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Abstract
Weak reduction relations in the λ-calculus are characterized by the rejection of the so-called ξ-rule,
which allows arbitrary reductions under abstractions. A notable instance of weak reduction can be
found in the literature under the name restricted reduction or weak λ-reduction.

In this work, we attack the problem of algorithmically computing normal forms for λwk, the
λ-calculus with weak λ-reduction. We do so by first contrasting it with other weak systems, arguing
that their notion of reduction is not strong enough to compute λwk-normal forms. We observe
that some aspects of weak λ-reduction prevent us from normalizing λwk directly, thus devise a new,
better-behaved weak calculus λex, and reduce the normalization problem for λw to that of λex. We
finally define type systems for both calculi and apply Normalization by Evaluation to λex, obtaining
a normalization proof for λwk as a corollary. We formalize all our results in Agda, a proof-assistant
based on intensional Martin-Löf Type Theory.
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1 Introduction

The weak λ-calculus can be described informally as the λβ-calculus without the ξ rule – the
congruence rule for λ-abstractions – shown below for the simply-typed case. Without any
other modifications, this system is not confluent (or Church-Rosser). The property can be
recovered with the addition of a substitution rule, labeled (σ) below, which gives rise to a
confluent system.

Γ, x : A ` t −→ s : B
Γ ` λx.t −→ λx.s : A→ B

(ξ)
Γ, x : A ` t : B Γ ` a −→ b : A

Γ ` t[a/x] −→ t[b/x] : B
(σ)

This particular notion of weak reduction was originally formulated by Howard [25],
although presented differently, and was later studied by Çağman and Hindley [13] under the
name of weak λ-reduction. On the one hand, the addition of (σ) restores confluence, but on
the other hand it complicates the design of an algorithmic procedure to mechanically compute
terms to normal form: despite the absence of the ξ-rule, conversion under abstractions is still
provable via the σ-rule for a restricted class of redexes, the so called weak redexes. That is,
contrary to the non-confluent weak λ-calculus, contractions can occur under λ-abstractions.
This makes weak λ-reduction crucially different from, and more complicated than other weak
calculi that implement weak-head reduction instead, for which a normalization algorithm
never needs to reduce under binders.
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6:2 Normalization by Evaluation for Typed Weak λ-Reduction

These issues must be faced when attempting to prove the normalization theorem for
a typed version of the weak λ-calculus, a goal that motivated the work presented here.
Indeed, suppose we want to show that every well-typed term t reduces to its normal form,
given by a normalization function JtKρ defined by structural recursion, and in particular
such that Jλx.tKρ = λx.JtKρ[x/x]. In the case of a term Γ ` λx.t : A ⇒ B, we can obtain
Γ, x : A ` t −→ JtKρ[x/x] : B by induction hypothesis, but then it is not clear how to proceed,
since we cannot in general conclude Γ ` λx.t −→ λx.JtKρ[x/x] : A⇒ B without ξ.

Another unpleasant aspect of weak λ-reduction is its relative notion of redex. Consider
the term t ≡ λz.(λx.y) z. Its subterm (λx.y) z is a valid redex under standard β reduction,
leading to the reduction λz.(λx.y) z −→ λz.y, but is not a valid redex of t in the weak
λ-calculus, since there is no way to express this reduction in terms of (β) and (σ). The
same term (λx.y) z, instead, does reduce as a subterm of λw.(λx.y) z, leading to λw.y. This
relative notion of redex complicates the definition of a normalization algorithm, since it is
not clear from the syntactic structure alone whether or not a redex can be justified by the
substitution rule and should be contracted.

1.1 Contributions
In this paper we study weak λ-reduction, and propose a way to algorithmically reduce terms
to their normal form. We also give a constructive proof of normalization for a simply-typed
λ-calculus with weak λ-reduction. More precisely, we make the following contributions:

We compare the λ-calculus with weak λ-reduction, that we call λwk, with other weak
calculi rejecting the ξ-rule. We precisely characterize λwk normal forms, compare them
with the other systems, and show that the problem of normalizing weak λ-reduction does
not seem to be reducible to normalization of these calculi, identifying what we think is
an unexplored area in the literature;
We define a new calculus of weak reductions, λex, that is inspired by our characterization
of λwk redexes and in particular makes them syntactically explicit (hence the name). This
system recovers a version of the ξ-rule, and admits a standard normalization algorithm.
We then show λwk and λex equivalent, thus reducing the problem of normalization for
the former to normalization for the latter. This provides the first published specification
of a normalization algorithm for λwk in full detail;
We define type systems for λwk and λex, and prove the latter normalizing via the semantic
method of Normalization by Evaluation [11]. Mirroring the untyped case, the two calculi
are shown equivalent. Transporting the normalization proof for λex along this equivalence
yields, as far as we are aware, the first proof of normalization for the simply-typed
λ-calculus with weak λ-reduction;
We include a full formalization of this work in intensional Type Theory, using the Agda
proof-assistant [12] 1.

1.2 Meta-theory and notation
We will use a rather informal and foundation-agnostic notation, that can be understood
both in Type Theory and in constructive set theory. We do however distinguish between
definitional equalities (≡), which are always decidable, and propositional equalities (=), for
which decidability needs to be proved.

1 The formalization can be found at https://github.com/fsestini/nbe-weak-stlc
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I Remark 1. Readers interested in a proof-checked formalization of this work in Type Theory
are invited to consult the Agda code, keeping in mind the following differences:

The partial functions represented here with the usual function notation cannot be defined
in Agda as standard type-theoretic functions, since these must be total in order to preserve
logical consistency. In the formalization, partial functions are encoded by their graph, i.e.
as inductively-defined functional (left-total, right-unique) relations;
In the Agda code, we use a nameless [20] syntax to represent λ-terms.

2 Weak λ-reduction

The weak λ-calculus is generally defined as a flavor of the λ-calculus whose reduction relation
does not include the weak extensionality principle represented by the ξ-rule [9], also referred
to as the congruence rule for λ-abstractions. One of the simplest forms of weak reduction is
obtained by stripping β-reduction of the ξ-rule.

I Definition 2 (Weak reduction). Weak reduction is inductively defined as follows:

(λx.t)s −→ t[s/x]
(β) t −→ r

t s −→ r s
(ν) s −→ r

t s −→ t r
(µ)

Weak reduction, also known as weak-head reduction, is of interest in the study of pro-
gramming languages, as it captures the fact that evaluation of programs does not generally
proceed under binders [23]. Weak reduction evaluates terms to weak-head normal form
(whnf ):

Whnf 3 d ::= λx.t | xd1d2...dn

Weak reduction never reduces under binders, and as a consequence the body t of a weak-
head normal abstraction may be an arbitrary term, not necessarily a whnf. Unfortunately,
this relation is not confluent, hence only specific weak reduction strategies have been studied
in the literature [36, 4]. A solution to this problem consists of extending weak reduction with
a primitive substitution rule [31], the σ-rule (Section 1).

One of the first uses of this confluent variant of weak reduction dates back to Howard [25],
who calls it restricted reduction. Here we will refer to it as weak λ-reduction after Çağman
and Hindley [13].

I Definition 3 (Weak λ-reduction). The reduction relation −→w is defined as the relation in
Definition 2 plus the σ-rule.

I Theorem 4. −→∗w, the reflexive-transitive closure of −→w, is confluent.

Proof. See [31], Theorem 1. J

In [13], the authors cite an alternative formulation of weak λ-reduction based on the
notion of weak redex, due to Howard:

I Definition 5. Let the redex r be a subterm of a term t. Then, r is a weak redex if and
only if it does not contain free variables that are bound in t. A one-step weak λ-contraction
of t is one that contracts a weak redex inside t.

TYPES 2018



6:4 Normalization by Evaluation for Typed Weak λ-Reduction

For example, the term λx.(λy.y)z contains the weak redex (λy.y)z. Conversely, the term
λx.(λy.x)z has no weak redexes, and is therefore in normal form. These two definitions give
rise to equivalent relations [13].

We call λwk the λ-calculus with weak λ-reduction, as given in Definition 3, and refer to
its normal forms as weak normal forms. These are not characterized as easily as whnfs, and
the reason is that being a weak normal form is a relative property, since being a weak redex
is, and normal terms are just terms with no weak redexes. We observe that the essence of
weak redexes can be reduced to the distinction between two roles for variables. Given a term
t, we say that a variable has local role if it is bound somewhere within t, and global otherwise.
Then, a weak redex is just a redex that is closed w.r.t. local variables (cfr. Definition 5.)
More precisely, if t ≡ C[r] for an enclosing context C[_] with a hole and a redex r, then r
is a weak redex iff it is closed w.r.t. the local variables bound by abstractions within C[_].
This suggests a notion of normal form that is indexed by the set V of local variables of the
enclosing context, whatever this is. For convenience, we define normal terms NfV mutually
with neutral terms NeV , both under a set of variables V :

NfV 3 dV ::= eV | λx.dV ∪{x}

NeV 3 eV ::= x | eV dV | (λx.dV ∪{x}1 ) dV2 s.t. FV ((λx.d1)d2) ∩ V 6= ∅
Neutral terms usually correspond to variables and elimination forms whose reduction is

“blocked” by the presence of a neutral term in recursive position. In the standard λβ-calculus,
neutral terms are only variables and “stuck” applications. In our setting, the definition of
neutral term needs to be extended, to account for redexes of the form (λx.t)s that are not
weak, and therefore “stuck” as well. Given a set V of local variables, this is the case whenever
some variables in V are free in the redex, namely FV ((λx.t)s) ∩ V 6= ∅.

We define the set of weak normal forms Nf :≡ Nf ∅. As an example, we can see that
λxy.(λz.x)w ∈ Nf, since (λz.x)w ∈ Ne{x,y}, but λx.(λy.y)z /∈ Nf, since FV ((λy.y)z) ≡
{z} ∩ {x} = ∅.

2.1 Algorithmic weak λ-reduction
Although typed β-reduction is normalizing [24], and we know that weak λ-reduction con-
stitutes a (strict) subset of full β-reduction, these facts alone do not provide us with an
algorithm to actually compute normal forms, or even ensure that such algorithm exists.

Here, we are interested in computational solutions to the problem of algorithmic reduction
for (typed) calculi based on weak λ-reduction. A way to achieve this goal is to seek a
constructive proof of the normalization theorem. When formalized in Intuitionistic Type
Theory, this proof comes by its nature with a normalization algorithm for untyped terms
baked-in. This is quite convenient, but it also means that we cannot hope to proceed any
further without some understanding of how to go by implementing such algorithm. The
presence of the substitution rule (σ) interacts with this goal in unpleasant ways:

Despite the absence of the ξ-rule, some contractions can still happen under binders via
(σ). A normalization algorithm will thus have to proceed, in some way, by recursion
on the structure of terms and thus under λs; but this is at odds with weak λ-reduction
not being a congruence relation, which prevents us from reasoning about these recursive
reductions in an adequate way.
Weak λ-reduction has a relative notion of redex, defined w.r.t. some term t that contains
it as a subterm (Definition 5). What makes a redex weak is therefore not evident from
its syntactic structure alone, so a standard normalization function that just proceeds by
structural recursion does not seem sufficient.
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Perhaps because of these difficulties, or perhaps because of the exotic nature of weak
λ-reduction, we could not find a complete specification of a normalization algorithm for this
notion of reduction anywhere in the literature, nor a proof of normalization for a typed
calculus based on it. A first approach towards filling this gap is to try to reduce the problem
of normalization for λwk to normalization of other weak calculi for which a solution is
well-known. We attempt to do so in the next sections.

2.2 Combinatory logic
There is a correspondence between λwk and combinatory logic (CL) [18], made precise in
[13] by means of two operations _λ and _H respectively translating CL terms to λ-terms
and vice versa. _λ is the obvious translation of combinators to λ-terms, whereas _H is
essentially combinator (or bracket) abstraction ([24], Definition 2.18). We can then show

I Theorem 6. For all combinators c, d and λ-terms t, s:
c .w d =⇒ cλ −→w dλ;
t −→w s =⇒ tH .w sH .

Proof. See [13]. J

Here .w is combinator reduction. Normalization for combinatory logic is well understood,
and in particular Normalization by Evaluation has been successfully applied both to the
typed [16] and the untyped [21] cases. Since our goal is to algorithmically reduce λ-terms to
weak normal form, we may hope to be able to reduce the problem to that of normalizing
combinators, by exploiting the correspondence stated in Theorem 6.

Unfortunately, normal forms are not correctly related by the two translation operations.
A counter-example is given by the λ-term t ≡ λx.(λy.x)(II), which has a weak normal form
λx.(λy.x)I (where I is the identity). The term t translates to tH ≡ SK(K(II)), and its
normal form SK(KI) translates back to the λ-term λw.((λxy.x)w)((λxy.x)Iw). But this
term is neither normal (since (λxy.x)I is a weak redex) nor convertible to λx.(λy.x)I in the
absence of ξ.

This mismatch is also observed in [40], where a version of Martin-Löf Type Theory is
compared to a combinator-based formulation. We are not aware of a way to relate CL-
and λ-terms that makes it possible to rely on combinatory reduction to fully compute weak
λ-reduction.

2.3 Weak explicit substitutions
Explicit substitutions are a way to formulate the syntax and reduction rules of the λ-
calculus that turns substitutions into constructors of the syntax of terms, and integrates
the substitution operation as part of the reduction relation, rather than an implicit meta-
theoretic operation [1]. There have been several attempts at modeling weak reduction with
explicit substitutions [16, 17, 31, 7]. In that setting, the weak character of weak reduction
can be captured by stipulating that substitutions should not be propagated under binders.
We describe some attempts at doing this, starting with the weak λ-calculus by Lévy and
Maranget [31], whose substitution mechanism is a hybrid between implicit and explicit:

Term 3 t, s ::= x | ts | (λx.p)[σ] Prog 3 p, q ::= x | pq | λx.p
Subst 3 σ ::= (x1, t1), (x2, t2), . . . , (xn, tn)

TYPES 2018



6:6 Normalization by Evaluation for Typed Weak λ-Reduction

Here, we use the metavariables p, q for programs, i.e. constant terms, and t, s for ordinary
terms. Explicit substitutions σ are just lists of variable-term pairs. We write σ[t/x] for the
extended substitution that maps x to t and behaves like σ otherwise. Terms are formed
out of variables, application, and closures (λx.p)[σ], i.e. pairs made of a functional program
λx.p and a substitution σ assigning terms to its free variables. However, we do have implicit
substitution 〈_〉 on programs:

x 〈σ〉 :≡ σ(x) (p q)〈σ〉 :≡ p〈σ〉 q〈σ〉 (λx.p)〈σ〉 :≡ (λx.p)[σ]

Here σ(x) just looks up the term associated to the variable x in a substitution. The dynamics
of weak explicit substitutions is defined as follows; closures are used to avoid pushing
substitutions under λ-abstractions, since otherwise we would validate the ξ-rule.

I Definition 7 (Weak explicit substitutions).

(λx.p)[σ] s −→ p〈σ[s/x]〉
(β) σ −→ σ′

(λx.p)[σ] −→ (λx.p)[σ′]
(ξ-subst)

t −→ t′

ts −→ t′s
(ν) s −→ s′

ts −→ ts′
(µ) t −→ s

σ, (xi, t), σ′ −→ σ, (xi, s), σ′

A normal form is thus either a variable applied to normal forms, or a functional program
together with a normal substitution:

Nf 3 d ::= x d1 ... dn | (λx.p)[ρ] Nfs 3 ρ ::= (x1, d1), (x2, d2), . . . , (xn, dn) (1)

A related calculus was defined by Martin-Löf in one of the early formulations of his type
theory [35]. In that system, terms of function type are not constructed by abstraction, but
by introducing a fresh symbol for a combinator. The system includes a primitive substitution
rule like the σ-rule in Definition 3, but since functions are just atomic symbols, substitution
de facto never happens under binders. We do not reproduce Martin-Löf’s system here,
but instead consider an alternative formulation due to Coquand and Dybjer [16], which
is completely equivalent for the purpose of our analysis. The system is based on explicit
substitutions and is very similar to that of Definition 7, although they present it using a
typed nameless syntax [20]:

Term 3 t, s ::= x | ts | (λx.t)[σ] Subst 3 σ ::= (x1, t1), . . . , (xn, tn)

The normal forms can be characterized in the same way as (1), with the only difference
that now λ-abstractions in normal form (λx.t)[ρ] have ordinary terms as their body. A
further generalization is obtained by allowing explicit substitutions on any term instead of
just on functional closures. An example is the weak λσ-calculus of [17], which we will call
λwσ, and that is also considered in its typed nameless version in [16].

Term 3 t, s ::= x | ts | λx.t | t[σ] Subst 3 σ ::= 〈〉 | (x, t), σ | σ1 · σ2

Here Subst includes an empty substitution 〈〉, and a composition constructor σ1 · σ2, which
is used to model terms under multiple substitutions: t[σ1][σ2] −→ t[σ1 · σ2]. Reduction is
essentially that of Definition 7, apart from the β-rule which is now (λx.t)[σ]s −→ t[(x, s), σ],
and the addition of reduction rules for explicit substitutions. Normal forms are characterized
exactly as in Martin-Löf’s weak λ-calculus just described, namely

Nf 3 d ::= x d1 ... dn | (λx.t)[ρ] Nfs 3 ρ ::= (x1, d1), (x2, d2), . . . , (xn, dn)
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These calculi of weak explicit substitutions are very similar, and in particular they all
implement some form of weak-head reduction, where computation does not occur under
binders. Weak-head normalization is relatively simple and well-understood, and both [35]
and [16] include proofs of normalization for their respective systems. We now compare weak
explicit substitutions to λwk, particularly to see whether these can be used to compute
λwk-normal forms. We consider λwσ as a representative of the calculi of weak explicit
substitutions that we have presented, as it can simulate the others.

Note that terms of the weak λ-calculus can be embedded into λwσ, so a naive approach
would be to just treat weak λ-terms as terms of λwσ, and normalize them under this reduction
relation. λwσ normal forms can be turned back into regular λ-terms by just fully applying
explicit substitutions as they were implicit. That this translation fails to achieve our goal
is already evident by observing the difference in the normal forms of the two calculi. In
particular, every λ-abstraction is a normal form in λwσ, even when its body is not normal,
whereas in the implicit weak calculus, abstractions are only normal if they do not contain
weak redexes, that is, λx.d ∈ Nf ⇐⇒ d ∈ Nf{x}.

This does not necessarily settle the question negatively, because there could be a way to
translate λwk-terms to λwσ-terms in a way that makes this method work. In [31], the authors
consider a translation via maximal free subterms. A subterm t′ of a term t is free whenever
t ≡ C[t′] for some context C[_] that does not bind any free variable in t′. A free subterm
is maximal whenever it is not a subterm of another free subterm. We define a translation
operation T1 from λwk to λwσ:

T1(x) = x T1(ts) = T1(t)T1(s)
T1(λx.t) = (λx.C[x1, . . . , xn])[(x1, T1(t1)), . . . , (xn, T1(tn))]

where t1, . . . , tn are the maximal free subterms of t. We also define T2 as the converse
translation that again just applies all explicit substitutions. We can now show that a reduction
in λwk translates to a reduction in λwσ:

I Proposition 8. If t −→w T2(s), then T1(t) −→ s.

Unfortunately, this result does not generalize to the reflexive-transitive closure of reduction,
so in particular it fails to relate normal forms in the two calculi as we require. In fact,
consider the following reduction of a term t in λwk:

t ≡ (λx.λy.xz)(λw.w) −→w λy.(λw.w)z −→w λy.z

On the other hand, we have

T1(t) ≡ (λx.λy.xk)[z/k](λw.w) −→ (λy.xk)[z/k, (λw.w)/x] ≡ s

The term s is a normal form in λwσ, but translates to the reducible term T2(s) ≡
λy.(λw.w)z in λwk. The problem is that Proposition 8 only holds for terms that are image
of T1, i.e. those terms t such that their explicit substitutions only contain maximal free
subterms in T2(t). Unfortunately, β-contraction destroys this maximality property, since
it can create new weak redexes in T2(t) that do not exist in t. We conjecture that there
exists a different pair of translation functions that makes this work, but leave the rigorous
investigation of this aspect to future work.

3 Two-variable syntax

As anticipated at the end of Section 2, the notion of a weak redex in a term t is essentially
about the distinction between two variable roles: the local variables that may appear bound

TYPES 2018



6:8 Normalization by Evaluation for Typed Weak λ-Reduction

within t, and the global variables that may not. Therefore, the only information that is
really needed by a normalization algorithm to reduce t to weak normal form is the role of
all variables in t. We can exploit this fact by choosing a representation of λ-terms where
this variable distinction is made syntactically explicit. Deciding whether a redex in t is weak
then becomes a straightforward syntactic check. This is reminiscent of the locally-nameless
representation of λ-terms [14], where a similar syntactic distinction is made between free
and bound variables. We define two-variable λ-terms Term as follows

Term 3 t, s ::= xG | xL | λx.t | ts

We distinguish between global variables xG and local variables xL. Abstraction and applica-
tion are the usual ones. We define the set of all free variables FV (t) for a term t in the usual
way ([9], Definition 2.1.7), and consider the obvious restrictions FV L, FV G to, respectively,
local and global variables. We say that a term is locally-closed when it contains no free local
variables, and define the set of locally-closed terms as LC ≡ {t ∈ Term | FV L(t) = ∅}.

We consider two substitution operations _[_/_] and _〈_/_〉, dedicated respectively to
local and global variables.

xG〈a/y〉 :≡
{
a, if x = y

xG, otherwise

xL〈a/y〉 :≡ xL

(λx.t)〈a/y〉 :≡ λx.t〈a/y〉
(t s)〈a/x〉 :≡ t〈a/x〉 s〈a/x〉

xG[a/y] :≡ xG

xL[a/y] :≡
{
a, if x = y

xL, otherwise

(λ t)[a/y] :≡ λx.t[a/y]
(t s)[a/y] :≡ t[a/y] s[a/y]

We assume α-conversion is applied when needed to avoid variable capture, as well as the
Barendregt convention ([9], 2.1.13). The two-variable syntax is instrumental in the definition
of an auxiliary reduction relation, given in Definition 10 below, later shown equivalent to
weak λ-reduction (Theorem 13). However, to facilitate the proof of this equivalence, we
restate weak λ-reduction of Definition 3 in terms of the same two-variable syntax, and use
this definition from now on. Since the local vs global variable distinction is irrelevant in this
case, we restrict our definition to locally-closed terms. For this class of terms, the global
(resp. local) variables end up corresponding to free (resp. bound) variables.

I Definition 9 (Two-variable weak λ-reduction). The binary relation
_ −→w _ between locally-closed two-variable terms is inductively defined as follows.

(λx.t) s −→w t[s/x]
(β) a −→w b

t〈a/x〉 −→w t〈b/x〉
(σ)

It can be seen that Definition 9 is just weak λ-reduction of Definition 3, modulo decorated
variables and congruence rules, which are derivable from (σ). From now on, we will consider
λwk to be the system with LC as terms and Definition 9 as reduction relation.

We now take advantage of the two-variable representation to define a normalization
algorithm for the two-variable syntax, that will end up corresponding to normalization
under weak λ-reduction. We specify it as a recursive traversal on arbitrary two-variable
terms, not necessarily locally-closed. In particular, whenever we recursively reduce under a
λ-abstraction, we do not replace the previously bound local variable with some free global
one, but instead we leave it local. As a consequence, when the algorithm is applied to a
locally-closed term t ≡ C[s], recursive calls are able to identify which variables that appear
free in a subterm s of t are bound by C[_], and thus which redexes are weak redexes, without
having to keep track of what C[_] is.
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A normalization function based on these ideas is shown below. We will use parallel
substitutions ρ ∈ Subst to map free local variables to normal terms. These are defined as
either an empty substitution 〈〉, or the extension ρ[t/x] of ρ with the mapping x 7→ t. We
write ρ(x) for the (partial) look-up function for the term associated to a variable, defined
recursively in the obvious way, [t/x] for the singleton parallel substitution, and t[ρ] for the
repeated application of all substitutions in ρ to a term t. Thus, if t is a locally-closed term,
the expression JtK〈〉 gives the normal form of t, if it exists.

JxGK ρ :≡ xG

JxLK ρ :≡ ρ(x)
Jλx.tK ρ :≡ λx.JtK (ρ[xL/x])

Jt sK ρ :≡ JtK ρ • JsK ρ

t • s :≡
{

Jt′K[s/x] if t ≡ λx.t′ and t s ∈ LC
t s otherwise

Note that this normalization function takes untyped λ-terms as arguments, so it is
necessarily partial, since not every untyped term admits a normal form under weak λ-
reduction. As a consequence of this, in the Agda formalization untyped normalization is
not defined as a type-theoretic function, but rather as an inductive functional relation (see
remark in Section 1.2).

We can distill the function above into a reduction relation −→ex, that we call explicit
because it makes use of the explicitly syntactic distinction between variable roles.

I Definition 10 (Explicit two-variable weak λ-reduction). The binary relation
_ −→ex _ between arbitrary two-variable terms is defined as follows.

(λx.t) s ∈ LC
(λx.t) s −→ex t[s/x]

(β) t −→ex s

λx.t −→ex λx.s
(ξ) t −→ex r

t s −→ex r s
(ν) s −→ex r

t s −→ex t r
(µ)

Note that −→ex recovers the ξ-rule. However, the resulting relation is still weak in
the sense of Definition 5 on locally-closed terms, because of the β-rule enforcing that λ-
abstractions only bind local variables, and that only locally-closed (i.e. weak) redexes are
contracted. The two relations are equivalent on locally-closed terms (Theorem 13.) The
proof is adapted from [13] (Proposition 4.6).

I Lemma 11. If t −→ex s, then there exist a term C with free global variable x and
locally-closed terms a, b such that a −→w b and C〈a/x〉 ≡ t, C〈b/x〉 ≡ s.

Proof. By induction on the reduction proof. We consider the two important cases
Case (β). Then both terms are locally-closed, thus the contraction is valid in −→w. We
take them as our a and b, and put C ≡ xG for x fresh;
Case (ξ). Given λy.t −→ex λy.s, by induction hypothesis on t −→ex s we have C ′,
a −→w b and C ′〈a/x〉 ≡ t, C ′〈b/x〉 ≡ s. We put C ≡ λy.C ′ and conclude. J

I Lemma 12. The following substitution rule is admissible

a −→ex b

t〈a/x〉 −→ex t〈b/x〉

Proof. By structural induction on t. J

I Theorem 13. t −→w s ⇐⇒ t −→ex s for any locally-closed terms t and s.

Proof. We consider each implication separately.
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(=⇒) By observing that every rule in −→w is admissible in −→ex.
(⇐=) By Lemma 11, we get a term C and locally-closed terms a, b such that a −→w b

and C〈a/x〉 ≡ t, C〈b/x〉 ≡ s. We conclude by global variable substitution. J

Note that the equivalence in Theorem 13 extends to the reflexive transitive closures –
since reduction does not affect free local variables – thus in particular the two relations give
rise to the same set of normal forms for the same locally-closed term.

This result allows us to use the normalization function defined in this section to compute
λwk normal forms, i.e. −→w-normal terms, provided such function computes −→ex-normal
terms as we intended. We do not formally argue for this last point now. Rather, in the
next sections we will adapt these ideas to the typed case, and define an “explicit” calculus
based on −→ex that is equivalent to the standard, “implicit” one. We will then prove the
explicit calculus normalizing, and transporting along the equivalence will provide us with a
normalization proof for the implicit calculus.

4 Typed weak λ-reduction

4.1 Simply-typed weak λ-calculus: λwk

We now define λwk, a simply-typed λ-calculus with weak λ-conversion judgments, that we
aim to prove normalizing on well-typed terms. We use the same two-variable syntax as the
previous Section. Types Ty and contexts Ctxt are defined as follows

Ty 3 A,B ::= A⇒ B Ctxt 3 Γ ::= · | Γ, x : A

Here we write Γ 3 x : A for the predicate that is true when x : A is included in Γ. We will
assume that variables in contexts have unique names. The type system is shown in Figure 1.
Even though we only care about locally-closed terms, we formulate the typing judgments in a
slightly more general way, that considers arbitrary, not necessarily locally-closed terms. The
judgments are of the form Γ; ∆ ` t : A, with a double context assigning a type to, respectively,
“global” and “local” assumptions. We thus call the two contexts global and local. A well-typed
term Γ ` t : A of λwk is one where there are no free local variables, or equivalently, one that
is typeable under an empty “local” context. That is, Γ ` t : A :≡ Γ; · ` t : A. Typed weak
λ-conversion judgments are given by the inductive relation _ ` _ ∼ _ : _, and essentially
provide a formulation of the relation in Definition 9 with typed equality judgments.

4.2 Explicit weak λ-calculus: λex

We now define a type system for λex, with explicit weak λ-reduction (Definition 10) as
equality judgments. The motivation for this system is the same behind λex in the untyped
case, namely to avoid the issues of λwk in specifying a normalization algorithm and proving
it correct (see Section 2.1.) We will establish the following results:

λwk and λex are equivalent on locally-closed terms;
λex is normalizing on arbitrary (possibly non-locally-closed) well-typed terms.

Since every well-typed λwk-term is locally-closed, these two results imply what we
ultimately seek to prove, namely normalization for λwk (Section 5.4). The advantage is that
the actual normalization proof is carried out on λex, which plays better with already-known
proof methods that assume the ξ-rule, such as Normalization by Evaluation (as used, for
example, in [11, 16].)
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_;_ ` _ : _

Γ 3 x : A
Γ; ∆ ` xG : A

∆ 3 x : A
Γ; ∆ ` xL : A

Γ; ∆, x : A ` t : B
Γ; ∆ ` λx.t : A⇒ B

Γ; ∆ ` t : A⇒ B
Γ; ∆ ` s : A

Γ; ∆ ` t s : B

_ ` _ ∼ _ : _

Γ;x : A ` t : B Γ ` s : A
Γ ` (λx.t) s ∼ t[s/x] : B

(β) Γ, x : A; · ` t : B Γ ` a ∼ b : A
Γ ` t〈a/x〉 ∼ t〈b/x〉 : A

(σ)

Γ ` t : A
Γ ` t ∼ t : A

Γ ` t ∼ s : A
Γ ` s ∼ t : A

Γ ` t ∼ s : A Γ ` s ∼ r : A
Γ ` t ∼ r : A

Figure 1 Simply-typed λ-calculus with weak λ-reduction.

_;_ ` _ −→ _ : _

Γ;x : A ` t : B Γ; · ` s : A
Γ; ∆ ` (λx.t)s −→ t[s/x] : B

(β) Γ; ∆, x : A ` t −→ s : B
Γ; ∆ ` λx.t −→ λx.s : A⇒ B

(ξ)

Γ; ∆ ` s : A
Γ; ∆ ` t −→ t′ : A⇒ B

Γ; ∆ ` ts −→ t′s : B

Γ; ∆ ` t : A⇒ B
Γ; ∆ ` s −→ s′ : A

Γ; ∆ ` ts −→ ts′ : B

_;_ ` _ ∼ _ : _

Γ; ∆ ` t −→ s : A
Γ; ∆ ` t ∼ s : A

Γ; ∆ ` t : A
Γ; ∆ ` t ∼ t : A

Γ; ∆ ` t ∼ s : A
Γ; ∆ ` s ∼ t : A

Γ; ∆ ` t ∼ s : A
Γ; ∆ ` s ∼ r : A
Γ; ∆ ` t ∼ r : A

Figure 2 Reduction and conversion judgments of λex.

The raw syntax and the typing judgments of λex are the same as λwk, with the difference
that terms can now be well-typed under an arbitrary local context. Figure 2 shows the
definition of typed equality judgments for λex, written Γ; ∆ ` t ∼ s : A, and again formulated
on arbitrary two-variable terms. Note that we do not axiomatize conversion directly, but
define it as the equivalence closure of typed one-step reduction Γ; ∆ ` t −→ s : A, for purely
technical reasons. Similarly to Lemma 12, we prove substitution admissible:

I Lemma 14. If Γ, x : A; ∆ ` t : B and Γ; · ` a ∼ b : A, then Γ; ∆ ` t〈a/x〉 ∼ t〈b/x〉 : B.

Proof. By induction on the derivation of t. J

4.3 Equivalence between λwk and λex

We now show that λwk and λex are equivalent on locally-closed terms. Γ; · ` t : A ⇐⇒ Γ ` t :
A follows by definition, thus we are left to show that Γ ` t ∼ s : A ⇐⇒ Γ; · ` t ∼ s : A. This
is essentially the typed version of Theorem 13, and it relies on an adaptation of Lemma 11
with a proof that the term extraction involved preserves typing.
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I Lemma 15. For all derivations of a typed reduction Γ; ∆ ` t −→ s : A, there exist
terms C, a, b, a type X, and a fresh variable x such that Γ, x : X; ∆ ` C : A is derivable,
Γ ` a ∼ b : X is derivable, and C〈a/x〉 ≡ t, C〈b/x〉 ≡ s.

Proof. By induction on the derivation of t −→ s. J

I Theorem 16. For all Γ, A, t, s, Γ ` t ∼ s : A ⇐⇒ Γ; · ` t ∼ s : A.

Proof. Just an adaptation of the proof of Theorem 13 to the typed case. J

5 Normalization by Evaluation

Normalization by Evaluation (NbE) is a semantic method to prove normalization for typed
λ-calculi. It was originally employed by Martin-Löf, although not under this name, to give a
proof of normalization for a weak, combinatory version of his Intuitionistic Type Theory [35].
The method was later applied to the λβη calculus by Berger and Schwichtenberg [11], as
a model construction where the interpretation function is invertible by an operation called
reification. The composition of interpretation and reification is normalization. An advantage
of NbE is that it can be justified by semantic arguments like logical relations [2] or glueing
[16], rather than cumbersome term rewriting techniques. NbE amounts to establishing the
following properties of a normalization function nf :

Completeness: if Γ ` t ∼ s : A, then nf (t) = nf (s);
Soundness: if Γ ` t : A, then Γ ` t ∼ nf (t) : A.

From these properties we get that convertibility is equivalent to syntactic identity of
normal forms: Γ ` t ∼ s : A ⇐⇒ nf (t) = nf (s). Since syntactic identity of normal forms is
decidable, so is convertibility.

In the rest of this section we give an overview of a proof of untyped NbE for λex. This
variant of NbE was originally detailed in [5], and differs from type-directed NbE like that of
[35] by its reliance on a normalization function that acts on untyped raw syntax alone.

One motivation for using untyped NbE here stems from our formalization work, which
involved several substitution lemmas that we though were easier to carry out on raw syntax.
Another reason has to do with our plan to extend this work to dependent types. Dependent
well-typed syntaxes have been historically difficult to develop inside Type Theory itself [19].
Work on quotient inductive-inductive types [8] seems to offer a viable solution, although it
was too recent to have been considered here.

We employ untyped NbE as described in [2]. Most of the proof replicates [2] quite closely,
so we only highlight the parts that are specific to λex, and direct the reader to the Agda
formalization or the author’s MSc Thesis [37] for the details.

5.1 Semantic domain and interpretation
NbE relies on an interpretation function J_K from the syntax to a semantic domain D,
given an environment ρ assigning meaning to the free variables of the input term. In
the case of weak λ-reduction, we can just use syntactic normal forms as semantic values,
with syntactic identity as equality in the model. Hence we put D ≡ Term, and take the
(partial) normalization function from Section 3 as interpretation J_K. Part of the proof of
normalization will be to show that this function is total on well-typed terms.
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5.2 Completeness of NbE
Completeness of NbE amounts to showing that the interpretation of convertible terms yields
equal semantic values. In our case, we need to show that judgmentally equal terms do have
a normal form, and this is the same. We follow [2] and strengthen our syntactic model by
defining appropriate semantic types A ∈ P(D), that is subsets of normal terms closed under
neutral values: Ne ⊆ A ⊆ Nf. These sets play a similar role to saturated sets, or Tait’s sets
of computable terms [39]. Given semantic types A,B, we can form the semantic function
space A → B of all normal forms f that map elements a ∈ A to elements f • a ∈ B.

We interpret syntactic types as expected, namely JA ⇒ BK = JAK → JBK. Similarly,
we interpret contexts Γ as subsets of substitutions JΓK ∈ P(Subst), namely those that map
assumptions Γ 3 x : A to values in JAK. We write JtKρ ' JsKρ ∈ A whenever t and s evaluate
to the same normal form in A. We then define semantic typing and conversion judgments:

Γ; ∆ |= t : A :≡ ∀(ρ ∈ J∆K), JtKρ ' JtKρ ∈ JT K

Γ; ∆ |= t ∼ s : A :≡ ∀(ρ ∈ J∆K), JtKρ ' JsKρ ∈ JAK

I Theorem 17. For all t, s, A,Γ,∆,
if Γ; ∆ ` t : A, then Γ; ∆ |= t : A;
if Γ; ∆ ` t −→ s : A, then Γ; ∆ |= t ∼ s : A;
if Γ; ∆ ` t ∼ s : A, then Γ; ∆ |= t ∼ s : A.

Proof. By induction on the derivations. J

I Corollary 18 (Completeness of NbE). For all Γ, A, t, s,
1. If Γ; ∆ ` t : A, then t has a normal form, namely JtK;
2. If Γ; ∆ ` t ∼ s : A, then t and s have the same normal form, i.e. JtK = JsK.

Proof. Both points follow from Theorem 17. J

A consequence of completeness of NbE is that J_K is total on well-typed terms. We write
JtK for the interpretation/normalization function applied to the empty substitution.

5.3 Kripke logical relations and soundness of NbE
Soundness of NbE is the statement that well-typed terms are convertible to their normal
form. To prove this, we rely on the definition of a Kripke logical relation. Logical relations
are families of relations defined by induction on (syntactic) types. Kripke logical relations
[28] are additionally indexed by a set of worlds together with an accessibility relation, in the
sense of Kripke semantics. In our case, worlds are represented by contexts and substitutions.
Our logical relation relates well-typed terms with semantic values, i.e. normal forms:

Θ; Γ `M ® N : A⇒ B :≡
M = λx.t ∧ N = λx.d ∧
(for all Θ; ∆ ` σ : Γ and Θ; ∆ ` s ® a : A, then Θ; ∆ ` t[σ[s/x]] ® d[σ[a/x]] : B)

where we write Θ; ∆ ` σ : Γ for substitutions σ mapping assumptions Γ 3 x : A to terms
Θ; ∆ ` t : A. We can show that related objects are convertible.

I Lemma 19. If Γ; ∆ ` t ® a : T then Γ; ∆ ` t ∼ a : T .

Proof. By induction on T and on the logical relation. J
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Note that the proof of Lemma 19 crucially depends on the ξ-rule. We will now prove
that every well-typed term is logically related to its semantics. This result is generally
called fundamental lemma of logical relations, and it is stated below in a generalized version,
where terms are related up to some parallel substitutions assigning logically-related pairs
of terms/values to free variables. We write Γ; ∆ `s σ ® ρ : ∇ for parallel substitutions σ, ρ
mapping assumptions in ∇.

I Lemma 20. If Θ; Γ ` t : T and Θ; ∆ `s σ ® ρ : Γ, then Θ; ∆ ` t[σ] ® JtK ρ : T .

Proof. By induction on the derivation of t. J

I Theorem 21. [Soundness of NbE] If p ∈ Γ; ∆ ` t : A, then Γ; ∆ ` t ∼ JtK : A.

Proof. By completeness of NbE, Lemma 20, and Lemma 19. J

As a consequence of NbE we get the following results (recall the beginning of Section 5):

I Theorem 22 (Normalization of λex). If Γ; ∆ ` t : A, then ∃t′ normal s.t. Γ; ∆ ` t ∼ t′ : A.

I Corollary 23. Given Γ; ∆ ` t : A, Γ; ∆ ` s : A, the judgment Γ; ∆ ` t ∼ s : A is decidable.

5.4 Normalization for λwk

From the equivalence result between λwk and λex and normalization for the latter, we get

I Theorem 24. [Normalization] If Γ ` t : A, then ∃t′ ∈ Nf s.t. Γ ` t ∼ t′ : A.

Proof. By Theorem 22 and Theorem 16. J

I Corollary 25. If Γ ` t : A and Γ ` s : A, then Γ ` t ∼ s : A is decidable.

Proof. By Corollary 23, Theorem 16, and the fact that decidability respects logical equival-
ence. J

6 Conclusions

This article studies the notion of weak reduction originally due to Howard [25], and called here
weak λ-reduction after [13]. In particular, it addresses the problem of defining an algorithmic
procedure to compute normal forms of weak λ-reduction, and constructively proving the
normalization theorem for a simply-typed λ-calculus equipped with this notion of reduction.
The first part of this work includes a comparison of weak λ-reduction with other weak notions
of reduction for the λ-calculus and combinatory logic. This comparison seems to reveal that
these calculi are not, as currently developed, strong enough to compute weak λ-reduction
normal forms. The solution proposed here relies instead on the definition of an “explicit”
version of weak reduction that is equivalent to the original weak λ-reduction, and that
facilitates the definition a normalization algorithm and the reasoning about its correctness.
As far as we are aware, this provides the first detailed specification of a normalization
algorithm for weak λ-reduction, and a proof of its correctness in the typed case. Our work
has been fully formalized in the Agda proof assistant 2.

2 The formalization can be found at https://github.com/fsestini/nbe-weak-stlc
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6.1 Related work
Weak λ-reduction seems to have received limited attention in the literature, with some
exceptions [25, 13] already mentioned in the previous sections. An early version of Martin-Löf
Type Theory [35] had a primitive substitution rule and no ξ-rule. The author argues in [34]
that a rule like ξ is unacceptable because stronger than what is intuitively and informally
understood as definitional equality.

Weak λ-reduction is also employed in the Minimalist Foundation, a two-level foundation
for constructive mathematics in the style of Martin-Löf Type Theory ideated by Sambin and
Maietti in [33], and completed by Maietti to a formal system in [32]. There, the ξ-rule is
rejected because it makes it easy to give a Kleene realizability interpretation for the theory,
a property of ξ-free systems that was already noted in [34]. The realizability model is then
used to show consistency with the formal Church Thesis and the Axiom of Choice [27].

Kesner et al. [29, 30] study weak-head reduction in the context of intersection types
and call-by-need reduction strategies. Hyland and Ong [26] use weak reduction to construct
a PCA of strongly-normalizing λ-terms as a basis for a general method to prove strong
normalization for various type theories. The notion of equality in the PCA is a weak reduction
relation similar to weak λ-reduction, that only contracts closed redexes. The same kind of
restricted reduction is also employed in [22]. In [6], Akama introduces a translation from
λ-terms to combinators, so that a term is strongly-normalizing under β-reduction if and only
if its translation is strongly-normalizing under the weak conversion of combinatory logic.

The ideas presented in this article are exposed in more detail in the author’s (unpublished)
Master’s Thesis [37], where normalization is proved for System T rather than simple types.
The thesis also contains an analysis of the problem for systems with dependent types, and a
proof of NbE for a version of Martin-Löf Type Theory with one universe and weak explicit
substitutions. The author later discovered that a similar system had also been developed by
Barras et al. [10, 15].

The proofs of normalization shown in this work are based on Normalization by Evaluation.
NbE was first employed by Martin-Löf in [35] for his combinatory theory, although not under
this name. The method was later rediscovered in [11] in the context of the simply-typed
λ-calculus with η equality. Coquand and Dybjer [16] apply NbE for typed combinatory logic
and two weak λ-calculi, using a model construction inspired by the categorical notion of
glueing. Untyped NbE, originally developed in [5], is employed here following [2].

6.2 Future work
We would like to study further the connection between weak λ-reduction, weak explicit substi-
tutions, and combinatory logic. In particular, we conjecture that weak explicit substitutions
can be shown to simulate weak λ-reduction, given suitable translation functions between
terms of the two calculi that we have sketched but not yet proved correct.

Another direction for the future is the extension of this work to weak systems with
dependent types, most notably the intensional level of the Minimalist Foundation. Past
attempts seem to suggest that the method exposed here does not scale well to dependent
types with typed equality judgments. However, it does if the calculus is based on an untyped
conversion relation, like the one considered in [3]. Thus, a solution could be to first prove
that the weak Type Theory of interest, defined with typed equality judgments, is equivalent
to its formulation based on untyped conversion, possibly using results from [38]. A different
approach could be to show that the type theory with weak explicit substitutions in [37] is
equivalent to the one with implicit substitutions.
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