
ar
X

iv
:2

30
7.

06
92

8v
1

 [
cs

.P
L

]
 1

3
Ju

l 2
02

3
Ill-Typed Programs Don’t Evaluate

STEVEN RAMSAY, University of Bristol, UK

CHARLIE WALPOLE, University of Bristol, UK

We introduce two-sided type systems, which are a particular kind of sequent calculi for typing formulas. Two-

sided type systems allow for hypothetical reasoning over the typing of compound program expressions, and

the refutation of typing formulas. By incorporating a type of all values, these type systems support symmetrical

notions of well-typing and ill-typing, guaranteeing both that well-typed programs don’t go wrong and that

ill-typed programs do not evaluate - that is, reach a value. This makes two-sided type systems suitable for

incorrectness reasoning in higher-order program verification, which we illustrate through an application to

precise data-flow typing in a language with constructors and pattern matching. Finally, we investigate the

internalisation of the meta-level negation in the system as a complement operator on types. This motivates

an alternative semantics for the typing judgement, which guarantees that ill-typed programs don’t evaluate,

but in which well-typed programs may yet go wrong.

Additional Key Words and Phrases: type systems, higher-order program verification, incorrectness

1 INTRODUCTION

It is natural to think of a type system as a kind of proof system, whose purpose is reasoning about
the behaviour of program expressions. In this view, the atomic formulas of the system are typings
" : �, where " is a term and � a type and, in building a proof of a judgement Γ ⊢ " : �, we aim
to conclude an atomic formula " : � under some assumptions Γ on the types of its free variables.
Therefore, built into traditional type systems, but absent from most general proof systems, is a
fundamental asymmetry: although we can conclude arbitrary typing formulas" : �, we may only
make assumptions on variable typing formulas G : �. In this paper, we argue that type theory is
enriched by removing this restriction, and there are interesting practical applications. Our two-sided
type systems allow for making assumptions on the types of arbitrary program expressions. In fact,
they are particular kinds of sequent calculi over formulas of shape" : �.
The ability to reason hypothetically about the behaviour of compound terms gives us a new

way to express how programs depend on their inputs. For example, we can prove that, if G + 1
evaluates to a natural number and (_5 I. 5 (5 I)) (_G. G)~ evaluates to a natural number, then (G,~)
is necessarily a pair of natural numbers:

G + 1 : Nat, (_5 I. 5 (5 I)) (_G. G)~ : Nat ⊢ (G,~) : Nat × Nat

We also remove the restriction that one must conclude exactly one typing formula on the right
of the turnstile, with multiple formulas understood disjunctively (as in most sequent calculi). In
particular, one is allowed to derive an empty conclusion Γ ⊢, meaning that the assumed typing
formulas Γ are inconsistent (the unit of disjunction is absurdity). For example, one can prove:

(_5 I. 5 (5 I)) (_G. G) (~, ~) : Nat ⊢

stating that, no matter the value of ~, the subject on the left doesn’t evaluate to a natural number.
Despite this, the term above does evaluate, i.e. reduce to a value. By introducing a type Ok to

characterise all values, we can use hypothetical judgements like the above to prove that terms do
not evaluate (at all), that is they either diverge or go wrong. For example, we can prove:

(_5 I. 5 (5 I)) (_G. pred(G)) (~, ~) : Ok ⊢

stating that the program that applies the predecessor function twice in succession to a pair will fail
to evaluate. We say that such a term, to which we can assign the type Ok on the left, is ill-typed.

1

Steven Ramsay and Charlie Walpole

As well as the familiar rules for concluding typings on the right of the turnstile, our system also
has rules for refuting assumed typings on the left. The key to the whole enterprise is a new kind of
function type, the necessity arrow � ⤚ �, pronounced ‘� only to �’. The necessity arrow describes
functions that produce a � only if they are given an� as input. It is, in a sense that we make precise,
the contrapositive of the usual (sufficiency) arrow � → �, which guarantees that a � is produced
if an � is given as input. The rule, (AbnR), for deducing that a function _G." is of type � ⤚ �, is
symmetrical to the usual rule for � → �:

Γ ⊢ " : � ⤚ �, Δ Γ, # : � ⊢ Δ
(AppL)

Γ, (" #) : � ⊢ Δ

Γ, " : � ⊢ G : �, Δ
(AbnR)

Γ ⊢ (_G.") : � ⤚ �, Δ

On the other hand, the rule (AppL) shows us how to decompose an application on the left, using
necessity. As is typical in sequent calculi, it is instructive to think of a left rule in terms of refuting
its principal formula. To refute that an application " # evaluates to an �, it suffices to affirm that
" is a function that produces a � only if given an �, and then to refute that # is an �.

The ability to refute that terms evaluate becomes very useful when we consider more sophisti-
cated type systems, designed for verifying stronger, behavioural properties of terms. In such sys-
tems, one faces the same difficulties as in general program verification, namely that proofs are
difficult to construct automatically and, as a consequence, false positives – that is, where a per-
fectly good program is not well-typed1 – are common. This is problematic because, in practice, a
lot of the value of program verification tools derives from their use as a means to find bugs, i.e. true
positives.
One might argue that false positives are already a feature of the mainstream type systems, as e.g.

used in compilers, and are thus evidently not too onerous (though proponents of untyped program-
ming may forcefully disagree). However, a significant difference is that, by and large, programmers
understand enough of those systems to be able to predict false positives, or at least quickly diagnose
and program around them. By contrast, type systems for programverification are often significantly
more complex and the success of automated tools is bound up with the efficacy of ad hoc heuristics.
With two-sided typing, we can obtain a ‘true positives’ theorem: ill-typed programs do not eval-

uate in addition to the usual ‘true negatives’ theorem: well-typed programs do not go wrong. Thus,
like O’Hearn’s Incorrectness Logic for imperative programs [O’Hearn 2019], our two-sided typing
provides some foundation for the use of type systems to predict erroneous program behaviours. In-
deed, one of the original motivations for this work was to understand the basis for Erlang’s highly
effective Success Typing [Lindahl and Sagonas 2006].
We illustrate this in a two-sided, constrained type system designed for reasoning precisely about

the shape of data structures. Following Aiken et al. [1994], our system has a type constructor for
every datatype constructor, so that, for example, [] is both the term constructor for the empty list
and the type of the empty list, and � :: � is the type of all non-empty (cons ::) lists whose head
element has type � and whose tail is of type �. Using the system we can prove, for example, that
the head function requires a cons with head element of type � in order to return an �, and that the
map function requires non-emptiness of its list argument in order to provide a non-empty output:

head : ∀0. (0 :: Ok) ⤚ 0 map : ∀0 1. (0 ⤚ 1) → (0 :: Ok) ⤚ (1 :: Ok)

More precisely, the combination of to and only to arrows in map’s type says that when given an 0
only to 1 function, it is guaranteed to behave like a function that necessarily requires a cons with
element type 0 in order to produce a cons with element type 1. Since our system can refute that the

1A simple example that is rejected by many systems is: if true then 1 else (1, 1) .

2

Ill-Typed Programs Don’t Evaluate

empty list is non-empty, taking the head of a list obtained by mapping the empty list is ill-typed:

head (map (_G. G) []) : Ok ⊢

This program, which typically shows as a false negative in mainstream type systems for functional
programming (i.e. is reported as well-typed but actually goes wrong), is proven by our system to
be a true positive: the term is guaranteed to either diverge or go wrong.
Our full list of contributions is as follows.

• We introduce a two-sided type system for a PCF-like language and we prove semantic sound-

ness, i.e. that every provable judgement is true in the call-by-value semantics (Theorem 4.3).
Soundness implies that well-typed programs don’t go wrong and also that ill-typed programs

don’t evaluate. A crucial step is to show that all our types describe safety properties (The-
orem 4.5). So, in contrast to e.g. incorrectness logic, we can use standard rules for reasoning
about recursion via invariants. However, we show that this is lost when allowing higher-types
on the right of the necessity arrow (Theorem 4.8).

• We introduce a two-sided constrained type system for a functional programming language
with datatype constructors and pattern matching. The system allows for precise reasoning
about the shape of data structures through expressive type inclusion constraints. We show that
types can be inferred automatically for this system and are principal in a suitable sense (The-
orem 5.8). Using an adaptation of the technique of Wright and Felleisen [1994], we prove syn-
tactic soundness. Although weaker than semantic soundness, we obtain both that well-typed
programs don’t go wrong (as usual) and ill-typed programs don’t evaluate (Theorem 5.12).

• Finally, we introduce an alternative success semantics for two-sided judgements, in which
showing that a term is typable does not preclude that the term goes wrong. We show that,
under the success semantics, the meta-level negation provided by the two-sided judgement
can be internalised in the system as a complement operator on types. As a consequence, we
can derive a one-sided (traditional) type system, which actually subsumes its two-sided cousin
(Theorem6.4).We prove syntactic soundness for the one-sided system, which implies that both
systems guarantee that ill-typed programs don’t evaluate, though well-typed programs may
yet go wrong (Theorem 6.6).

The paper continues by introducing the basic ideas of two-sided typing through a simple, PCF-
like programming language in Sections 2 and 3, before considering the semantics of such systems
in Section 4. We then apply the ideas to precise reasoning in a functional programming language
with constructors and pattern matching in Section 5, which we show is sound and has computable
inference. Section 6 returns to the simple PCF-like language for an investigation into complements
and the success semantics. Finally, Section 7 concludes with a review of related work.

2 A LANGUAGE AND ITS TWO-SIDED TYPING

We start by introducing a PCF-like, call-by-value programming language.

Definition 2.1 (Terms). Assume a denumerable set of term variables G ,~, I and so on. We consider
a simple functional programming language, whose values, typically + ,, and so on, and whose
terms, typically" , # , % , & and so on, are defined by the following grammar:

+ , , F G | succ= (zero) | (+ , ,) | _G."

", #, %,& F zero | succ(") | pred(") | if" then# else% |

G | _G." | " # | fixG." | (", #) | let (G,~) = " in#

We consider terms identified up to renaming of bound variables and adopt the usual conventions
regarding their treatment. A term with no free variables is said to be closed. A term substitution,

3

Steven Ramsay and Charlie Walpole

typically \ , is finite map from term variables to terms. We say that a substitution is closed just if
the terms in its range are closed. We will often write concrete substitutions explicitly as a list of

maplets as in ["1/G1, . . . , "=/G=], or [
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗
"8/G8] when indices are clear.

Abbreviations. It will be helpful to define some abbreviations. For each = ∈ N, we write = for
the numeral succ= (zero). The let construct is used to obtain the two components of a pair by
matching but, in examples, we will typically always use it on the argument of an abstraction. Hence,
it is helpful to define _(G,~). " as an abbreviation for _I. let (G,~) = I in" . We write div as an
abbreviation for fixG. G , and id for _G. G .
The language is essentially an applied _-calculus with fixpoints. Terms" can be tested for equal-

ity with zero using the if-zero expression if" then# else% , and can be deconstructed as a pair
using the let expression let (G,~) = " in# . Closed values are numerals, pairs and abstractions.

Definition 2.2 (Reduction). The evaluation contexts are defined by the following grammar:

E, F F � | succ(E) | pred(E) | (E,") | (+ , E)

| let (G,~) = E in# | if E then# else% | (_G.") E | E #

Given a context E, we write E["] for the term obtained by replacing the hole � by" . The one-step
reduction relation, written " ⊲ # , is the binary relation on (possibly open) terms obtained as the
closure of the following schema under evaluation contexts.

(IfZ) if 0 then# else% ⊲ # (IfS) if = + 1 then# else% ⊲ %

(Let) let (G,~) = (+ ,,) in" ⊲ " [+ /G,, /~] (Fix) fixG." ⊲ " [fixG."/G]

(PZ) pred(0) ⊲ 0 (PS) pred(= + 1) ⊲ = (Beta) (_G.")+ ⊲ " [+ /G]

The terms on the left-hand side of the above schema are said to be redexes. We write " ⊲∗ # for
the reflexive transitive closure of the one-step relation. A term " that cannot make a step is said
to be in normal form. A term with no normal form is said to diverge. We write " ⇓ + just if closed
term" ⊲∗ + and we say that" evaluates. A term is said to be stuck just if it is a normal form that
is not a value. A term is said to get stuck (or go wrong) just if it reduces to a stuck term.

2.1 Two-Sided Type System

We introduce a very simple two-sided type system for this language. The types of the system are
either the base type Nat, or constructed using product or the two arrows. We make a distinction
between finitely verifiable types and ordinary types. Intuitively, membership in the set of values
described by finitely verifiable types can be witnessed by a finite unfolding of (the recursion in) the
term. We make this distinction to ensure that types describe safety properties (see Section 4).

Definition 2.3 (Types). The types, typically�,� and so on, and thefinitely verifiable types, typically
� , are defined by the following grammar:

� F Nat | �1 × �2
�, � F Nat | � × � | � → � | � ⤚ �

Wewill label the usual arrow type� → �, the sufficiency arrow to distinguish it from the necessity
arrow � ⤚ � . We pronounce the first of these types as ‘� to �’ and the second as ‘� only to �’2. We
assume all arrows associate to the right and that products bind tighter than the other operators.

2Strictly speaking, for the English to be correct, one should pronounce it as ‘� only, to �’, but we do not recommend it.

4

Ill-Typed Programs Don’t Evaluate

Structural

(Id)
Γ, G : � ⊢ G : �, Δ

Γ ⊢ " : �, Δ
(Dis) � | | �

Γ, " : � ⊢ Δ

Right Rules

(ZeroR)
Γ ⊢ zero : Nat, Δ

Γ ⊢ " : Nat, Δ
(SuccR)

Γ ⊢ succ(") : Nat, Δ

Γ ⊢ " : Nat, Δ
(PredR)

Γ ⊢ pred(") : Nat, Δ

Γ ⊢ " : � ×�, Δ Γ, G : �, ~ : � ⊢ # : �, Δ
(LetR)

Γ ⊢ let (G,~) = " in# : �, Δ

Γ ⊢ " : � → �, Δ Γ ⊢ # : �, Δ
(AppR)

Γ ⊢ " # : �, Δ

Γ ⊢ " : �, Δ Γ ⊢ # : �, Δ
(PairR)

Γ ⊢ (", #) : � × �, Δ

Γ, G : � ⊢ " : �, Δ
(AbsR)

Γ ⊢ _G." : � → �, Δ

Γ, " : � ⊢ G : �, Δ
(AbnR)

Γ ⊢ _G." : � ⤚ �, Δ

Γ, G : � ⊢ " : �, Δ
(FixR)

Γ ⊢ fixG." : �, Δ

Γ ⊢ " : Nat, Δ Γ ⊢ # : �, Δ Γ ⊢ % : �, Δ
(IfZR)

Γ ⊢ if" then# else% : �, Δ

Left Rules

Γ, " : Nat ⊢ Δ
(SuccL)

Γ, succ(") : Nat ⊢ Δ

Γ, " : Nat ⊢ Δ
(PredL)

Γ, pred(") : Nat ⊢ Δ

Γ ⊢ " : � ⤚ �, Δ Γ, # : � ⊢ Δ
(AppL)

Γ, " # : � ⊢ Δ

Γ, "8 : �8 ⊢ Δ
(PairL)

Γ, ("1, "2) : �1 ×�2 ⊢ Δ

Γ, # : � ⊢ Δ
(LetL1)

Γ, let (G,~) = " in# : � ⊢ Δ

Γ, " : �1 × �2 ⊢ Δ
Γ, # : � ⊢ G8 : �8 , Δ (∀8)

(LetL2)
Γ, let (G1, G2) = " in# : � ⊢ Δ

Γ, " : Nat ⊢ Δ
(IfZL1)

Γ, if" then# else% : � ⊢ Δ

Γ, # : � ⊢ Δ Γ, % : � ⊢ Δ
(IfZL2)

Γ, if" then# else% : � ⊢ Δ

Fig. 1. Two-sided type assignment.

5

Steven Ramsay and Charlie Walpole

The idea of � ⤚ �, which will be made precise in Section 4, is to classify those functions which
return a � only if an�was supplied as input (hence the pronunciation). An example is the function
_G. (G, 0) which can be assigned the type Nat ⤚ Nat × Nat. If this function returns a pair of
numerals, its input must have been a numeral. On the other hand, _G. (0, 1) cannot be assigned this
type, because if it returns a pair of numerals, it is not necessary that a numeral was input.
We shall not consider subtyping for this system, but it is useful to axiomatise a notion of type

disjointness which, intuitively, says that two types do not have any values in common.

Definition 2.4 (Disjointness). We say that two types � and � are disjoint, and write � | | �, just if
either (i) one is Nat and the other is not, or (ii) one is an arrow and the other is not, or (iii) one is a
product and the other is not.

Now, we come to define the two-sided type system. The idea is that the system is a simple kind
of sequent calculus whose only formulas are typings" : �.

Definition 2.5 (Type Assignment). A typing formula, or just typing, is a pair" : � of a term" and
type �. The term " is said to be the subject of the formula. A typing judgement is a pair of finite
sets of typings, written Γ ⊢ Δ. A judgement is said to be provable (or derivable) according to the
rules in Figure 1. We make some additional requirements on the occurrences of free variables that
are omitted from the rules for typesetting reasons: in every use of (AbsR), (AbnR), (LetR), (LetL1), (LetL2)
and (FixR), we require that the bound variables displayed do not occur freely in Γ or Δ.

In a traditional, one-sided type system, a judgement like G : �, ~ : � ⊢ % : � is conventionally
understood as ‘if x has type � and ~ has type �, then % has type�’. Here, we generalise this in two
ways. First, we allow arbitrary terms on the left and not only variables. However, the judgement
can be read in the same way. So " : �, # : � ⊢ % : � should be understood as:

‘if " has type � and # has type �, then % has type�’.

Second, we allow for multiple typings (including none) on the right of the turnstile. These are
understood disjunctively, so " : � ⊢ % : �, & : � should be read as:

‘if " has type �, then either % has type � or & has type �’.

In particular, " : �, # : � ⊢, which has an empty conclusion, should be understood as ‘if " has
type � and # has type � then false’, i.e. either " cannot have type � or # cannot have type �.
However, we must take care to say something about the meaning of ‘" has type �’ within a

judgement. Since our language is call-by-value, there is an asymmetry between the left- and right-
hand side. On the left-hand side of the turnstile ‘" has type �’ means " evaluates to an �, but
on the right-hand side, it means either " diverges or " evaluates to an �. This is made precise in
Section 4, but it is useful to have some intuitions already.
For example, suppose we have some term add and we know that add : Nat × Nat → Nat. Then,

we should expect that the following judgement is provable:

succ(succ(I)) : Nat, if~ then 0 else 1 : Nat ⊢ add (~, I) : Nat

Intuitively, if succ(succ(I)) is a numeral, it must be thatI was a numeral, and if the term if~ then 0 else 1
evaluates to a numeral, it must be that~ is a numeral too (recall that the conditional of the language
requires the guard to be a numeral). Therefore, add (~, I) should evaluate to a numeral. This is the
kind of reasoning that we are trying to capture with the rules of Figure 1.
The rules have been divided into three kinds, structural rules, right rules and left rules. Typically,

the rules are used bottom-to-top in order to construct a derivation. The structural rules express
some features particular to the meaning of the two sides. The right rules should be familiar from
simple type systems, and are for concluding typings on the right of the turnstile; they only differ in

6

Ill-Typed Programs Don’t Evaluate

that they allow for multiple conclusions. One can think of the purpose of left rules as for refuting
typings on the left of the turnstile. However, in practice, they are more often used as a means to
extract information from assumptions.

Structural Rules. The rule (Id) should be familiar. The only difference is that now we allow for
multiple formulas in the conclusion, but since they are understood disjunctively, all is well. The
(Dis) rule expresses a key structural property of the two-sided type system, which is that refuting
that a term " evaluates to an � can be achieved by affirming that " either diverges or evaluates
to a value of some disjoint type �.

Left Rules. The rule (SuccL) allows for refuting that a term of shape succ(") has type Nat. The
only way that succ(") may not evaluate to a numeral is if " does not evaluate to a numeral, so
refuting succ(") : Nat reduces to refuting " : Nat. The rule (PredL) is similar.
The rule (AppL) says that, to refute that " # evaluates to an �, we can do the following. First

show that " either diverges or requires an input of type � in order to produce an �, then refute
that # evaluates to a �. Notice the combination of affirmation and refutation required in this rule.
The rule (PairL) says that to refute that ("1,"2) evaluates to a value of type�1×�2 we need only

refute that one component of the pair evaluates accordingly.
The rules (LetL1) and (LetL2) allow for reasoning about let expressions on the left. To refute that

let (G,~) = " in# evaluates to an �, one can refute that the body evaluates to an� (independently
of the values of G and ~); this is (LetL1). Alternatively, one can refute that " evaluates to a pair
(+ ,,) of the appropriate kind to allow # [+ /G,, /~] to evaluate to an �. We use the ‘if ... then ...’
reading of the judgement, in order to explain how the rule implements this strategy. The first two
premises of (LetL2) say that, if # evaluates to an � then it must be that G was a � and that ~ was a
� . In other words, in showing these two premises, we are showing that for # to evaluate to an �
as in the conclusion, (G,~) is necessarily a value of � ×� . Then in the third premise we refute that
" evaluates to a pair of this form.

Finally, the rules (IfZL1) and (IfZL2) are used for reasoning about the if-zero expression on the left.
To refute that if" then# else% evaluates to an �, we can refute that" evaluates to a numeral, as
in (IfZL1). Alternatively, we can show that neither branch evaluates to an �, which is (IfZR2).
Notice that there are no rules for reasoning explicitly about abstractions or fixed points on the

left. In the case of abstractions, to refute _G." : � → �, we would want to refute something
about the body " . However, it would be unsound to simply refute that the body " evaluates to a
�, because the meaning of the � → � allows for this possibility –" may diverge and yet _G." is a
value of � → �. Note, however, that it is possible to refute _G." : � by using the disjointness rule
(Dis). We could have included left rules for fixpoint expressions, but since they are typically used in
conjunction with abstractions it is of limited use.

Pattern Abstraction. Recall that we treat _(G,~). " as an abbreviation for _I. let (G,~) = I in" .
In the following it will be efficient to use the derived typing rule:

Γ, " : � ⊢ G : �, Δ Γ, " : � ⊢ ~ : �, Δ
(PAbsNL)

Γ ⊢ _(G,~). " : � ×� ⤚ �, Δ

Example 2.6. We can define addition add = fix 5 . (_(~, I). if ~ thenI else succ (5 (pred(~), I))).
To return a numeral, both its arguments must be numerals. First observe that, in the ‘else’ branch
of the conditional, if we know that the recursive call requires a pair of numerals in order to produce

7

Steven Ramsay and Charlie Walpole

a numeral, then I must be a numeral, we use Γ to abbreviate { 5 : Nat × Nat ⤚ Nat } in:

(Id)
Γ ⊢ 5 : Nat × Nat ⤚ Nat, I : Nat

(Id)
Γ, I : Nat ⊢ I : Nat

(PairL)
Γ, (pred(~), I) : Nat × Nat ⊢ I : Nat

(AppL)
Γ, 5 (pred(~), I) : Nat ⊢ I : Nat

(SuccL)
Γ, succ(5 (pred(~), I)) : Nat ⊢ I : Nat

The same can be said in the ‘then’ branch of the conditional, since the ‘then’ branch actually returns
I. So we can use (IfZL2) to conclude that I is certainly a numeral whenever the conditional expression
evaluates to a numeral:

(Id)
Γ, I : Nat ⊢ I : Nat

· · ·

Γ, succ(5 (pred(~), I)) : Nat ⊢ I : Nat
(IfZL2)

Γ, if~ thenI else succ(5 (pred(~), I)) : Nat ⊢ I : Nat

Abbreviating the ‘else’ branch for brevity, we can obtain ~ : Nat from the fact that the conditional
branches on ~, using (IfZ1), and conclude using our derived rule (PAbnR) and the standard rule for
fixpoints on the right:

(Id)
Γ, ~ : Nat ⊢ ~ : Nat

(IfZL1)
Γ, if ~ thenI else . . . : Nat ⊢ ~ : Nat

· · ·

Γ, if ~ thenI else . . . : Nat ⊢ I : Nat
(PAbnR)

Γ ⊢ _(~, I). if ~ thenI elsesucc(5 (pred(~), I)) : Nat × Nat ⤚ Nat
(FixR)

⊢ add : Nat × Nat ⤚ Nat

Example 2.7. We can define the higher-order combinator twice = _5 G . 5 (5 G). It has the follow-
ing property. For any type�, it guarantees to map all functions of type� ⤚ � to an output function
of the same type. We abbreviate Γ = {5 : � ⤚ �} in the proof:

(Id)
Γ ⊢ 5 : � ⤚ �, G : �

(Id)
Γ ⊢ 5 : � ⤚ �, G : �

(Id)
Γ, G : � ⊢ G : �

(AppL)
Γ, 5 G : � ⊢ G : �

(Id)
Γ, 5 (5 G) : � ⊢ G : �

(AbnR)
Γ ⊢ _G. 5 (5 G) : � ⤚ �

(AbsR)
⊢ _5 G . 5 (5 G) : (� ⤚ �) → � ⤚ �

Example 2.8. Wecan prove that applying predecessor twice to a pair does not evaluate to a natural
number. From the foregoing example, we know that twice (_G. pred(G)) is guaranteed to behave
like a function that, to produce a numeral, requires a numeral as input:

· · ·

⊢ twice : (Nat ⤚ Nat) → Nat ⤚ Nat

(Id)
G : Nat ⊢ G : Nat

(PredL)
pred(G) : Nat ⊢ G : Nat

(AbnR)
⊢ (_G. pred(G)) : Nat ⤚ Nat

(AppR)
⊢ twice (_G. pred(G)) : Nat ⤚ Nat

Note, since our predecessor is a constant of fixed arity, we need to wrap it in an abstraction to
provide it as an input. However, a pair is not a numeral, so we can use disjointness:

· · ·

⊢ twice (_G. pred(G)) : Nat ⤚ Nat

· · ·

⊢ (0, 1) : Nat × Nat
(Dis)

(0, 1) : Nat ⊢
(AppL)

twice (_G. pred(G)) (0, 1) : Nat ⊢

8

Ill-Typed Programs Don’t Evaluate

(OkVarR)
Γ ⊢ G : Ok, Δ

Γ, " : Ok ⊢ Δ
(OkL)

Γ, " : � ⊢ Δ

Γ ⊢ " : �, Δ
(OkR)

Γ ⊢ " : Ok, Δ

Γ, " : Ok ⤚ � ⊢ Δ
(OkApL1)

Γ, " # : Ok ⊢ Δ

Γ, # : Ok ⊢ Δ
(OkApL2)

Γ, " # : Ok ⊢ Δ

Γ, " : Nat ⊢ Δ
(OkSL)

Γ, succ(") : Ok ⊢ Δ

Γ, " : Nat ⊢ Δ
(OkPL)

Γ, pred(") : Ok ⊢ Δ

Γ, "8 : Ok ⊢ Δ
(OkPrL)

Γ, ("1, "2) : Ok ⊢ Δ

Fig. 2. Type Assignment with Ok

3 THE TYPE OF VALUES AND ILL TYPEDNESS

In fact, not only does twice (_G. pred(G)) (0, 1) not evaluate a numeral, it does not evaluate at all –
it goes wrong. In this section we enrich our system with the means to express this by introducing
a new type Ok, with meaning ‘evaluates (to a value)’.

Definition 3.1. We extend the grammar of types with the constantOk and extend the typing rules
to include those given in Figure 2.

The rule (OkVarR) expresses the fact that, in call-by-value, wemay assume that all variables denote
values. The rules (OkL) and (OkR) express the fact that Ok is the type of all values. To conclude that
" : Ok, it suffices to show " : � since every type � represents some non-empty set of values. To
refute that" evaluates to an�, it suffices to refute that it evaluates at all. Rules (OkApL1) and (OkApL2)

express the fact that, for an application " # to evaluate, requires that " evaluates to a function
(see Remark 3.1) and that# evaluates. Rules (OkSL) and (OkPL) express the fact that the successor and
predecessor are only defined on numerals. In combination with (OkL), these rules subsume (SuccL)

and (PredL) respectively. Finally, (OkPrL) allows to refute that ("1, "2) evaluates by refuting that one
of the components evaluates.

Remark 3.1. SinceOk is meant to be the set of all values, the set of all abstractions can be represented
by any type of shape Ok ⤚ �. Indeed, using (AbnR) and (OkVarR) we can prove ⊢ _G." : Ok ⤚ �.

For example, if we use (OkPL) instead of (PredL) in the first derivation of Example 2.8 we can show
that ⊢ twice (_G. pred(G)) : Nat ⤚ Ok. Then, using (AppL) and (Dis), we can conclude twice (_G. pred(G)) (0, 1) :
Ok ⊢.
In Example 2.6, we proved that add requires both its arguments to be numerals in order to return

a numeral. However, we cannot prove that it requires both its arguments to be numerals in order to
evaluate. To see why, suppose the body of the function, if~ thenI else succ (5 (pred(~), I)), eval-
uates for some actual parameters ~ and I. Clearly, ~ is required to be a numeral since it appears
in the guard. However, I is not required to be a numeral by the branches of the conditional. In
particular, the ‘then’ branch yields I : Ok 6⊢ I : Nat. However, there is a good reason, it is possible
for an application of the function to successfully evaluate even when the second argument is not a
numeral! For example, add(0, _G . G) ⇓ _G. G . The best we can do is prove ⊢ add : Nat ×Ok ⤚ Ok.
Some authors use the phrase ‘ill-typed’ as synonymous with untypable, but we will use it to

mean that a term is provably not ok (as is suggestive of the suffix -typed).

Definition 3.2. Suppose" is a closed term.

9

Steven Ramsay and Charlie Walpole

• We say that" is well-typed just if ⊢ " : Ok.
• We say that" is ill-typed just if " : Ok ⊢.

Of course, due to the (OkR) rule, the definition of well-typed subsumes the usual one. Note that"
being well-typed does not imply that" evaluates, only that" does not get stuck: having type� on
the right of the turnstile only means that" either diverges or" evaluates to an� (see Section 4 for
details). On the other hand, proving that a closed term" is ill-typed can be understood as proving
that " does not evaluate: " : Ok ⊢ means that " does not evaluate to a value in Ok, so " either
diverges or goes wrong. The following example is ill-typed only because it will diverge:

(Id)
G : Nat ⤚ Ok ⊢ G : Nat ⤚ Ok

(FixR)
⊢ fix G. G : Nat ⤚ Ok

(Id)
~ : Nat ⊢ ~ : Nat

(AbsR)
⊢ _~.~ : Nat → Nat

(Dis)
_~.~ : Nat ⊢

(AppL)
(fix G. G) (_~.~) : Ok ⊢

4 SEMANTICS OF TYPE ASSIGNMENT

In Sections 2 and 3, we gave some intuitions about how we want to understand the meaning of
types and the typing judgement. We now make this precise.

Definition 4.1 (Semantics of Types). Let Vals0 be the set of all closed values. We interpret types as
certain sets of closed, well-behaved terms:

[[Ok]] = Vals0
[[Nat]] = { 0, 1, 2, . . . }

[[� × �]] = { (+ ,,) | + ∈ [[�]], , ∈ [[�]] }

[[�→ �]] = { _G." | ∀+ ∈ Vals0.+ ∈ [[�]] ⇒ " [+ /G] ∈ T⊥ [[�]] }
[[�⤚ �]] = { _G." | ∀+ ∈ Vals0. " [+ /G] ∈ T [[�]] ⇒ + ∈ [[�]] }

T [[�]] = { " | " ⇓ + , + ∈ [[�]] }
T⊥ [[�]] = { " | " ∈ T [[�]] ∨" ⇑ }

The idea is that [[�]] is the set of all closed values of type �, T [[�]] is the set of all terms that
would evaluate to a value of type � and T⊥ [[�]] is the set of all terms that either evaluate to a value
of type � or diverge. It follows that T⊥ [[Ok]] is the set of closed terms that do not go wrong. As
usual, the meaning of the sufficiency arrow � → � is as the set of all functions that guarantee to
map each� value to a � value or diverge in the process. The meaning of the necessity arrow� ⤚ �

is as the set of all functions that require a value from � in order to eventually return a value from
�.

Remark 4.1. It seems there is an asymmetry between the semantics of the two arrows, but this
is only because of the bias towards values induced by CBV. Note that the two implications are
equivalent to: + ∈ T [[�]] ⇒ " [+ /G] ∈ T⊥ [[�]] and " [+ /G] ∈ T [[�]] ⇒ + ∈ T⊥ [[�]]. The
relationship between the two function types will become clearer in Section 6.

A consequence of the semantics of necessity is that it can be a little subtle to express properties of
interest. Given an function _G." , its membership in some type [[� ⤚ �]] becomes trivial whenever
there is no value+ such that" [+ /G] ∈ T [[�]]. This can occur, for example, when" simply never
produces an � . Thus we have: _G. pred(G) ∈ [[Nat ×Nat ⤚ Nat × Nat]], because _G. pred(G) does
not return pairs. This phenomenon can often be exploited in the proof system, using the disjointness
rule. For example, using (Dis) we can prove ⊢ _G. pred(G) : Nat × Nat ⤚ Nat × Nat.

10

Ill-Typed Programs Don’t Evaluate

Now, we turn to the semantics of the typing judgement. Roughly speaking, we want that " : �
on the left means that" is a term that evaluates to an �, and" : � on the right means that" is a
term that either evaluates to an � or diverges.

Definition 4.2 (Semantics of Judgements). A valuation, \ , is just a closed substitution.

• Given an atomic formula " : �, we say that a valuation \ satisfies the formula on the left

just if "\ ∈ T [[�]]. We say that \ satisfies the formula on the right just if "\ ∈ T⊥ [[�]].
• We say that a valuation \ satisfies a set of formulas Γ on the left, just if \ satisfies each formula
in Γ on the left. A valuation \ satisfies a set of formulas Δ on the right, just if there is a formula
in Δ that is satisfied on the right.

• We say that a judgement Γ ⊢ Δ is true, written Γ |= Δ, just if all valuations \ that satisfy Γ

on the left, satisfy Δ on the right.

To keep the development smooth, whenever we talk about the satisfaction of formulas by some
valuation \ , we will assume that \ closes all the terms involved (i.e. its domain is sufficiently large).

Notice from the first of the three clauses that divergence is always allowed on the right, but never
on the left. So, for example, valuation [1/G] satisfies if G then 0 else div : Nat on the right but not
on the left. Then, notice also the asymmetry in the semantics of the judgement: Γ |= Δ just if all
valuations that satisfy all formulas in Γ on the left, satisfy some formula from Δ on the right.

4.1 Soundness

We now look towards proving the soundness of this system with respect to this semantics, i.e. that
any provable judgement Γ ⊢ Δ is true. More precisely, we call this result semantic soundness to
contrast with the weaker result obtained using a progress/preservation argument in Section 5.3.

Theorem 4.3 (Semantic Soundness). If Γ ⊢ Δ then Γ |= Δ.

The proof is by induction on the typing relation. Hence, it consists of showing, for each typing
rule, that when the premises are true (and any side conditions hold) then the conclusion is also true.
For almost all rules, this is straightforward.
However, the fixpoint typing rule presents certain difficulties to this syntactical semantics of

typing. The problem is that to use the premise Γ, G : � |= " : �, Δ, we need to invent a suitable
value in [[�]]. Intuitively, we would like to take this value in [[�]] as the fixed point of " (viewed
as a function of G) but, on the face of it, there is no evidence that fixG." is an �. Hence, we are
forced to examine the structure of types and the fixpoint in a little more detail.

Definition 4.4. Given a fixpoint term fixG." , the following family of terms, indexed by = ∈ N,
are its fixpoint approximants.

fix0G." = div

fix=+1G." = " [fix=G."/G]

Note: we are not introducing a new piece of syntax, but merely an abbreviation that will be
useful in the sequel. Each approximant is simply a finite unfolding of the possibly infinite fixpoint
computation, with divergence (a complete lack of stable information) as the base case. The idea is
to think of a term� [fix G."] containing a fixpoint as being finitely approximated by each member
of the family� [fix=G."]. Next, we observe that types represent safety properties.

Theorem 4.5 (Types are safety properties.). For closed terms # and % , write % . # just if %

normalises implies # normalises and then they have the same normal form.

(i) If C[#] ∈ T⊥ [[�]] and % . # , then C[%] ∈ T⊥ [[�]].

11

Steven Ramsay and Charlie Walpole

(ii) If � [fix G."] ∉ T⊥ [[�]], then there is already some finite : for which � [fix:G."] ∉ T⊥ [[�]].

The first clause states that typing (on the right) is closed under the introduction of divergence:
� [#] and � [%] behave similarly, except � [%] may diverge more often. This corresponds to the
intuition that safety properties are about partial correctness. The second clause states that if a term
involving a fixpoint does not satisfy a type, then one can already find a finite approximation of
the term that fails to satisfy it. This corresponds to the intuition that when safety properties are
violated, one can always find a finite counterexample.

The contrapositive of the second of these properties gives us a principle that we can use in
order to show that term does satisfy a type: if fix=G." ∈ T⊥ [[�]] for all =, then it follows that
fixG." ∈ T⊥ [[�]]. We use this principle to show the following.

Theorem 4.6 (Typing closed under fixpoints.). If _G." ∈ [[� → �]], then fixG." ∈ T⊥ [[�]].

With this result, we can complete the difficult case of Theorem 4.3, because the truth of the judge-
ment G : � ⊢ " : � amounts to the fact that _G." ∈ [[�→ �]]. As corollary, we obtain:

Corollary 4.7. Suppose" is a closed term.

• If" is well typed, then " does not go wrong.

• If" is ill typed, then " does not evaluate.

4.2 Beyond safety

The proof of semantic soundness (Theorem 4.3) relies crucially on the fact that types are safety
properties (Theorem 4.5). Here, we present two counterexamples to show that, if we were to allow
higher-types on the right of the necessity arrow, then we would depart from the world of safety
properties, and thus change the character of the type system considerably. The first is quite straight-
forward, but the second is a little tricky.

Theorem 4.8. Suppose we extend the type language to allow all types of shape � ⤚ �.

• The type Nat ⤚ Nat → Nat is not downwards closed.

• The type Nat ⤚ Nat → Nat ⤚ Nat → Nat does not furnish finite counterexamples.

Proof. We prove each separately.

• The term _G~. (_I. pred(I)) G ∈ T⊥ [[Nat ⤚ Nat → Nat]] because, reasoning according
to the contrapositive of the definition, if a given value + is not a numeral, then it follows
that _~. (_I. pred(I))+ ∉ T [[Nat → Nat]], since the body will get stuck on any argument.
However, replacing _I. pred(I) by div, we have that _G~. divG ∉ T⊥ [[Nat ⤚ Nat → Nat]].
Even when a given value + is not a numeral, we yet have _~. div+ ∈ T [[Nat → Nat]],
since the body diverges on any input.

• First observe that _FG~I. (fix 5 . _D. if D then add(~, I) else 5 (pred(D))) G is not a value of
the type Nat ⤚ Nat → Nat ⤚ Nat → Nat. To see why, let us abbreviate the conditional
subterm by " and show that when applied to a value id that is not a numeral, it may yet
behave like a function of type Nat → Nat ⤚ Nat → Nat. To see that _G~I. (fix 5 . _D.") G

is a value in [[Nat → Nat ⤚ Nat → Nat]], we let = ∈ N and show that _~I. (fix 5 . _D.") =
is a value in [[Nat ⤚ Nat → Nat]]. To see this, we use the contrapositive of the defini-
tion and show that when applied to any non-numeral value, the function returned does
not satisfy Nat → Nat. So let + ∉ [[Nat]] be a non-numeral value. Then the function
_I. (fix 5 . _D. if D then add(+ , I) else 5 (pred(D))) = is not in [[Nat → Nat]] because, when
applied to 0 it will reduce to add(+ , 0), but + is not a numeral.

Next, observe that any term _FG~I. (fix: 5 . _D. if D then add(~, I) else 5 (pred(D))) G , inwhich

12

Ill-Typed Programs Don’t Evaluate

we have replaced the fixpoint by a particular finite approximant, is a value of the type
Nat ⤚ Nat → Nat ⤚ Nat → Nat. To see this, let us abbreviate the conditional sub-
term again by" and let, ∉ [[Nat]]. We show that, therefore, _G~I. (fix: 5 . _D.") G is not

in [[Nat → Nat ⤚ Nat → Nat]]. Take G ≔ : + 1 as witness. Then _~I. (fix: 5 . _D.") : + 1
is not in [[Nat ⤚ Nat → Nat]]. To see why, take ~ ≔ id ∉ [[Nat]] as the witness, and we

find that yet _I. (fix: 5 . _D. if D then add(id, I) else 5 (pred(D))) : + 1 is actually in the type
Nat → Nat, because when given any numeral as input, it will diverge.

�

5 A CONSTRAINED TYPE SYSTEM

In this section, we temporarily move away from our simple, PCF-like programming language and
two-sided system to something more sophisticated. Our aim is to show: how necessity can be useful
in practice, a syntactic soundness result, and how to infer types automatically.

Definition 5.1. We assume a denumerable set of top-level identifiers, written typically as f, g, and
a denumerable set of local variables, typically 5 , 6, G,~, I. We also fix a finite signature C of ranked
datatype constructors, typically 2 . We will always assume that the binary pair constructor, written
mixfix as (,) is in the signature. We consider various kinds of program expressions:

?, @ F 2 (G1, . . . , G<)

", #, %, & F G | 2 ("1, . . . , "<) | " # | _G." | fixG." | match" with {|:8=1(?8 ↦→ %8)}
+ , , F G | _G." | 2 (+1, . . . ,+=)

M F n | 5 = " ; M

As usual, we identify terms up to renaming of bound variables. We consider a term to be closed just
if it contains no free variables (but it may contain top-level function identifiers).
Wemake the following additional requirements: (i) in a pattern 2 (G1, . . . , G=) the arity of 2 is= and

the G8 are pairwise distinct, (ii) in a pattern-match term match" with {|:8=1(?8 ↦→ %8)}, the family

(?8)
:
8=1 is orthogonal (i.e. for every distinct 8 and 9 , ?8 and ? 9 are headed by distinct constructors) and

all bound variables throughout the family have distinct names, (iii) in module 51 = "1; . . . ; 5= = "= ,
each 58 is distinct (there are not two definitions for the same top-level identifier).
Thus, we will feel free to index pattern families by the set of constructors, say � , that head their

alternatives |2∈� 2 (
⃗⃗ ⃗⃗ ⃗
G2), and sometimes treat a moduleM as a partial map from identifiers to terms.

The first category are the patterns, which are required to be simple in the sense of being shallow
and constructor headed. The second category are the terms. As in our PCF-like language, we have
an applied _-calculus with fixpoints, but this time we are interested in datatype constructors and
pattern matching and thus we have constants accordingly. Thirdly, we havemodulesM, which are
just sequences of definitions for top-level identifiers. Finally, values are either variables, abstractions
or datatype constructor terms built entirely from values.

Remark 5.1. The requirement for simple matching is to ease the presentation. We could allow arbi-
trary patterns at the expense of more complex subtype and consistency checking. Since this is not
the focus of our work and is anyway well-covered elsewhere, we will be content with the simple
case. Note also that the rank (arity) of a constructor is built into the syntax, so we will never con-
sider the possibility of supplying a constructor with an inappropriate number of arguments since
it is not considered a well-formed term.

Example 5.2. Let us assume a constructor signature C, which, in addition to the binary pair
constructor (,), contains the binary list constructor ‘cons’, written infix ::, and the nullary empty

13

Steven Ramsay and Charlie Walpole

list constructor ‘nil’, written []. We can define the head andmap functions by:

head = _GB.matchGB with {~ :: ~B ↦→ ~}

map = fix<. _5 . _GB.match GB with {[] ↦→ [] | ~ :: ~B ↦→ 5 ~ ::< 5 ~B}

As before, we adopt a call-by-value reduction strategy and reuse the notation3 " ⊲ # . The
sequence of arguments to a datatype constructor is evaluated from left to right. Due to the require-
ment for shallow and orthogonal patterns, matching can be executed by simply indexing into the
pattern family. A full definition is available in Appendix C.

5.1 Two-sided Constrained Type System

Our type system is designed for reasoning about the shape of datatype constructions. It is a con-

strained type system (see e.g. [Odersky et al. 1999]), so each judgement is parametrised by a set of
type constraints � , which restrict the possible instantiations of type variables.
Our types are a cut-down version of the types defined in the constrained type system of Aiken et al.

[1994], in that for each datatype constructor 2 of arity =, we can form a corresponding constructor
type 2 (�1, . . . , �=). Intuitively, this type represents the set of all values of shape 2 (+1, . . . ,+=), where
each+8 has type �8 . We allow for universal polymorphism through the construction of constrained
type schemes, ∀

⃗⃗
0 .� ⇒ �. Intuitively, a top-level function that has a such a scheme guarantees that

to behaves like �[
⃗⃗⃗
�/

⃗⃗
0] for each instantiation

⃗⃗⃗
� of the type variables

⃗⃗
0 that satisfy the constraints

� .

Definition 5.3. We assume a denumerable collection of type variables 0, 1 and so on. The types
are stratified as follows:

(Sum Types) F Σ
:
8=128 (

⃗⃗⃗⃗ ⃗⃗
�8)

(Monotypes) �, � F 0 | | Ok | � → � | � ⤚ �

(Type Schemes) (F � | ∀
⃗⃗
0 .� ⇒ �

Here � (and sometimes �) is a finite set of type constraints (also subtype formulas), each of shape
� ⊑ � (i.e. between monotypes). We write � ≡ � as an abbreviation for the two constraints � ⊑ �

and � ⊑ �. We identify type schemes up to the renaming of bound type variables and we assume
that arrows associate to the right. We require that type schemes are closed in the sense that they
have no free type variables. Note that we don’t restrict to finitely verifiable types on the right of
necessity, which can be avoided for syntactic soundness – see the remark at the end of Section 5.3.

We consider the sum type Σ:8=128 (
⃗⃗⃗⃗ ⃗⃗
�8) as a finite set {21 (

⃗⃗ ⃗⃗ ⃗⃗
�1), . . . , 2: (

⃗⃗ ⃗⃗ ⃗⃗⃗
�:)}, and we require that the

elements are orthogonal in the sense that 28 = 2 9 implies 8 = 9 . See also Remark 5.1. In examples,

We will often write a particular sum type Σ3
8=1 28 (

⃗⃗⃗⃗ ⃗⃗
�8) as a list of summands 21(

⃗⃗ ⃗⃗ ⃗⃗
�1) +22(

⃗⃗ ⃗⃗ ⃗⃗
�2) +23(

⃗⃗ ⃗⃗ ⃗⃗
�3).

In particular, when the sum is a singleton Σ
1
8=128 (

⃗⃗⃗⃗ ⃗⃗
�8), which is quite typical, we just write 21 (

⃗⃗ ⃗⃗ ⃗⃗
�1).

We don’t have an explicit notion of recursive types with which to type recursively defined data
structures. However, as is well known, our constructor types together with (recursive) type con-
straints can capture the same notion implicitly. For example, our map function from Example 5.2
can be assigned the type:

map : ∀0 1 ℓ0 ℓ1 .� ⇒ (0 → 1) → ℓ0 → ℓ1
where � = { ℓ0 ≡ [] + (0 :: ℓ0), ℓ1 ≡ [] + (1 :: ℓ1) }

This type says thatmap takes a function from 0 to 1 and a list of 0 and returns a list of 1. Intuitively,
the type ‘list of 0’ is described by the type variable ℓ0 under the constraint that ℓ0 ≡ [] + (0 :: ℓ0)
and similarly for ‘list of 1’ with ℓ1 constrained so that ℓ1 ≡ [] + (1 :: ℓ1).

3Actually the one-step relation is parametrised by a module M, but we leave this implicit.

14

Ill-Typed Programs Don’t Evaluate

(IdS)
�, � ⊑ � ⊢ � ⊑ �

� ⊢ �1 ⊑ �2 � ⊢ �2 ⊑ �3
(TrS)

� ⊢ �1 ⊑ �3

� ⊢ �′ ⊑ � � ⊢ � ⊑ �′
(ToS)

� ⊢ � → � ⊑ �′ → �′
� ⊢ � ⊑ �′ � ⊢ �′ ⊑ �

(FrS)
� ⊢ � ⤚ � ⊑ �′

⤚ �′

(OkS)
� ⊢ � ⊑ Ok

� ⊢ �8,2 ⊑ �8,2 (∀2 ∈ � ,∀8 ∈ [1..=2])
(SmS) � ⊆ �

� ⊢ Σ2∈� 2 (�1,2 , . . . , �=2 ,2) ⊑ Σ3∈ � 3 (�1,3 , . . . , �=1 ,1)

Fig. 3. Constrained subtyping.

In a constrained type system, it is usual to define subtyping with respect to a context containing
subtyping formulas, and so we have the following.

Definition 5.4. A subtyping judgement is a triple� ⊢ � ⊑ � in which� is a set of type constraints
and � ⊑ � is a type constraint. Provability is defined using the rules of Figure 3. We extend the
notion of provability to sets of constraints, writing � ⊢ �′ just if � ⊢ � ⊑ � for every � ⊑ � ∈ �′.

The rule (IdS) allows for justification with respect to the context, and the rule (TrS) ensures closure
under transitivity of subtyping. Rule (ToS) gives the familiar relationship between sufficiency arrow
types and (FrS) describes the dual relationship between necessity arrow types. Rule (OkS) puts Ok at
the top of the subtype ordering. Finally, the rule (SmS) allows for subtyping between sum types. It
says that a sum type 1 is a subtype of 2 just if whenever 2 (�1, . . . , �=) is a summand of 1, then
there is a summand of shape 2 (�1, . . . , �=) in 2 and, moreover, the argument types are covariantly
related. For example, using the constructors from Example 5.2, we have ⊢ [] ⊑ [] + (Ok :: Ok) and
0 ⊑ 1 ⊢ (0 :: []) ⊑ [] + (1 :: []).

Finally, we have the two-sided type system itself. In the interests of making the syntactical sound-
ness proof as smooth as possible (by making the system as close to a traditional type system as pos-
sible), we present the type system as an intuitionistic sequent calculus, in the sense that there will
be allowed at most one formula on the right hand side. We choose not to have an explicit component
in the judgement for constraints in order to simplify the notation.

Definition 5.5 (Typing Formulas and Type Assignment). A typing formula is a pair of shape either
" : � or f : (, with " a term, � a monotype, f a top-level identifier and (a type scheme. A typing

judgment of the system consists of a pair Γ ⊢ Δ in which Γ is a finite set of typing and subtype
formulas and Δ is a finite set of typing formulas of shape " : � and whose size is at most 1. For
brevity, by some abuse, we will write Γ even for the subset {� ⊑ � | � ⊑ � ∈ Γ} of subtype
constraints contained therein.
The rules of the type system are given in Figure 4. We additionally require that: (i) in the rules

(AbsR), (AbnR), (MchL), (MchR) and (FixR), the bound variables in the principal subject of the conclusion

do not occur in Γ or Δ; and (ii) in the rule (GVar), the vector of types
⃗⃗⃗
� has the same length as the

vector of type variables
⃗⃗
0; and (iii) the rules (CnsK) and (CnsL) require that = > 0 and 1 ≤ 8 ≤ =.

Many of the typing rules of Figure 4 are recognisable from Sections 2 and 3, so we will just
comment on new aspects. First, we have separate typing rules for local variables (introduced by
abstractions and pattern-match cases) (LVar), and top-level identifiers (GVar). Top-level identifiers
can be assumed to have polymorphic type schemes ∀

⃗⃗
0 .� ⇒ �, so the (GVar) rule allows for the

instantiation of quantified type variables
⃗⃗
0 by a vector of monotypes

⃗⃗⃗
�, subject to the requirement

15

Steven Ramsay and Charlie Walpole

Structural

(VarK)
Γ ⊢ G : Ok

(GVar) Γ ⊢ � [
⃗⃗⃗
�/

⃗⃗
0]

Γ, 5 : ∀
⃗⃗
0 .� ⇒ � ⊢ 5 : �[

⃗⃗⃗
�/

⃗⃗
0]

(LVar)
Γ, G : � ⊢ G : �

Γ, " : � ⊢ Δ
(SubL) Γ ⊢ � ⊑ �

Γ, " : � ⊢ Δ

Γ ⊢ " : �
(SubR) Γ ⊢ � ⊑ �

Γ ⊢ " : �

Functions

Γ, G : � ⊢ " : �
(AbsR)

Γ ⊢ (_G.") : � → �

Γ, " : � ⊢ G : �
(AbnR)

Γ ⊢ (_G.") : � ⤚ �

Γ ⊢ " : � ⤚ � Γ, # : � ⊢ Δ
(AppL)

Γ, " # : � ⊢ Δ

Γ ⊢ " : � → � Γ ⊢ # : �
(AppR)

Γ ⊢ " # : �

Constructors

Γ, "8 : �8 ⊢ Δ
(CnsL)

Γ, 2 ("1, . . . ,"=) : 2 (�1, . . . , �=) + ⊢ Δ

Γ ⊢ "8 : �8 (∀8)
(CnsR)

Γ ⊢ 2 ("1, . . . , "<) : 2 (�1, . . . , �<)

Pattern Matching

Γ ⊢ " : Σ:8=1 ?8 [
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗
�G/G] Γ ∪ {G : �G | G ∈ FV(?8)} ⊢ %8 : � (∀8)

(MchR)
Γ ⊢ match" with {|:8=1(?8 ↦→ %8)} : �

Γ, %8 : � ⊢ G : �G (∀8 .∀G ∈ FV(?8)) Γ, (", %8) : (?8 [
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗
�G/G], �) ⊢ Δ (∀8)

(MchL)
Γ, match" with {|:8=1(?8 ↦→ %8)} : � ⊢ Δ

Fixpoints and Evaluation

Γ, G : � ⊢ " : �
(FixR)

Γ ⊢ fixG." : �

Γ, "8 : Ok ⊢ Δ
(CnsK)

Γ, 2 ("1, . . . , "=) : Ok ⊢ Δ

Γ, " : Ok ⤚ � ⊢ Δ
(FunK)

Γ, " # : Ok ⊢ Δ

Disjointness

(CnsDL)
� is an arrow
or shape Σ3∈� 3 (. . .) with 2 ∉ �Γ, 2 ("1, . . . , "=) : � ⊢ Δ

(AbsDL)
Γ, _G ." : ⊢ Δ

Fig. 4. Constrained type assignment.

16

Ill-Typed Programs Don’t Evaluate

that each of the constraints in � is already derivable from the type constraints assumed in Γ. The
(CnsL), (CnsR) and (CnsK) rules allow for refuting and affirming the types of constructor-headed terms.

The rules (MchL) and (MchR) are used for typing pattern-matching on the left and right respectively.
The (MchR) rule is relatively standard: onemust choose a typing �G for each pattern-bound variable G
(recall from additional requirement (ii) of Definition 5.1, thatwe assume all bound variables through-
out the pattern-match term to have distinct names), in such a way that the scrutinee " is inside
the sum of the induced pattern types. These are obtained by taking each pattern case 2 (G1, . . . , G=)
and replacing the free variables G8 by the corresponding type �G8 , giving 2 (�G1 , . . . , �G=). Then one
must show that every branch can guarantee an �.
In (MchL), one must first derive a necessary type �G for each pattern-bound variable G , based on

how it is used in the corresponding branch of the match. These types then give rise to a type for
the scrutinee, as above. Then one must show that, for each branch 8 , either the desired conclusion
Δ follows from the fact that the body of the branch %8 has type �, or already from the fact that the

scrutinee has type ?8 [
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗
�G/G]. This disjunction is encoded by asserting that the pair (", %8) has type

(?8 [
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗
�G/G], �) so as to maintain the invariant that at most one non-trivial typing is introduced in

each premise. An example of how this is used is at the end of this subsection.
The (CnsDL) rules above implement disjointness reasoning about constructor types. We have es-

chewed a general disjointness rule in order to simplify type inference (otherwise we would need
to infer disjointness constraints). Instead we have two particular instances of disjointness for con-
structors (CnsDL) and abstractions (AbsDL).

Definition 5.6 (Top-level Function Typing). Top-level functions are typed according to the rule:

Γ ∪� ⊢ M(f) : � ⃗⃗
0 = FV(�) ∪ FV(�)

Γ ⊢ f : ∀
⃗⃗
0 .� ⇒ �

We write ⊢ M : Γ just if, (i) every top-level function of M appears as a subject of Γ, and (ii) every
top-level function typing f : (∈ Γ is properly justified Γ ⊢ f : (.

Consider the head function of Example 5.2. We show that head requires a cons with an element
of type 0 as input in order to produce an 0, i.e. head : ∀0. (0 :: Ok) ⤚ 0. The derivation starts:

matchGB with {~ :: ~B ↦→ ~} : 0 ⊢ GB : (0 :: Ok)
(AbnR)

⊢ _GB.matchGB with {~ :: ~B ↦→ ~} : (0 :: Ok) ⤚ 0

Then, according to (MchL) we must derive types for the bound variables ~ and ~B based on how
they were necessarily used to obtain type 0 in their branch. In this case, their branch body is just
~ and so we can assign ~ the type 0 and ~B , which is not used in the branch, must be given Ok.
Thus the scrutinee must have type 0 :: Ok. According to (MchL), we must show that the conclusion,
GB : (0 :: Ok), either follows from this or from the body of the branch. In this case, it is clear that it
follows already from the type of the scrutinee. This reasoning is captured as:

(LVar)
~ : 0 ⊢ ~ : 0

(VarK)
~ : 0 ⊢ ~B : Ok

(LVar)
GB : (0 :: Ok) ⊢ GB : (0 :: Ok)

(CnsL)
(GB,~) : (0 :: Ok, 0) ⊢ GB : (0 :: Ok)

(MchL)
matchGB with {~ :: ~B ↦→ ~} : 0 ⊢ GB : (0 :: Ok)

Consider the map function from Example 5.2. We will show that, when map is given a function
that requires an 0 to produce a 1, then to produce a list of 1 requires it be given a list of 0:

map : ∀0 1 ℓ0 ℓ1 .� ⇒ (0 ⤚ 1) → ℓ0 ⤚ ℓ1
where { [] + (0 :: ℓ0) ⊑ ℓ0, ℓ1 ⊑ [] + (1 :: ℓ1) }

17

Steven Ramsay and Charlie Walpole

The derivation begins as we have seen previously using (FixR) and (AbnR). The key part is to show
that, under Γ = � ∪ {5 : 0 ⤚ 1, < : (0 ⤚ 1) → ℓ0 ⤚ ℓ1}:

Γ,matchGB with {[] ↦→ [] | ~ :: ~B ↦→ 5 ~ ::< 5 ~B} : ℓ1 ⊢ GB : ℓ0

To use the (MchL) rule, we first derive types that were necessary for ~ and ~B to produce a value of
type ℓ1 in the cons branch (we omit some standard right-side reasoning in the latter).

(LVar)
Γ ⊢ 5 : 0 ⤚ 1

(LVar)
Γ,~ : 0 ⊢ ~ : 0

(AppL)
Γ, 5 ~ : 1 ⊢ ~ : 0

(CnsL)
Γ, (5 ~ ::< 5 ~B) : [] + (1 :: ℓ1) ⊢ ~ : 0

(SubL)
Γ, (5 ~ ::< 5 ~B) : ℓ1 ⊢ ~ : 0

· · ·

Γ ⊢< 5 : ℓ0 ⤚ ℓ1
(LVar)

Γ, ~B : ℓ0 ⊢ ~B : ℓ0
(AppL)

Γ, < 5 ~B : ℓ1 ⊢ ~B : ℓ0
(CnsL)

Γ, (5 ~ ::< 5 ~B) : [] + (1 :: ℓ1) ⊢ ~ : ℓ0
(SubL)

Γ, (5 ~ ::< 5 ~B) : ℓ1 ⊢ ~B : ℓ0

Then, we show that GB : ℓ0 is a necessary consequence of each branch being of type ℓ1 . In fact, it
follows directly from the induced type of the scrutinee in each (we omit the (CnsL) at the root).

(LVar)
Γ, GB : (0 :: ℓ0) ⊢ GB : (0 :: ℓ0)

(SubR)
Γ, GB : (0 :: ℓ0) ⊢ GB : ℓ0

(LVar)
Γ, GB : [] ⊢ GB : []

(SubR)
Γ, GB : [] ⊢ GB : ℓ0

As one final example, we show thatmap, given a function that requires an 0 to obtain a 1, returns
a cons with element of type 1 only if given a cons with element of type 0, i.e:

map : ∀0 1.(0 ⤚ 1) → (0 :: Ok) ⤚ (1 :: Ok)

The key part of the derivation is again the (MchL) rule. Under Γ = {5 : 0 ⤚ 1, < : (0 ⤚ 1) → (0 ::
Ok) ⤚ (1 :: Ok)}, we find, as above, that the cons case requires ~ to be an 0 (left), but we don’t
require anything special of ~B (right):

· · ·

Γ, (5 ~ ::< 5 ~B) : ℓ1 ⊢ ~ : 0
(VarK)

Γ, (5 ~ ::< 5 ~B) : ℓ1 ⊢ ~B : Ok

When showing that the desired conclusion follows from the two cases, we need to use the choice

offered by the pair (", %8) : (?8 [
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗
�G/G], �) on the left of the second family of premises of (MchL).

By using (CnsL) to choose one component of the pair with which to continue the proof, we can
effectively ignore irrelevant cases. Here, the nil case is excluded by the type 1 :: Ok of the output
(left), and the result follows from the type of the scrutinee in the cons case (abbreviating " = 5 ~ ::
< 5 ~B and Δ = { GB : (0 :: Ok) }):

(CnsDL)
Γ, [] : (1 :: Ok) ⊢ Δ

(CnsL)
Γ, (GB, []) : ([], 1 :: Ok) ⊢ Δ

(LVar)
Γ, GB : (0 :: Ok) ⊢ Δ

(CnsL)
Γ, (GB,") : (0 :: Ok, 1 :: Ok) ⊢ Δ

We can now prove the example of ill-typedness in the introduction, the term that takes the head of
a list obtained by mapping over the empty list will not evaluate: head (map (_G. G) []) : Ok ⊢.

5.2 Constrained Type Inference

For the purpose of inferring types and, in the next part, proving soundness, we are going to restrict
ourselves to judgements that are as close to those in a traditional type system as possible: they will
have at most one typing whose subject is not a variable. Then the following definition is helpful:

Definition 5.7 (Type Environments). A finite set of formulas Γ is said to be a type environment just
if (i) all the typing formulas contained therein are variable typings G : � and top-level identifier
typings f : �, and (ii) if " : � ∈ Γ and " : � ∈ Γ then � = �. A type environment is said to be a
top-level type environment just if all the typing formulas are top-level identifier typings.

18

Ill-Typed Programs Don’t Evaluate

Then, inference for the two-sided constrained type system works, broadly, like Hindley-Milner
constrained type inference (see e.g. [Odersky et al. 1999]), but with two notable differences. The
first is that most terms will have multiple ‘principal’ types. This is because there are several shapes
of proof tree with the same subject in the conclusion, but whose inferred types are not necessarily
related. Hence, type inference infers sets of types4. The other main difference is that our algorithm
requires both the left environment Γ and the right environment Δ as input when inferring the types
of a term on the left. Hence, inference is split into two procedures, InferL and InferR:

InferL ∈ P(Variable × Type) → Term → P(Variable × Type) → P(Judgment)

InferR ∈ P(Variable × Type) → Term → P(Judgment)

The call InferL(Γ) (") (Δ) returns a finite set of judgements5 � ∪ Γ, " : � ⊢ Δ that are principal
in the sense that all provable judgements with the same left-environment Γ, subject " and right-
environment Δ arise as a type-substitution instance of one of those in the set, but with a possibly
stronger set of assumed type constraints. The call InferR(Γ) (") acts similarly on the right.
The algorithms terminate because, modulo subtyping, every proof tree has a maximum height

that is determined by the shape of the term. As usual, subtyping can be absorbed into the other
rules in a so-called algorithmic system, and then inference consists of (implicitly) constructing the
finite set of principal proof trees for the given term and environment(s). Inferring on the right for
the term _G. f G in the environment {f : [] ⤚ Ok}, we will obtain:

Ok ⊑ 01, 01 ⤚ 02 ⊑ 03, f : [] ⤚ Ok ⊢ _G. f G : 03
Ok ⊑ 01, [] ⤚ Ok ⊑ 03, 03 ⊑ 02 ⤚ 01, 01 ⤚ 04 ⊑ 05, f : [] ⤚ Ok ⊢ _G. f G : 05
02 ⊑ 01, [] ⤚ Ok ⊑ 03, 03 ⊑ 02 ⤚ 04, 01 ⤚ 04 ⊑ 05, f : [] ⤚ Ok ⊢ _G. f G : 05
01 ⊑ 02, [] ⤚ Ok ⊑ 03, 03 ⊑ 02 → 04, 01 → 04 ⊑ 05, f : [] ⤚ Ok ⊢ _G. f G : 05

The first three correspond, modulo subtyping inferences, to proof trees rooted at (AbnR). The first
corresponds to the case when the tree is then immediately closed by the (VarK) axiom. The second
corresponds to proceeding by (AppL) before closing with (GVar) in the left branch and (VarK) in the
right branch. The third is similar but corresponds to closing the right branch with (LVar) instead.
The fourth corresponds to a tree rooted at (AbsR), after which the shape is completely determined
(modulo subtyping). However, notice that the constraints returned in this last case are inconsistent,
we have [] ⤚ Ok ⊑ 03 and 03 ⊑ 02 → 04, but the former function type contains functions that
go wrong after being given an input, whereas the latter function type does not. Indeed, one cannot
assign a sufficiency arrow type to this term in the given environment under consistent subtyping
assumptions. The full definition of type inference is given in Appendix B.

Theorem 5.8 (Correctness of the Type Inference Algorithm). Let Γ,Δ be type environments

without type constraints, � and �′ be sets of constraints, " be a term, and �, �′ be types. Then:

(Le� Soundness) If (� ∪ Γ, " : � ⊢ Δ) ∈ InferL(Γ) (") (Δ), then � ∪ Γ, " : � ⊢ Δ is provable.

(Le� Completeness) If �′ ∪ Γ, " : � ⊢ Δ is provable, then there exists a type substitution f and a

judgement (� ∪ Γ, " : �′ ⊢ Δ) ∈ InferL(Γ) (") (Δ) such that � = �′f and �′ ⊢ �f .

(Right Soundness) If (� ∪ Γ ⊢ " : �) ∈ InferR(Γ) ("), then � ∪ Γ ⊢ " : � is provable.

(Right Completeness) If �′ ∪ Γ ⊢ " : � is provable, then there exists a type substitution f and a

judgement (� ∪ Γ ⊢ " : �′) ∈ InferR(Γ) (") such that � = �′f and �′ ⊢ �f .

4One can observe the same phenomenon in, e.g. intersection type systems.
5We formalise it this way for convenience, but in practice it need only return� and �.

19

Steven Ramsay and Charlie Walpole

5.3 Syntactic Soundness

Rather than proving semantic soundness, we take the opportunity to show how one can prove a syn-
tactic soundness result in the sense of Wright and Felleisen [1994], but first we need to generalise
the definition of well-typed and ill-typed to account for top-level identifiers.

Definition 5.9. Suppose" is closed and Γ is a consistent top-level type environment with ⊢ M : Γ.

• We say that" is well-typed in Γ just if Γ ⊢ " : Ok.
• We say that" is ill-typed in Γ just if Γ, " : Ok ⊢.

The force of the qualifier consistent is to require that the type constraints in a type environment
are not contradictory. Several definitions are possible, and we use an adaptation of the syntactical
definition given by Eifrig et al. [1995]. Since it is orthogonal to the two-sided aspect of the work,
the definition has been relegated to Appendix C.
An appropriate formulation of progress for two-sided systems must take into account a non-

trivial subject on the left of the turnstile as well as the right. On the right, as usual, we have that
terms can either make a step or are already values. However, in a typing " : � on the left, it is
possible that " can make a step, already be stuck or even be a value. However, in the latter case,
the value must not be in �. We can state this succinctly as follows:

Theorem 5.10 (Progress). Suppose" is closed and Γ is a consistent, top-level type environment.

• If Γ ⊢ " : � then either " can make a step, or" is a value

• If Γ, " : � ⊢ then either " can make a step, or Γ 6⊢ " : �

The formulation uses a fact about typing in our two-sided systems that is peculiar to systems with
the necessity arrow: all closed values are typable on the right. We already remarked in Section 3
that every abstraction is typable on the right withOk ⤚ �, and a simple induction shows that every
constructor-headed term has a corresponding constructor-headed type. Thus, Γ 6⊢ " : � above in
particular implies that" is not a value of type �.
For preservation, it is typical to prove some preliminary lemmas that show closure under well-

typed substitutions. In the two-sided case, there are many more of these substitution lemmas, since
one has to take account of the possibilities that the substituted-for variable occurs on the opposite
side of the turnstile to the subject (as usual), on the same side, or not at all (which also relies on the
fact that closed values are typable). However, preservation then follows directly.

Theorem 5.11 (Preservation). Suppose " is a closed term and Γ is a consistent, top-level type

environment in which all top-level identifiers have justified typings ⊢ M : Γ.

• If Γ ⊢ " : � and " ⊲ # then Γ ⊢ # : �.
• If Γ, " : � ⊢ and" ⊲ # then Γ, # : � ⊢.

Finally, syntactic soundness follows immediately.

Theorem 5.12 (Syntactic Soundness). Suppose" is a closed term and Γ is a consistent, top-level

type environment in which all top-level identifiers have justified typings ⊢ M : Γ.

• If" is well-typed in Γ, then" does not go wrong.

• If" is ill-typed in Γ, then" does not evaluate.

Proof. Suppose Γ ⊢ " : Ok converges to a normal form # . By preservation, Γ ⊢ # : Ok and, by
progress, # is a value. Suppose Γ, " : Ok ⊢ converges to a normal form # , then, by preservation,
Γ, # : Ok ⊢ and, by progress, Γ 6⊢ # : Ok. Since closed values are well typed, # is not a value. �

It’s interesting to note that we didn’t need to restrict to finitely-verifiable types on the right of
necessity arrow in order to achieve syntactic soundness. On closed terms, our system is unable to

20

Ill-Typed Programs Don’t Evaluate

say much about necessity with higher-types. For example, judgements of the shape on the left are
only provable in the constrained system when � = Ok, whereas the one on the right, involving an
open subject, would be provable in the system of Sections 2 and 3:

⊢ _G. _~." : � ⤚ (� → �) ⊢ _G.~ : � ⤚ (� → �), ~ : � → �

6 COMPLEMENTS AND THE SUCCESS SEMANTICS

The two-sided type systems of this paper provide a form of negation at the meta level: to establish
" ∉ T [[�]] we can prove " : � ⊢. It is natural to wonder if one can internalise the negation by
some operator. Of course, we can add logical negation ¬ at the level of formulas, so that we have
⊢ ¬(" : �) iff " : � ⊢, but allowing for compound formulas is a more significant departure from
the world of traditional type systems. It would be neater to add a complement operator −2 at the
level of types, with the semantics defined in such a way that ⊢ " : �2 iff " : � ⊢. However, the
asymmetry in the meaning of typing creates difficulties, as we now show.
We return to the simpler language and type system of Sections 2 and 3 for our investigation into

complements and negation. However, we will only prove syntactic soundness, and so, like in the
system of Section 5, we allow ourselves unrestricted necessity.

Definition 6.1. We extend the types in Definition 2.3 by a complement operator and by allowing
arbitrary types on the right of necessity. �F · · · | � ⤚ � | �2 .

Γ ⊢ " : �, Δ
(CompL)

Γ, " : �2 ⊢ Δ

Γ, " : � ⊢ Δ
(CompR)

Γ ⊢ " : �2 , Δ

The semantics of the new operator is to take the complement of
the type with respect to the set of closed values. So, we extend
the equations of Definition 4.1 by [[�2]] = Vals0 \ [[�]]. We also
posit the new typing rules on the left.
Rule (CompL), which is closely related to our disjointness rule, is

sound for our call-by-value semantics, but rule (CompR) is unsound.
The problem is that when " : �2 is not satisfied on the right by

some \ , it does not imply that" : � will necessarily be satisfied by \ on the left.

· · ·

⊢ id : Nat → Nat
(Dis)

id : Nat ⊢
(OkPL)

pred(id) : Ok ⊢
(CompR)

⊢ pred(id) : Ok2

For example, consider the derivation to the right. If this were
sound in the call-by-value semantics, pred(id) would be guaran-
teed to diverge, since we would have that pred(id) ∈ T⊥ [[Ok

2]],
and [[Ok2]] = Vals0 \ Vals0 = ∅. This is clearly absurd, because
pred(id) goes wrong. Thus our semantics of Section 4 does not
support (CompR).

6.1 The success semantics

The issue is that we have only the backward direction of the desired equivalence between the two
sides of the typing judgement:" ∉ T [[�]] iff " ∈ T⊥ [[�

2]]. The forward direction fails because the
antecedent can be true when" gets stuck, although this possibility is not afforded by consequent.
One possible remedy to this is to lift the complement operator to the level of computations

(terms), in such a way that " : �2 whether on the left or right really means " ∈ T [[�]]2 =

Terms0 \ T [[�]]. Clearly, this version of complement acts like a real negation and thus the equiv-
alence is obtained. However, a consequence of this is that one would have to give up on allowing
complements nested inside of types, like �2 ×�, or else define the meaning of each shape of typing
formula involving nested complements separately. More perniciously, one would be forced to track
divergence very carefully, because it would no longer be the case that every formula on the right
is satisfied by a term that diverges. Thus, the (Fix) rule would need to be carefully qualified by the
kind of types with which it can be instantiated.

21

Steven Ramsay and Charlie Walpole

Our approach will instead be to weaken typing on the right of the judgement, so that a formula
" : � on the right can always be satisfied by a term that goes wrong.

Definition 6.2. The success semantics is defined as follows. First, we define, for each type �, the
set of closed terms that may go wrong, diverge, or evaluate to a value in [[�]].

T⊥ E [[�]] = { " | " ∈ T [[�]] or " diverges or " goes wrong }

We redefine the meaning of the sufficiency arrow type to allow the body to go wrong when execut-
ing on an argument:

[[�→ �]] = { _G." ∈ Vals0 | ∀+ ∈ [[�]] . " [+ /G] ∈ T⊥ E [[�]] }

Finally, we redefine satisfaction on the right by saying that a formula" : � is satisfied by \ on the

right just if "\ ∈ T⊥ E [[�]].

The success semantics has the strong point that the judgements are now symmetrical in the sense
of the above equivalence. Thus both (CompL) and (CompR) are sound for the success semantics. In fact,
we will show that all the typing rules presented in Sections 2 and 3 are (syntactically) sound for the
success semantics too.
A considerable disadvantage of the success semantics is that we lose the true negatives theorem

well-typed programs don’t go wrong. Now, proving ⊢ " : Ok means that" may either evaluate, di-
verge or go wrong. In other words, it means nothing at all! We do however retain ill-typed programs

don’t evaluate, so this system is exclusively for proving that programs behave badly. This puts this
system in the same territory as Erlang’s celebrated success types [Lindahl and Sagonas 2006], which
similarly provide no guarantees for terms that are well-typed.
However, the symmetry in the system allows for a considerable saving. Under the success seman-

tics, [[� ⤚ �]] = [[�2 → �2]] – the conditions on membership in these types are the contrapositive
of each other. Thus, there is the potential to simply define � ⤚ � as an abbreviation for �2 → �2 .
Then, the symmetry between (AppL) and (AppR), and the symmetry between (AbsR) and (AbnR) can be
exploited to derive necessity from sufficiency + complement:

Γ ⊢ " : � ⤚ �, Δ

Γ, # : � ⊢ Δ
(CompR)

Γ ⊢ # : �2 , Δ
(AppR)

Γ ⊢ " # : �2 , Δ
(CompL)

Γ, " # : � ⊢ Δ

Γ, " : � ⊢ G : �, Δ
(CompR)

Γ ⊢ " : �2 , G : �, Δ
(CompL)

Γ, G : �2 ⊢ " : �2 , Δ
(AbsR)

Γ ⊢ _G." : � ⤚ �, Δ

Thus, in the success system, the sufficiency arrow in combination with complements provides a
complete treatment of the necessity arrow, and we could dispense with (AbnR) and (AppL) if desirable.

6.2 The one-sided system

However, we can go further than this, by exploiting a key symmetry of the typing rules that we have
presented so far. Let us say that a typing formula" : � is a variable typing just if" is a variable, and
otherwise it is a non-variable typing. Let us say that an environment Γ is a type environment just in
case every formula therein is a variable typing. In each of the rules we have introduced in Sections 2
and 3, and so far in 6, observe the following. If the conclusion has at most one non-variable typing
formula, then each of the hypotheses will have at most one non-variable typing formula too. For
example, one can see by inspection of Examples 2.6 and 2.7 of Section 2 that, in each judgement of
the respective proof trees, at most typing formula is non-variable.
When a judgment contains at most one non-variable typing then, in the success semantics, it is

equivalent to a judgement in which a non-variable typing is the only typing formula on the right-
hand side of the turnstile. Thus, in the success type system, we are able to normalise the typing

22

Ill-Typed Programs Don’t Evaluate

(Ok)
Γ ⊢ " : Ok

(OkC1)
Γ, G : Ok2 ⊢ " : �

Γ ⊢ " : Ok2
(OkC2)

Γ ⊢ " : �

(Contra)
Γ, G : �, G : �2 ⊢ " : �

(Var)
Γ, G : � ⊢ G : �

Γ ⊢ " : �
(Disj) � | | �

Γ ⊢ " : �2

(Zero)
Γ ⊢ zero : Nat

Γ ⊢ " : Nat
(Succ1)

Γ ⊢ succ(") : Nat

Γ ⊢ " : Nat2
(Succ2)

Γ ⊢ succ(") : �

Γ ⊢ " : Nat
(Pred1)

Γ ⊢ pred(") : Nat

Γ ⊢ " : Nat2
(Pred2)

Γ ⊢ pred(") : �

Γ, G : � ⊢ " : �
(Abs)

Γ ⊢ (_G.") : � → �

Γ, G : � ⊢ " : �
(Fix)

Γ ⊢ fixG." : �

Γ ⊢ # : �
(Let3)

Γ ⊢ let (G,~) = " in# : �

Γ ⊢ " : (�1 × �2)
2

Γ, G8 : �
2
8 ⊢ # : � (∀8)

(Let2)
Γ ⊢ let (G,~) = " in# : �

Γ ⊢ " : � ×�
Γ, G1 : �, G2 : � ⊢ # : �

(Let1)
Γ ⊢ let (G1, G2) = " in# : �

Γ ⊢ " : � → � Γ ⊢ # : �
(App1)

Γ ⊢ " # : �

Γ ⊢ " : (Ok2 → �)2
(App2)

Γ ⊢ " # : �

Γ ⊢ # : Ok2
(App3)

Γ ⊢ " # : �

Γ ⊢ " : � Γ ⊢ # : �
(Pair1)

Γ ⊢ (", #) : � × �

Γ ⊢ "8 : Ok
2

(Pair2)
Γ ⊢ ("1,"2) : �

Γ ⊢ "8 : �
2
8

(Pair3)
Γ ⊢ ("1, "2) : (�1 ×�2)

2

Γ ⊢ " : Nat2
(IfZ1)

Γ ⊢ if" then# else% : �

Γ ⊢ # : � Γ ⊢ % : �
(IfZ2)

Γ ⊢ if" then# else% : �

Fig. 5. One-Sided Type Assignment

rules by using (CompL) and (CompR) to exchange the positions of formulas between the two sides,
until they form a traditional, one-sided type system. In fact, the use of complements allows us to
eliminate further redundancies, and so we obtain a smaller system.

Definition 6.3 (One-sided type system). A judgement of the one-sided system is a pair Γ ⊢ " : �
of a type environment Γ and a typing" : �. Provability is defined by the rules of Figure 5. In rules
(Let1), (Let2), (Let3), (Abs) we require that the bound variables are not mentioned in Γ.

In many cases, the rules of Figure 5 derive from their two-sided counterparts simply by normalis-
ing the judgements involved, possibly by introducing complements. Rule (Disj) arises from (Dis) this
way. Normalisation often introduces a complemented typing" : �2 in the conclusion, but in most
cases it is sound to generalise to " : �. An example is deriving (IfZ1) from (IfZL1).
The rule (IfZ2) arises in this way, and it subsumes both (IfZR) and (IfZL2). However, the soundness

of this one-sided rule is not obvious at first glance. It is almost the same as the right side rule (IfZR),
except that (IfZR) has a third premise. In (IfZ2) this premise is absent, and we need only show that
each branch has type � in order to conclude that the whole conditional has type � – whether or

23

Steven Ramsay and Charlie Walpole

not the guard is of type Nat. However, this is sound for the success semantics, because if the guard
normalises to something other than a numeral, then the conditional will gowrong, and thus satisfies
any success type.
The rules (Ok), (OkC) and (Contra) represent structural features of the success semantics; namely

that every term satisfies T⊥ E [[Ok]], that no term satisfies T [[Ok2]] and that T [[�]] ∩ T [[�2]] is
empty for every type �. Rule (Contra) is necessary in order to account for the possibility that a two-
sided judgment is provable due to a contradiction among the variable typings. For example, the
two-sided judgment G : Nat, " : � ⊢ G : Nat is clearly provable using (Id), but when normalised to
a one-sided judgement, it becomes G : Nat, G : Nat2 ⊢ " : � and (Var) is not applicable.

Theorem 6.4. Suppose Γ and Δ are type environments.

• If Γ, " : � ⊢ Δ in the two-sided system, then Γ ∪ Δ
2 ⊢ " : �2 in the one-sided system.

• If Γ ⊢ " : �, Δ in the two-sided system, then Γ ∪ Δ
2 ⊢ " : � in the one-sided system.

Example 6.5. Consider again the judgement ⊢ twice : (� ⤚ �) → � ⤚ �, which we proved as
Example 2.7 of Section 2. As in that example, we use Γ to abbreviate {5 : � ⤚ �}:

(Var)
Γ, G : �2 ⊢ 5 : � ⤚ �

(Var)
Γ, G : �2 ⊢ 5 : � ⤚ �

(Var)
Γ, G : �2 ⊢ G : �2

(App)
Γ, G : �2 ⊢ 5 G : �2

(Var)
Γ, G : �2 ⊢ 5 (5 G) : �2

(Abs)
Γ ⊢ _G. 5 (5 G) : � ⤚ �

(Abs)
⊢ _5 G . 5 (5 G) : (� ⤚ �) → � ⤚ �

We prove syntactic soundness for the one-sided system using a progress and preservation argu-
ment. In fact, progress as usually understood is not necessary – since we allow going wrong on
the right, there is no requirement to show that a subject in normal form is a value, merely that val-
ues have sensible types. We get the syntactic soundness of the two-sided system under the success
semantics as a corollary via Theorem 6.4.
Let us say that a closed term" is ill-typed in the one-sided system just if ⊢ " : Ok2 .

Theorem 6.6 (One-Side Syntactic Soundness). If" is ill-typed, then " does not evaluate.

7 CONCLUSION AND RELATED WORK

We have introduced two-sided type systems which are sequent calculi for typing formulas, made
possible through a new function type � ⤚ �. We have shown several ways in which these calculi
can be considered sound, and illustrated how left-sided rules can be added to a constrained type
system. We also investigated the internalisation of negation, and a one-sided system without a true
negatives theorem. Many of the basic constants of the programming languages we use today have
necessary requirements on their inputs. However, traditional type systems largely ignore this basic
aspect of their behaviour. Two-sided systems can use this additional dimension, and enable simple
reasoning about program incorrectness as well as program correctness.

Typing contexts beyond variables. Many type systems for higher-order program verification gen-
eralise the typing context to allow logical formulae for the purpose of recording path conditions.
For example, Liquid Types [Rondon et al. 2008; Vazou et al. 2015, 2013] and the systems of Terauchi
[2010] and Unno and Kobayashi [2009] place the Boolean valued expression " (or an equivalent
formula) into the context when proving that the ‘then’-branch of a conditional, if" then# else% ,
is correctly typed. In a two-sided system, this can be managed very naturally by introducing sepa-
rate types for true and false (as we have in our system of Section 5) and assuming" : true. A rather

24

Ill-Typed Programs Don’t Evaluate

different use of the typing context was made by Curien and Herbelin [2000]. Their system is a kind
of sequent calculus in which the formulas on the left of the turnstile comprise variable typings and
a stack of terms (cf. Krivine machines), which is thought of as an evaluation context.

Constrained type systems. Constrained type systems and inclusion constraints go back at least
to the work of Mitchell [1984]. A unified treatment is given by Odersky et al. [1999]. Our system
takes inspiration from the one-sided system of Aiken et al. [1994] (see also Marlow and Wadler
[1997]), though their constraints are far more expressive. Our approach to consistency of subtype
constraints is an adaptation of the purely syntactic approach of Eifrig et al. [1995]. It is not clear
how well our algorithm would scale in practice, ideally one would like some guarantees on the size
of types or the efficiency of inference, such as features in more recent works by Dolan and Mycroft
[2017] and Jones and Ramsay [2021]. None of these systems has a true positives theorem.

Success Typing. Our original motivation was to try to better understand the very effective suc-

cess typing paradigm for Erlang [Lindahl and Sagonas 2006]. Work by Jakob and Thiemann [2015]
provides a useful view through their falsification type system, in which one constructs a logi-
cal formula used to describe inputs that guarantee to crash the function. The formalisation of
López-Fraguas et al. [2018] is also enlightening and they moreover extend the system with poly-
morphism.
Success Types are perhaps the best known example of a type-based true positives theorem, ‘ill-

typed programs always fail’ [Sagonas 2010]. They are so named because they over-approximate
the successes of expressions: if � is a success type and" : � then" may succeed in evaluating to
an �, but may also go wrong or diverge. Hence why we named our alternative semantics after this
paradigm. Note, the ‘ill-typed’ of the slogan really means ‘not well-typed’, i.e. untypable.
A key feature is a bespoke function type. It is defined in [Lindahl and Sagonas 2006] as follows:

A success typing of a function 5 is a type signature (
⃗⃗⃗
U) → V , such that whenever an

application 5 (
⃗⃗⃗
?) reduces to a value E , then E ∈ V and

⃗⃗⃗
? ∈

⃗⃗⃗
U .

Thus, the success arrow, let us write→B , can be understood as having the right rule shown to the side.
That is, it contains a component of necessity, but restricted toOk on the right. Hence, with only this

Γ, " : Ok ⊢ G : Ok Γ, " : Ok ⊢ " : �

Γ ⊢ _G." : � →B �, Δ

arrow, one can refute that an application "# has
a type � only when � = Ok. Yet, despite this, suc-
cess types appear to be highly effective in practice.
One reason could be the following: if an applica-

tion "# fails to evaluate to an �, then there are three possibilities, it could go wrong, it could
diverge, or it could evaluate to something else. In the first two cases, one can attempt to refute that
it has type Ok, and in the third, one can attempt to affirm that it has a type that is disjoint from �

instead. Thus, it is likely that one can get quite far with only this form of necessity.

Logics for incorrectness. Incorrectness logic of O’Hearn [2019] has sparked a new interest in sys-
tems for reasoning about program behaviour that enjoy true positives theorems. Subsequent work
has extended its scope [Raad et al. 2022], and demonstrated its real-world effectiveness [Le et al.
2022]. A key feature of these logics is under-approximation as a means to achieve true positives.
In incorrectness logic, states in a postcondition must be reachable, and this leads to the need to
reason about termination. By contrast, our Theorem 4.5 showed our types to be safety properties.
The foundation of our system is not under-approximation, but necessity. An incorrectness triple
such as [�]" [�] could be seen as analogous to a function typing" : � ⇒ � in which every value
in the type � can be obtained by applying " to some input in �. By contrast, our necessity arrow
requires that no � can be obtained except from an input in �. When " : � ⤚ � is provable, type
� is an over-approximation of " when run on input �, and thus the usual methods of abstraction,

25

Steven Ramsay and Charlie Walpole

such as recursive procedure invariants, still apply. However, set against this, one cannot simply
drop disjunctions from Δ and remain sound. A very interesting compromise along these lines is the
Outcome Logic of Zilberstein et al. [2023]. Here there is a distinction between Boolean disjunction
and outcome disjunction. The former has true as annihilator, but the latter does not, and this allows
for the dropping of outcomes for efficiency.

Type systems with complement. A complement operator appears in the system of Aiken et al.
[1994] and a negation in the work of Parreaux and Chau [2022], though neither has a true posi-
tives theorem. In the highly expressive dependent type system of Unno et al. [2017], none of the
programs can go wrong, but the system is nevertheless very well-equipped for incorrectness rea-
soning, and includes sophisticated means for reasoning about recursion and tracking divergence.
Since their system can express the complements of arbitrary types, it should be possible to en-
code a version of our necessity arrow. One can think of our one-sided system of Section 6 as a
kind of sweet spot for partial correctness, in which the theory and automation become particularly
straightforward.

REFERENCES

Alexander Aiken, Edward L. Wimmers, and T. K. Lakshman. 1994. Soft Typing with Conditional Types. In Conference

Record of POPL’94: 21st ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, Portland, Oregon,

USA, January 17-21, 1994. 163–173. https://doi.org/10.1145/174675.177847

Pierre-Louis Curien and Hugo Herbelin. 2000. The duality of computation. In Proceedings of the Fifth ACM SIGPLAN Inter-

national Conference on Functional Programming (ICFP ’00), Montreal, Canada, September 18-21, 2000, Martin Odersky and

Philip Wadler (Eds.). ACM, 233–243. https://doi.org/10.1145/351240.351262

Stephen Dolan and Alan Mycroft. 2017. Polymorphism, Subtyping, and Type Inference in MLsub. In Proceedings of the 44th

ACM SIGPLAN Symposium on Principles of Programming Languages (Paris, France) (POPL ’17). Association for Computing

Machinery, New York, NY, USA, 60–72. https://doi.org/10.1145/3009837.3009882

Jonathan Eifrig, Scott Smith, and Valery Trifonov. 1995. Sound Polymorphic Type Inference for Objects. In

Proceedings of the Tenth Annual Conference on Object-Oriented Programming Systems, Languages, and Applica-

tions (Austin, Texas, USA) (OOPSLA ’95). Association for Computing Machinery, New York, NY, USA, 169–184.

https://doi.org/10.1145/217838.217858

Robert Jakob and Peter Thiemann. 2015. A Falsification View of Success Typing. In NASA Formal Methods,

Klaus Havelund, Gerard Holzmann, and Rajeev Joshi (Eds.). Springer International Publishing, Cham, 234–247.

https://doi.org/10.1007/978-3-319-17524-9_17

Eddie Jones and Steven Ramsay. 2021. Intensional Datatype Refinement:With Application to Scalable Verification of Pattern-

Match Safety. Proc. ACM Program. Lang. 5, POPL, Article 55 (jan 2021), 29 pages. https://doi.org/10.1145/3434336

Quang Loc Le, Azalea Raad, Jules Villard, Josh Berdine, Derek Dreyer, and Peter W. O’Hearn. 2022. Finding Real Bugs

in Big Programs with Incorrectness Logic. Proc. ACM Program. Lang. 6, OOPSLA1, Article 81 (apr 2022), 27 pages.

https://doi.org/10.1145/3527325

Tobias Lindahl and Konstantinos Sagonas. 2006. Practical Type Inference Based on Success Typings. In Proceedings of the

8th ACM SIGPLAN International Conference on Principles and Practice of Declarative Programming (Venice, Italy) (PPDP

’06). Association for Computing Machinery, New York, NY, USA, 167–178. https://doi.org/10.1145/1140335.1140356

Francisco J. López-Fraguas, Manuel Montenegro, and Gorka Su\’arez-Garc\’ia. 2018. Polymorphic success types for

Erlang. In LPAR-22. 22nd International Conference on Logic for Programming, Artificial Intelligence and Reasoning

(EPiC Series in Computing, Vol. 57), Gilles Barthe, Geoff Sutcliffe, and Margus Veanes (Eds.). EasyChair, 515–533.

https://doi.org/10.29007/w2m2

Simon Marlow and Philip Wadler. 1997. A Practical Subtyping System for Erlang. In Proceedings of the Second ACM SIG-

PLAN International Conference on Functional Programming (Amsterdam, The Netherlands) (ICFP ’97). Association for

Computing Machinery, New York, NY, USA, 136–149. https://doi.org/10.1145/258948.258962

John C. Mitchell. 1984. Coercion and Type Inference. In Proceedings of the 11th ACM SIGACT-SIGPLAN Symposium on

Principles of Programming Languages (Salt Lake City, Utah, USA) (POPL ’84). Association for Computing Machinery, New

York, NY, USA, 175–185. https://doi.org/10.1145/800017.800529

Martin Odersky, Martin Sulzmann, and Martin Wehr. 1999. Type Inference with Constrained Types. TAPOS 5, 1 (1999),

35–55. https://doi.org/10.1002/(SICI)1096-9942(199901/03)5:1<35::AID-TAPO4>3.0.CO;2-4

26

Ill-Typed Programs Don’t Evaluate

Peter W. O’Hearn. 2019. Incorrectness Logic. Proc. ACM Program. Lang. 4, POPL, Article 10 (dec 2019), 32 pages.

https://doi.org/10.1145/3371078

Lionel Parreaux and Chun Yin Chau. 2022. MLstruct: Principal Type Inference in a Boolean Algebra of Structural Types.

Proc. ACM Program. Lang. 6, OOPSLA2, Article 141 (oct 2022), 30 pages. https://doi.org/10.1145/3563304

Azalea Raad, Josh Berdine, Derek Dreyer, and Peter W. O’Hearn. 2022. Concurrent Incorrectness Separation Logic. Proc.

ACM Program. Lang. 6, POPL, Article 34 (jan 2022), 29 pages. https://doi.org/10.1145/3498695

Patrick Maxim Rondon, Ming Kawaguchi, and Ranjit Jhala. 2008. Liquid types. In Proceedings of the ACM SIGPLAN

2008 Conference on Programming Language Design and Implementation, Tucson, AZ, USA, June 7-13, 2008. 159–169.

https://doi.org/10.1145/1375581.1375602

Konstantinos Sagonas. 2010. Using Static Analysis to Detect Type Errors and Concurrency Defects in Erlang Programs. In

Functional and Logic Programming, Matthias Blume, Naoki Kobayashi, and Germán Vidal (Eds.). Springer Berlin Heidel-

berg, Berlin, Heidelberg, 13–18. https://doi.org/10.1007/978-3-642-12251-4_2

Tachio Terauchi. 2010. Dependent types from counterexamples. In Proceedings of the 37th ACM SIGPLAN-SIGACT

Symposium on Principles of Programming Languages, POPL 2010, Madrid, Spain, January 17-23, 2010. 119–130.

https://doi.org/10.1145/1706299.1706315

Hiroshi Unno and Naoki Kobayashi. 2009. Dependent type inference with interpolants. In Proceedings of the 11th Inter-

national ACM SIGPLAN Conference on Principles and Practice of Declarative Programming, September 7-9, 2009, Coimbra,

Portugal. 277–288. https://doi.org/10.1145/1599410.1599445

Hiroshi Unno, Yuki Satake, and Tachio Terauchi. 2017. Relatively Complete Refinement Type System for Verification

of Higher-Order Non-Deterministic Programs. Proc. ACM Program. Lang. 2, POPL, Article 12 (dec 2017), 29 pages.

https://doi.org/10.1145/3158100

Niki Vazou, Alexander Bakst, and Ranjit Jhala. 2015. Bounded refinement types. In Proceedings of the 20th ACM SIG-

PLAN International Conference on Functional Programming, ICFP 2015, Vancouver, BC, Canada, September 1-3, 2015. 48–61.

https://doi.org/10.1145/2784731.2784745

Niki Vazou, Patrick Maxim Rondon, and Ranjit Jhala. 2013. Abstract Refinement Types. In Programming Lan-

guages and Systems - 22nd European Symposium on Programming, ESOP 2013, Held as Part of the European Joint

Conferences on Theory and Practice of Software, ETAPS 2013, Rome, Italy, March 16-24, 2013. Proceedings. 209–228.

https://doi.org/10.1007/978-3-642-37036-6_13

A.K. Wright and M. Felleisen. 1994. A Syntactic Approach to Type Soundness. Information and Computation 115, 1 (1994),

38–94. https://doi.org/10.1006/inco.1994.1093

Noam Zilberstein, Derek Dreyer, and Alexandra Silva. 2023. Outcome Logic: A Unifying Foundation for Correct-

ness and Incorrectness Reasoning. Proc. ACM Program. Lang. 7, OOPSLA1, Article 93 (apr 2023), 29 pages.

https://doi.org/10.1145/3586045

27

Steven Ramsay and Charlie Walpole

A ADDITIONAL MATERIAL IN SUPPORT OF SECTION 4

First, we give an explicit characterisation of getting stuck.

Definition A.1 (Getting Stuck). We separate the values into different classes:

• Vals – all values
• FunV – those values of shape _G."

• NatV – those values of shape =
• ProdV – those values of shape (+ , ,)

A term is said to be a stuckex if it is of one of the following forms:

• succ(+) or pred(+) with + ∉ NatV

• + " with + ∉ FunV

• if+ then# else% with + ∉ NatV

• let (G,~) = + in" with + ∉ ProdV

A term is said to be stuck just if it has shape E["] with " a stuckex. A term " is said to get

stuck just if " ⊲∗ # with # stuck. It is easy to see that a term in normal form is either stuck or is
a value. Hence, every term either diverges, gets stuck or evaluates.

Next, we have a series of lemmas building up some basic results about the combinatorics of
reduction. The overall goal is to show that replacing a subterm by another that either reduces to
the same normal form or diverges leads to an essentially similar outcome.
In the following lemma, we use the phrase ‘" is not blocked by I’ to mean that" does not have

shape E[I] for any evaluation context E.

Lemma A.2. If " [# /I] = E[%] and " is not blocked by I, then there is F and % ′ such that

" = F [% ′] and E = F [# /I] and % = % ′ [# /I].

Proof. By induction on E.

• Suppose E = � and" is not blocked on I. Then" [# /I] = % so let E′
= � and % ′ = " .

• Suppose E is of shape succ(E′) and" is not blockedby I, so" [# /I] is of shape succ(E′ [%]).
Since " is not blocked by I, it must have shape succ(&) for some & again not blocked by
I, also& [# /I] = E′ [%]. Hence, it follows from the induction hypothesis that there is some
E′′ and % ′ such that % ′ [# /I] = % and E′

= E′′ [# /I]. Hence, let F := succ(E′′).
• Suppose E is of shape pred(E′), we reason analogously to the previous case.
• Suppose E is of shape (E′,&2) and" is not blocked by I, so" [# /I] is of shape (E′ [%], &2).
Since" is not blocked by I, it has shape (&1,&

′
2) and&1 is not blocked by I and&1 [# /I] =

E′ [%] and& ′
2 [# /I] = &2. It follows by induction that there is E

′′ and % ′ such that E′′ [# /I] =
E′ and % ′ [# /I] = % . Hence, let F := (E′′, & ′

2).
• Suppose E = (+ , E′) and" is not blocked by I. So," [# /I] is of shape (+ , E′ [%]). Since"
is not blocked by I," must be of shape (+ ′,&) and& is again not blocked by I,+ ′ [# /I] = +
and & [# /I] = E′ [%]. Then it follows from the induction hypothesis that there are E′′ and
% ′ such that % ′ [# /I] = % and E′′ [# /I] = E′. Hence, let F be (+ ′, E′′) and the result is
immediate.

• Suppose E is of shape proj8 (E
′) and " is not blocked by I. Then " [# /I] is of shape

proj8 (E
′ [%]). Since" is not blockedby I, it must be that" has shapeproj8 (&) and& [# /I] =

E′ [%] and& is not blocked by I. Hence, it follows from the induction hypothesis that there
are % ′ and E′′ such that % ′ [# /I] = % and E′′ [# /I] = E′. Thus, let F be proj8 (E

′′).
• Suppose E is of shape if E′ then&1 else&2 and " is not blocked by I. Then " [# /I] =

if E′ [%] then&1 else&2. Since" is not blocked by I, it must be that" has shape
if&0 then&

′
1 else&

′
2 and &0 [# /I] = E′ [%], & ′

1 [# /I] = &1, &
′
2 [# /I] = &2. Therefore, it

follows from the induction hypothesis that there is % ′ and E′′ such that % ′ [# /I] = % and
E′′ [# /I] = E′. Thus, take F to be if E′′ then& ′

1 else&
′
2 and the result follows.

28

Ill-Typed Programs Don’t Evaluate

• Suppose E has shape (_G.&) E′ and " is not blocked by I. Then" [# /I] = (_G.&) E′ [%].
Since" is not blocked by I," must have shape (_G.& ′) ' and& ′ [# /I] = & and ' [# /I] =

E′ [%] and ' is not blocked by I. Thus, it follows from the induction hypothesis that there
is % ′ and E′′ such that % ′ [# /I] = % and E′′ [# /I] = E′. Then let F be (_G.& ′) E′′ and the
result follows.

• Suppose E is of shape E′& and" is not blocked by I. Then" [# /I] = E′ [%]& . Then, since
" is not blocked by I," must have shape '& ′ with ' not blocked by I and ' [# /I] = E′ [%]

and & ′ [# /I] = & . Then it follows from the induction hypothesis that there is % ′ and E′′

with % ′ [# /I] = % and E′′ [# /I] = E′. Thus, take F to be E′′& ′ and the result follows.

�

Lemma A.3. If " [# /I] ⊲ % then " is blocked by I or there is "′ such that " ⊲ "′ and % =

"′ [# /I]

Proof. We prove the following by induction on E.

For all E, for all " , if " [# /I] is of shape E[%1] and %1 ⊲ %2 and " is not blocked
by I, then there is some"′ such that" ⊲ "′ and"′ [# /I] = E[%2].

• Suppose E = �. Then assume " [# /I] decomposes to E[%1] and %1 ⊲ %2 and " is not
blocked by I. Then we analyse cases on the axiom %1 ⊲ %2.
– (Beta). Then" [# /I] is of shape (_G.&)+ and %2 = & [+ /I]. Since" is not blocked by
I, it must be that" has shape (_G.& ′)+ ′ with & = & ′ [# /I] and + = + ′ [# /I]. So, let
"′ be & ′ [+ ′/G] and we have"′ [# /I] = (& ′ [+ ′/G]) [# /I] = (& ′ [# /I]) [+ ′ [# /I]/G],
as required.

– (PZ). Then" [# /I] is of shape pred(0) and %2 = 0. Since" is not blocked by I, it must
have shape pred(0), so let"′ be 0.

– (PS). Then " [# /I] is of shape pred(: + 1) and %2 = : . Since " is not blocked by I, it
must have shape pred(: + 1), so let"′ be : .

– (IfZ). Then" [# /I] is of shape if 0 then&1 else&2 and %2 = &1. Since" is not blocked
by I, it must have shape if 0 then& ′

1 else&
′
2 with &8 = &

′
8 [# /I]. So, let "′ be & ′

1 and
the result follows immediately.

– (IfS). Then" [# /I] is of shape if = + 1 then&1 else&2 and %2 = &2 [=/G]. Since" is not
blocked by I, " must have shape if = + 1 then& ′

1 else&
′
2 and &8 = &

′
8 [# /I]. Let"′ be

& ′
2 [=/G]. Then"

′ [# /I] = (& ′
2 [=/G]) [# /I] = (& ′

2 [# /I]) [=/G], as required.
– (Fix). Then" [# /I] is of shape fixG.& and %2 = & [fixG.&/G]. Since" is not blocked

by I, it follows that" is of shape fixG.& ′ and & = & ′ [# /I]. Let"′ be & ′ [fix G.& ′/G].
Then"′ [# /I] = (& ′ [fix G.& ′/G]) [# /I] = (& ′ [# /I]) [fix G.& ′ [# /I]/G], as required.

– (Proj8). Then" [# /I] is of shape proj8 (+1,+2) and % = +8 . Since " is not blocked by I,
it follows that" has shape proj(+ ′

1 , +
′
2) with +8 = +

′
8 [# /I]. Then let"′ be + ′

8 and the
result follows immediately.

• Suppose E is of shape succ(E′) and" [# /I] is of shape succ(E′ [%1]) and %1 ⊲ %2 and"
is not blocked by I. Thus" must have shape succ(&) and& is again not blocked by I, also
& [# /I] = E′ [%1]. Hence, it follows from the induction hypothesis that there is some & ′

such that & ⊲ & ′ and & ′ [# /I] = E′ [%2]. Hence, let"
′ be succ(& ′).

• Suppose E is of shape pred(E′), then we reason analogously to the previous case.
• Suppose E is of shape (E′,&2) and" [# /I] is of shape (E′ [%1],&2) and %1 ⊲ %2 and" is not
blocked by I. Thus" has shape (&1,&

′
2) and &1 is not blocked by I and &1 [# /I] = E′ [%1]

and & ′
2 [# /I] = &2. It follows by induction that there is & ′

1 and &1 ⊲ & ′
1 and &

′
1 [# /I] =

E′ [%2]. So, let"
′ be (& ′

1, &
′
2).

29

Steven Ramsay and Charlie Walpole

• Suppose E is of shape (+ , E′) and" [# /I] is of shape (+ , E′ [%1]) and %1 ⊲ %2 and" is not
blocked by I. So," must be of shape (+ ′, &) and & is again not blocked by I,+ ′ [# /I] = +

and & [# /I] = E′ [%1]. Then it follows from the induction hypothesis that there is & ′ such
that & ⊲ & ′ and E′ [%1] = &

′ [# /I]. Hence, let"′ be (+ ′, & ′) and the result is immediate.
• Suppose E is of shape proj8 (E

′) and" [# /I] is of shape proj8 (E
′ [%1]) and %1 ⊲ %2 and "

is not blocked by I. So, it must be that " has shape proj8 (&) and & [# /I] = E′ [%1] and
& is not blocked by I. Hence, it follows from the induction hypothesis that there is & ′ and
& ⊲ & ′ and & ′ [# /I] = E′ [%2]. Thus, let"

′ be proj8 (&
′).

• Suppose E is of shape if E′ then&1 else&2," [# /I] = if E′ [%1] then&1 else&2 and %1 ⊲ %2
and" is not blockedbyI. So, it must be that" has shape if&0 then&

′
1 else&

′
2 and&0 [# /I] =

E′ [%1], &
′
1 [# /I] = &1, &

′
2 [# /I] = &2. Therefore, it follows from the induction hypoth-

esis that there is & ′
0 such that &0 ⊲ & ′

0 and & ′
0 [# /I] = E′ [%2]. Thus, take "

′ to be
if& ′

0 then&
′
1 else&

′
2 and the result follows.

• Suppose E has shape (_G.&) E′ and " [# /I] = (_G.&) E′ [%1] and %1 ⊲ %2 and " is not
blocked by I. So," must have shape (_G.& ′) ' and& ′ [# /I] = & and ' [# /I] = E′ [%1] and
' is not blocked by I. Thus, it follows from the induction hypothesis that there is '′ such
that ' ⊲ '′ and '′ [# /I] = E′ [%2]. Then let"′ be (_G.& ′) '′ and the result follows.

• Suppose E is of shape E′& and " [# /I] = E′ [%1]& and %1 ⊲ %2 and " is not blocked
by I. Then " must have shape '& ′ with ' not blocked by I and ' [# /I] = E′ [%1] and
& ′ [# /I] = & . Then it follows from the induction hypothesis that there is '′ with ' ⊲ '′

and '′ [# /I] = E′ [%2]. Thus, take"
′ to be '′& ′ and the result follows.

�

Lemma A.4. If " [# /G] ⊲∗ % with % a normal form and & . # , then either " [&/G] diverges or

there is some"′ such that % = "′ [# /G] and " [&/G] ⊲∗ "′ [&/G].

Proof. By lexicographic induction on the length of the sequence and the number of free occur-
rences of G in " .

• Suppose" [# /G] = % . Then take"′ := " .
• Suppose " [# /G] ⊲: % for some : > 0. If " is E[G], then " [&/G] = (E [&/G]) [&].
If & diverges then so does " [&/G]. Otherwise, # and & normalise to the same normal
form, say # ′. Hence, " [# /G] ⊲∗ (E [# /G]) [# ′] and " [&/G] ⊲∗ (E [&/G]) [# ′], then
(E [# /G]) [# ′] ⊲< % with < ≤ : and the number of free occurrences of G in E[# ′] is
decreased by 1. Hence, it follows from the induction hypothesis that (E [&/G]) [# ′] either
diverges or there is some"′ such that % = "′ [# /G] and (E [&/G]) [# ′] ⊲∗ "′ [&/G]. The
result follows immediately. Otherwise, we may assume"′′ is not blocked by I and we can

apply Lemma A.3 to obtain some "′′ such that " ⊲ "′′ . Then "′′ [# /G] ⊲:−1 % , and it
follows from the induction hypothesis that either "′′ [%/G] diverges, or there is some "′

such that % = "′ [# /G] and "′′ [&/G] ⊲∗ "′ [&/G]. Then the result follows immediately
since" [&/G] ⊲ "′′ [&/G].

�

Lemma A.5. If " [# /I] reduces to a value + and % . # , then either " [%/I] diverges or " [%/I]

reduces to a value, and all of the following are true:

(a) if + does not contain an abstraction, then, = + .

(b) if+ has shape (+1,+2), then, has shape (,1 [%/I],,2[%/I]),,1 [# /I] = +1 and,2 [# /I] =
+2.

(c) if + has shape _G. % , then, has shape _G.& [%/I] with & [# /I] = % .

30

Ill-Typed Programs Don’t Evaluate

Proof. The proof is by induction on + . Spp " [# /I] ⊲∗ + . Then " [%/I] either diverges or
there is some value * such that + = * [# /I] and " [%/I] ⊲∗ * [%/I]. If * = I, then # = + and
" [%/I] ⊲∗ % . If % diverges, then" [%/I] diverges, as required. Otherwise % ⊲∗ + and, = + , (a),
(b) and (c) follow immediately. Otherwise * ≠ I and we proceed by inspecting the cases.

• If + is a variable G , then since * ≠ I, G must be different from I and * = G .
• If + is zero, then since * ≠ I,* = zero.
• If + is of shape succ(=), then since * ≠ I, * has shape succ, ′, and, ′ [# /I] = =. There-
fore, it follows from the induction hypothesis that, ′ [%/I] reduces to = and the conclusion
follows.

• If + is of shape (+1,+2), then since * ≠ I, * is of shape ("1,"2) and "1 [# /I] = +1
and "2 [# /I] = +2. Therefore, "1 and "2 are themselves values. Moreover, if + did not
contain an abstraction, then neither do +1 or +2 and the induction hypothesis yields that
"1 [%/I] = +1 and"2 [%/I] = +2. Thus, = + .

• If + is of shape _G. % , then since * ≠ I, * has shape _G.& , with & [# /I] = % as required.

�

Lemma A.6. If" [# /I] gets stuck and % . # , then either " [%/I] diverges or " [%/I] gets stuck.

Proof. Suppose " [# /I] gets stuck. Then " [# /I] ⊲∗ % with % stuck. It follows that there is
some ' such that % = ' [# /I] and" [%/I] either diverges or reduces to ' [%/I]. Then ' [# /I] has
shape E[&] for some stuckex& . By the forgoing lemma, ' has shape F [& ′] with F [# /I] = E and
& ′ [# /I] = & . If& ′

= I, then& = # and by % . # either' [%/I] diverges or' [%/I] ⊲∗ (F [%/I]) [# ′]

for some stuckex # ′, and thus also gets stuck. Otherwise, & ′
≠ I and we show in each case that

& ′ [%/I] is a stuckex.

• If & is of shape G , then since & ′
≠ I, it must be that G ≠ I and & ′

= G .
• If & is of shape + ' with + ∉ FunV, then since & ′

≠ I, it must be that & ′ has shape '1 '2
with '1 [# /I] = + . Hence, it follows from the previous lemma that either '1 [%/I] diverges,
in which case" [%/I] diverges, or '1 [%/I] is also a value not in FunV.

• If & is of shape proj8 (+) with + ∉ ProdV, then since & ′
≠ I, it must be that & ′ has shape

proj8 (') and ' [# /I] = + . Hence, it follows from the previous lemma that either '1 [%/I]
diverges, in which case" [%/I] diverges, or '1 [%/I] is also a value not in ProdV.

The remaining cases are similar. �

A.1 Proof of Theorem 4.5

Now we show the first part of Theorem4.5.

Theorem A.7. Let " [# /I] be closed, & . # .

(i) If" [# /I] ∈ T⊥ [[�]], then" [&/I] ∈ T⊥ [[�]].

(ii) If" [# /I] ∉ T [[�]], then" [&/I] ∉ T [[�]].

Proof. The proof is by induction on �.

• When � = Nat, we reason as follows.
(i) Suppose " [# /I] ∈ T⊥ [[Nat]], so either " [# /I] diverges or " [# /I] ⊲∗ =. Then it

follows from Lemma A.5 that either " [&/I] diverges or " [&/I] evaluates to =.
(ii) Suppose " [# /I] ∉ T [[Nat]], so either (i) " [# /I] ⊲∗ + and + ∉ [[Nat]] or (ii)

" [# /I] gets stuck or (iii) " [# /I] diverges. In cases (i) it follows from Lemma A.5
that" [&/I] either diverges or reduces to the same kind of value. In case (ii), it follows
from Lemma A.6 that " [&/I] either diverges or gets stuck. In case (iii), " [&/I] also
diverges. Hence," [&/I] ∉ T [[Nat]].

31

Steven Ramsay and Charlie Walpole

• When � is of shape � ×�:
(i) Suppose" [# /I] ∈ T⊥ [[�×�]], so either" [# /I] diverges, or" [# /I] ⊲∗ (+1,+2) with

+1 ∈ [[�]] and +2 ∈ [[�]]. In the former case, also " [&/I] diverges. Otherwise, it fol-
lows from LemmaA.5 that either" [&/I] diverges or evaluates to (,1 [&/I],,2 [&/I])
with,1[# /I] = +1 and,2[# /I] = +2. Hence, we have,1[# /I] ∈ [[�]] and thus also
∈ T⊥ [[�]]; similarly,2 [# /G] ∈ T⊥ [[�]]. Consequently, it follows from the induction
hypotheses that ,1 [&/I] ∈ T⊥ [[�]] and ,2 [&/I] ∈ T⊥ [[�]]. If either diverge, then
" [&/I] diverges, as required. Otherwise, ,1 [&/I] evaluates to a value in [[�]] and
,2[&/I] evaluates to a value in [[�]], as required.

(ii) Suppose " [# /I] ∉ T [[� ×�]]. Here we can further assume that � and � are finitely
verifiable. So either (i)" [# /I] ⊲∗ + with+ ∉ [[�×�]] or (ii)" [# /I] gets stuck, or (iii)
" [# /I] diverges. In case (i), it follows from Lemma�.5 that either" [&/I] diverges or
it evaluates to+ . In case (ii) it follows from Lemma A.6 that" [&/I] either diverges or
gets stuck. In case (iii) it follows that" [&/I] diverges. Hence," [&/I] ∉ T [[� ×�]].

• When � is of shape � → � , we need only prove (i). Suppose " [# /I] ∈ T⊥ [[� → �]],
so either " [# /I] diverges or " [# /I] ⊲∗ _G. % with % [+ /G] ∈ T⊥ [[�]] for all + ∈ [[�]].
In the former case, " [&/I] diverges. Otherwise, it follows from Lemma A.5 that either
" [&/I] diverges or there is some & ′ such that " [&/I] ⊲∗ _G.& ′ [&/I] and & ′ [# /I] = % .
Let + ∈ [[�]]. We have (& ′ [+ /G]) [# /I] = (& ′ [# /I]) [+ /G] ∈ T⊥ [[�]] (the rearrangement
is possible since # and + are necessarily closed) and so it follows from the induction hy-
pothesis that (& ′ [+ /G]) [&/I] ∈ T⊥ [[�]] too.

• When � is of shape � ⤚ � , we need only prove (i). Suppose " [# /I] ∈ T⊥ [[� ⤚ �]], so
either " [# /I] diverges or " [# /I] ⊲∗ _G. % with % [+ /G] ∉ T [[�]] if + ∉ [[�]]. In the
former case, " [&/I] diverges. Otherwise, it follows from Lemma A.5 that either " [&/I]

diverges or there is& ′ such that" [&/I] ⊲∗ _G.& ′ [&/I] and& ′ [# /I] = % . Let+ be a value
and + ∉ [[�]]. Hence, (& ′ [+ /G]) [# /I] = (& ′ [# /G]) [+ /G] ∉ T [[�]] and it follows from
the induction hypothesis that therefore (& ′ [&/I]) [+ /G] ∉ T [[�]] either.

• When � is of shape Ok we reason as follows. For (i) suppose " [# /I] ∈ T⊥ [[Ok]], then
we reason as above, according to whichever value " [# /I] reduces to. For (ii) suppose
" [# /I] ∉ T [[Ok]], then either " [# /I] gets stuck or " [# /I] diverges. It follows from
Lemma A.6 that, in both cases," [# ′/I] ∉ [[)]] too.

�

And then the second part of Theorem 4.5.

Theorem A.8. For all types � and finitely verifiable types � :

(i) If � [fix G."] ∉ T⊥ [[�]], then there is some =0, such that for all = ≥ =0: � [fix
=G."].

(ii) If � [fix G."] ∈ T [[�]], then there is some =0, such that for all = ≥ =0: � [fix
=G."].

Proof. The proof is by induction on �.

• When � is Nat, we reason as follows.
(i) Suppose � [fixG."] ∉ T⊥ [[�]]. Either � [fixG."] evaluates to a value that is not a

numeral or � [fix G."] crashes. In both cases, it requires only finitely many reduction
steps and, among them, only finitely many applications of fixpoint reduction, say : .
Then we can take =0 := : .

(ii) Suppose� [fix G."] ∈ T [[�]]. Then� [fix G."] evaluates to a numeral, in finitely many
steps. Among them, a certain number, say : , are applications of the fixpoint reduction.
Therefore, for any< ≥ : , � [fix<G."] ∈ T [[�]].

• When � is Ok, we reason analogously.

32

Ill-Typed Programs Don’t Evaluate

• When � is of shape � ×� we reason as follows.
(i) Suppose� [fixG."] ∉ T⊥ [[�×�]]. Then either (i)� [fixG."] evaluates to a value that is

not a pair, or (ii)� [fixG."] crashes, or (iii)� [fixG."] evaluates to a pair value (+1,+2),
but either +1 ∉ [[�]] or +2 ∉ [[�]]. In all cases, the reduction sequences involved are
finite, and so contain only finitely many applications of the fixpoint reduction. Hence,
we may obtain the required bound as above. (i) and (ii) we can obtain a bound as above.
In case (iii), first observe that this evaluation used only finitely many applications of

the fixpoint reduction, say :0, and so for any : ≥ :0, � [fix
:G."] will reduce to a

pair value (,1,,2). Now let us assume that it is +1 ∉ [[�]] because the other case is
symmetrical. Note that, since +1 is a value, we know that +1 ∉ T⊥ [[�]] Next, observe
that we can write +1 as � [fixG."] in the manner described above, and it follows from
the induction hypothesis that there is <0 and for all< ≥ <0, � [fix<G."] ∉ T⊥ [[�]].
Since each � [fix<G."] is a value, it follows that � [fix<G."] ∉ [[�]]. Hence, for all
= ≥ <0 + :0, � [fix

=G."] ∉ T⊥ [[� ×�]].
(ii) In this case, we may assume that � and � are finitely verifiable. Suppose � [fix G."] ∈

T [[�×�]]. Then� [fix G."] evaluates to a pair (+1,+2) (and this pair must not contain
any abstraction, since � and � are finitely verifiable). Then this reduction sequence is
finite, and applies the fixpoint reduction rule only a certain number, say =0 of times.
We can use this as the bound required by the conclusion.

• When � is � → � , we need only consider (i). So suppose � [fix G."] ∉ T⊥ [[� → �]].
Then either (i) � [fixG."] evaluates to a value that is not an abstraction, or (ii) � [fix G."]
crashes, or (iii) � [fixG."] evaluates to an abstraction _~. % , but there is a value + ∈ [[�]]

such that % [+ /~] ∉ T⊥ [[�]]. In cases (i) and (ii) we can reason as above to obtain the bound.
In case (iii), we can first observe that evaluating to an abstraction requires only finitely
many applications of the fixpoint reduction rule, say<0. So, for any< ≥ <0, � [fix

<G."]

will also evaluate to an abstraction, say _~.& . Then we note that we can write % [+ /~] as
� [fixG."], in which all descendants of occurrences of fix G." in � [fixG."] are replaced
by holes in � (for example, by introducing labelled subterms). Then it follows from the
induction hypothesis that there is some ?0 such that, for all ? ≥ ?0, � [fix?G."] ∉ T⊥ [[�]].
Hence, by construction, we have that, for all = ≥ <0 + ?0, � [fix

=G."] ∉ T⊥ [[� → �]].
• When � is � ⤚ � , we need only consider (i). So suppose � [fixG."] ∉ T⊥ [[� ⤚ �]]. Then
either (i)� [fixG."] evaluates to a value that is not an abstraction, or (ii)� [fix G."] crashes,
or (iii)� [fix G."] evaluates to an abstraction _~. % , but there is a value+ such that+ ∉ [[�]]

and yet % [+ /~] ∈ T [[�]]. In cases (i) and (ii) we can find the bound as above. In case (iii),
we first observe that evaluating to an abstraction requires only finitely many applications
of the fixpoint reduction, say<0. So, for any< ≥ <0, � [fix

<G."] will also evaluate to an
abstraction. Next, note that we can write % [+ /~] as � [fixG."] by factoring out all descen-
dants of fixG." in the original term. Then, it follows from the induction hypothesis that

there is some :0 such that, for all : ≥ :0, � [fix:G."] ∈ T [[�]]. Then, it follows from this
construction that, for all = ≥ <0 + :0, � [fix

=G."] ∉ T⊥ [[� ⤚ �]].

�

Note, the contrapositive of part (i) of this result gives us the following principle: if� [fix=G."] ∈

T⊥ [[�]] for all =, then � [fixG."] ∈ T⊥ [[�]].

Theorem 4.5. follows from Theorems A.7 and A.8 by observing that, since # and % are closed in
the statement, we can always find some fresh variable I in order to write � [#] as (� [I]) [# /I].

33

Steven Ramsay and Charlie Walpole

A.2 Proof of Theorem 4.6

Proof. Suppose _G." ∈ [[� → �]]. Then, by definition, for all + ∈ [[�]], " [+ /G] ∈ T⊥ [[�]].
It follows from Theorem 4.5 (i) that, (*) for all # ∈ T⊥ [[�]], " [# /G] ∈ T⊥ [[�]] (such # either
diverge or evaluate to a value in [[�]]). We show that fixG." ∈ T⊥ [[�]] using the above principle,
by induction on = ∈ N.

• When = = 0, fix=G." = div and div ∈ T⊥ [[�]] by definition.

• When = is of shape : + 1, we assume fix:G." ∈ T⊥ [[�]]. Then it follows from (*) that

" [fix:G."/G] ∈ T⊥ [[�]]. This just means that fix:+1G." ∈ T⊥ [[�]], as required.

�

A.3 Proof of Theorem 4.3

Finally, we can show semantic soundness, Theorem 4.3.

Proof. The proof is by induction on the derivation.

(Id) Suppose \ satisfies Γ, G : � on the left, then G\ ∈ T [[�]]. Hence, G\ ∈ T⊥ [[�]] and the conclu-
sion follows.

(Dis) Suppose � | | � and that \ satisfies Γ, " : � on the left, so that "\ ∈ T [[�]]. It follows that
"\ ∉ T⊥ [[�]] (*). Then it follows from the induction hypothesis that \ satisfies " : �, Δ on
the right, but by (*), \ does not satisfy" : � on the right. Therefore, \ must satisfy Δ on the
right, as required.

(ZeroR) By definition zero\ = zero ∈ T⊥ [[Nat]].
(SuccR) Suppose\ satisfies Γ on the left, then it follows from the induction hypothesis that\ satisfies

" : NatΔ on the right. Suppose \ does not satisfy Δ on the right. Then \ satisfies " : Nat
on the right, so either"\ diverges or"\ evaluates to a number. Hence \ satisfies succ(") :
Nat on the right.

(PredR) Analogous to the previous case.
(FixR) Suppose Γ, G : � |= " : �, Δ and let \ be a valuation satisfying Γ on the left. To see that

\ will satisfy fix G." : �, Δ on the right we suppose \ does not satisfy Δ on the right, and
show that \ satisfies fixG." : � on the right, i.e. fixG."\ ∈ T⊥ [[�]]. By this assumption
and our original supposition, we have that, for all + ∈ [[�]], ("\) [+ /G] ∈ T⊥ [[�]], so
_G."\ ∈ [[� → �]]. Then the result follows since typing is closed under taking fixpoints.

(LetR) Suppose \ satisfies Γ on the left, then it follows from the induction hypotheses that \ satisfies
" : � ×�, Δ on the right. Suppose \ does not satisfy Δ. Hence, \ satisfies " : � ×� on the
right so"\ either diverges or evaluates to a pair (+ ,,) with+ ∈ [[�]] and, ∈ [[�]]. In the
former case, the let expression diverges under \ and we are done. Otherwise \ ∪ [+ /G,, /~]
satisfies Γ, G : �, G : � on the left and it follows from the induction hypothesis that \
satisfies # : � on the right, so (# [+ /G,, /~])\ ∈ T⊥ [[�]]. The conclusion follows since
(let (G,~) = " in#)\ ⊲∗ (# [+ /G,, /~])\ .

(AppR) Suppose \ satisfies Γ on the left. Then it follows from the induction hypotheses that \ sat-
isfies " : � → �, Δ and # : �, Δ on the right. Suppose \ does not satisfy Δ. Then "\ ∈
T⊥ [[� → �]] and#\ ∈ T⊥ [[�]]. If either diverges, then so does (" #)\ andwe are done. Oth-
erwise,"\ evaluates to some abstraction _G. % ∈ [[� → �]] and#\ evaluates to a value+ in
[[�]] and hence it follows from the definition that (" #)\ ⊲∗ (_G. %)+ ⊲ % [+ /G] ∈ T⊥ [[�]],
as required.

(PairR) Suppose\ satisfies Γ on the left, then it follows from the induction hypotheses that\ satisfies
" : �, Δ and # : �, Δ on the right. Suppose \ does not satisfy Δ on the right, then "\ ∈
T⊥ [[�]] and #\ ∈ T⊥ [[�]]. If either diverge, then so does (", #)\ and the conclusion is

34

Ill-Typed Programs Don’t Evaluate

immediate. Otherwise,"\ evaluates to some+ ∈ [[�]] and #\ evaluates to some, ∈ [[�]]
and thus (", #)\ evaluates to (+ ,,) ∈ [[� × �]].

(AbsR) Suppose \ satisfies Γ on the left. Suppose \ does not satisfy Δ on the right, so we need to
show that \ satisfies (_G. %) : � → � on the right. So let+ ∈ [[�]]. Then \ ∪ [+ /G] satisfies
Γ, G : � on the left, and the induction hypothesis gives that %\ ∈ T⊥ [[�]] as required.

(AbnR) Suppose \ satisfies Γ on the left. Suppose \ does not satisfy Δ on the right, so we need to
show that \ satisfies (_G. %) : � ⤚ � on the right. So let + be a closed value and assume
(%\) [+ /G] ∈ T [[�]]. Then \ ∪ [+ /G] satisfies Γ, " : � on the left. Hence, it follows from
the induction hypothesis that \ ∪ [+ /G] satisfies G : � on the right, and so + ∈ T⊥ [[�]].
Since + is a value, the conclusion is immediate.

(IfZR) Suppose \ satisfies Γ on the left. Then it follows from the induction hypothesis that \ sat-
isfies (i) " : Nat, Δ, (ii) # : �, Δ and (iii) % : �, Δ on the right. Suppose that \ does
not satisfy Δ. Then "\ either diverges or evaluates to a numeral, say =. In the former
case, the if expression diverges too and we conclude. Otherwise, if = = 0, it follows that
if"\ then#\ else%\ ⊲∗ #\ and the result follows from (ii). If= > 0, then if"\ then#\ else%\ ⊲∗ %\
and the result follows from (iii).

(AppL) Suppose \ satisfies Γ, (" #) : � on the left. Then (" #)\ ∈ T [[�]]. It follows from the
induction hypothesis that \ satisfies " : � ⤚ �, Δ on the right. If \ satisfies Δ on the right,
then we are done. If \ satisfies " : � ⤚ � on the right, then "\ ∈ T⊥ [[� ⤚ �]]. Since
(" #)\ is guaranteed to terminate, it follows that"\ and #\ are too, and so"\ evaluates
to some abstraction _G. % ∈ [[� ⤚ �]] and#\ to some value+ . It follows from the definition
that since (" #)\ ⊲∗ % [+ /G] ∈ T [[�]],+ ∈ [[�]] and hence #\ ∈ T [[�]]. Then \ satisfies
Γ, # : � on the left and the result follows from the induction hypothesis.

(LetL1) Suppose \ satisfies Γ, let (G,~) = % in# : � on the left, so let (G,~) = %\ in#\ ∈ T [[�]].
Therefore, it must be that %\ evaluates to a pair (+ ,,) and (#\) [+ /G,, /~] ∈ T [[�]]. Then
\ ∪ [+ /G,, /~] satisfies Γ, # : � on the left, and it follows from the induction hypothesis
that it also satisfies Δ on the right. Since G and ~ are bound in the let, we may assume they
do not occur free in Δ, so also \ satisfies Δ on the right.

(LetL2) Suppose \ satisfies Γ, let (G,~) = % in# : � on the left, so let (G,~) = %\ in#\ ∈ T [[�]].
It must be that %\ evaluates to some pair (+ ,,) and (#\) [+ /G,, /~] ∈ T [[�]]. Hence,
\ ∪ [+ /G,, /~] satisfies Γ, # : � on the left and it follows from the induction hypotheses
that it also satisfies G : �, Δ and ~ : �, Δ on the right. If it satisfies Δ on the right, then \
satisfies Δ on the right since we mat assume the bound variables G and ~ do not occur in Δ.
Otherwise,+ ∈ [[�]] and, ∈ [[�]] and so we have that %\ ⊲∗ (+ ,F) ∈ [[�×�]]. Therefore,
it follows from the induction hypothesis that \ satisfies Δ on the right.

(SuccL) Suppose \ satisfies Γ, succ(%) : Nat on the left, so succ(%\) ∈ T [[Nat]] and hence %\
must evaluate to a number. Then the conclusion follows from the induction hypothesis.

(PredL) Analogous to the previous case.
(IfZL1) Suppose \ satisfies Γ, if& then# else% : �, so that if&\ then#\ else%\ evaluates to an

�. Then it must be that &\ evaluates to a numeral, and then the result follows from the
induction hypothesis.

(IfZL2) Suppose \ satisfies Γ, if& then# else% : �, so that if&\ then#\ else%\ evaluates to an �.
Then it must be that&\ evaluates to a numeral, say =. If= = 0, then the if expression reduces
to #\ ∈ T [[�]] and the result follows from the first induction hypothesis. Otherwise, the if
expression reduces to %\ and the result follows from the second induction hypothesis.

(OkVarR) It is immediate from the definition that G\ is a value.
(OkL) Suppose \ satisfies Γ, " : � on the left. Then "\ ∈ T [[�]]. Since T [[�]] ⊆ T [[Ok]], the

conclusion follows from the induction hypothesis.

35

Steven Ramsay and Charlie Walpole

(OkR) Symmetrical to the previous case.
(OkSL) Suppose \ satisfies Γ, succ(") : Ok on the left. So succ("\) evaluates. The only values

headed by succ are numerals, so it follows that "\ evaluates to a numeral and then the
conclusion follows from the induction hypothesis.

(OkPL) Suppose \ satisfies Γ, pred(") : Ok on the left. So pred("\) evaluates. Since pred("\) can
only reduce to a numeral, and this requires that "\ evaluate to a numeral, the conclusion
follows from the induction hypothesis.

(OkPrL) Suppose \ satisfies Γ, ("1,"2) : Ok. Then ("1\,"2\) evaluates and it must be that it
evaluates to a pair of values (+1,+2). Then it follows that each "8 evaluates and so the
conclusion follows from the induction hypothesis.

(OkApL1) Suppose \ satisfies Γ, " # : Ok on the left, so"\ #\ evaluates. Then it must be that"\
evaluates to an abstraction. Since, for any �, [[Ok ⤚ �]] is the set of all abstractions, the
conclusion follows from the induction hypothesis.

(OkApL2) Suppose \ satisfies Γ, " # : Ok, so "\ #\ evaluates. Then, in particular, #\ evaluates,
and the conclusion follows from the induction hypothesis.

�

B ADDITIONAL MATERIAL IN SUPPORT OF SECTION 5

This section contains: a definition for an algorithmic version of the constrained type system rules
(where the sub-type rules have been distributed throughout the other rules in the standard way),
the proof of its correctness in the form of a soundness and completeness proof (relative to the
original constraint type system rules), a type inference algorithm, and its correctness in the form
of a soundness and completeness proof (relative to the algorithmic typing rules).

Definition B.1. Given a set of typing and subtype formulas Γ, write Con(Γ) for the subset of sub-
type formulas, and Typ(Γ) for the typing formulas. Given two sets of typing and subtype formulas
Γ and Γ

′ write Γ ⊑ Γ
′ just if for all typings" : � ∈ Γ, there is a typing " : � ∈ Γ

′ and Γ ⊢ � ⊑ �.

TheoremB.2 (Soundness ofAlgorithmicTypeAssignment). For all Γ,Δ, if Typ(Γ) | Con(Γ) ⊢2
Δ then Γ ∪� ⊢ Δ.

Proof. We proceed by induction on the derivation of ⊢2.
Case(Inst2):

This case is trivial by the use of (GVar).

Case(Var2):
Let Γ, G : � be the context with � ⊑ �.
By (LVar), we have Γ, G : � ⊢ G : �.
By (SubR), we have Γ, G : � ⊢ G : � as required.

Case(AbsR2):
Let Typ(Γ) | Con(Γ) ⊢2 (_G.") : �1 → �1 and Typ(Γ), G : �2 | Con(Γ) ⊢2 " : �2 with
�1 ⊑ �2 and �2 ⊑ �1.
By the inductive hypothesis, Γ, G : �2 ⊢ " : �2.
By (SubR) we have Γ, G : �2 ⊢ " : �1.
By (SubL) we have Γ, G : �1 ⊢ " : �1.
By (AbsR) we have Γ ⊢ (_G.") : �1 → �1 as required.

Case(AbnR2):

36

Ill-Typed Programs Don’t Evaluate

Structural

(Inst2) � ⊢ �′ [
⃗⃗⃗
�/

⃗⃗
0] and � ⊢ �[

⃗⃗⃗
�/

⃗⃗
0] ⊑ �′

Γ, 5 : ∀
⃗⃗
0 .�′ ⇒ � | � ⊢2 5 : �′

(Var2) � ⊢ � ⊑ �
Γ, G : � | � ⊢2 G : �

(VarK2) � ⊢ Ok ⊑ �
Γ | � ⊢2 G : �

Functions

Γ, G : �1 | � ⊢2 " : �2
(AbsR2) � ⊢ �1 → �2 ⊑ �

Γ | � ⊢2 (_G.") : �

Γ, " : �1 | � ⊢2 G : �2
(AbnR2) � ⊢ �2 ⤚ �1 ⊑ �

Γ | � ⊢2 (_G.") : �

Γ | � ⊢2 " : �1 Γ | � ⊢2 # : �2
(AppR2) � ⊢ �1 ⊑ �2 → �

Γ ⊢2 (" #) : �

Γ | � ⊢2 " : �1 Γ, # : �2 ⊢2 Δ
(AppL2) � ⊢ �1 ⊑ �2 ⤚ �

Γ, (" #) : � | � ⊢2 Δ

Constructors

Γ, "8 : �8 | � ⊢2 Δ
(CnsL2) � ⊢ � ⊑ Σ3∈C\{2 } 3 (

⃗⃗ ⃗⃗ ⃗⃗ ⃗
�3) + 2 (�1, . . . , �=)

Γ, 2 ("1, . . . ,"=) : � | � ⊢2 Δ

Γ | � ⊢2 "8 : �8 (∀8)
(CnsR2) � ⊢ 2 (�1, . . . , �=) ⊑ �

Γ | � ⊢2 2 ("1, . . . ,"=) : �

Pattern Matching

Γ, (", %8) : �
′
8 | � ⊢2 Δ (∀8)

Γ, %8 : �G | � ⊢2 G : �G (∀8 .∀G ∈ FV(?8))
(MchL2)

� ⊢ � ⊑ �8 (∀8)

� ⊢ (�8 , �8) ⊑ �
′
8 (∀8)

� ⊢ � ⊑ �G (∀8 .∀G ∈ FV(?8))

� ⊢ ?8 [�G/G | G ∈ FV(?8)] ⊑ �8 (∀8)
Γ, match" with {|:8=1(?8 ↦→ %8)} : � | � ⊢2 Δ

Γ | � ⊢2 " : �

Γ ∪ {G : �G | G ∈ FV(?8)} | � ⊢2 %8 : �8 (∀8)
(MchR2)

� ⊢ � ⊑ Σ
:
8=1?8 [�G/G | G ∈ FV(?8)]

� ⊢ �8 ⊑ � (∀8)Γ | � ⊢2 match" with {|:8=1(?8 ↦→ %8)} : �

Fixpoints and Evaluation

Γ, 5 : � | � ⊢2 " : �
(FixR2) � ⊢ � ⊑ �

Γ | � ⊢2 fix 5 . " : �

Γ, "8 : � | � ⊢2 Δ
(CnsK2) � ⊢ Ok ⊑ �

Γ, 2 ("1, . . . ,"=) : � | � ⊢2 Δ

Γ, " : � | � ⊢2 Δ
(FunK2) � ⊢ Ok ⤚ � ⊑ �

Γ, " # : � | � ⊢2 Δ

Fig. 6. Algorithmic constrained type assignment

37

Steven Ramsay and Charlie Walpole

Disjointness

(CnsDL21) �� ⊑ �1 → �2
Γ, 2 ("1, . . . ,"=) : � | � ⊢ Δ

(CnsDL22) � ⊢ � ⊑ �1 ⤚ �2
Γ, 2 ("1, . . . , "=) : � | � ⊢ Δ

(CnsDL23) � ⊢ � ⊑ Σ3∈C\{2 } 3 (
⃗⃗ ⃗⃗ ⃗⃗ ⃗
�3)

Γ, 2 ("1, . . . , "=) : � | � ⊢ Δ

(AbsDL2) � ⊢ � ⊑ Σ2∈C2 (
⃗⃗ ⃗⃗ ⃗⃗
�2)

Γ, _G ." : � | � ⊢ Δ

Fig. 7. Algorithmic constrained type assignment continued

Let Typ(Γ) | Con(Γ) ⊢2 (_G.") : �1 ⤚ �1 and Typ(Γ), " : �2 | Con(Γ) ⊢2 G : �2 with
�2 ⊑ �1 and �1 ⊑ �2.
By the inductive hypothesis, Γ, " : �2 ⊢ G : �2.
By (SubR) we have Γ, " : �2 ⊢ G : �1.
By (SubL) we have Γ, " : �1 ⊢ G : �1.
By (AbnR) we have Γ ⊢2 (_G.") : �1 ⤚ �1 as required.

Case(AppR2):
Let Typ(Γ) | Con(Γ) ⊢2 (" #) : g3, Typ(Γ) | Con(Γ) ⊢2 " : g1, and Typ(Γ) | Con(Γ) ⊢2
: g2 with g1 ⊑ g2 → g3.
By the inductive hypothesis, we have Γ ⊢ " : g1 and Γ ⊢ # : g2. By (SubR) on" , we have
Γ ⊢ " : g2 → g3.
By (AppR) we have Γ ⊢ (" #) : g3 as required.

Case(AppL2):
Let Typ(Γ), (" #) : g3 | Con(Γ) ⊢2 Δ, Typ(Γ) | Con(Γ) ⊢2 " : g1, and Typ(Γ), # : g2 |

Con(Γ) ⊢2 Δ with g1 ⊑ g2 ⤚ g3.
By the inductive hypothesis, we have Γ ⊢ " : g1 and Γ, # : g ⊢2 Δ.
By (SubR) on" we have Γ ⊢ " : g2 ⤚ g3.
By (AppL), we have Γ, (" #) : g3 ⊢ Δ as required.

Case(ConsL2):
Let Typ(Γ), 2 ("1, . . . , "=) : g | Con(Γ) ⊢2 Δ and Typ(Γ), "8 : �8 | Con(Γ) ⊢2 Δ with

g ⊑ Σ3∈C\{2 } (3 (®�3)) + 2 (�1, . . . , �=).
By the inductive hypothesis, Γ, "8 : �8 ⊢ Δ.

By (CnsL), we have Γ, 2 ("1, . . . ,"=) : 2 (�1, . . . , �=) + Σ3∈C\{2 } (3 (®�3)) ⊢ Δ.
By (SubL), we have Γ, 2 ("1, . . . , "=) : g ⊢ Δ as required.

Case(ConsR2):
Let Typ(Γ) | Con(Γ) ⊢2 2 (1, . . . , "=) : g and Typ(Γ) | Con(Γ) ⊢2 "8 : �8 (∀8) with
2 (�1, . . . , �=) ⊑ g .
By the inductive hypothesis, we have Γ | � ⊢ "8 : �8 (∀8).
By (CnsR), we have Γ ⊢2 2 (1, . . . ,"=) : 2 (�1, . . . , �=).
By (SubR), we have Γ ⊢ 2 (1, . . . ,"=) : g as required.

Case(MchL2):

38

Ill-Typed Programs Don’t Evaluate

Let Typ(Γ), match" with {|:8=1(?8 ↦→ %8)} : � | Con(Γ) ⊢2 Δ, Typ(Γ), (", %8) : �′
8 |

Con(Γ) ⊢2 Δ (∀8) and Typ(Γ), %8 : �G | Con(Γ) ⊢2 G : �G (∀8 .∀G ∈ FV?8) where � ⊑

�G (∀8 .∀G ∈ FV(?8)), � ⊑ �8 (∀8 .), (�8 , �8) ⊑ �
′
8 , and ?8 [�G/G | G ∈ FV(?8)] ⊑ �8 (∀8 .).

By the inductive hypothesis, Γ, (", %8) : �′
8 ⊢ Δ (∀8) and Γ, %8 : �G ⊢ G : �G (∀8 .∀G ∈

FV?8).
By (SubL) (applied to (", %8) twice and %8 once), we have Γ, (", %8) : (?8 [�G/G | G ∈
FV(?8)], �) ⊢ Δ (∀8) and Γ, %8 : � ⊢ G : �G (∀8 .∀G ∈ FV?8).

By (MchL), we have Γ, match" with {|:8=1(?8 ↦→ %8)} : � ⊢ Δ as required.
Case(MchR2):

Let Typ(Γ) | Con(Γ) ⊢2 match" with {|:8=1(?8 ↦→ %8)} : �, Typ(Γ) ∪ {G : �G | G ∈

FV(?8)} | Con(Γ) ⊢2 %8 : �8 (∀8), and Typ(Γ) | Con(Γ) ⊢2 " : � where � ⊑ Σ
:
8=1?8 [�G/G |

G ∈ FV(?8)] and �8 ⊑ � (∀8).
By the inductive hypothesis we have Γ ∪ {G : �G | G ∈ FV(?8)} ⊢ %8 : �8 (∀8) and
Γ ⊢ " : �.
By (SubR) (applied to " and %8), we have Γ ∪ {G : �G | G ∈ FV(?8)} ⊢ %8 : � (∀8) and
Γ ⊢ " : ?8 [�G/G | G ∈ FV(?8)].
By (MchR), we have Γ ⊢ match" with {|:8=1(?8 ↦→ %8)} : �.

Case(FixR2):
Let Typ(Γ) | Con(Γ) ⊢2 fix 5 . " : �, Typ(Γ), 5 : � | Con(Γ) ⊢2 " : �, and � ⊑ �.
By the inductive hypothesis, we have Γ, 5 : � ⊢ " : �.
By (SubR), we have Γ, 5 : � ⊢ " : �.
By (FixR), we have Γ ⊢ fix 5 . " : � as required.

Case(VarK2):
This case is trivial by the use of (VarK).

Case(CnsK2):
This case is trivial by the use of (CnsK).

Case(FunK2):
Let Typ(Γ), " # : � | Con(Γ) ⊢2 Δ, Typ(Γ), " : � ⊢2 Δ, and Ok ⤚ � ⊑ �.
By the inductive hypothesis, we have Γ, " : � ⊢ Δ.
By (SubL), we have Γ, " : Ok ⤚ � ⊢ Δ.
By (FunK), we have Γ, " # : Ok ⊢ Δ.
By (SubL), we have Γ, " # : � ⊢ Δ as required.

Case(CnsDL21):
This case is trivial by the use of (CnsDL) where the type � is an arrow.

Case(CnsDL22):
This case is trivial by the use of (CnsDL) where the type � is an arrow.

Case(CnsDL23):
This case is trivial by the use of (CnsDL) where the type � is a sum of constructor types
that does not include 2 .

Case(AbsDL2):
This case is trivial by the use of (AbsDL) where the type � is a sum of constructor types.

�

Theorem B.3 (Completeness of Algorithmic Type Assignment). For all Γ, Γ′,Δ,Δ′, if the fol-

lowing hold:

(1) Γ ⊢ Δ

(2) Δ ⊑ Δ
′

(3) Γ
′ ⊑ Γ

Then Typ(Γ′) | Con(Γ′) ⊢2 Δ
′.

39

Steven Ramsay and Charlie Walpole

Proof. We proceed by induction on the derivation of ⊢.
Case(GVar):

This case is trivial by the use of (Inst2).

Case(LVar):
Let Γ, G : � ⊢ G : �, Γ′, G : � ⊑ Γ, G : �, and � ⊑ �.
Then by (Var2), Typ(Γ′), G : � | Con(Γ), � ⊑ � ⊢2 G : �.

Case(SubL):
Let Γ, " : � ⊢ Δ, Γ, " : � ⊢ Δ, and � ⊑ �.
By the inductive hypothesis, for all Γ′,Δ′ such that Γ′ ⊑ Γ, " : � and Δ ⊑ Δ

′ we have
Typ(Γ′) | Con(Γ′) ⊢2 Δ

′.
As � ⊑ �, " : � is an included entry in an instance of Γ′.
Thus, for all Γ′′ ⊑ Γ, �′ ⊑ �, and Δ ⊑ Δ

′′, we have Typ(Γ′′), " : �′ | Con(Γ′′) ⊢2 Δ
′′.

Case(SubR):
Let Γ ⊢ " : �, Γ ⊢ " : �, and � ⊑ �.
By the inductive hypothesis, for all Γ′, �′ such that Γ′ ⊑ Γ and � ⊑ �′ we have Typ(Γ′) |
Con(Γ′) ⊢2 " : �′.
Thus, as � ⊑ � we have for all �′ such that � ⊑ �′, � ⊑ �′ and so Typ(Γ′) | Con(Γ′) ⊢2
" : �′ as required.

Case(AbsR):
Let Γ ⊢ (_G.") : � → � and Γ, G : � ⊢ " : �.
By the inductive hypothesis, for all Γ′, �′, �′ such thatΓ′ ⊑ Γ, �′ ⊑ �, and � ⊑ �′, we
have Typ(Γ′), G : �′ | Con(Γ′) ⊢2 " : �′.
Let Γ′′ ⊑ Γ, �′ ⊑ �, and � ⊑ �′. Then � → � ⊑ �′ → �′ and Typ(Γ′′), G : �′ |
Con(Γ′′) ⊢2 " : �′.
Then, by (AbsR2), we have Typ(Γ′′) | Con(Γ′′) ⊢2 _G." : �′ → �′ as required.

Case(AbnR):
Let Γ ⊢ (_G.") : � ⤚ � and Γ, " : � ⊢ G : �.
By the inductive hypothesis, for all Γ′, �′, �′ such that Γ′ ⊑ Γ, � ⊑ �′ and �′ ⊑ �, we
have Typ(Γ′), " : �′ | Con(Γ′) ⊢2 G : �′.
Let Γ′′ ⊑ Γ, �′ ⊑ �, � ⊑ �′. Then � ⤚ � ⊑ �′ ⤚ �′ and Typ(Γ′′), " : �′ | Con(Γ′′) ⊢2
G : �′.
Then, by (AbnR2), we have Typ(Γ′′) | Con(Γ′′) ⊢2 (_G.") : �′ ⤚ �′ as required.

Case(AppL):
Let Γ, (" #) : � ⊢ Δ, Γ ⊢ " : � ⤚ �, and Γ, # : � ⊢ Δ.
By the inductive hypothesis, for all Γ′,Δ′, �′, �′ such that Γ′ ⊑ Γ, Δ ⊑ Δ

′, � ⤚ � ⊑
�′ ⤚ �′, and � ⊑ �′ we have Typ(Γ′) | Con(Γ′) ⊢2 " : �′ ⤚ �′ and Typ(Γ′), # : �′ |
Con(Γ′) ⊢2 Δ

′.
Let Γ′′ ⊑ Γ, �′ ⊑ �, and Δ ⊑ Δ

′. Then, for all �′ such that � ⤚ � ⊑ �′ ⤚ �′ and � ⊑ �′,
we have Typ(Γ′′) | Con(Γ′′) ⊢2 " : �′ ⤚ �′ and Typ(Γ′′), # : �′ | Con(Γ′′) ⊢2 Δ

′′.
Then, by (AppL2), as the side condition is trivially satisfied, we have Typ(Γ′′), (" #) : �′ |
Con(Γ′′) ⊢2 Δ

′′.
Case(AppR):

Let Γ ⊢ (" #) : �, Γ ⊢ " : � → �, and Γ ⊢ # : �.
By the inductive hypothesis, for all Γ′, �′, �′ we have Γ′ ⊑ Γ, � ⊑ �′, � → � ⊑ �′ → �′,
Typ(Γ′) | Con(Γ′) ⊢2 " : �′ → �′, and Typ(Γ′) | Con(Γ′) ⊢2 # : �′.
Let Γ′′ ⊑ Γ and � ⊑ �′. Then, for all �′ such that � ⊑ �′ and � → � ⊑ �′ → �′, we have
Typ(Γ′′) | Con(Γ′′) ⊢2 " : �′ → �′, and Typ(Γ′′) | Con(Γ′′) ⊢2 # : �′.
Then, by (AppR2), as the side condition is trivially satisfied, we have Typ(Γ′′) | Con(Γ′′) ⊢2
(" #) : �′ as required.

Case(CnsL):

40

Ill-Typed Programs Don’t Evaluate

Let Γ, 2 ("1, . . . , "=) : 2 (�1, . . . , �=) + Σ3∈C\{2 } (3 (®�3)) ⊢ Δ and Γ, "8 : �8 ⊢ Δ for some 8 .
By the inductive hypothesis, for all Γ′, �′

8 ,Δ
′ we have Γ

′ ⊑ Γ, Δ ⊑ Δ
′, �′

8 ⊑ �8 , and
Typ(Γ′), "8 : �

′
8 | Con(Γ

′) ⊢2 Δ
′.

Let Γ
′′ ⊑ Γ, Δ ⊑ Δ

′′ and �′
9 ⊑ � 9 (∀9). Then 2 (�

′
1, . . . , �

′
=) + Σ3∈C\{2 } (3 (®�

′
3
)) ⊑

2 (�1, . . . , �=) + Σ3∈C\{2 } (3 (®�3)) and Typ(Γ′′), "8 : �
′
8 | Con(Γ

′′) ⊢2 Δ
′′.

Then, by (ConsL2), we have Typ(Γ′′), 2 ("1, . . . , "=) : 2 (�′
8 , . . . , �

′
=) + Σ3∈C\{2 } (3 (®�

′
3
)) |

Con(Γ′′) ⊢2 Δ
′′.

Case(CnsR):
Let Γ ⊢ 2 ("1, . . . , "=) : 2 (�1, . . . , �=) and Γ ⊢ "8 : �8 for all 8 .
By the inductive hypothesis, for all Γ′, �′

8 we have Γ
′ ⊑ Γ, �8 ⊑ �′

8 , and Typ(Γ′) |

Con(Γ′) ⊢2 "8 : �
′
8 for all 8 .

Let Γ′′ ⊑ Γ and �8 ⊑ �′
8 (∀8). Then 2 (�8 , . . . , �=) ⊑ 2 (�′

8 , . . . , �
′
=) and Typ(Γ′′) |

Con(Γ′′) ⊢2 "8 : �
′
8 (∀8).

Then, by (ConsR2), we have Typ(Γ′′) | Con(Γ′′) ⊢2 2 ("8 , . . . ,"=) : 2 (�′
8 , . . . , �

′
=) as re-

quired.
Case(MchL):

Let Γ, match" with {|:8=1(?8 ↦→ %8)} : � ⊢ Δ, Γ, %8 : � ⊢ G : �G (∀8 .∀G ∈ FV(?8)), and
Γ, (", %8) : (?8 [�G/G | G ∈ FV(?8)], �) ⊢ Δ (∀8).
By the inductive hypothesis we have:

(1) ∀Γ′, �G , �
′
G .Γ

′ ⊑ Γ ∧�G ⊑ � ∧ �G ⊑ �′G ⇒ Typ(Γ′), %8 : �G | Con(Γ′) ⊢2 G : �′G
(2) ∀Γ′, g,Δ′.Γ′ ⊑ Γ ∧ g ⊑ (?8 [�G/G | G ∈ FV(?8)], �) ∧ Δ ⊑ Δ

′ ⇒ Typ(Γ′), (", %8) :
(?8 [�

′
G/G | G ∈ FV(?8)], �

′) | Con(Γ′) ⊢2 Δ
′

Let Γ′′ ⊑ Γ, �′′ ⊑ �, and Δ ⊑ Δ
′′.

By instantiating (1): Γ′ with Γ
′′, �G with �′′, and �′G with �G gives Typ(Γ′′), %8 : �′′ |

Con(Γ′′) ⊢2 G : �G .
By instantiating (2): Γ

′ with Γ
′′, g with (�G , �

′′), and Δ
′ with Δ

′′ gives
Typ(Γ′′), (", %8) : (?8 [�G/G | G ∈ FV(?8)], �

′′) | Con(Γ′′) ⊢2 Δ
′′.

Finally, by (MchL2), as the side conditions are trivially satisfied, we have
Typ(Γ′′), match" with {|:8=1(?8 ↦→ %8)} : �

′′ | Con(Γ′′) ⊢2 Δ
′′ as required.

Case(MchR):
Let Γ | � ⊢ match" with {|:8=1(?8 ↦→ %8)} : �, Γ ⊢ " : Σ:8=1?8 [�G/G | G ∈ FV(?8)], and
Γ ∪ {G : �G | G ∈ FV(?8)} ⊢ %8 : �(∀8).
By the inductive hypothesis, for all Γ′, �′, �, �′G such that Γ′ ⊑ Γ, Σ:8=1?8 [�G/G | G ∈

FV(?8)] ⊑ �, (∀8)�
′
G ⊑ �G , and � ⊑ �′, we have

(1) Typ(Γ′) | Con(Γ′) ⊢2 " : �
(2) Typ(Γ′) ∪ {G : �′G | G ∈ FV(?8)} | Con(Γ

′) ⊢2 %8 : �
′ (∀8)

Let Γ
′′ ⊑ Γ and � ⊑ �′′. We want to show Typ(Γ′′) | Con(Γ′′) ⊢2

match" with {|:8=1(?8 ↦→ %8)} : �
′′.

Instantiating (1): Γ′ with Γ
′′ and � with Σ

:
8=1?8 [�G/G | G ∈ FV(?8)] gives Typ(Γ′′) |

Con(Γ′′) ⊢2 " : Σ:8=1?8 [�G/G | G ∈ FV(?8)].
Instantiating (2): Γ′ with Γ

′′, �′G with �G , and �
′ with �′′, gives Typ(Γ′′) ∪ {G : �G | G ∈

FV(?8)} | Con(Γ
′′) ⊢2 %8 : �

′′ (∀8).

Finally, by (MchR2), we have Typ(Γ′′) | Con(Γ′′) ⊢2 match" with {|:8=1(?8 ↦→ %8)} : �
′′ as

required.
Case(FixR):

41

Steven Ramsay and Charlie Walpole

Let Γ ⊢ fix 5 . " : � and Γ, 5 : � ⊢ " : �.
By the inductive hypothesis, for all Γ′, �,� such that Γ′ ⊑ Γ, � ⊑ �, and � ⊑ � , we have
Typ(Γ′), 5 : � | Con(Γ′) ⊢2 " : � .
Let Γ′′ ⊑ Γ and � ⊑ �′′ .
Instantiating Γ

′ with Γ
′′, and � with �′′ gives Typ(Γ′′), 5 : �′′ | Con(Γ′′) ⊢2 " : � .

By (FixR2), we have Typ(Γ′′) | Con(Γ′′) ⊢2 fix 5 . " : �′′ as required.
Case(VarK):

This case is trivial by the use of (VarK2).

Case(CnsK):
This case is trivial by the use of (CnsK2) with � as Ok.

Case(FunK):
Let Γ, " # : Ok ⊢ Δ and Γ, " : Ok ⤚ � ⊢ Δ.
By the inductive hypothesis, for all Γ′, �,Δ′ such that Γ′ ⊑ Γ

′, � ⊑ Ok ⤚ �, and Δ ⊑ Δ
′,

we have Typ(Γ′), " : � | Con(Γ′) ⊢2 Δ
′.

Let Γ′′ ⊑ Γ and Δ
′ ⊑ Δ

′′.
By instantiating Γ

′ with Γ
′′, Δ′ with Δ

′′, and � with Ok ⤚ Ok, we have Typ(Γ′′), " :
Ok ⤚ Ok | Con(Γ′′) ⊢2 Δ

′′.
By (FunK2), we have Typ(Γ′′), " # : Ok | Con(Γ′′) ⊢2 Δ

′′ as required.
Case(CnsDL):

Let Γ, 2 ("1, . . . ,"=) : � ⊢ Δ where � is and arrow type or of the shape Σ3∈� with 2 ∉ � .
Let Γ′ ⊑ Γ, �′ ⊑ �, and Δ ⊑ Δ

′.
If� is a sum of constructor types that does not include 2 , then so is �′. Thus, by (CnsDL23),
we have Γ′, 2 ("1, . . . ,"=) : �

′ ⊢ Δ′.
If � is a sufficiency arrow (g1 → g2), then so is �′. Thus, by (CnsDL21), we have
Γ
′, 2 ("1, . . . , "=) : �

′ ⊢ Δ
′.

If � is a necessity arrow (g1 ⤚ g2), then so is �′. Thus, by (CnsDL22), we have
Γ
′, 2 ("1, . . . , "=) : �

′ ⊢ Δ
′.

�

B.1 Inference Algorithm

This (sub-)section contains a definition for the constrained type system inference algorithm and a
proof of its correctness in the form of a soundness and correctness proof (relative to the algorithmic
typing rules).

InferR(Γ, M) = caseM of

Var x → { (Γ | {a ⊑ b} ⊢M : b) | b = freshVar,

a =

{

C (G : C) ∈ Γ

Ok otherwise

} ∪ { (Γ | C[1/0] ∪ {a[1/0] ⊑ a'} ⊢ M : a') | 1 = freshVar, a' = freshVar,

(x : ∀ 0. C ⇒ a) ∈ Γ

}

App P Q→ { (Γ | c1 ∪ c2 ∪ {b ⊑ c → a} ⊢M : a) | a = freshVar,

(Γ | c1 ⊢ P : b) ∈ inferR(Γ, P),

(Γ | c2 ⊢ Q : c) ∈ inferR(Γ, Q)

}

Abs x N→ { (Γ | c ∪ {t → b ⊑ a} ⊢ M : a) | a = freshVar, t = freshVar,

(Γ ∪ {x : t} | c ⊢ N : b) ∈ inferR(Γ ∪ {x : t}, N)

} ∪ { (Γ | c ∪ {t ⤚ b ⊑ a} ⊢M : a) | a = freshVar, t = freshVar,

42

Ill-Typed Programs Don’t Evaluate

(Γ ∪ {N : b} | c ⊢ x : t) ∈ inferL(Γ, N, {x : t})

}

Cons c ms → { (Γ |
⋃=
8=1(�8) ∪ {c(01, . . . , 0=) ⊑ a} ⊢M : a) | a = freshVar,

(Γ | �8 ⊢<8 : 08)
=
8=1 ∈ Π<∈ms(inferR(Γ, m))

} ∪ { Γ | {c ⊑ a} ⊢ M : a | a = freshVar, ms = { } }

Match Q {|:8=1 p8 → P8 } → { (Γ |
⋃:
8=1(�8 ∪ {1 ⊑ ?8 [1G/G | G ∈ FV(?8)], 08 ⊑ 0}) ∪ C ⊢ M : a) |

a = freshVar, 1G = freshVar,

(Γ | C ⊢ Q : b) ∈ inferR(Γ, Q),

(Γ ∪ {(G : 1G)} | �8 ⊢ %8 : 08)
:
8=1 ∈ Π

:
8=1(inferR(Γ ∪ {(G : 1G)}, %8))

}

Fix f m → { (Γ | c ∪ {b ⊑ a} ⊢ M : a) | a = freshVar,

(Γ ∪ {f : a} | c ⊢ m : b) ∈ inferR(Γ ∪ {f : a}, m)

}

43

Steven Ramsay and Charlie Walpole

InferL(Γ, M, Δ) = { Γ ∪ {M : a} | {Ok ⊑ b} ⊢ Δ | a = freshVar, (x : b) ∈ d } ∪ case M of

Var x → { Γ ∪ {M : a} | {a ⊑ b} ⊢ Δ | a = freshVar, (x : b) ∈ Δ }

App P Q→ { (Γ ∪ {M : a} | c1 ∪ c2 ∪ {b ⊑ c ⤚ a} ⊢ d) | a = freshVar,

(Γ | c1 ⊢ P : b) ∈ inferR(Γ, P),

(Γ ∪ {Q : c} | c2 ⊢ Δ) ∈ inferL(Γ, Q, Δ)

} ∪ { (Γ ∪ {M : a} | c ∪ {Ok⤚ a ⊑ b} ⊢ Δ) | a = freshVar,

(Γ ∪ {P : b} | c ⊢ Δ) ∈ inferL(Γ, P, Δ)

}

Abs x N→ { (Γ ∪ {M : a} | {a ⊑ Σ2∈C(c(0))} ⊢ Δ) | a = freshVar, 0 = freshVar }

Cons ^ ms → { (Γ ∪ {M : a} | c ∪ {a ⊑ Σ^′∈C\{^ } (^
′(0^′)) + ^ (01, . . . , 1, . . . , 0=)} ⊢ Δ) |

a = freshVar, 0^′ = freshVar, (0)=8=1 = freshVar,

<8 ∈ ms,

(Γ ∪ {<8 : b} | c ⊢ Δ) ∈ inferL(Γ, m, Δ)

} ∪ { (Γ ∪ {M : a} | c ∪ {Ok ⊑ b} ⊢ Δ) | a = freshVar,

<8 ∈ ms,

(Γ ∪ {<8 : b} | c ⊢ d) ∈ inferL(Γ, m, Δ)

} ∪ { (Γ ∪ {M : a} | {0 ⊑ 11 → 12} ⊢ Δ) | a = freshVar, 11 = freshVar, 12 = freshVar }

∪ { (Γ ∪ {M : a} | {0 ⊑ 11 ⤚ 12} ⊢ Δ) | a = freshVar, 11 = freshVar, 12 = freshVar }

∪ { (Γ ∪ {M : a} | {a ⊑ Σ2∈C\^ (2 (0))} ⊢ Δ) | a = freshVar, 0 = freshVar }

Match q {|:8=1 p8 → P8 } → { (Γ ∪ {M : a} | c ⊢ Δ) |

a = freshVar, (08 , 18)
:
8=1 = freshVar, (1 (8,G)) (8,G) ∈ [1..:]×FV(?8) = freshVar,

(Γ ∪ {(q, %8) : 0
′
8 } | 28 ⊢ Δ)

:
8=1 ∈ Π

:
8=1(inferL(Γ, (q, %8), Δ)),

(Γ ∪ {%8 : 0 (8,G) } | 2
′
(8,G)

⊢ Δ)(8,G) ∈ Π (8,G) ∈ [1..:]×FV(?8) (inferL(Γ, %8 , {x : 1 (8,G)})),

c =
⋃:
8=1(28 ∪ {0 ⊑ 08 , (08 , 18) ⊑ 0

′
8 , ?8 [1 (8,G)/G | G ∈ FV(?8)] ⊑ 18}) ∪

⋃

(8,G) ∈ [1..:]×FV(?8) (2
′
(8,G)

∪ {0 ⊑ 0 (8,G)})

}

Fix f n → { }

Theorem B.4 (Soundness of the Inference Algorithm). Let Γ and Δ be strongly consistent

variable environments, " be a term, � be a type, f be a substitution from type variables to types, and

�,�′ be sets of constraints. Then:

(1) (Γ, " : � | � ⊢ Δ) ∈ InferL(Γ," , Δ)⇒∀f.(Γf, " : �f | �f ⊢2 Δf)
(2) (Γ | � ⊢ " : �) ∈ InferR(Γ,") ⇒∀f.(Γf | �f ⊢2 " : �f)

Proof. We proceed by induction on the shape of the term " .
Case(Specially treated rule):

44

Ill-Typed Programs Don’t Evaluate

In InferL there is a specially generated set that does not fall inline nicely with the others.
The section of interest is:

{ Γ ∪ {M : a} | {Ok ⊑ b} ⊢ Δ |

a = freshVar,

(x : b) ∈ Δ

}

This set is the judgment(s) provable by (VarK2). This case is proven trivially but it is impor-
tant to note that this judgment is produced by all terms" if the delta of the judgment is
a variable. As this case is trivially sound, it will be ignored in future cases despite being
generated in all of them.

Case(Var):
First, InferR. The section of interest is:

{ Γ | {a ⊑ b} ⊢M : b |

b = freshVar,

a =

{

C (G : C) ∈ Γ

Ok otherwise

} ∪ { Γ | C[1/0] ∪ {a[1/0] ⊑ a'} ⊢M : a' |

(x : ∀ 0. C ⇒ a) ∈ Γ,

1 = freshVar,

a' = freshVar

}

The second set creates a judgment for every typing of the variable at a (constrained) type
scheme.
Fix a generated judgment, Γ | � [1/0] ∪ 0[1/0] ⊑ 0′ ⊢ " : 0′.
Let f be a type variable substitution and�′ be the inferred constraint set, which is defined

by� [1/0] ∪ 0[1/0] ⊑ 0′ .
Then, by (Inst2), we have Γf | �′f ⊢2 G : 0′f .

The first set generates judgments for the (Var2) and (VarK2) rules.
Let f be a type variable substitution.
By Γ being a strongly consistent variable environment, we have either (G : C) ∈ Γ or
(G : C) ∉ Γ.
If (G : C) ∈ Γ then, by (Var2), we have Γf, G : Cf | {Cf ⊑ 1f} ⊢2 G : 1f .

If (G : C) ∉ Γ then, by (VarK2), we have Γf | {Ok ⊑ 1f} ⊢2 G : 1.
Now, InferL. The section of interest is:

{ Γ ∪ {M : a} | {a ⊑ b} ⊢ Δ |

a = freshVar,

(x : b) ∈ Δ

}

Let f be a type variable substitution. Then, by (Var2), we have that Γf, G : 0f | {0f ⊑
1f} ⊢2 G : 1f .

Case(App):

45

Steven Ramsay and Charlie Walpole

First, InferR. The section of interest is:

{ Γ | c1 ∪ c2 ∪ {b ⊑ c → a} ⊢ M : a |

(Γ | c1 ⊢ P : b) ∈ inferR(Γ, P),

(Γ | c2 ⊢ Q : c) ∈ inferR(Γ, Q),

a = freshVar

}

By the inductive hypothesis (applied to lines 2 and 3), we have:

(1) ∀f.Γf | �1f ⊢2 % : 1f
(2) ∀f.Γf | �2f ⊢2 & : 2f

Let f be a type variable substitution and the constraint set � be defined by
�1f ∪�2f ∪ {1f ⊑ 2f → 0f}.
Then, by (AppR2), we have Γf | �′ ⊢2 (% &) : 0f .

Now, InferL. The section of interest is:

{ Γ ∪ {M : a} | c1 ∪ c2 ∪ {b ⊑ c ⤚ a} ⊢ Δ |

a = freshVar,

(Γ | c1 ⊢ P : b) ∈ inferR(Γ, P),

(Γ ∪ {Q : c} | c2 ⊢ d) ∈ inferL(Γ, Q, Δ)

} ∪ { Γ ∪ {M : a} | c ∪ {Ok⤚ a ⊑ b} ⊢ Δ |

a = freshVar,

(Γ ∪ {P : b} | c ⊢ Δ) ∈ inferL(Γ, P, Δ)

}

The first set is the judgments provable by the (AppL2) rule.
By the inductive hypothesis (applied to lines 3 and 4), we have:

(1) ∀f.Γf | �1f ⊢2 % : 1f
(2) ∀f.Γf, & : 2f | �2f ⊢2 Δf

Let f be a type variable substitution and the constraint set � be the inferred constraints
defined by �1 ∪�2 ∪ {1 ⊑ 2 ⤚ 0}.
Then, by (AppL2), we have Γf, (% &) : 0f | �f ⊢2 Δf .

The second set is the judgments provable by the (FunK2) rule.
By the inductive hypothesis (applied to line 7), we have: ∀f.Γf, % : 1f | �1f ⊢2 Δf .
Let f be a type variable substitution and constraint set � be the inferred constraints de-
fined by�1 ∪ {Ok ⤚ 0 ⊑ 1}.
Then, by (FunK2), we have Γf, (% &) : 0f | �f ⊢2 Δf .

Case(Abs):

46

Ill-Typed Programs Don’t Evaluate

First, InferR. The section of interest is:

{ Γ | c ∪ {t → b ⊑ a} ⊢ M : a |

a = freshVar,

t = freshVar,

(Γ ∪ {x : t} | c ⊢ N : b) ∈ inferR(Γ ∪ {x : t}, N)

} ∪ { Γ | c ∪ {t ⤚ b ⊑ a} ⊢M : a |

a = freshVar,

t = freshVar,

(Γ ∪ {N : b} | c ⊢ x : t) ∈ inferL(Γ, N, {x : t})

}

The first set is the judgments provable by the (AbsR2) rule.
By the inductive hypothesis (applied to line 4), we have ∀f.Γf, G : Cf | �1f ⊢2 # : 1f .
Let f be a type variable substitution and constraint set � be the inferred constraints
defined by �1 ∪ {C → 1 ⊑ 0}.
Then, by (AbsR2), we have Γf | �f ⊢2 _G. = : 0f .

The second set is the judgments provable by the (AbnR2) rule.
By the inductive hypothesis (applied to line 8), we have ∀f.Γf, # : 1f | �1f ⊢2 G : Cf .
Let f be a type variable substitution and witness constraint set � be the inferred
constraints defined by�1 ∪ {C ⤚ 1 ⊑ 0}.
Then, by (AbnR2), we have Γf | �f ⊢2 _G. # : 0f .

Now, InferL. The section of interest is:

{ Γ ∪ {M : a} | {a ⊑ Σ2∈C(c(0))} ⊢ Δ |

a = freshVar,

0 = freshVar

}

This case is trivially provable by (AbsDL2).
Case(Fix):

The only judgments produced for fix are in InferR. The section of interest is:

{ Γ | c ∪ {b ⊑ a} ⊢ M : a |

a = freshVar,

(Γ ∪ {f : a} | c ⊢ m : b) ∈ inferR(Γ ∪ {f : a}, m)

}

By the inductive hypothesis (applied to line 3), we have ∀f.Γf, 5 : 0f | �1f ⊢2 < : 1f .
Let f be a type variable substitution and constraint set � be the inferred constraints de-
fined by�1 ∪ {1 ⊑ 0}.
Then, by (FixR2), we have Γf | �f ⊢2 fix 5 .< : 0f .

Case(Cons):

47

Steven Ramsay and Charlie Walpole

First, InferR. The section of interest is:

{ Γ |
⋃=
8=1(28) ∪ {c(01, . . . , 0=) ⊑ a} ⊢M : a |

a = freshVar,

(Γ | 28 ⊢<8 : 08)
=
8=1 ∈ Π<∈ms(inferR(Γ, m))

} \cup { Γ | {c ⊑ a} ⊢ M : a |

a = freshVar,

ms = { }

}

This is the set of judgments provable with the (CnsR2) rule.
The first set is for constructors with more than zero arguments (e.g. Cons and Succ), and
the second set is for nullary constructors (e.g. Nil and Zero).
By the inductive hypothesis (applied to line 3), we have ∀1 ≤ 8 ≤ =.∀f.Γf | �8f ⊢2 <8 :
08f .
Let f be a type variable substitution and constraint set � be the inferred constraints
defined by

⋃=
8=1(�8) ∪ {2 (01, . . . , 0=) ⊑ 0}.

Then, for every combination of typings for the constructor’s arguments, by (CnsR2), we
have Γf | �f ⊢2 2 ("1, . . . ,"=) : 0f .

The second set is proven sound trivially by (CnsR2).

48

Ill-Typed Programs Don’t Evaluate

Now, InferL. The section of interest is:

{ Γ ∪ {M : a} | c ∪ {a ⊑ Σ^′∈C\{^ } (^
′ (0^′)) + ^ (01, . . . , 1, . . . , 0=)} ⊢ Δ |

a = freshVar, 0^′ = freshVar, (0)=8=1 = freshVar,

<8 ∈ ms,

(Γ ∪ {<8 : b} | c ⊢ Δ) ∈ inferL(Γ, m, Δ)

} ∪ { Γ ∪ {M : a} | c ∪ {Ok ⊑ b} ⊢ Δ |

a = freshVar,

<8 ∈ ms,

(Γ ∪ {<8 : b} | c ⊢ Δ) ∈ inferL(Γ, m, Δ)

} ∪ { (Γ ∪ {M : a} | {0 ⊑ 11 → 12} ⊢ Δ) | a = freshVar, 11 = freshVar, 12 = freshVar }

∪ { (Γ ∪ {M : a} | {0 ⊑ 11 ⤚ 12} ⊢ Δ) | a = freshVar, 11 = freshVar, 12 = freshVar }

∪ { (Γ ∪ {M : a} | {a ⊑ Σ2∈C\^ (2 (0))} ⊢ Δ) | a = freshVar, 0 = freshVar }

These sets are the judgments provable by the: (CnsL2), (CnsK2), (CnsDL21), (CnsDL22), and
(CnsDL23), respectively.
The last three sets are proven to be sound trivially by their respective rules.

For the first set, fix an inferred judgment Γ, " : 0 | �8 ∪ {0 ⊑ Σ^′∈C\{^ } (^
′(0^′)) +

^ (01, . . . , 1, . . . , 0=) ⊢ Δ}.
Then there exists an argument to the constructor, <8 such that Γ, <8 : 1 | �8 ⊢ Δ is
inferred by InferL(Γ,<8 , Δ).
By the inductive hypothesis, we have ∀f.Γf <8 : 1f | �8f ⊢2 Δf .
Let f be a type variable substitution and constraint set � be the inferred constraints
defined by �8 ∪ {0 ⊑ Σ^′∈C\{^ } (^

′(0^′)) + ^ (01, . . . , 1, . . . , 0=)}.
Then, by (CnsL2), we have that Γf, " : 0f | �f ⊢2 Δf .

For the second set, fix an inferred judgment Γ, " : 0 | �8 ∪ {Ok ⊑ 1} ⊢ Δ.
Then there exists an argument to the constructor,<8 such that Γ, <8 : 1 | �8 ⊢ Δ is in-
ferred by InferL(Γ,<8 , Δ).
By the inductive hypothesis, we have ∀f.Γf, <8 : 1f | �8f ⊢2 Δf and�′

8 ⊢ �8f .
Let f be a type variable substitution and constraint set � be the inferred constraints de-
fined by�8 ∪ {Ok ⊑ 1}.
Then, by (CnsK2), we have Γf, " : 0f | �f ⊢2 Δf .

Case(Match):

49

Steven Ramsay and Charlie Walpole

First, InferR. The section of interest is:

{ Γ |
⋃:
8=1(28 ∪ {1 ⊑ ?8 [1G/G | G ∈ FV(?8)], 08 ⊑ 0}) ∪ c ⊢M : a |

a = freshVar,

1G = freshVar,

(Γ | c ⊢ q : b) ∈ inferR(Γ, Q),

(Γ ∪ {(G : 1G)} | 28 ⊢ %8 : 08)
:
8=1 ∈ Π

:
8=1(inferR(Γ ∪ {(G : 1G)}, %8))

}

By the inductive hypothesis (applied to lines 4 and 5), we have:

(1) ∀f.Γf | �0f ⊢2 @ : 1f

(2) ∀1 ≤ 8 ≤ =.∀f.Γf, (G : 1′) | �8f ⊢2 ?8 : 08f

Let f be a type variable substitution and constraint set � be the inferred constraints de-

fined by
⋃:
8=1(�8 ∪ {1 ⊑ ?8 [1G/G | G ∈ FV(?8)], 08 ⊑ 0}) ∪�0.

Then, for all combinations of typings of case bodies, by (MchR2), we have Γf | �f ⊢2 " :
0f .
Now, InferL. The section of interest is:

{ Γ ∪ {M : a} | c ⊢ Δ |

a = freshVar,

(08 , 18)
:
8=1 = freshVar,

(1 (8,G)) (8,G) ∈ [1..:]×FV(?8) = freshVar,

(Γ ∪ {(q, %8) : 0
′
8 } | 28 ⊢ Δ)

:
8=1 ∈ Π

:
8=1(inferL(Γ, (Q, %8), Δ)),

(Γ ∪ {%8 : 0 (8,G) } | 2
′
(8,G)

⊢ Δ)(8,G) ∈ Π (8,G) ∈ [1..:]×FV(?8) (inferL(Γ, %8 , {x : 1 (8,G)})),

c =
⋃:
8=1(28 ∪ {0 ⊑ 08 , (08 , 18) ⊑ 0

′
8 , ?8 [1 (8,G)/G | G ∈ FV(?8)] ⊑ 18}) ∪

⋃

(8,G) ∈ [1..:]×FV(?8) (2
′
(8,G)

∪ {0 ⊑ 0 (8,G)})

}

By the inductive hypothesis (applied to lines 5 and 6), we have:

(1) ∀1 ≤ 8 ≤ :.∀f.Γf, (&, %8) : 0
′
8f | �8f ⊢2 Δf

(2) ∀1 ≤ 8 ≤ :.∀G ∈ FV(?8).∀f.Γf, %8 : 0 (8,G)f | �′
(8,G)

f ⊢2 Δf

Let f be a type variable substitution and constraint set � be defined by:

� :=

:
⋃

8=1

(�8 ∪ {0 ⊑ 08 , (08 , 18) ⊑ 0
′
8 , ?8 [1 (8,G)/G | G ∈ FV(?8)] ⊑ 18})∪

⋃

(8,G) ∈ [1..:]×FV(?8)

(�′
(8,G) ∪ {0 ⊑ 0 (8,G) })

Then, for all combinations of typings, by (MchL2), we have Γf, " : 0f | �f ⊢2 Δf .
�

Theorem B.5 (Completeness of the Inference Algorithm). Let g, f be substitutions from type

variables to types such that f extends g , Γg,Δg be strongly consistent variable environments, " be a

term, � be a type, and �,�′ be sets of constraints. Then:

(1) Γg, " : � | � ⊢2 Δg ⇒ ∃f.∃(Γ, " : �′ | �′ ⊢ Δ) ∈ InferL(Γ," , Δ). (� = �′f) ∧ (� ⊢ �′f)

(2) Γg | � ⊢2 " : �⇒∃f.∃(Γ | �′ ⊢ " : �′) ∈ InferR(Γ,"). (� = �′f) ∧ (� ⊢ �′f)

Proof. We proceed by induction on the derivation of ⊢2.
Case(Inst2):

50

Ill-Typed Programs Don’t Evaluate

For some g , we have Γg, 5 : ∀®0.�′ ⇒ � | � ⊢2 5 : �′, � ⊢ �′ [®�/®0], and� ⊢ �[®�/®0] ⊑ �′.
Observe:

{ g | c[�/0] ∪ {A[�/0] ⊑ a'} ⊢ M : a' |

(x : ∀ 0. c⇒ A) ∈ g,

� = freshVar,

a' = freshVar

}

Let f be a type variable substitution defined by g ∪ [� ↦→ ®�, 0′ ↦→ �′. As the inferred set
is a singleton, the witness judgment is clear. Then, by definition of f , we have �′

= 0′f

and � ⊢ (�′ [�/0] ∪ {�[�/0] ⊑ 0′})f , as required.
Case(Var2):

For some g , we have Γg, G : � | � ⊢2 G : �.
By the symmetry of the rule, we need to show both cases of the the rule (both InferL and
InferR).
In InferR, observe:

{ g | {a ⊑ b} ⊢ M : b |

b = freshVar,

a =

{

C (G : C) ∈ 6

Ok otherwise

}

As G : � is in the context, the variable on line 3 is 0 = �. So the inferred judgment
is: Γ, G : � | {� ⊑ 1} ⊢ G : 1. Thus, taking f := g ∪ [1 ↦→ �] trivially satisfies the
requirements.
In InferL, observe:

{ g ∪ {M : a} | {a ⊑ b} ⊢ d |

a = freshVar,

(x : b) ∈ d

}

As G : � is in Δ, the judgment inferred is: Γ, G : 0 | {0 ⊑ �} ⊢ G : �. Thus, taking
f := g ∪ [0 ↦→ �] trivially satisfies the requirements.

Case(VarK2):

51

Steven Ramsay and Charlie Walpole

For some g , we have Γg | � ⊢2 G : � and� ⊢ Ok ⊑ �.
As this case only requires a variable typing in the delta position, the non-trivial term can
be either on the left or the right of the judgment.
In InferR, observe:

{ g | {a ⊑ b} ⊢ M : b |

b = freshVar,

a =

{

C (G : C) ∈ 6

Ok otherwise

}

If (G : C) ∈ Γ then the inferred judgment is: Γ | {C ⊑ 1} ⊢ G : 1. Taking f := g ∪ [1 ↦→ �]

trivially satisfies the requirements.
If (G : C) ∉ Γ then the inferred judgment is: Γ | {Ok ⊑ 1} ⊢ G : 1. Taking f := g ∪ [1 ↦→ �]
trivially satisfies the requirements.

In InferL, observe:

{ g ∪ {M : a} | {Ok ⊑ b} ⊢ d |

a = freshVar,

(x : b) ∈ d

}

As G : � is the delta, the inferred judgment (for all terms") is: Γ, " : 0 | {Ok ⊑ 1} ⊢ G : 1.
As" : 0 is included in the context of the judgment, 0g is a concrete type.
Thus, taking f := g ∪ [1 ↦→ �] trivially satisfies the requirements.

Case(AbsR2):
For some g , we have Γg | � ⊢2 _G." : �, Γg, G : �1 | � ⊢2 " : �2 and � ⊢ �1 → �2 ⊑ �.
By the inductive hypothesis, there exists a f that extends g and an inferred judgment
(Γ, G : 11 | �

′
0 ⊢2 " : 12) ∈ InferR(Γ ∪ {G : 11}, ") such that �2 = 12f and � ⊢ �′

0f .
Observe this extract from InferR in the abstraction case:

{ g | c ∪ {t → b ⊑ a} ⊢ M : a |

a = freshVar,

t = freshVar,

(g ∪ {x : t} | c ⊢ n : b) ∈ inferR(g ∪ {x : t}, n)

}

With this inferred judgment, extending f to the witness f ′ = f ∪ [11 ↦→ �1, 0 ↦→ �]

clearly satisfies the requirements of � = 0f ′ and � ⊢ (�′
0 ∪ {11 → 12 ⊑ 0})f

′.
Case(AbnR2):

52

Ill-Typed Programs Don’t Evaluate

For some g , we have Γg | � ⊢2 _G." : �, Γg, " : �1 | � ⊢2 G : �2 and � ⊢ �2 ⤚ �1 ⊑ �.
By the inductive hypothesis, there exists a f that extends g and an inferred judgment
(Γ, " : 11 | �

′
0 ⊢2 G : 12) ∈ InferL(Γ, ", {G : 12}) such that �1 = 11f and � ⊢ �′

0f .
Observe this extract from InferR in the abstraction case:

{ g | c ∪ {t ⤚ b ⊑ a} ⊢ M : a |

a = freshVar,

t = freshVar,

(g ∪ {n : b} | c ⊢ x : t) ∈ inferL(g, n, {x : t})

}

With this inferred judgment, extending f to the witness f ′ = f ∪ [12 ↦→ �2, 0 ↦→ �]

clearly satisfies the requirements of � = 0f ′ and � ⊢ (�′
0 ∪ {12 ⤚ 11 ⊑ 0})f

′.
Case(AbsDL2):

For some g , we have Γg, _G ." : � | � ⊢2 Δg and � ⊢ � ⊑ Σ2∈C (2 (®�2)).
Observe this extract from InferL in the abstraction case:

{ g ∪ {M : a} | {a ⊑ Σ2∈C(c(0))} ⊢ d |

a = freshVar,

0 = freshVar

}

Define the witness f by f := g ∪ [0 ↦→ ®�2 , 0 ↦→ �].

Then, � = 0f and {0 ⊑ Σ2∈C(c(0))}f = {� ⊑ Σ2∈C (2 (®�2))} and so � ⊢ �′f as required.
Case(FixR2):

For some g , we have Γg | � ⊢2 fix 5 . " : �, Γg, 5 : � | � ⊢2 " : � and � ⊢ � ⊑ �.
By the inductive hypothesis, there exists a f that extends g and an inferred judgment
(Γ, 5 : 0 | �′

0 ⊢2 " : 1) ∈ InferR(Γ ∪ {5 : 0}, ") such that � = 1f and � ⊢ �′
0f .

Observe this extract from InferR in the fix-point case:

{ g | c ∪ {b ⊑ a} ⊢M : a |

a = freshVar,

(g ∪ {f : a} | c ⊢ m : b) ∈ inferR(g ∪ {f : a}, m)

}

With this inferred judgment, extending f to the witness f ′ = f∪ [0 ↦→ �] clearly satisfies
the requirements of � = 0f ′ and � ⊢ (�0 ∪ {1 ⊑ 0})f ′ .

Case(AppR2):

53

Steven Ramsay and Charlie Walpole

For some g , we have Γg | � ⊢2 (; A) : �, Γg | � ⊢2 ; : �1, Γg | � ⊢2 A : �2, and
� ⊢ �1 ⊑ �2 → �.
By the inductive hypothesis, we have:

(1) ∃f1.∃(Γ | �′
1 ⊢ ; : 11) ∈ InferR(Γ, ;).�1 = 11f1 ∧� ⊢ �′

1f1
(2) ∃f2.∃(Γ | �′

2 ⊢ A : 12) ∈ InferR(Γ, A).�2 = 12f2 ∧� ⊢ �′
2f2

Observe this extract from InferR in the application case:

{ g | c1 ∪ c2 ∪ {b ⊑ c→ a} ⊢ M : a |

(g | c1 ⊢ l : b) ∈ inferR(g, l),

(g | c2 ⊢ r : c) ∈ inferR(g, r),

a = freshVar

}

With this inferred judgment, and the observation thatf1 and f2 only share variables given
by g (i.e. f1 ∩ f2 = g), we define a witness f = f1 ∪ f2 ∪ [0 ↦→ �]. Thus, � = 0f and
� ⊢ (�1 ∪�2 ∪ {11 ⊑ 12 → 0})f as required.

Case(AppL2):
For some g , we have Γg, (; A) : � | � ⊢2 Δg , Γg | � ⊢2 ; : �1, Γg, A : �2 | � ⊢2 Δg , and
� ⊢ �1 ⊑ �2 ⤚ �.
By the inductive hypothesis, we have:

(1) ∃f1.∃(Γ | �′
1 ⊢ ; : 11) ∈ InferR(Γ, ;).�1 = 11f1 ∧� ⊢ �′

1f1
(2) ∃f2.∃(Γ, A : 12 | �

′
2 ⊢ Δ) ∈ InferL(Γ, A , Δ).�2 = 12f2 ∧� ⊢ �′

2f2

Observe this extract from InferL in the application case:

{ g ∪ {M : a} | c1 ∪ c2 ∪ {b ⊑ c⤚ a} ⊢ d |

a = freshVar,

(g | c1 ⊢ l : b) ∈ inferR(g, l),

(g ∪ {r : c} | c2 ⊢ d) ∈ inferL(g, r, d)

}

With this inferred judgment, and the observation thatf1 and f2 only share variables given
by g (i.e. f1 ∩ f2 = g), we define a witness f = f1 ∪ f2 ∪ [0 ↦→ �]. Thus, � = 0f and
� ⊢ (�1 ∪�2 ∪ {11 ⊑ 12 ⤚ 0})f as required.

Case(AppK2):
For some g , we have Γg, (; A) : � | � ⊢2 Δg , Γg, ; : � | � ⊢2 Δg , and� ⊢ Ok ⤚ � ⊑ �.
By the inductive hypothesis, there exists a f1 extending g and an inferred judgment (Γ, ; :
1 | �′

1 ⊢ Δ) ∈ InferL(Γ, ; , Δ) such that � = 1f1 and � ⊢ �′
1f1.

Observe this extract from InferL in the application case:

{ g ∪ {M : a} | c ∪ {Ok⤚ a ⊑ b} ⊢ d |

a = freshVar,

(g ∪ {l : b} | c ⊢ d) ∈ inferL(g, l, d)

}

With this inferred judgment, we define a witness f = f1 ∪ [0 ↦→ �]. Thus, � = 0f and
� ⊢ (�1 ∪ {Ok ⤚ 0 ⊑ 1})f as required.

Case(CnsDL):

54

Ill-Typed Programs Don’t Evaluate

All of the (CnsDL21), (CnsDL22), and (CnsDL23) cases are all very similar.
Observe this extract from InferL in the constructor case:

{ g ∪ {M : a} | {0 ⊑ 11 → 12} ⊢ d |

a = freshVar,

11 = freshVar,

12 = freshVar

} ∪ { g ∪ {M : a} | {0 ⊑ 11 ⤚ 12} ⊢ d |

a = freshVar,

11 = freshVar,

12 = freshVar

} ∪ { g ∪ {M : a} | {a ⊑ Σ2∈C\^ (2 (0))} ⊢ d |

a = freshVar,

0 = freshVar

}

Each of the inferred sets above are singletons and correspond to the (CnsDL21), (CnsDL22),
and (CnsDL23) rules, respectively. Taking the respective witnesses to be defined by:

(1) f := g ∪ [11 ↦→ �1, 12 ↦→ �2, 0 ↦→ �]
(2) f := g ∪ [11 ↦→ �1, 12 ↦→ �2, 0 ↦→ �]

(3) f := g ∪ [0 ↦→ ®0, 0 ↦→ �]

Each of the witness substitutions and judgments trivially satisfy the requirements.
Case(CnsR2):

For some g , we have Γg | � ⊢2 2 ("1, . . . , "=) : �, ∀1 ≤ 8 ≤ =.Γg | � ⊢2 "8 : �8 , and
� ⊢ 2 (�1, . . . , �=) ⊑ �.
By the inductive hypothesis, for all 1 ≤ 8 ≤ =, there exists a f8 extending g and an inferred
judgment (Γ | �′

8 ⊢ "8 : 08) ∈ InferR(Γ, "8) such that �8 = 08f8 and� ⊢ �′
8f8 .

Observe this extract from InferR in the constructor case:

{ g |
⋃=
8=1(28) ∪ {c(01, . . . , 0=) ⊑ a} ⊢ M : a |

a = freshVar,

(g | 28 ⊢<8 : 08)
=
8=1 ∈ Π<∈ms(inferR(g, m))

}

As there is clearly a tuple of length = with the collection of inferred judgments that cor-
respond to those from the inductive hypothesis on line 3, we take the inferred judg-
ment Γ |

⋃=
8=1(�

′
8) ∪ {2 (01, . . . , 0=) ⊑ 0} ⊢ 2 ("1, . . . ,"=) : 0 as the required wit-

ness. We then define the witness f :=
⋃=
8=1(f8) ∪ [0 ↦→ �], which is well defined as

f8 ∩ f 9 = g for all 8 ≠ 9 by each recursive call creating fresh variables. Thus, � = 0f and
� ⊢ (

⋃=
8=1(�

′
8) ∪ {2 (01, . . . , 0=) ⊑ 0})f as required.

Case(CnsL2):

55

Steven Ramsay and Charlie Walpole

For some g , we have Γg, 2 ("1, . . . , "=) : � | � ⊢2 Δg , ∃8 .Γg, "8 : �8 | � ⊢2 Δg , and
� ⊢ � ⊑ Σ3∈C\{2 } + 2 (�1, . . . , �=).
By the inductive hypothesis, there exists some 1 ≤ 8 ≤ = such that, there exists a f8
extending g and an inferred judgment (Γ, "8 : 08 | �

′
8 ⊢ Δ) ∈ InferL(Γ, "8 , Δ) such that

�8 = 08f8 and � ⊢ �′
8f8 .

Observe this extract from InferL in the constructor case:

{ g ∪ {M : a} | c ∪ {a ⊑ Σ^′∈C\{^ } (^
′ (0^′)) + ^ (01, . . . , 1, . . . , 0=)} ⊢ d |

a = freshVar,

0^′ = freshVar,

(0)=8=1 = freshVar,

<8 ∈ ms,

(g ∪ {<8 : b} | c ⊢ d) ∈ inferL(g, m, d)

}

Line 5 shows that an inferred judgment is generated for all 8 , thus it is possible to pick
the correct 8 and correct judgment in line 6 to produce the required witness judgment.

Defining thewitness f := f8∪[0
′
^ ↦→ ®�2 , (08)8∈[1..=]\{8 } ↦→ (�8)8∈[1..=]\{8 }, 1 ↦→ �8 , 0 ↦→ �]

satisfies the requirements of � = 0f and � ⊢ (�′
8 ∪ {0 ⊑ Σ^′∈C\{^ } (^

′ (0^′)) +

^ (01, . . . , 1, . . . , 0=)})f as required.
Case(CnsK2):

For some g , we have Γg, 2 ("1, . . . ,"=) : � | � ⊢2 Δg , ∃8 .Γg, "8 : � | � ⊢2 Δg , and
� ⊢ Ok ⊑ �.
By the inductive hypothesis, there exists some 1 ≤ 8 ≤ = such that, there exists a f8
extending g and an inferred judgment (Γ, "8 : 1 | �′

8 ⊢ Δ) ∈ InferL(Γ, "8 , Δ) such that
� = 1f8 and � ⊢ �′

8f8 .
Observe this extract from InferL in the constructor case:

{ g ∪ {M : a} | c ∪ {Ok ⊑ b} ⊢ d |

a = freshVar,

<8 ∈ ms,

(g ∪ {<8 : b} | c ⊢ d) ∈ inferL(g, m, d)

}

Line 3 shows that an inferred judgment is generated for all 8 , thus it is possible to pick
the correct 8 and correct judgment in line 4 to produce the required witness judgment.
Defining the witness f := f8 ∪ [0 ↦→ �] satisfies the requirements of � = 0f and � ⊢

(�′
8 ∪ {$: ⊑ 1})f .

Case(MchR2):

56

Ill-Typed Programs Don’t Evaluate

For some g , we have:

(1) Γg | � ⊢2 match& with {|:8=1(?8 ↦→ %8)} : �
(2) Wg | � ⊢2 & : �
(3) Γg ∪ {G : �G | G ∈ FV(?8)} | � ⊢2 %8 : �8 (∀8)

(4) � ⊢ � ⊑ Σ
:
8=1(?8 [�G/G | G ∈ FV(?8)])

(5) ∀8 .� ⊢ �8 ⊑ �

By the inductive hypothesis, we have:

(1) ∃f0.∃(Γ | �′
0 ⊢ & : 1) ∈ InferR(Γ, &).� = 1f0 ∧� ⊢ �′

0f0
(2) ∀1 ≤ 8 ≤ :.∃f8 .∃(Γ ∪ {G : �G | G ∈ FV(?8)} | �′

8 ⊢ %8 : 08) ∈ InferR(Γ ∪ {G : �G |

G ∈ FV(?8)}, %8).�8 = 08f8 ∧� ⊢ �′
8f2

Observe this extract from InferR in the match case:

{ g |
⋃:
8=1(28 ∪ {1 ⊑ ?8 [1G/G | G ∈ FV(?8)], 08 ⊑ 0}) ∪ c ⊢ M : a |

a = freshVar,

1G = freshVar,

(g | c ⊢ q : b) ∈ inferR(g, q),

(g ∪ {(G : 1G)} | 28 ⊢ %8 : 08)
:
8=1 ∈ Π

:
8=1(inferR(g ∪ {(G : 1G)}, %8))

}

By choosing the correct inferred judgment(s) in lines 4 and 5makes it clear that the correct
witness judgment can be inferred.

Defining the witness f := f0 ∪
⋃:
8=1(f8 ∪ [(1G)G ∈FV(?8) ↦→ (�G)G ∈FV(?8)]) ∪ [0 ↦→ �]

satisfies the requirements of� = 0f and� ⊢ (
⋃:
8=1(�

′
8 ∪ {1 ⊑ ?8 [1G/G | G ∈ FV(?8)], 08 ⊑

0}) ∪�′
0)f .

Case(MchL2):

57

Steven Ramsay and Charlie Walpole

For some g , we have:

(1) Γg, match& with {|:8=1(?8 ↦→ %8)} : � | � ⊢2 Δg
(2) ∀8 .Γg, (", %8) : �

′
8 | � ⊢2 Δg

(3) ∀8 .∀G ∈ FV(?8).Γ, %8 : �G | � ⊢2 G : �G
(4) ∀8 .� ⊢ � ⊑ �8
(5) ∀8 .� ⊢ (�8 , �8) ⊑ �

′
8

(6) ∀8 .∀G ∈ FV(?8).� ⊢ � ⊑ �G
(7) ∀8 .� ⊢ ?8 [�G/G | G ∈ FV(?8)] ⊑ �8

By the inductive hypothesis, we have:

(1) ∀8 .∃f ′8 .∃(Γ, (", %8) : 0
′
8 | �

′
8 ⊢ Δ) ∈ InferL(Γ, (", %8), Δ).�

′
8 = 0

′
8f

′
8 ∧� ⊢ �′

8f
′
8

(2) ∀8 .∀G ∈ FV(?8).∃f (8,G) .∃(Γ, %8 : 0G | � (8,G) ⊢ G : 1G) ∈ InferL(Γ, %8 , {G : 1G }).�G =

0Gf (8,G) ∧� ⊢ � (8,G)f (8,G)

Observe this extract from InferL in the match case:

{ g ∪ {M : a} | c ⊢ d |

a = freshVar,

(08 , 18)
:
8=1 = freshVar,

(1 (8,G)) (8,G) ∈ [1..:]×FV(?8) = freshVar,

(g ∪ {(q, %8) : 0
′
8 } | 28 ⊢ d)

:
8=1 ∈ Π

:
8=1(inferL(g, (q, %8), d)),

(g ∪ {%8 : 0 (8,G) } | 2
′
(8,G)

⊢ d)(8,G) ∈ Π (8,G) ∈ [1..:]×FV(?8) (inferL(g, %8 , {x : 1 (8,G)})),

c =
⋃:
8=1(28 ∪ {0 ⊑ 08 , (08 , 18) ⊑ 0

′
8 , ?8 [1 (8,G)/G | G ∈ FV(?8)] ⊑ 18}) ∪

⋃

(8,G) ∈ [1..:]×FV(?8) (2
′
(8,G)

∪ {0 ⊑ 0 (8,G)})

}

Line 5 generates a tuple of length : by enumerating every arrangement of typings for
the : pairs (&, %8). Hence, the correct sequence of types can be picked according to the
inductive hypothesis (point 1).
Line 6 generates a tuple by enumerating every arrangement of typings for each (left) typ-
ing of %8 with delta G : 1 (8,G) (for each 8 and G). Hence, the correct sequence of types can
be picked according to the inductive hypothesis (point 2).
Hence, the required witness judgment is generated.
As each recursive call produces its own, independent, fresh variables, the pairwise inter-
section of any two distinct f given by the inductive hypotheses is g , we can define the
witness:

f :=

:
⋃

8=1

(f8 ∪ [08 ↦→ �8 , 18 ↦→ �8] ∪
⋃

G ∈FV(?8)

(f (8,G) ∪ [1 (8,G) ↦→ �G])) ∪ [0 ↦→ �]

This satisfies � = 0f and � ⊢ �′f (where �′ is the generated constraints on line 7/8 of
the extract) as required.

�

C ADDITIONAL MATERIAL IN SUPPORT OF SUBSECTION 5.3

In this appendix, we give the definition of reduction for the programming language of the con-
strained system and we give the definition of consistency of a constraint set. We then establish a
number of useful lemmas regarding the type system:

• left and right inversion lemmas
• typed substitution lemmas

58

Ill-Typed Programs Don’t Evaluate

This enables us to prove progress and preservation, and finally conclude syntactic soundness.

Definition C.1 (Reduction). The evaluation contexts are defined by the following grammar:

E F � | 2 (
⃗⃗⃗⃗
+ , E,

⃗⃗ ⃗⃗ ⃗
") | E # | (_G.") E | matchE with {|:8=1 (?8 ↦→ %8)}

Fix a module M, then the one-step reduction relation wrt M, written " ⊲M # , is the contextual
closure of the following axiom schema:

(Delta) f ⊲M M(f) (Beta) (_G.")+ ⊲M " [+ /G] (Fix) fixG." ⊲M " [fix G."/G]

(Match) match2 (
⃗⃗⃗⃗
+) with {|3∈� (3 (

⃗⃗⃗⃗ ⃗⃗
G3) ↦→ %3)} ⊲M %2 [

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗
+ /G2] (when 2 ∈ �)

We will more often simply write" ⊲ # whenever the context is unimportant or otherwise under-
stood, and the reflexive-transitive closure by " ⊲∗ # .

Definition C.2. A constraint set � is said to be closed just if the following conditions are met:

(1) If � ⊑ �′ ∈ � and �′ ⊑ � ∈ � then � ⊑ � ∈ � .
(2) If ⊑ ′ ∈ � , 2 (�1, . . . , �=) ∈ and 2 (�1, . . . , �=) ∈ ′, then �8 ⊑ �8 ∈ � for each

8 ∈ [1..=].
(3) If � → � ⊑ �′ → �′ ∈ � then �′ ⊑ � ∈ � and � ⊑ �′ ∈ � .
(4) If � ⤚ � ⊑ �′

⤚ �′ ∈ � then � ⊑ �′ ∈ � and �′ ⊑ � ∈ � .

Definition C.3. We say that a constraint � ⊑ � is said to be syntactically consistent just if either:

• At least one of � or � is a type variable
• or, � and � are both sufficiency arrows or are both necessity arrows
• or, � is Ok
• or, � is of shape Σ2∈�2 (

⃗⃗ ⃗
�), � is of shape Σ3∈ �3 (

⃗⃗⃗
�) and � ⊆ �

We say that a constraint set� is consistent just if it is closed and contains only syntactically consis-
tent constraints. We say that a type environment Γ is consistent just if Con(Γ) is consistent.

Definition C.4. A judgement of the constrained type system is said to be a single-subject (1S) just
if it either has shape:

(I) C | Γ, " : � ⊢ Δ, Γ and Δ are consistent variable environments with disjoint subjects
(II) or C | Γ ⊢ " : �, with Γ a consistent variable environment

Note, a consequence of the 1S definition is that a 1S judgment has at most non-variable subject
– here we will consider top-level identifiers also as (global) variables, which is the " : � above.
If a 1S judgment has a non-variable subject then it is either of type (I) or type (II), but cannot be
both. Otherwise, if a 1S judgement has two formulas on the left-hand side with the same variable
subject, then it must be of type (I), with" being one of the two. Otherwise, a 1S judgement with all
distinct variable subjects on the left-hand side can be seen as either type (I) or type (II). 1S variable
judgments are important because well-typing and ill-typing are both 1S judgments, and a proof of
a 1S judgment only involves 1S judgments.

Lemma C.5. A proof tree T of a 1S conclusion contains only 1S judgments at each node.

Proof. By induction on the height of T . When the tree is of height 0, i.e. it is only a (GVar), (LVar)
or (VarK) and the result follows by assumption. Otherwise, suppose the tree has height : and we
argue by case analysis on the root:

• If the root is concluded by (Disj) then the judgement has shape C | Γ, " : � ⊢ Δ. We consider
two cases. If " is a non-variable subject, then Γ and Δ are consistent and disjoint variable

59

Steven Ramsay and Charlie Walpole

environments. Hence, Γ ⊢ " : � is also 1S and the result follows from the induction hy-
pothesis. Otherwise," is a variable. If there are no non-variable subjects in Γ then variable
" may also occur in Γ – it can be of type (I). Then Γ ⊢ " : � is 1S. Otherwise " cannot
occur as a subject of Γ (which would violate the strong consistency requirement) and hence
Γ ⊢ " : � is also 1S.

• If the root is concluded by (SubL) or (SubR), then clearly the judgement in the premise is also
1S and the result follows from the induction hypothesis.

• If the root is concluded by (AbsR) or (AbnR), then the 1S conclusion has shape Γ ⊢ _G." : �.
Thus Γ is a consistent variable environment, and we assume by the side condition that the
bound variable G does not occur in Γ. Thus the premises can be seen as 1S type (II) and type
(I) respectively, and the result follows from the induction hypothesis.

• If the root is concluded by (AppL) or (AppR), then the 1S conclusion has shape Γ, " # : � ⊢ Δ

or Γ ⊢ " # : � respectively. In the former case, Γ and Δ are consistent and disjoint variable
environments, and therefore Γ ⊢ " : � ⤚ � is of type (II) and Γ, # : � ⊢ Δ is of type
(I). In the latter case, Γ is a consistent variable environment and hence Γ ⊢ " : � → �

and Γ ⊢ # : � are both of type (II). In both cases, the result follows from the induction
hypothesis.

• If the root is concluded by (CnsL), then the 1S conclusion has shape Γ, � ("1, . . . ,"<) :
� (�1, . . . , �<) ⊢ Δ and therefore Γ and Δ are disjoint, consistent variable environments.
Hence, Γ, "8 : �8 ⊢ Δ is a 1S judgment of type (I) and the result follows from the induction
hypothesis.

• If the root is concluded by (CnsR), then the 1S conclusion has shape Γ ⊢ 2 ("1, . . . ,"<) :
2 (�1, . . . , �<) and Γ is a consistent variable environment. Then Γ ⊢ "8 : �8 is of type (II) for
each 8 and the result follows from the induction hypothesis.

• If the root is concluded by (MchL), then the 1S conclusion is of shape Γ, match" with {|:8=1
(?8 ↦→ %8)} : � ⊢ Δ and so Γ and Δ are consistent, disjoint variable environments. We may
assume by the implicit side condition that the variables bound in the patterns are fresh for
the context. Hence, it follows immediately that each Γ, %8 : � ⊢ G : �G is type (I). Similarly,
Γ, (", %8) : (?8 [�G/G | G ∈ FV(?8)],�) ⊢ Δ is type (I). Hence, the result follows from the
induction hypothesis.

• If the root is concluded by (MchR), then the 1S conclusion is of shape Γ ⊢ match" with {|:8=1(?8 ↦→
%8)} : � and Γ is a consistent variable environment. Moreover, we may assume by the im-
plicit side condition that the variables bound by the patterns are fresh for the context. There-
fore, both of the premises are type (II) and the result follows from the induction hypothesis.

• If the root is concluded by (FixR), then the 1S conclusion is of shape Γ ⊢ fixG." : � and Γ is
a consistent variable environment. Therefore, the premise is type (II) and the result follows
from the induction hypothesis.

• If the root is concluded by (CnsK), then the 1S conclusion is of shape Γ, 2 ("1, . . . , "=) : Ok ⊢

Δ and Γ and Δ are disjoint, consistent variable environments. Therefore, the premise is type
(I) and the result follows from the induction hypothesis.

• If the root is concluded by (FunK), then the 1S conclusion has shape Γ, " # : Ok ⊢ Δ and Γ

and Δ are disjoint, consistent variable environments. Therefore, the premise is type (I) and
the result follows from the induction hypothesis.

�

From now on we will consider only 1S judgements.

Lemma C.6 (Left Inversion). Suppose Γ, " : � ⊢ Δ has Γ and Δ consistent, disjoint variable

environments. Then either (a) Δ is of shape G : Ok, or (b) one of the following is true:

60

Ill-Typed Programs Don’t Evaluate

• " is of shape G and there is some � such that G : � = Δ and Γ ⊢ � ⊑ �.
• " is of shape 5 and there is some type � such that G : � = Δ and Γ ⊢ � ⊑ �

• " is of shape %& and either:

(i) there is a type � such that Γ ⊢ " : � ⤚ � and Γ, # : � ⊢ Δ

(ii) or, Γ, " : Ok ⤚ � ⊢ Δ.

• " is of shape 2 ("1, . . . , "<) and either:
(i) there are types �1, . . . , �< and 8 such that � ⊑ 2 (�1, . . . , �<) and Γ, "8 : �8 ⊢ Δ.

(ii) or, Γ, "8 : Ok ⊢ Δ for some 8

(iii) or, there is some type �′ which is either an arrow or sum type not including a 2-headed

case, such that Γ ⊢ � ⊑ �′ and Γ, 2 ("1, . . . ,"=) : �
′ ⊢ Δ

• " is of shape match& with {|:8=1 (?8 ↦→ %8)} and there is a family of types �G (one for each

pattern-bound variable G) such that Γ, %8 : � ⊢ G : �G (for each 8 and each G ∈ FV(?8)), and
either Γ, & : ?8 [�G/G | G ∈ FV(?8)] ⊢ Δ or Γ, %8 : � ⊢ Δ.

• " is of shape _G. % and there is some sum type �′ such that Γ ⊢ � ⊑ �′ and Γ, _G . % : �′ ⊢ Δ

Proof. The proof is by cases on the shape of " .

• If " is a variable G then, according to the assumptions, all the formulas have variables as
subjects. By the completeness of algorithmic type assignment, we have Typ(Γ), G : � |

Con(Γ) ⊢2 Δ. Given that Γ and Δ are disjoint, the only rules that can have concluded such
a judgement are (VarK2), (LVar2). The former gives rise to (a). In case (LVar2), since Γ and Δ are
disjoint, it must be that there is some � such that G : � ∈ Δ and Γ ⊢ � ⊑ �, as required by
(c).

• If " is a top-level identifier, then the reasoning is as in the former case, since � is a mono-
type.

• If" is an application %& , thenwe reason as follows. By the completeness of algorithmic type
assignment, Typ(Γ), % & : � | Con(Γ) ⊢2 Δ and the only rules that could have concluded
this judgement are (VarK2), (AppL2) or (FunK2). The former case gives rise to (a). In case (AppL2),
it follows that there are types �1 and � such thatCon(Γ) ⊢ �1 ⊑ � ⤚ �, Typ(Γ) | Con(Γ) ⊢2
" : �1 and Typ(Γ), # : � | Typ(Γ) ⊢2 Δ. It follows from the soundness of algorithmic type
assignment that Γ ⊢ " : �1 and hence, by (SubR), Γ ⊢ " : � ⤚ �. Similarly, Γ, # : � ⊢ Δ.
This is what is required by (i). In the latter case it follows that there is a type � such that
Con(Γ) ⊢2 Ok ⤚ � ⊑ � and Typ(Γ), " : � | Con(Γ) ⊢2 Δ. It follows from the soundness of
algorithmic type assignment that Γ, " : � ⊢ Δ and hence, by (SubR), Γ, " : Ok ⤚ � ⊢ Δ, as
required by (ii).

• If " is a constructor term 2 ("1, . . . ,"=), then we reason as follows. By the completeness
of algorithmic type assignment, Typ(Γ), 2 ("1, . . . ,"=) : � | Con(Γ) ⊢2 Δ. Since Γ and Δ

are disjoint, the only rules that can conclude such a judgement are (VarK2), (ConsL2), (CnsK2)
and (CnsDL). The first possibility give rise to (a). The second implies that there are types
�1, . . . , �= and Con(Γ) ⊢ � ⊑ 2 (�1, . . . , �=) and Typ(Γ), "8 : �8 | Con(Γ) ⊢2 Δ for some
8 . By the soundness of algorithmic type assignment, Γ, "8 : �8 ⊢ Δ, as required by (i). In
the third, we have for some 8 , Typ(Γ), "8 : Ok | Con(Γ) ⊢2 Δ. Then (ii) follows by the
soundness of algorithmic type assignment. Finally, when the conclusion is by (CnsDL), there
is some type�′ which is either an arrow or a sum not including 2 , such that Γ ⊢ � ⊑ �′ and
Γ, " : �′ ⊢ Δ.

• If " is a match expression match& with {|:8=1 (?8 ↦→ %8)} then we reason as follows. It fol-

lows from the completeness of algorithmic type assignment that Typ(Γ), match& with {|:8=1
(?8 ↦→ %8)} : � | Con(Γ) ⊢2 Δ. Given the disjointness of the environments, the only rules
that could conclude this judgement are (VarK2) and (MchL2). In the former case we obtain (a),

61

Steven Ramsay and Charlie Walpole

so let us assume that Δ is not of this shape. In the latter case, we have that there are families
of types �8 , �8 , �

′
8 , �G and �G , such that (1) Typ(Γ), (&, %8) : �

′
8 | Con(Γ) ⊢2 Δ for all 8 , (2)

Typ(Γ), %8 : �G | Con(Γ) ⊢2 G : �G for all 8 and all G ∈ FV(?8), Con(Γ) ⊢ � ⊑ �8 for all 8 ,
Con(Γ) ⊢ � ⊑ �G for all 8 and all G ∈ FV(?8), Con(Γ) ⊢ ?8 [�G/G | G ∈ FV(?8)] ⊑ �8 for all 8 ,
and Con(Γ) ⊢ (�8 , �) ⊑ �

′
8 for all 8 . It follows from the soundness of algorithmic typing that

Γ, (&, %8) : �
′
8 ⊢ Δ for all 8 , and Γ, %8 : �G ⊢ G : �G for all 8 and all G ∈ FV(?8). Then it follows

from the previous case that either (1) �′
8 = Ok and either Γ, & : Ok ⊢ Δ or Γ, %8 : Ok ⊢ Δ,

or (2) �′
8 is an arrow type or (3) there are types �′′1 and �′′2 such that Γ ⊢ �′

8 ⊑ (�′′1 , �
′′
2) and

Γ, & : �′′1 ⊢ Δ or Γ, %8 : �
′′
2 ⊢ Δ. In case (1), it follows from (SubL) that either Γ, & : ?8 [�G/G |

G ∈ FV(?8)] ⊢ Δ or Γ, %8 : � ⊢ Δ, as required. Case (2) is impossible by the consistency of
Γ. In case (3), we have Γ ⊢ (?8 [�G/G | G ∈ FV(?8)], �) ⊑ (�8 , �) ⊑ �′

8 ⊑ (�′′1 , �
′′
2) and thus,

by the closedness of Γ, we have Γ ⊢ ?8 [�G/G | G ∈ FV(?8)] ⊑ �′′1 and Γ ⊢ � ⊑ �′′2 . Then it
follows from (SubL) that either Γ, & : ?8 [�G/G | G ∈ FV(?8)] ⊢ Δ or Γ, %8 : � ⊢ Δ

• When " is an abstraction _G. % , it follows from the completeness of algorithmic type as-
signment that Γ, _G . % : � ⊢2 Δ and then the only applicable rules are (VarK) and (AbsDL). The
former case gives rise to (a). In the latter case, it is immediate that there is some sum type
�′ such that Γ ⊢ � ⊑ �′ and Γ, " : �′ ⊢ Δ.

�

Lemma C.7 (Right Inversion). Suppose Γ ⊢ " : � and Γ a consistent variable environment. Then

one of the following is true:

• " is of shape G and � = Ok or there is some � such that G : � ∈ Γ and Γ ⊢ � ⊑ �.

• " is of shape 5 and there are types �, 01, . . . , 0= and �1, . . . , �= , and constraints � such that

5 : ∀
⃗⃗
0 . � ⇒ � ∈ Γ and Γ ⊢ � [

⃗⃗⃗
�/

⃗⃗
0] ⊑ �

• " is of shape %& and there is a type � such that Γ ⊢ % : � → � and Γ ⊢ # : �
• " is of shape _G. % and there are types �1 and �2 such that either:

(i) Γ, G : �1 ⊢ " : �2 and Γ ⊢ �1 → �2 ⊑ �
(ii) or, Γ, " : �2 ⊢ G : �1 and Γ ⊢ �1 ⤚ �2 ⊑ �

• " is of shape 2 ("1, . . . , "=) and there are types �1, . . . , �= such that Γ ⊢ "8 : �8 for each 8 ,
and Γ ⊢ 2 (�1, . . . , �=) ⊑ �.

• " is of shape match& with {|:8=1 (?8 ↦→ %8)} and there is a family of types �G (for each 8 and

each G ∈ FV(?8)) such that Γ ⊢ & : Σ:8=1 ?8 [�G/G | G ∈ FV(?8)] and Γ ∪ {G : �G | G ∈
FV(?8)} ⊢ %8 : � (for each 8).

• " is of shape fix G. % and Γ, G : � ⊢ " : �.

Proof. By cases on the shape of" .

• When" is a local variable G we reason as follows. By the completeness of algorithmic type
assignment, we have Typ(Γ) | Con(Γ) ⊢2 G : �. Given that Γ is consistent, the only rules
that can conclude the judgement are (Var2) and (VarK2). In the latter case, � = Ok. In the
former case, there is some � such that G : � ∈ Typ(Γ) and Con(Γ) ⊢ � ⊑ �.

• When " is an identifier 5 , by the completeness of type assignment we have that Typ(Γ) |
Con(Γ) ⊢2 5 : �. The only applicable rule was (Inst2) and hence there are type variables

⃗⃗
0 and

types
⃗⃗⃗
� and �, and constraints � such that 5 : ∀

⃗⃗
0 . � ⇒ � ∈ Typ(Γ) and Con(Γ) ⊢ � [

⃗⃗⃗
�/

⃗⃗
0]

and Con(Γ) ⊢ � [
⃗⃗⃗
�/

⃗⃗
0] ⊑ �.

• When" is an application %& , by the completeness of type assignment, we have that Typ(Γ) |
Con(Γ) ⊢2 %& : �. The only applicable rule is (AppR2) and so there are types �1 and � such
that Typ(Γ) | Con(Γ) ⊢2 % : �1, Typ(Γ) | Con(Γ) ⊢2 & : � and Con(Γ) ⊢ �1 ⊑ � → �. It

62

Ill-Typed Programs Don’t Evaluate

follows from the soundness of algorithmic type assignment that Γ ⊢ % : �1 and Γ ⊢ & : �
and by (()SubR) also Γ ⊢ % : � → �, as required.

• When " is an abstraction _G. % , by the completeness of algorithmic type assignment, we
have that Typ(Γ) | Con(Γ) ⊢2 _G. % : �. Only the rules (AbsR2) and (AbnR2) could have
concluded. In the former case, we have that there are types �1 and �2 such that Typ(Γ), G :
�1 | Con(Γ) ⊢ " : �2 and Con(Γ) ⊢ �1 → �2 ⊑ �, as required by (i). The latter case is
analogous.

• When " is a constructor term 2 ("1, . . . ,"=), by the completeness of algorithmic type as-
signment, we have that Typ(Γ) | Con(Γ) ⊢2 2 ("1, . . . ,"=) : �. The only rule that could con-
clude this is (ConsR2), and hence there must be types �1, . . . , �= such that Typ(Γ) | Con(Γ) ⊢2
"8 : �8 for each 8 and Con(Γ) ⊢ 2 (�1, . . . , �=) ⊑ �. It follows from the soundness of algo-
rithmic type assignment that Γ ⊢ "8 : �8 for each 8 , as required.

• When " is of shape match& with {|:8=1 (?8 ↦→ %8)}, it follows from the completeness of

algorithmic type assignment that Typ(Γ) | Con(Γ) ⊢ match& with {|:8=1 (?8 ↦→ %8)} : �.
The only applicable rule is (MchR) and so there is a type � and families of types �8 (for
each 8) and �G (for each 8 and each G ∈ FV(?8)) such that Typ(Γ) | Con(Γ) ⊢2 & : � and
Typ(Γ) ∪ {G : �G | G ∈ FV(?8)} | Con(Γ) ⊢2 %8 : �8 (for each 8) and Con(Γ) ⊢ � ⊑

Σ
:
8=1?8 [�G/G | G ∈ FV(?8)] and Con(Γ) ⊢ �8 ⊑ � (for all 8). It follows from the soundness of

algorithmic type assignment that Γ ⊢ & : � and, by (SubR), Γ ⊢ Σ
:
8=1?8 [�G/G | G ∈ FV(?8)].

Similarly, Γ∪{G : �G | G ∈ FV(?8)} ⊢ %8 : �8 and, by (SubR), Γ∪{G : �G | G ∈ FV(?8)} ⊢ %8 : �.
• When" is of shape fixG. % , it follows from the completeness of algorithmic type assignment
that Typ(Γ) | Con(Γ) ⊢2 fix G. % : �. The only rule that could conclude this judgement is
(FixR2) and so there is some type � such that Typ(Γ), G : � | Con(Γ) ⊢ % : � and Con(Γ) ⊢
� ⊑ �. Hence, it follows from soundness of algorithmic type assignment and (SubR) that
Γ, G : � ⊢ " : �, as required.

�

Lemma C.8. If � ⊢ �0 ⊑ �= then there is a sequence of constraints:

�1 ⊑ �2, �3 ⊑ �4, . . . �=−2 ⊑ �=−1

all of which are in� and such that:

(i) for all 8 ∈ [0..=/2] either �28+1 is Ok or otherwise:

(a) �28 is a type variable and �8 = �28+1

(b) or, �28 is a sufficiency arrow and so is �28+1

(c) or, �28 is a necessity arrow and so is �28+1

(d) or, �28 is of shape Σ2∈� 2 (
⃗⃗ ⃗
�) and �28+1 is of shape Σ3∈ � 3 (

⃗⃗ ⃗
�) and � ⊆ � .

Proof. The proof is by induction on the derivation of� ⊢ � ⊑ �.

(IdS) Clearly this satisfies the conclusion with a sequence of length 1.
(TrS) It follows from the induction hypotheses that there are sequences

�1 ⊑ �2, �3 ⊑ �4, . . . �=−2 ⊑ �=−1 and �1 ⊑ �2, �3 ⊑ �4, . . . �<−2 ⊑ �<−1

satisfying the appropriate properties. The middle witness is �= = �0. If it is a type variable,
then �=−1 = �= = �0 = �1. If it is an arrow, then �=−1 and �1 are arrows of the same kind
too. If it is a sum Σ3∈ � 3 (. . .), then �=−1 is a sum Σ2∈� 2 (. . .) with � ⊆ � and �1 is a sum
Σ:∈ : (. . .) with � ⊆ . If it is Ok, then there is no requirement on�=−1 but �1 must beOk.
Hence, in each case, �=−1 and �1 satisfy the required relationship and thus the witness is
just the concatenation of the sequences.

63

Steven Ramsay and Charlie Walpole

(ToS),(FrS),(SmS),(CnS),(OkS) The conclusion is obtained using a sequence of length 0 because�0 and
�1 already satisfy the required relationship.

�

Consistent constraint sets do not derive inconsistencies.

Lemma C.9. Suppose� is syntactically consistent.

• If � ⊢ � ⊑ � then � ⊑ � is syntactically consistent.

• If � ⊢ � | | � then � | | � is syntactically consistent.

Proof. • If� ⊢ � ⊑ �, then by the forgoing lemma there is a sequence of inequalities in�
satisfying the required conditions:

�1 ⊑ �2, �3 ⊑ �4, . . . �=−2 ⊑ �=−1

Suppose for the purpose of obtaining a contradiction that � ⊑ � is not syntactically consis-
tent. Then there is a consecutive subsequence of the above, of shape:

�8 ⊑ 01, 01 ⊑ 02, 02 ⊑ 03 . . . , 0: ⊑ �2:+1

(i.e. intermediate types are all type variables) of constraints in � in which �8 ⊑ �2:+1 is
already not syntactically consistent. However, it follows that �8 ⊑ �2:+1 is contained in the
closure of� , which is assumed consistent.

• The proof is by induction on the derivation of� ⊢ � | | �. In cases (ConD), (ToD) and (FromD) the
result is immediate. In case (RfId) the result follows from the assumption. In case (SymD) the
result follows from the induction hypothesis since the characterisation of syntactic consis-
tency is symmetrical. Finally, in case (SubD)we can extend Lemma C.8 to show that there are
two sequences of subtype constraints in� each of which gives rise to one side of the disjoint-
ness constraint. Then it follows similarly, that if a disjointness constraint is concluded that
is not syntactically consistent, then already there would be a non-syntactically consistent
constraint in the closure.

�

Lemma C.10. Suppose Con(Γ) is closed and syntactically consistent. If Γ ⊢ + : � with + a closed

value and � not a type variable, then either:

• � is a sum type containing a type of shape 2 (�1, . . . , �=) and + a constructor term of shape

2 (,1, . . . ,,=) and Γ ⊢,8 : �8 for each 8 ,
• or, � is an arrow and + is an abstraction

Proof. We proceed by cases on the shape of + .

• If+ is of shape 2 (,1, . . . ,,=) then, by inversion, there are types �1, . . . , �= such that Γ ⊢ "8 :
�8 for each 8 , and Γ ⊢ 2 (�1, . . . , �=) ⊑ �. Therefore, it follows from consistency of subtyping
(Lemma C.9) that either � is a sum type including a 2-headed type or � is a type variable.

• If+ is of shape _G." then, by inversion, there are types �1 and �2 such that either Γ ⊢ �1 →
�2 ⊑ � or Γ ⊢ �1 ⤚ �2 ⊑ �. By consistency of subtyping, in both cases, � is either a type
variable or an arrow.

�

64

Ill-Typed Programs Don’t Evaluate

C.0.1 Proof of Theorem 5.10 (Progress).

Proof. The first is by induction on the derivation. Due to the form of the judgement, every
subject in Γ can make a step, so we focus on the principal formula in each derivation step and
exclude cases that cannot occur.

(GVar) in this case" is a top-level identifier, so " can make a step.
(SubR) It follows from the induction hypothesis that" can make a step, or" is a value.
(AbsR) It is immediate that" is a value.
(AbnR) It is immediate that" is a value.
(AppR) In this case," has shape %& and it follows from the induction hypothesis that either % can

make a step or is a value and& canmake a step or is a value. If % canmake a step, then" can
make a step, so assume to the contrary. Then % is a value. It follows that from Lemma C.10
that % must be an abstraction. Now, if & can make a step, then " can make a step and if,
not, then it is a value and" can make a step by contracting the redex.

(CnsR) In this case, " is of shape 2 (%1, . . . , %=) and it follows from the induction hypothesis that,
for each 8 , %8 can either make a step or is a value. From any configuration it follows that"
can either make a step or is a value.

(MchR) In this case, " is of shape match& with {|:8=1 (?8 ↦→ %8)}. It follows from the induction
hypothesis that & can either make a step or is a value. If & can make a step, then " can
make a step. Otherwise, & is a value of a sum type and it follows from Lemma C.10 that &
must be a constructor term 2 (,1, . . . ,,=) and there is a 2-headed type in the sum. Hence,
there is a pattern ?8 of shape 2 (G1, . . . , G=) and so " can make a step.

(FixR) It is immediate that" can make a step.

The second is also by induction on the derivation. Similar remarks apply. Note that, if " is stuck,
then it follows from the previous result that Γ 6⊢ " : � for any �.

(Disj) It follows from the previous result that" can either make a step or is a value (of some type
� disjoint from �). In the former case, the result is immediate. In the latter case, if " is of
shape 2 (,1, . . . ,,=) then it follows from inversion that there are types �1, . . . , �= such that
Γ ⊢ 2 (�1, . . . , �=) ⊑ �. Then it follows from subtype consistency that Γ 6⊢ 2 (�1, . . . , �=) ⊑ �
for any types �1, . . . , �= . Therefore, it follows from inversion that Γ 6⊢ " : �.

(SubL) In this case we assume Γ ⊢ � ⊑ �. It follows from the induction hypothesis that either "
makes a step or Γ 6⊢ " : �. In the former case the result is immediate, in the latter case, we
must have Γ 6⊢ " : � too by the contrapositive of (SubR).

(AppL) In this case," is of shape %& . Since" is not a value, either" can make a step or" is stuck
and hence the desired conclusion follows in both cases.

(CnsL) In this case," is of shape 2 ("1, . . . , "=) and � is of shape 2 (�1, . . . , �=). It follows from the
induction hypothesis that either"8 can make a step or Γ 6⊢ "8 : �8 . In the former case, either
" can make a step, or " is stuck. In either case, the result follows. If Γ 6⊢ "8 : �8 then we
have that Γ 6⊢ " : �. To see this, suppose the contrary. Then it follows from inversion that
there are types �1, . . . , �= such that Γ ⊢ "8 : �8 and Γ ⊢ 2 (�1, . . . , �=) ⊑ 2 (�1, . . . , �=). Since
Con(Γ) is closed, it follows that Γ ⊢ �8 ⊑ �8 and so Γ ⊢ "8 : �8 follows by (SubR), which
contradicts our supposition.

(MchL) In this case, " is of shape match& with {|:8=1 (?8 ↦→ %8)}. Since " is not a value, either "
can make a step or is stuck. The desired conclusion follows in both cases.

(CnsK) In this case," is of shape 2 ("1, . . . ,"=) and� is Ok. It follows from the induction hypothe-
sis that there is some"8 that can either make a step or for which Γ 6⊢ "8 : Ok. In the former

65

Steven Ramsay and Charlie Walpole

case, either " can make a step or" is stuck and the result follows. In the latter case, since
all values are well-typed, it follows that"8 is stuck and so the result follows.

(FunK) In this case," is of shape" # and � is Ok. Since" is not a value, it can either make a step
or is stuck and in both cases the desired conclusion follows.

�

Lemma C.11 (Substitution on the right). Assume Γ is a consistent variable environment, dis-

joint from Δ and that does not contain G .

(i) If Γ, G : � ⊢ " : � and Γ ⊢ # : �, then Γ ⊢ " [# /G] : �.
(ii) If Γ, G : �, " : � ⊢ Δ and Γ ⊢ # : �, then Γ, " [# /G] : � ⊢ Δ.

Proof. The proof is by induction on" . Note that, in (ii), it is always possible that Δ is of shape
I : Ok for some variable I. Then the conclusion follows immediately by (VarK), so we exclude this
from the case analysis below.

• When " is G , we reason as follows. In (i), it follows by inversion that Γ ⊢ � ⊑ �. Since
" [# /G] = # , we have Γ ⊢ " [# /G] : � and by (SubR), therefore Γ ⊢ " [# /G] : �. In (ii) it
follows from inversion that Δmust contain ~ : Ok for some variable ~, which we have dealt
with above.

• When" is some variable ~ distinct from G , we reason as follows. In (i), it follows from the
assumptions and inversion that ~ : �′ ∈ Γ with Γ ⊢ �′ ⊑ �. Since " [# /G] = " = ~, we
have by (LVar) that Γ ⊢ " [# /G] : �′ and the conclusion follows from (SubR). In (ii), Δ is ~ : �′

with � ⊑ �′. Then the conclusion follows from (LVar) and (SubL).
• When" is an application % & , we reason as follows. In (i), by inversion we have that there
is some �′ such that Γ, G : � ⊢ % : �′ → � and Γ, G : � ⊢ & : �′. It follows from
the induction hypotheses that Γ ⊢ % [# /G] : �′ → � and Γ ⊢ & [# /G] : �′ and so the
conclusion follows from (AppR). In (ii), inversion gives us that either: (1) there is a type �′ and
Γ, G : � ⊢ % : �′ ⤚ � and Γ, G : �, & : �′ ⊢ Δ, or (2) Γ, G : �, % : Ok ⤚ � ⊢ Δ. Suppose the
former, then it follows from the induction hypothesis part (i) that Γ ⊢ % [# /G] : �′ ⤚ � and
from part (ii) that Γ, & [# /G] : �′ ⊢ Δ. Hence the conclusion follows from (AppL). Suppose
the latter, then it follows from the induction hypothesis part (ii) that Γ, % [# /G] : Ok ⤚ �,
and the conclusion follows from (FunK).

• When" is an abstraction _~. % , we may assume by the variable convention that ~ does not
occur outside of % . In (i), by inversion we have that there are types �1 and �2 such that
either (1) Γ, G : �, ~ : �1 ⊢ % : �2 and Γ ⊢ �1 → �2 ⊑ � or (2) Γ, G : �, % : �2 ⊢ ~ : �1
and Γ ⊢ �1 ⤚ �2 ⊑ �. In case (1), it follows from the induction hypothesis part (i) that
Γ, ~ : �1 ⊢ % [# /G] : �2 and thus the conclusion follows from (AbsR) and (SubR). In case (2) it
follows from the induction hypothesis part (ii) that Γ, % [# /G] : �2 ⊢ ~ : �1 and hence the
conclusion follows from (AbnR) and (SubR). In (ii), by inversion we have that there is some
arrow type or sum type �′ and Γ ⊢ � ⊑ �′ and Γ, G : �, _~. % : �′ ⊢ Δ. In either case, the
conclusion follows from (AbsDL) and (SubL).

• When" is a constructor term 2 (%1, . . . , %=), we reason as follows. In (i) it follows from inver-
sion that there are types �1, . . . , �= and Γ, G : � ⊢ %8 : �8 for each 8 and Γ ⊢ 2 (�1, . . . , �=) ⊑ �.
It follows from the induction hypothesis that Γ ⊢ 2 (%1 [# /G], . . . , %= [# /G]) : 2 (�1, . . . , �=)
and then the conclusion follows from (SubR). In (ii), it follows from inversion that either (1)
there are types �1, . . . , �= and 8 such that Γ ⊢ � ⊑ 2 (�1, . . . , �=) and Γ, G : �, %8 : �8 ⊢ Δ, or
(2) there is an arrow type �′ such that Γ ⊢ � ⊑ �′ and Γ, G : �, 2 (%1, . . . , %=) : �

′ ⊢ Δ. In the
former case, the conclusion follows from the induction hypothesis and (SubL), in the latter it
follows from (CnsDL) and (SubL).

66

Ill-Typed Programs Don’t Evaluate

• When " is a match expression match& with {|:8=1 (?8 ↦→ %8)}, we reason as follows. In (i),
by inversion we have a family of types �G (for each 8 and G ∈ FV(?8)) such that Γ, G : � ⊢

& : Σ:8=1 ?8 [�G/G | G ∈ FV(?8)] and Γ, G : � ∪ {G : �G | G ∈ FV(?8)} ⊢ %8 : � for each 8 . The
conclusion follows from the induction hypothesis, part (i). In (ii), by inversion we have a
family of types �~ (for each pattern-bound variable ~) such that Γ, G : �, %8 : � ⊢ ~ : �~ and
either Γ, & : ?8 [�~/~ | ~ ∈ FV(?8)] ⊢ Δ or Γ, %8 : � ⊢ Δ. In both cases, it follows from the
induction hypothesis and (CnsL) that Γ, (& [# /G], %8 [# /G]) : (?8 [�~/~ | ~ ∈ FV(?8)],�) ⊢ Δ.
Then we can obtain the conclusion by applying the induction hypothesis part (ii) to each of
the former judgements and concluding by (MchL).

• When" is a fixpoint expression fix~. % , we reason as follows. In (i), it follows from inversion
that Γ, G : �, ~ : � ⊢ % : � and the result follows from the induction hypothesis part (i) and
(FixR). In (ii), it follows from inversion that Δmust have shape I : Ok, which we have covered
in the above observation.

�

Lemma C.12 (Trivial Substitution). Assume Γ is a consistent variable environment disjoint from

Δ and neither contain G . Assume Γ ⊢ + : � is a closed value. Then:

(i) if Γ ⊢ " : � then Γ ⊢ " [+ /G] : �
(ii) if Γ, " : � ⊢ Δ then Γ, " [+ /G] : � ⊢ Δ

Proof. The proof is by induction on " . Note, in case (ii), there is always the possibility that
Δ has shape I : Ok for some variable I and then the conclusion follows immediately from (VarK).
Moreover, if " does not contain G , then the conclusion is immediate. Hence, we will exclude these
cases from consideration below.

• If" is G , we reason as follows. In (i), by inversion, it must be that� = Ok and the conclusion
follows because all closed values are well-typed. In (ii), by inversion, it must be that Δ is of
shape I : Ok as above.

• If " is of shape %& we reason as follows. In (i) by inversion it must be that there is some
type � such that Γ ⊢ % : � → � and Γ ⊢ & : �. The conclusion follows from the induction
hypotheses, part (i). In (ii) by inversion it must be that either (1) there is a type � such that
Γ ⊢ % : � ⤚ � and Γ, & : � ⊢ Δ, or (2) Γ, % : Ok ⤚ � ⊢ Δ. In the former case, the result
follows from the induction hypotheses and (AppL). In the latter case, the result follows from
the induction hypothesis and (FunK).

• If" is of shape 2 (%1, . . . , %=) we reason as follows. In (i), by inversion, it must be that there
are types �1, . . . , �= and Γ ⊢ 2 (�1, . . . , �=) ⊑ � and Γ ⊢ %8 : �8 for each 8 . The result follows
from the induction hypothesis, (CnsR) and (SubR). In (ii), by inversion, it follows that either
(1) there are types �1, . . . , �= and 8 such that Γ ⊢ � ⊑ 2 (�1, . . . , �=) and Γ, %8 : �8 ⊢ Δ, or (2)
there is an arrow type �′ such that Γ ⊢ � ⊑ �′ and Γ, 2 (%1, . . . , %=) : �

′ ⊢ Δ. In the former
case, the result follows from the induction hypotheses, (CnsL) and (SubL). In the latter case,
the result follows from (CnsDL).

• If" is of shape _~. % , we may assume that ~ does not occur outside of % . In (i), by inversion,
it must be that there are types �1 and �2 such that, either: (1) Γ, ~ : �1 ⊢ % : �2 and
Γ ⊢ �1 → �2 ⊑ � or (2) Γ, % : �2 ⊢ ~ : �1 and Γ ⊢ �1 ⤚ �2 ⊑ �. In (1), the result follows
from the induction hypothesis, (AbsR) and (SubR). In (2), the result follows from the induction
hypothesis, (AbnR) and (SubR). In (ii), by inversion, it must be that there is some sum type �′

such that Γ ⊢ � ⊑ �′ and Γ ⊢ _~. % : �′ ⊢ Δ. Then the result follows from (AbsDL).
• If" is of shape fix~. % then we may assume that ~ occurs nowhere else. In (i), by inversion
we have that Γ, ~ : � ⊢ % : � and the result follows from the induction hypothesis and

67

Steven Ramsay and Charlie Walpole

(FixR). In (ii), by inversion the only possibility is that Δ is of shape I : Ok, which is explained
above.

• If " is of shape match& with {|:8=1 (?8 ↦→ %8)}, we reason as follows. In (i), it follows from
inversion that there is a family of types �~ (for each pattern-bound variable ~) and Γ ⊢ & :

Σ
:
8=1?8 [�~/~ | G ∈ FV(?8)] and Γ ∪ {~ : �~ | ~ ∈ FV(?8)} ⊢ %8 : � for each 8 . Then the

conclusion follows from the induction hypothesis and (MchR). In (ii), by inversion we have
a family of types �~ (one for each pattern-bound variable ~) such that Γ, %8 : � ⊢ ~ : �~ (for
each 8 and each ~ ∈ FV(?8)) and either Γ, & : ?8 [�~/~ | ~ ∈ FV(?8)] ⊢ Δ or Γ, %8 : � ⊢ Δ. In
both cases, it follows from the induction hypothesis and (CnsL) that Γ, (& [+ /G], %8 [+ /G]) :
(?8 [�~/~ | ~ ∈ FV(?8)], �) ⊢ Δ. Then the conclusion follows from the induction hypothesis
and (MchL).

�

LemmaC.13 (Substitutionon the Left). Assume Γ is a consistent identifier environment disjoint

from Δ and neither contains G . If Γ, " : � ⊢ G : � and Γ, + : � ⊢ Δ then Γ, " [+ /G] : � ⊢ Δ.

Proof. The proof is by induction on " . Note, there is always the possibility that � = Ok, in
which case we have Γ, + : Ok ⊢ Δ for closed value + and so it follows from inversion that Δ
must be of shape I : Ok for some variable I. Hence, the desired conclusion follows in this case
immediately from (VarK).

• If " is G , then it follows from inversion that Γ ⊢ � ⊑ �. Hence, the result follows from the
assumed Γ, + : � ⊢ Δ and (SubL), since" [+ /G] = + .

• If " is 5 , then it follows from inversion that � must be Ok, and we have proven this case
above.

• If" is a variable ~ distinct from G , the reasoning is as in the previous case.
• If" is an application %& , then it follows from inversion that either (i) there is a type �′ and

Γ ⊢ % : �′ ⤚ � and Γ, & : �′ ⊢ G : �, or (ii) Γ, % : Ok ⤚ � ⊢ G : �. In (i), it follows from
Lemma C.12 that Γ ⊢ % [+ /G] : �′ ⤚ � and it follows from the induction hypothesis that
Γ, & [+ /G] : �′ ⊢ Δ. Therefore, the conclusion follows from (AppL). In (ii), the result follows
from the induction hypothesis and (FunK).

• If " is an abstraction _~. % we may assume ~ is fresh for the context. Then it follows from
inversion that there is some sum type �′ such that Γ ⊢ � ⊑ �′ and Γ, _~. % : �′ ⊢ G : �.
Then the result follows from (AbsDL).

• If" is a fixpoint fix~. % , we may assume that ~ is fresh for the context. By inversion, it can
only be that � = Ok, which we have covered above.

• If " is a constructor 2 (%1, . . . , %=) then it follows from inversion that either (1) there are
types �1, . . . , �= and Γ ⊢ � ⊑ 2 (�1, . . . , �=) and Γ, %8 : �8 ⊢ G : � for some 8 , or (2) there
is some arrow type �′ such that Γ ⊢ � ⊑ �′ and Γ, 2 (%1, . . . , %=) : �′ ⊢ G : �. In case (1),
the result follows from the induction hypothesis and (CnsL) and (SubL). In case (2), the result
follows immediately from (CnsDL) and (SubL).

• If " is a match expression match& with {|:8=1 (?8 ↦→ %8)} then it follows from inversion
that there is some family �~ (for each pattern-bound variable ~) and Γ, %8 : � ⊢ ~ : �~ (for
each 8 and ~ ∈ FV(?8)) and either Γ, & : ?8 [�~/~ | ~ ∈ FV(?8)] ⊢ G : � or Γ, %8 : � ⊢ G : �. In
both cases, it follows from the induction hypothesis and (CnsL) that Γ, (& [+ /G], %8 [+ /G]) :
(?8 [�~/~ | ~ ∈ FV(?8)], �) ⊢ G : �. Then the result follows from the induction hypothesis
and (MchL).

�

68

Ill-Typed Programs Don’t Evaluate

Theorem C.14 (Preservation on the Right). Suppose Γ and Δ are disjoint, consistent variable

environments with ⊢ M : Γ. If Γ ⊢ " : � and " ⊲ # then Γ ⊢ # : �.

Proof. Weprove the result for allE, redexes % and contractions& such that" = E[%] ⊲ E[&] =

, by induction on E.

• If the context is just a hole, then we proceed by cases on the redex.
(Beta) In this case, % has shape (_G. % ′)+ and & = % ′ [+ /G]. It follows from inversion that

there is a type � such that Γ ⊢ _G. % ′ : � → � and Γ ⊢ + : �. By inversion and
the consistency of Γ, we have some �1 and �2 such that Γ, G : �1 ⊢ % ′ : �2 and Γ ⊢
�1 → �2 ⊑ � → � (the other possibility would involve a type constraint that is not
syntactically consistent). By the closedness of the constraints in Γ, we have Γ ⊢ �2 ⊑ �.
Then it follows from the substitution lemma that Γ ⊢ % ′ [+ /G] : �2 and hence %

′ [+ /G] :
� by (SubR).

(Delta) In this case, it follows from inversion that there is some type � and family
⃗⃗⃗
� such that

5 : ∀
⃗⃗
0 . � ⇒ � and Γ ⊢ � [

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗
�/0] ⊑ � and Γ ⊢ � [

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗
�/0]. Then it follows from ⊢ M : Γ that

Γ ∪� ⊢ " : � and therefore Γ [
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗
�/0] ∪� [

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗
�/0] ⊢ " : � [

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗
�/0]. However, Γ is guaranteed

to be closed with respect to type variables, and so we have Γ ∪ � [
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗
�/0] ⊢ " : � [

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗
�/0].

Since also Γ ⊢ � [
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗
�/0], it follows that Γ ⊢ " : � [

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗
�/0], as required.

(Fix) In this case, % has shape fixG. % ′ and& is % ′ [fixG. % ′/G]. It follows from inversion that
Γ, G : � ⊢ % ′ : �. Hence, by substitution on the right, Γ ⊢ % ′ [fix G. % ′/G] : �.

(Match) In this case, % has shape match2 (+1, . . . ,+=) with {|
=
8=1(?8 ↦→ %8)} and one of the

alternatives is of shape 2 (G1, . . . , G=) ↦→ % and & = % [+8/G8 | 1 ≤ 8 ≤ =] It follows from
inversion that there is a family of types �G (one for each pattern-bound variable G) such

that Γ ⊢ 2 (+1, . . . ,+=) : Σ:8=1?8 [�G/G | G ∈ FV(?8)] and Γ ∪ {G : �G | G ∈ FV(?8)} ⊢
% : �. Therefore, it follows by value inversion that Γ ⊢ +8 : �8 . Moreover, it follows by
induction on = and the substitution lemma (since the G8 are disjoint and the +8 closed)
that Γ ⊢ % [+8/G8 | 1 ≤ 8 ≤ =] : �, as required.

• If the context is of shape E"′ then it follows by inversion that there is some � such that
Γ ⊢ E[%] : � → � and Γ ⊢ "′ : �. Then it follows from the induction hypothesis that
Γ ⊢ E[&] : � → � hence the result follows by (AppR).

• If the context is of shape (_G."′) E then it follows by inversion that there is some � such
that Γ ⊢ _G."′ : � → � and Γ ⊢ E[%] : �. Then the result follows from the induction
hypothesis and (AppR).

• If the context is of shape matchE with {|:8=1(?8 ↦→ %8)} then it follows from inversion that

there is some family �G and Γ ⊢ E[%] : Σ:8=1?8 [�G/G | G ∈ FV(?8)] for each 8 and Γ ∪ {G :
�G | G ∈ FV(?8)} ⊢ %8 : � for all 8 . Then the result follows from the induction hypothesis
and (MchR).

�

Theorem C.15 (Preservation on the Left). Suppose Γ and Δ are disjoint, consistent variable

environments. If" ⊲ # and Γ, " : � ⊢ Δ then Γ, # : � ⊢ Δ.

Proof. Weprove the result for allE, redexes % and contractions& such that" = E[%] ⊲ E[&] =

, by induction on E.

• When the context is just a hole, we proceed to analyse the redex.
(Beta) In this case, % has shape (_G. % ′)+ and & = % ′ [+ /G]. It follows from inversion that

either (1) there is a type � such that Γ ⊢ _G. % ′ : � ⤚ � and Γ, + : � ⊢ Δ, or (2)
Γ, _G . % ′ : Ok ⤚ � ⊢ Δ. In case (1), it follows by inversion that there are types �1 and

69

Steven Ramsay and Charlie Walpole

�2 such that Γ, % ′ : �2 ⊢ G : �1 and Γ ⊢ �1 ⤚ �2 ⊑ � ⤚ � (the other possibility is
excluded by the consistency of the constraints). Then it follows from the substitution
lemma that Γ, % ′ [+ /G] : �2 ⊢ Δ. By the closedness of the constraints, Γ ⊢ � ⊑ �2 and so
the desired conclusion follows by (SubL). By the Progress theorem, case (2) is impossible
unless Δ is of shape I : Ok for some I. In this case, the conclusion follows immediately
by (VarK).

(Delta), (Fix) By inversion, these cases are impossible unless Δ has shape I : Ok for some
variable I and then the conclusion follows immediately by (VarK).

(Match) In this case, % has shape match2 (+1, . . . ,+=) with {|
:
8=1(?8 ↦→ %8)} and one of the

alternatives has shape 2 (G1, . . . , G=) ↦→ % and & = % [+8/G8 | 1 ≤ 8 ≤ :]. It follows
from inversion that either Δ is of shape I : Ok, in which case the conclusion is imme-
diate by (VarK), or there are a family of types �G , one for each pattern-bound variable
G such that Γ, % : � ⊢ G : �G (for each G ∈ {G1, . . . , G=}) and, either Γ, 2 (+1, . . . ,+=) :
2 (�G1 , . . . , �G=) ⊢ Δ or Γ, % : � ⊢ Δ. In the former case, it follows from inversion and
the consistency of the constraints in Γ that there is 9 such that Γ, +9 : �G 9 ⊢ Δ. Then
is follows from the substitution lemma that Γ, % [+9/G 9] ⊢ Δ. Then it follows from the
trivial substitution lemma, by induction on =, that Γ, % [+8/G8 | 1 ≤ 8 ≤ =] : � ⊢ Δ as
required.

• When the context is of shape E"′ , it follows from inversion that either (0) Δ has shape
I : Ok for some variable I, (1) there is a type � and Γ ⊢ E[%] : � ⤚ � and Γ, "′ : � ⊢ Δ, or
(2) Γ, E[%] : Ok ⤚ � ⊢ Δ. In case (0) the result is immediate by (VarK). In case (1), we obtain
Γ ⊢ E[&] : � ⤚ � by preservation on the right and the result follows by (AppL). In case (2),
we obtain the result from the induction hypothesis and (FunK).

• When the context has shape (_G."′) E, it follows from inversion that either (0) Δ has shape
I : Ok, or (1) there is a type � and Γ ⊢ _G."′ : � ⤚ � and Γ, E[%] : � ⊢ Δ, or (2)
Γ ⊢ _G."′ : Ok ⤚ � ⊢ Δ. In case (0) the result is immediate by (VarK). In case (2), the
result follows by the induction hypothesis and (AppL). In case (3), the result follows from the
induction hypothesis and (FunK).

• When the context has shape matchE with {|:8=1(?8 ↦→ %8)} it follows from inversion that
either Δ has shape I : Ok or there is a family of types�G (one for each pattern-bound variable
G) such that Γ, %8 : � ⊢ G : �G and, for each 8 , either Γ, E[%] : ?8 [�G/G | G ∈ FV(?8)] ⊢ Δ or
Γ, %8 : � ⊢ Δ. Then the result follows from the induction hypothesis and (MchL).

�

D ADDITIONAL MATERIAL IN SUPPORT OF SECTION 6

In this appendix, we give the proofs of Theorem 6.4, showing that two-sided judgements of the
specified form are subsumed by one-sided judgements, and Theorem 6.6, showing syntactic sound-
ness of the one-sided system. The latter requires first establishing a kind of inversion lemma for
values, that shows that they can only be given the types one would expect, and then substitution
lemmas, and preservation.

D.1 Proof of Theorem 6.4

Proof. The proof is by induction on Γ, " : � ⊢ Δ.

(Id) In this case, there are two cases. If" is some variable G and G : � ∈ Δ, then we may conclude
Γ ∪ Δ

2 ⊢ G : �2 by (Id). Otherwise, " is not a variable, but there is a variable typing G : �
in both Γ and Δ. In that case, Γ ∪ Δ

2 will contain a contradiction, and the result follows by
(Contra).

70

Ill-Typed Programs Don’t Evaluate

(LetL1) In this case " is of shape let (G,~) = # in % and we may assume (i) Γ ∪ Δ
2 ⊢ % : �2 . Then

the result follows from (Let3) with � set to �2

(LetR) In this case " is let (G1, G2) = # in% and we can assume (i) Γ ∪ Δ
2 ⊢ # : � × � and (ii)

Γ ∪ Δ
2 , G : �, ~ : � ⊢ % : �. Then the result follows immediately from (Let1).

(LetL2) In this case" is of shape let (G,~) = # in% and we can assume (i) Γ, Δ2 G : �2 ⊢ % : �2 , (ii)
Γ ∪ Δ

2 , ~ : �2 ⊢ % : �2 and (iii) Γ ∪ Δ
2 ⊢ " : (� ×�)2 . The conclusion follows immediately

by instantiating � in (Let2) by �2 .
(IfZR) In this case, " is of shape if # then%1 else%2 and we may assume (i) Γ ∪ Δ

2 ⊢ # : Nat,
(ii) Γ ∪ Δ

2 ⊢ %1 : �, (iii) Γ ∪ Δ
2 , G : Nat ⊢ %2 : �. Then the desired conclusion follows

immediately from (ii) and (iii) by (IfZ1).
(IfZL1) In this case, " is of shape if # then%1 else%2 and we may assume (i) Γ ∪ Δ

2 ⊢ # : Nat2 .
Then the result follows immediately by (IfZ2).

(IfZL2) In this case, " is of shape if # then%1 else%2 and we may assume (i) Γ ∪ Δ
2 ⊢ %1 : �2 and

(ii) Γ ∪ Δ
2 , G : Nat ⊢ %2 : �

2 . Then the result follows immediately by (IfZ1).
(CompL) In this case, we may assume Γ ∪ Δ

2 ⊢ " : � and then the result is immediate.
(CompR) In this case, we may assume Γ ∪ Δ

2 ⊢ " : �2 and again, the result is immediate.
(Disj) In this case, we may assume Γ ∪ Δ

2 ⊢ " : � and � | | �. Then the result follows from (Dis).
(AppL) In this case," is of shape % # and we may assume (i) Γ∪Δ

2 ⊢ % : � ⤚ � and (ii) Γ∪Δ
2 ⊢ # :

�2 . Recall that � ⤚ � is just an abbreviation for �2 → �2 in the one-sided system. Hence,
the result follows immediately from (App).

(OkApL1) In this case," is of shape % # and we may assume (i) Γ ∪Δ
2 ⊢ % : (Ok ⤚ �)2 = (Ok2 →

�2)2 . Therefore, the result follows from (App2).
(OkApL2) In this case," is of shape % # and we may assume (i) Γ∪Δ

2 ⊢ # : Ok2 . Then the desired
conclusion follows immediately by (App3).

(OkL) In this case we may assume Γ ∪ Δ
2 ⊢ " : Ok. Hence, the result follows from (OkC2).

(OkR) In this case the result follows immediately from (Ok).
(OkSL),(SuccL) In these cases, " is of shape succ(#) and we may assume Γ ∪ Δ

2 ⊢ # : Nat2 .
Therefore, the results follow from (Succ2).

(OkPrL) In this case," is of shape (#1, #2) and we may assume Γ ∪ Δ
2 ⊢ "8 : Ok

2 . Then the result
follows immediately by (Pair2).

(PairL) In this case," is of shape (#1, #2), � is of shape �1 ×�2. Let us consider the 8 = 1 case, the
other is symmetrical. We may assume that Γ ∪ Δ

2 ⊢ #1 : �21. Then the result follows from
(Pair3).

(AbsR) The result follows from the induction hypothesis and (Abs).
(AbnR) In this case, " is of shape _G. % and � is of shape � ⤚ �. We may assume Γ ∪ Δ

2 , G : �2 ⊢
" : �2 . Since, in the one-sided system, � ⤚ � is an abbreviation for �2 → �2 , the result
follows from (Abs).

(AppR) The result follows from the induction hypotheses and (App1).
(FixR) The result follows from the induction hypotheses and (Fix).
(SuccR) The result follows from the induction hypotheses and (Succ1).
(ZeroR) The result follows from the induction hypotheses and (Zero).

�

D.2 Proof of Soundness

Lemma D.1 (Value Inversion). Suppose ⊢ + : �.

• If + is of shape zero then � = Nat or � is of shape �2 with � | | Nat
• If + is of shape succ(,) then � = Nat or � is of shape �2 with � | | Nat.

71

Steven Ramsay and Charlie Walpole

• If + is of shape (,1,,2) then either:

– � is of shape � ×�

– or, � is of shape �2 and � is not a pair type nor Ok.

– or, � is of shape (�1 × �2)
2 and there is 8 with ⊢,8 : �

2
8

• If + is of shape _G." then either:

– there are types �1 and �2 such that � = �1 → �2 and G : �1 ⊢ " : �2
– or, � is of shape �2 with � not an arrow type nor Ok.

Proof. The proof is by induction on the derivation. In cases (OkC), (Contra) and (Var), the conclusion
is immediate because the rules only apply to judgements with a non-empty environment. In cases
(Fix),(Let1), (Let2), (App1), (App2), (App3), (IfZ1) and (IfZ2) the conclusion is immediate since the subject is
not a value.

(OkC2) We suppose the induction hypothesis, but then we obtain a contradiction because, by case
analysis on + , it follows that Ok2 cannot be Ok2 . Hence, the result follows vacuously.

(Dis) In this case, � has shape �′2 and we assume � | | �′. We proceed by case analysis on + . Note
that, � cannot be of shape �′2 .
• If + is a numeral =, then it follows from the induction hypothesis that � must be Nat.
Therefore, � is of shape �′2 with �′ | | Nat, as required.

• If + is a pair (,1,,2), then it follows from the induction hypothesis that � must have
shape �1 × �2. Therefore, �

′ is not a pair type nor Ok.
• If + is an abstraction _G. % , then it follows from the induction hypothesis that � must
have shape �1 → �2. Therefore �

′ is not an arrow type nor Ok.
(Zero),(Succ1) In these cases, + is a numeral and � is Nat.
(Succ2) In this case, + is a numeral. We assume the induction hypothesis, but then we obtain a

contradiction because Nat2 is not of shape �2 with � | | Nat.
(Abs) In this case, + is an abstraction and � has shape �1 → �2.
(Pair1) In this case, + is of shape (,1,,2) and � is of shape � × � and Γ ⊢,1 : � and Γ ⊢,2 : �
(Pair2) In this case, we suppose the induction hypothesis, but then we obtain a contradiction be-

cause the type of,8 cannot be Ok
2 .

(Pair3) In this case, + is of shape (,1,,2) and � is of shape (�1 × �2) and there is an 8 such that
Γ ⊢,8 : �

2
8 .

�

Lemma D.2. Suppose Γ is a type environment and + a closed value and Γ ⊢ " : �.

• If G : � ∈ Γ and Γ \ {G : �} ⊢ + : � then Γ \ {G : �} ⊢ " [+ /G] : �.
• If G ∉ Subjects(Γ), then Γ ⊢ " [+ /G] : �.

Proof. The proof is by induction on the derivation.

(Ok) In this case, Γ ⊢ " [+ /G] : Ok by (Ok).
(OkC1) In this case, Γ contains ~ : Ok2 and we consider two cases. If G = ~, then we may assume

Γ \ {G : �} ⊢ + : Ok2 and this gives the result since G [+ /G] = + . Otherwise, the result
follows from (OkC1).

(Zero) In this case, the result follows again from (Zero).
(Contra) This rule does not apply when Γ is a type environment.
(Var) In this case, Γ contains ~ : �′. If G = ~ then � = �′ and we may assume Γ − {G : �} ⊢ + : �.

Then this gives the result since G [+ /G] = + . Otherwise, the result follows from (Var) since
~ [+ /G] = ~.

In the remaining cases, the result follows from the induction hypotheses and the fact that bound
variables in the conclusion may be assumed distinct from G . �

72

Ill-Typed Programs Don’t Evaluate

Theorem D.3. If ⊢ " : � and " ⊲ # then ⊢ # : �.

Proof. The proof is by induction on the derivation. The cases (OkC1), (Contra) and (Var) do not
apply since there are no assumptions.

(Ok) In this case, the result follows immediately from (Ok).
(OkC2) It follows from the induction hypothesis that ⊢ # : Ok2 and the result follows from (OkC2).
(Dis) In this case, � is of shape �′2 . Suppose � | | �. It follows from the induction hypothesis that

⊢ # : � and hence the result follows from (Dis).
(Zero) In this case," is zero and we obtain a contradiction from " ⊲ # .
(Succ1) In this case, " is of shape succ(%) and � = Nat. Thus it must be that % makes a step to

some& . It follows from the induction hypothesis that ⊢ & : Nat and the result follows from
(Succ1).

(Succ2) In this case, " is of shape succ(%) and thus it must be that % makes a step to some & . It
follows from the induction hypothesis that ⊢ & : Nat2 and thus the result follows from
(Succ2).

(Abs) In this case," does not make a step.
(Fix) In this case," is of shape fix~. % and thus # = % [fix~. %/~]. In this case we may assume that

Γ, G : � ⊢ " : � (this corresponds to proving a strengthened induction hypothesis) and so
it follows from the substitution lemma that Γ ⊢ % [fix~. %/~] : �, as required.

(Let3) In this case," has shape let (G,~) = & in % and there are two cases. If& makes a step to some
& ′ then the result follows from the induction hypothesis. Otherwise, it must be that & is a
pair (+ ,,) and # = % [+ /G,, /~]. Since G and ~ do not occur in Γ, the result follows from
the substitution lemma.

(Let2) In this case, " has shape let (G,~) = & in% and there are two cases. If & makes a step to
some & ′ then the result follows from the induction hypothesis. Otherwise, it must be that
& is a pair (+ ,,) and # = % [+ /G,, /~]. Hence, it follows by value inversion on the first
premise that either Γ ⊢ + : �21 or Γ ⊢, : �22. In either case, we can use the corresponding
second premise and the substitution lemma (both parts) to conclude.

(Let1) In this case, " has shape let (G,~) = & in% and there are two cases. If & makes a step to
some & ′ then the result follows from the induction hypothesis. Otherwise, it must be that
& is a pair (+ ,,) and # = % [+ /G,, /~]. It follows from value inversion that Γ ⊢ + : � and
Γ ⊢, : � and so we can conclude using the substitution lemma.

(App1) In this case, " has shape %& . There are two cases. If % or & makes a step, then the result
follows from the induction hypothesis. Otherwise, it must be that % is an abstraction _G. % ′

and& is a value. By value inversion, it must be that G : � ⊢ % ′ : � and then the result follows
from the substitution lemma.

(App2) In this case," has shape %& . There are three cases. If % makes a step, then the result follows
from the induction hypothesis. If& makes a step, the result follows immediately from (App2).
Otherwise % must be an abstraction _G. % ′ but it follows from value inversion that this is
impossible with type (Ok2 → �)2 .

(App3) In this case," has shape %& . There are three cases. If& makes a step, then the result follows
from the induction hypothesis. If % makes a step, the result follows immediately from (App3).
Otherwise, it must be that & is a value, but it follows from value inversion that this is
impossible with type Ok2 .

(Pair1) In this case," is a pair (%,&) and � has shape �1 × �2. It can only be that either % makes a
step or & makes a step, and then the result follows from the induction hypothesis in each
case.

73

Steven Ramsay and Charlie Walpole

(Pair2) In this case," is a pair (%1, %2) and 8 ∈ {1, 2}. If %8 makes a step, then the result follows from
the induction hypothesis; otherwise the result follows immediately from (Pair2).

(Pair3) In this case, " is a pair ("1, "2) and 8 ∈ {1, 2} and � has shape (�1 × �2)
2 . If "8 makes

a step, then the result follows from the induction hypothesis; otherwise the result follows
immediately from (Pair3).

(IfZ1) In this case, " is of shape if& then%1 else%2. There are two cases. If & makes a step, then
the result follows from the induction hypothesis. Otherwise, " is a numeral. However, it
follows from value inversion that this is impossible with type Nat2 .

(IfZ2) In this case, " is of shape if& then%1 else%2. There are two cases. If & makes a step, then
the result follows from the induction hypothesis. Otherwise, " is a numeral. If" = 0, then
" ⊲ %1 and the result follows from the first premise. Otherwise, " ⊲ %2 and the result
follows from the second premise.

�

D.2.1 Proof of Theorem 6.6 (One-Sided Syntactic Soundness).

Proof. Suppose ⊢ " : Ok2 . For the purpose of obtaining a contradiction, suppose " reaches a
value + . Then it follows from preservation that ⊢ + : Ok2 , but this contradicts the value inversion
lemma. �

74

