.

Representative Typestate Diagram:

This typical typestate

- diagram shows the transitions possible for a variable M of
a message type containing two fields, Fl, and F2, each of

gcalar type (e.g.

integer or string).

M.F2. For example, a message must be ALL INIT before
it is sent, and the send operation changes the
typestate to UNINITIALIZED. Typestate transitions
associated with exception ocutcomes of operations are
not shown on this diagram, but are discussed in a
subsequent section. It should be noted that discard
operations are provided for the scalar fields F1 and
F2 as well as for message M, even though in a typical
implementation space for F1l and F2 is preallocated
with the message, and these '"discard" operations
generate no code. The abstract operations exist in
order to permit greater implementation flexibility,
and to provide a wuseful model of process
termination, which will be discussed in a later sec-
tion,

The definition of a sample message type, & sample
port type, and the code which declares message and
port variables and employs a valid sequence of opex-
ations is illustrated in Figure 2. Examples of
illegal sequences are illustrated in Figure 3. In
the particular representation of messages discussed
earlier, these illegal sequences, if not explicitly
excluded, would result in the dereferencing of unin-
itialized pointers. unreclaimed storage, dangling
references, or damaged free space lists, each of
which can cause a security breach or a failure to
reclaim resources. With other choices of implemen-
tations of the operations, the effects of the ille-
gal sequences may be different.

Porttype is port type of Mestype;
Mestype is message type

(F1l: Charstring,

F2: integer);
declare

(A_message: Mestype,

A_port: Porttype sender);

allocate A message;

A _message.F1 = "hello";

A _message.F2 = 5;

send A_message to A_port;

Figure 2. Typical nessage type correctly
used: The above program segment
defines a message type, a port type,
and objects of- those two defined
types. The segment code allocates
the message variables, assigns its
two fields, and sends the message off
to another process. It is assumed
that the port wvariable has been
itself initialized earlier in the
program.

Segment (1)

allocate A mescage;

A message.F1 = "hello";
A message.F2 = 5,

send 4 message to A port;
discard A message;

Segment (2)
allocate 4 message:
allocate 4 messagc;

Segment (3)

allocate A message;

A message.F2 = length (A message.F1);
send A _message to A port;

Figure 3. Illegal uses of message
variables: These examples
illustrate program segments which,
though not wviolating any strong
typing rules, misuse the message type
by executing operations in the wrong
order. In the absence of typestate
checking, execution of these
segments could cause program crashes
in typical implementations. Segment
(1) discards a message which is in
use in another process. Segment (2)
overlays a pointer and hence produces
an unreclaimable message. Segment
(3) accesses an uninitialized
string, which 1f strings are
implemented with pointers to the
heap., may cause a program check.

RATIONALE FOR INVARIANCE OF TYPESTATES

NIL enforces security at compile time by:

¢ Forbidding all direct access to pointers, and
supporting access to dynamic data only through
the message types (and other secure data types).

. Requiring that the typestate of all variables be
known as an invariant associated with each
statement in the program, and guaranteeing that
operations are 1ssued only from correct
typestates.

In order for typestates to be program invariants,
whenever two-or more branches of a program converge,
the typestates immediately prior to the join must be
the same. Programs which, for example, initialize a
variable in the then branch of a conditional state-
ment and fail to initialize that variable in the else
branch, are illegal.

Although security could be guaranteed by run-time
checking of typestate, the choice to check typestate
at compile time has several advantages:

. It rejects at compile time programs whose erro-
neous code might not otherwise be detected until
they had been widely distrabuted and used as
components of a critical application.

. It avoids the space and time overheads associ-
ated with storing, checking, and updating
typestate information.

. It rejects certain programs with dubious program
structures.

The last point bears additional discussion, since 1t
reflects the NIL designers' bias that software rela-
ability can be gained Ly restricting the set of pro-
grams which a progragmer is permitted to write.
Consider the program segment in Figure & which would
be rejected as illegal under the typestate invari-
ance rule, even though a clever compiler might be
able to prove that no typestate violation could ever
occur. This program creates a half-initialized mes-
sage whenever X has the value 2, and creates no mes-
sage otherwise. The paths then join (making the
message's typestate ambiguous and therefore illegal
according to NIL). Some time later, the
half-initialized message is processed, provided it
is known to exist, which is determined by checking
whether X has the value 2.

if X =2
then
allocate 4 message;
A message.F1 = "Lello™;
end if;
. ---- middle part of program
if X =2
then
A message.F2 = 53 ¢
send A message to A_port;
end if;

Figure 4. Program with ambiguous
typestate: Assuming the middle part
is well-behaved, this program will
never execute an operation from an
illegal typestate. However, it will
still be rejected by NIL's striet
interpretation of the invarianc?
rule. It is the designers
contention that the exclusion of such
programs does no harm and could even
encourage better program
structuring.

It is our contention that thers 1s always a clearer
way to wrate this program, wiach will provide better
guidance to somecne trying to modify it, and which
will be typestate correct.

Under one interpretation of the program, it is
intended to execute the second then clause whenever
the first then clause was execnted. Since in this
case, the middle part cannot possibly alter the mes-
sage, it would be safer to combine the two if blocks
into a single test. The middle part can either be
executed after the if block, or could be enclosed in
a subroutine invoked from both branches. As cur-
rently written, it would be fatal to modify the val-
ue of X from within the middle part. (A programmer
wishing to insert X = X + 1 into the middle part, and
to replace the second test by if X = 3 deserves, in
our opinion, to have his or her program rejected by
even the smartest compiler.)

On the other haud, if the middle part of the program
contains code which conditionally re-allocates or
conditionally discards the message, updating the
value of X to reflect its choice, then the program-
mer would do well to replace the message by a variant
(discriminated union) variable, in which one case of
the variant contains & message and the other is emp-
ty. The program then reads more clearly, since the
programmer's test is explicitly asking whether the
message exists, rather than asking some other ques-
tion whose answer is presumed to correlate with the
existence of the message.

By replacing direct use of pointers by indirect use
via the type comstructors message, table, and others
not discussed here, and by enforcing typestate
invariance, security can be maintained without
impacting program efficiency or readability.

PARTIAL ORDERINGS ON TYPESTATES

The interaction between the invariance rule and
NIL's treatment of exception handling and program
termination lead to the additional requirement of a
partial ordering relation on typestate transition
graphs.

Consider the program fragment shown in Figure 5.
The clause beginning with on (Depletion) receives
control whenever the exception condition named
Depletion is raised within the begin block. The
Depletion exception is raised whenever storage is
not available to perform the allocate operation.
When Depletion is raised, the message remains in
typestate UNINITIALIZED rather than making the tran-
sition to EMPTY.

Since typestate must be a compile-time invariant,
the program fragment under discussion would be ille-
gal if exceptions generated direct branches to the
exception handler. A typestate ambiguity would
occur since on the branch from statement [1] message
M is UNINITIALIZED and on the branch from statement
[2] message M is ALL INIT.

This ambiguity could be eliminated by providing a
separate exception handler for statement [2]. This
exception handler would discard variable J, the
fields of M, and M itself, and then reraise the
Depletion exception. There are several difficulties
with such a proposal:

. In a language with abstract semantics, nearly
every statement has the possibility of raising
an exception, even though in some implementa-
tions the exception will never be raised. For
example, the semantics of strings is flexible
enough to permit implementations in which large
string values are allocated dynamically from the
heap, rather than being preallocated. In such
implementations, string assignment could raise
Depletion. Requiring separate begin blocks to
contain the cleanup actions associated with

every possible exception could cause the code to
become so cluttered with exception handlers that
the main path through the program could become
obscured.

. If cleannp operaticns such as discard could
themscelves raise exceptions, then there is a
danger of an infinite regress of exception han-
dlers, since each handler would require another
handler to deal with the possible failure of one
of its cleanup actions.

Both of the above problems are solved by distin-
guishing between "higher' and "lower" typestates.
Intuitively, moving to higher typestates commits
machine resources and moving to lower typestates
releases resources. The typestate graphs for all
possible types can be partially ordered, with UNINI-
TIALIZED a unique state lower than all other
typestates. In Figure 1, the typestates closer to
the top of the page are the "higher" typestates. The
ordering is exploited in the following way:

* Guaranteed Downhill Operations: Between any
pair of typestates A and B such that A is higher
than B, there exists a sequence of one or more
operations to convert an object in typestate A
to typestate B. These operations do not require
additional operands, may never raise exceptions,
and may never deadlock.

. Greatest Lower Bound: Two or more statements
may generate control transfers to the same
exception handler even though some variable has
different typestates in the exception-raising
statements. The typestate used on entry to the
exception handler will be the highest value
which is lower than or equal to the typestates
at the exception-raising statements. Typestate

lowering operations (called typestate
coercions) 4re inserted automatically between
the exception~raising and the

exception-handling statements whenever neces-
sary to make the typestates agree.

I = 3,
begin
allocate ; --- statement [1]
J =53
M.F1 = "hello";
M.F2 = 3
allocate N; --- statement [2]}
N.F1 = M.F1 || M.Fi;
N.F2 = M.F2 + 10;
send M to A port:
send N to A port;
on (Depletion)
call Print ("insufficient storage');
end begin; -

Figure 5. Program with exception
handler: Statements [1] and {2] can
both raise the Depletion exception,
and send control to the Depletion
handler at [37. Making the
typestates invariant at handler [3]
would require inserting additional
"cleanup”" code associated with
statement [2]. This example
motivates the automatic generation
of "downhill" typestate coercions on
entry to exception handlers.

In the language subset of our examples (only mes-
sages and scalars), the ordering rules are very sim-
ple. The typestate of a scalar dis either
UNINITIALIZED or INITIALIZED. The typestate of a
message is either UNINITIALIZED or it is ALLOCATED
(ts(l), ts(2), ...), where ts(i) is the typestate of
the i-th field. (In the example, the states called
mnemonically EMPTY. F1 INIT, F2 INIT, and ALL INIT
would be called respectively ALLOCATED (UNINITIAL-
IZED, UNINITIALIZED), ALLOCATED (INITIALIZED, UNIN-
ITIALIZED), ALLOCATED (UNINITIALIZED, INITIALIZED),
and ALLOCATED(INITIALIZED, INITIATIZED).) The
ordering of scalars is simply that UNINITIALIZED is
lower than INITIALIZED. For messages, typestate A
is lower thian or equal to B if:

* A is UNINITIALIZED or

* A is ALLOCATED(tsa(1), tsa(2), ...), B is ALLO-
CATED(tsb(1), tsb(2), ...), and for all i,
tsa(i) is lower than or equal to tsb(i).

The discard operation serves as the coercion opera-
tion.

In our example of Figure 5, the typestate at the
handler for Depletion will have variables J and M
UNINITIALIZED. When control is transferred from
statement [2], the coercions necessary to discard J,
M.F1, M.F2, and M will be generated automatically.

Program termination in NIL involves coercing all
declared wvariables to typestate UNINITIALIZED.
These coercions can all be generated by the
compiler. The usual hazards involved in generating
cleanup code do not exist in NIL: Since no aliases
can be generated, the programmer cannot deallocate
storage which is being referenced elsewhere under a
different” name. The programmer may not generate
unretrievable storage by deallocating storage con-
taining a pointer, since the typestate rules guaran-
tee that messages may not be discarded until all the
fields have been discarded. Any field implemented
by a pointer (e.g. a long string, or another
message) will automatically be discarded first if
the containing message is coerced to UNINITIALIZED.
There is no need for an implementation to rely on a
garbage collector.

Implementations do have to be careful, however, that
"downhill" coercions never raise exceptions =-- for
example, if discard is implemented by a call to a
FREEMAIN service, some provision has to be made to
avoid failing due to overflow of the call stack, for
instance, by using the message itself to hold any
temporary storage required by FREEMAIN.

When a process is terminated, all its variables are
coerced to UNINITIALIZED after the process has exe-
cuted its last wishes. The semantics of this
coercion depends upon the type ~--- messages are
uninitialized and discarded, message ports are
unbound after discarding any waiting messages, ren-
dezvous calls are returned to their caller, proc-
esses are terminated. As a result of this
semantics, the programmer can know that cancelling a
process will guarantee to return its resources with-
in a finite time, and that no "black holes" (unac-
cessible data) or "white holes" (active
uncancellable processes) are possible within a NIL
system.

OTHER TYPES

Although typestate checking was illustrated using
NIL's message and scalar types, similar ideas are
carried out in all the type constructors.

TABLES

For example, the table type constructor is an
abstraction for homogeneous collections of arbitrary
size =-- usually implemented in conventional lan-
guages with arrays when the a maximum fixed bound
can be determined, and with lists or trees using
pointers otherwise. Once again, in NIL the pointers
are hidden and access is only permitted through
table operations.

The following operations are supported on tables:
insertion and deletion of rows, and read-only and
read-write access to rows. (Table operations other
than those operating a row at a time are not dis-
cussed in this paper.) The typestate grammar for
rows in tables is shown in Figure 6.

The insertion sequence proceeds as follows:

1. An allocate operation is issued specifying key
attributes, if called for by the table type
definition. If the key does not duplicate an
existing key in the table, and if storage
depletion does not occur, then the row variable
becomes DETACHED EMPTY. The non-~key fields
become uninitialized but writable.

2. Non-key fields are initialized until the row
becomes DETACHED FULL.

3. An insert operation places the row into the
table. The fields of the row are now no longer
accessible, and the row variable itself is UNIN-
ITIALIZED. To access the data, a retrieval
operation is required.

Deleting a row follows the reverse sequence: the
row is first "detached", then the data in the row is
discarded, and finally the row is itself discarded.

There are two ways of accessing data without detach-
ing it from the table: find with the read option
causes the data in the row with the selected key to
become readable as the value of the row fields.
Find for update causes the selected data to be read-
able or writable but not deletable, After examining
or updating the data, the programmer issues the lose
operation. After this operation, the data remains
in the table, but is no longer accessible via the row
variable, which becomes again UNINITIALIZED. Two
new typestates: CONSTANT (read-only permitted), and
PERMANENT (read or write only permitted), apply to
fields in row variables.

Under certain circumstances a run-time check is
required to avoid aliasing. No two distinct row
variables may access the same table item unless both
row variables are inspecting for read-only. The
compiler's typestate analysis can determine when
such a check is needed. The example in Figure 7
illustrates one of the rare cases in which a
run-time check must be generated. The check is

Read R.F1 R/W R.F1

R/W RF1 |

M

Bl

INSPECTING_Q/D@S'PECTING R/W

DETACHED FULL

detach R

T T | T
. .. discard F1
mljiﬂ U
lose R lose R DETACHED EMPTY
find R (read) find R (update) N
insert R

discard R

allocate R

UNINITIALIZED
Figure 6. Typestate grammar for Rows in Tables: Possible

transitions are shown for a row variable R having a single
scalar field Fl. The upward bend in the transition for
insert indicates that an exception may be raised by this
operation, whereas the operations shown by arrows pointing
directly downward are '"downhill coercions" and may not

fail.

required on the find R2 operation, since another row
of the same table has a typestate other than UNINI-
TIALIZED at the time of a find for update. In a typ-
ical implementation, R1 and R2 will be implemented
as pointers or as array subscripts, and the run-time
check involves merely checking for equality of the
pointers or subscripts.

declare
T Tabletype;
R1 row in T;
R2 row in T;
1: integer;
J: integer;

GetInputs(I, J);

find R1 in T key(I);

find R2 in T key(J) update;
R2.F1 = R2.F1 + R1.F1;
Print(R1.F1);

lose Rij;
lose R2;
Figure 7. Potential Aliasing: Because R1 is
INSPECTING when the find operation is
performed on R2 for update, a
run-time check will be needed to
insure that Rl and R2 do not refer to
the same row. In the absence of such
a check, modifications to R2.F1 could
(in some implementations) change the
value of variable R1.F1.

VARIANTS

Variants are collections of fields partitioned into
disjoint sets called cases. The typestate grammar
for a typical variant containing two cases, Red and
Blue, each with one field named R1 and Bl respec-
tively, is shown in Figure 8.

The case is known at compile time and is part of the
typestate under two circumstances: (1) during the
initialization of +the variant fields following an
explicit allocation either to the Red or Blue case;
(2) In the Red or Blue branch outcome of a select
operation which queries the current state. Two oth-
er typestates exist: UNINITIALIZED, in which the
variant has no case, and INITTALIZED, in which the
case is part of the value, but is not known at com-
pile time. Neither the R! nor the Bl field may be
accessed from this typestate.

PROCEDURE CALLS

Typestate interacts with procedure call semantics in
the following ways:

R/W V.Rt { SELECTED (RED)
N— -

“ N

end select V outcome (red) outcome (blue) ond select V

J\} smv ' {}

<8 INITIALIZED
I o ¥ I

setvariant V sefvariant '}

GELECTED (BLUE) R_/)V V.B1

outcomo (red) outcome (blue)

7 L N
R/W V.R1 FULL(RE'D)) (FULL BLUFE)R/W v.B1
Ny (:)

discard V.R1 init V.R1 dlscard V.B1 mi V.B1

I Vi I
EMPTY (RED)) (E’MPTY (BLUE)

[I i

discard V allocate V (red) discard V allocate V (blue)

{ | { I

UNINITIALIZED

Figure 8. Typestate Grammar for Variants: This graph illustrates
the permissible operations on a variable V of a variant

type, containing the cases RED and BLUE. The RED case
contains a field V.R1, and the BLUE case a field V.R2.

Procedure call ports (entry variables) may be
disconnected dynamically and reconnected to oth~
er procedures of conformable type. Tracking
each port as either typestate UNINITIALIZED or
INITIALIZED makes it possible to insure that
uninitialized call ports will not be called.

Each procedure type definition must contain not
only the types of each formal parameter, but
also the typestate of each parameter on entry,
and on normal and exception returns from the
sprocedure. This specification is useful for
documentation, and is essential to permit the
compiler to track typestate changes resulting
from calling a procedure.

Typestate information on interfaces helps the
compiler to guarantee that procedure calls do
not introduce aliasing. (As a result of the
complete elimination of aliasing, either call by
reference or call by value-result are valid
implementations of the semantics.) Two actual
parameters with overlapping names (e.g. M and
M.A) may not both be passed in the same proce-
dure call unless both formal parameters expect
CONSTANT typestate.

RELATED WORK

Other authors have used finite-state models to rep-
resent the sequencing constraints inherent in the

semantics of a type. (For example: path
expressions ([CAM 74]), access path constraints
({CON 79), [KIE 79])). What is different in NIL is
that each primitive data type is defined so that the
typestate can be a compile time invariant.
Typestates are program assertions which are simple
enough that they can be automatically generated and
proved invariant by a compiler, and yet powerful
enough that proving them is adequate to avoid the
"erroneous" programs which lead to insecurity.

The motion of partial orderings and "downhill oper-
ations" appears to be unique to NIL. It has been of
enormous practical value in guaranteeing that
aborted or cancelled processes clean up their pri-
vate resources, including any processes which they
may themselves own.

STATUS

A full set of type constructors is available in NIL
to meet the general needs of systems programming. A
compiler is available for VM/370, and an interpreter
design to produce compact code for microprocessor
environments is under development.

Prototype systems are being coded in NIL. The
application areas to which NIL appears particularly
well-suited include:

¢ "open'" layered systems, such as communications
systems, in which users of a system may be
expected to add their own versions of certain
layers, such as screen formatting, protocol con-
version, or link control, and in which it is
desired to protect vendor-supplied layers from
errors in user-supplied layers.

. Highly portable subsystems in which NIL's abili-
ty to conceal the underlying data structures and
the underlying operating system is very useful.

ACKNOWLEDGEMENTS

Francis Parr collaborated with the author in the
original effort to.turn NIL from a set of concepts
into a wviable language. Wilhelm Burger, Mike
Conner, Nagui Halim, and John Pershing contributed
to the subsequent design effort leading to the cur-

rent NIL language. Shaula Yemini reviewed the
drafts of this paper and contributed significant
stylistic and technical improvements, as well as

valuable critiques of our language design effort.

REFERENCES

[AMB 76}

[CAM 74]

[CON 79]

[DAH 70]

[EGG 81]

[HAL 82]

[HOA 81]

[KIE 79]

[NIL 82]

[PAR 81]

[PAR 82]

[PAR 83]

[POP 77]

Ambler, A.L., Good, D.I., Burger, W.F.
"Report on the Language Gypsy'.
ICSCA-CHP-1, The University of Texas at
Austin, 1976.

The specification of process

syuchronization by path expressions. Lec-
ture Notes in Computer Science 16, Ney
York, 1974,

"Process Synchronization by Behavior Con-
trollers”, Ph. D. thesis, University of
Texas at Austin, December 1979.

Dahl, 0.-J., Myhrhaug, B., and Nygaard,
K., "SIMULA-67 Common Base Language",
Norwegian Computing Center, Oslo, Norway,
1970.

Eggert, P. R., Detecting Software Errors
Before Execution, UCLA Computer Science
Department, Report No. CSD-810402, April
1981,

Halim, N., and Pershing, J., "A New Lan-
guage for Writing Portable and Secure Sys-
tems', IBM Research Report RC 9650

Hoare, C. A. R., "The Emperor's old
clothes”, reprinted in Comm. ACM, vol. 24,
pp- 75-83, February 1981.

Kieburtz, R., and Silberschatz, A., "Ac-
cess-Right Expressions', University of
Texas, Technical Report, 1979.

NIL Reference Manual, IBM T. J. Watson
Research Laboratory, internal document.

Parr, F. N., and Strom, R. E., "Portable,
Secure, Communications Software", Fro-
ceedings, International Conference on
Communications, Denver, June, 1981, also
IBM Research Report RC 8875.

Parr, F. N., and Strom, R. E., "NIL: A
Programming Language for Software Archi-
tecture", Proc. IEEE 6th International
Conference on Software Engineering,

Tokyo, expanded version also available as
IBM Research Report RC 9227.

Parr, F¥. N.,
Level

and Strom, R. E., "A High
Language for Distributed Systems

Programming”, to appear in IBM Systems
Journal, special issue on communication,

1983.

Popek, G. J., Horning, J. J., Lampson, B.
W., Mitchell, J. G., and London, R. L.
"Notes on the design of EUCLID", Proc. ACM
Conf. on Language Design for Reliable
Software, March, 1977.

