
	

	

	

	

	

	 	

Python: The Full Monty
A Tested Semantics for the

Python Programming Language

Joe Gibbs Politz
Providence, RI, USA
joe@cs.brown.edu

Alejandro Martinez
La Plata, BA, Argentina

amtriathlon@gmail.com

Matthew Milano
Providence, RI, USA

matthew@cs.brown.edu

Sumner Warren
Providence, RI, USA

jswarren@cs.brown.edu

Daniel Patterson
Providence, RI, USA

dbpatter@cs.brown.edu

Junsong Li
Beijing, China

ljs.darkfish@gmail.com

Anand Chitipothu
Bangalore, India

anandology@gmail.com

Shriram Krishnamurthi
Providence, RI, USA
sk@cs.brown.edu

Abstract
We present a small-step operational semantics for the Python
programming language. We present both a core language
for Python, suitable for tools and proofs, and a translation
process for converting Python source to this core. We have
tested the composition of translation and evaluation of the
core for conformance with the primary Python implementa-
tion, thereby giving confidence in the fidelity of the seman-
tics. We briefly report on the engineering of these compo-
nents. Finally, we examine subtle aspects of the language,
identifying scope as a pervasive concern that even impacts
features that might be considered orthogonal.

Categories and Subject Descriptors J.3 [Life and Medical
Sciences]: Biology and Genetics

Keywords serpents

1. Motivation and Contributions
The Python programming language is currently widely used
in industry, science, and education. Because of its popular-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
OOPSLA ’13, October 29-31 2013, Indianapolis, IN, USA.
Copyright © 2013 ACM 978-1-4503-2374-1/13/10. . . $15.00.
http://dx.doi.org/10.1145/2509136.2509536

ity it now has several third-party tools, including analyzers
that check for various potential error patterns [2, 5, 11, 13].
It also features interactive development environments [1, 8,
14] that offer a variety of features such as variable-renaming
refactorings and code completion. Unfortunately, these tools
are unsound: for instance, the simple eight-line program
shown in the appendix uses no “dynamic” features and con-
fuses the variable renaming feature of these environments.

The difficulty of reasoning about Python becomes even
more pressing as the language is adopted in increasingly im-
portant domains. For instance, the US Securities and Ex-
change Commission has proposed using Python as an ex-
ecutable specification of financial contracts [12], and it is
now being used to script new network paradigms [10]. Thus,
it is vital to have a precise semantics available for analyzing
programs and proving properties about them.

This paper presents a semantics for much of Python (sec-
tion 5). To make the semantics tractable for tools and proofs,
we divide it into two parts: a core language, λπ , with a small
number of constructs, and a desugaring function that trans-
lates source programs into the core.1 The core language is a
mostly traditional stateful lambda-calculus augmented with
features to represent the essence of Python (such as method
lookup order and primitive lists), and should thus be familiar
to its potential users.

1 The term desugaring is evocative but slightly misleading, because ours is
really a compiler to a slightly different language. Nevertheless, it is more
suggestive than a general term like “compiler”. We blame Arjun Guha for
the confusing terminology.

	
Because desugaring converts Python surface syntax to the

core language, when it is composed with an interpreter for
λπ (which is easy to write), we have another implementation
of Python. We can then ask how this implementation com-
pares with the traditional CPython implementation, which
represents a form of ground truth. By carefully adjusting
the core and desugaring, we have achieved high fidelity with
CPython. Therefore, users can built tools atop λπ , confident
that they are conformant with the actual language.

In the course of creating this high-fidelity semantics, we
identified some peculiar corners of the language. In partic-
ular, scope is non-trivial and interacts with perhaps unex-
pected features. Our exposition focuses on these aspects.

In sum, this paper makes the following contributions:

• a core semantics for Python, dubbed λπ , which is defined
as a reduction semantics using PLT Redex [3];

• an interpreter, dubbed λπ↓, implemented in 700LOC of
Racket, that has been tested against the Redex model;

• a desugaring translation from Python programs to λπ ,
implemented in Racket;

• a demonstration of conformance of the composition of
desugaring with λπ↓ to CPython; and,

• insights about Python gained from this process.

Presenting the semantics in full is neither feasible, given
space limits, nor especially enlightening. We instead focus
on the parts that are important or interesting. We first give
an overview of λπ’s value and object model. We then in-
troduce desugaring through classes. We then discuss gen-
erators, classes, and their interaction with scope. Finally,
we describe the results of testing our semantics against
CPython. All of our code is available online at https:
//www.github.com/brownplt/lambda-py.

2. Warmup: A Quick Tour of λπ
We provide an overview of the object model of λπ and
Python, some of the basic operations on objects, and the
shape of our small step semantics. This introduces notation
and concepts that will be used later to explain the harder
parts of Python’s semantics.

2.1 λπ Values
Figure 1 shows all the values and expressions of λπ . The
metavariables v and val range over the values of the lan-
guage. All values in λπ are either objects, written as triples
in 〈〉, or references to entries in the store Σ, written @ref.

Each λπ object is written as a triple of one of the forms:

〈v,mval,{string:ref,...}〉
〈x,mval,{string:ref,...}〉

These objects have their class in the first position, their
primitive content in the second, and the dictionary of string-
indexed fields that they hold in the third. The class value is

Σ ::= ((ref v+undef) ...)

ref ::= natural
v, val ::= 〈val,mval,{string:ref,...}〉

 | 〈x,mval,{string:ref,...}〉
 | @ref | (sym string)

v+undef ::= v | ☠
e+undef ::= e | ☠

t ::= global | local
mval ::= (no-meta) | number | string | meta-none

 | [val ...] | (val ...) | {val ...}

 | (meta-class x) | (meta-code (x ...) x e)
 | λ(x ...) opt-var.e

opt-var ::= (x) | (no-var)
e ::= v | ref | (fetch e) | (set! e e) | (alloc e)

 | e[e] | e[e := e]
 | if e e e | e e
 | let x = e+undef in e
 | x | e := e | (delete e)
 | e (e ...) | e (e ...)*e | (frame e) | (return e)
 | (while e e e) | (loop e e) | break | continue
 | (builtin-prim op (e ...))

 | fun (x ...) opt-var e
 | 〈e,mval〉 | list〈e,[e ...]〉

 | tuple〈e,(e ...)〉 | set〈e,(e ...)〉

 | (tryexcept e x e e) | (tryfinally e e)
 | (raise e) | (err val)
 | (module e e) | (construct-module e)
 | (in-module e ε)

Figure 1: λπ expressions

either another λπ value or the name of a built-in class. The
primitive content, or meta-val, position holds special kinds
of builtin data, of which there is one per builtin type that
λπ models: numbers, strings, the distinguished meta-none

value, lists, tuples, sets, classes, and functions.2

The distinguished ☠ (“skull”) form represents uninitial-
ized heap locations whose lookup should raise an excep-
tion. Within expressions, this form can only appear in let-
bindings whose binding position can contain both expres-
sions and ☠. The evaluation of ☠ in a let-binding allocates
it on the heap. Thereafter, it is an error to look up a store
location containing ☠; that location must have a value val
assigned into it for lookup to succeed. Figure 2 shows the
behavior of lookup in heaps Σ for values and for ☠. This
notion of undefined locations will come into play when we
discuss scope in section 4.2.

Python programs cannot manipulate object values di-
rectly; rather, they always work with references to objects.
Thus, many of the operations in λπ involve the heap, and
few are purely functional. As an example of what such an
operation looks like, take constructing a list. This takes the

2 We express dictionaries in terms of lists and tuples, so we do not need to
introduce a special mval form for them.

	
(E[let x = v+undef in e] ε Σ) [E-LetLocal]

(E[[x/ref]e] ε Σ1)

 where (Σ1 ref) = alloc(Σ,v+undef)

(E[ref] ε Σ) (E[val] ε Σ) [E-GetVar]
 where Σ = ((ref1 v+undef1) ... (ref val) (refn v+undefn) ...)

(E[ref] ε Σ) [E-GetVarUndef]

(E[(raise 〈%str,“Uninitialized local”,{}〉)] ε Σ)

 where Σ = ((ref1 v+undef1) ... (ref ☠) (refn v+undefn) ...)

Figure 2: Let-binding identifiers, and looking up references

(E[〈val,mval〉] ε Σ) [E-Object]

(E[@refnew] ε Σ1)

 where (Σ1 refnew) = alloc(Σ,〈val,mval,{}〉)

(E[tuple〈valc,(val ...)〉] ε Σ) [E-Tuple]

(E[@refnew] ε Σ1)

 where (Σ1 refnew) = alloc(Σ,〈valc,(val ...),{}〉)

(E[set〈valc,(val ...)〉] ε Σ) [E-Set]

(E[@refnew] ε Σ1)

 where (Σ1 refnew) = alloc(Σ,〈valc,{val ...},{}〉)

Figure 3: λπ reduction rules for creating objects

values that should populate the list, store them in the heap,
and return a pointer to the newly-created reference:

(E[list〈valc,[val ...]〉] ε Σ) [E-List]

(E[@refnew] ε Σ1)

 where (Σ1 refnew) = alloc(Σ,〈valc,[val ...],{}〉)

E-List is a good example for understanding the shape of
evaluation in λπ . The general form of the reduction relation
is over expressions e, global environments ε, and heaps Σ:

(e ε Σ) (e ε Σ)

In the E-List rule, we also use evaluation contexts E to en-
force an order of operations and eager calling semantics.
This is a standard application of Felleisen-Hieb-style small-
step semantics [4]. Saliently, a new list value is populated
from the list expression via the alloc metafunction, this is
allocated in the store, and the resulting value of the expres-
sion is a pointer refnew to that new list.

Similar rules for objects in general, tuples, and sets are
shown in figure 3. Lists, tuples, and sets are given their
own expression forms because they need to evaluate their
subexpressions and have corresponding evaluation contexts.

(E[(fetch @ref)] ε Σ) [E-Fetch]

(E[Σ(ref)] ε Σ)

(E[(set! @ref val)] ε Σ) [E-Set!]

(E[val] ε Σ1)

 where Σ1 = Σ[ref:=val]

(E[(alloc val)] ε Σ) [E-Alloc]

(E[@refnew] ε Σ1)

 where (Σ1 refnew) = alloc(Σ,val)

Figure 5: λπ reduction rules for references

2.2 Accessing Built-in Values
Now that we’ve created a list, we should be able to perform
some operations on it, like look up its elements. λπ defines
a number of builtin primitives that model Python’s internal
operators for manipulating data, and these are used to access
the contents of a given object’s mval. We formalize these
builtin primitives in a metafunction δ. A few selected cases
of the δ function are shown in figure 4. This metafunction
lets us, for example, look up values on builtin lists:

(prim “list-getitem” (〈%list,[〈%str,“first-elt”,{}〉],{}〉
〈%int,0,{}〉))

==> 〈%str,“first-elt”,{}〉

Since δ works over object values themselves, and not over
references, we need a way to access the values in the store.
λπ has the usual set of operators for accessing and updating
mutable references, shown in figure 5. Thus, the real λπ
program corresponding to the one above would be:
(prim “list-getitem”

((fetch list〈%list,[〈%str,“first-elt”,{}〉]〉)
(fetch 〈%int,0〉)))

Similarly, we can use set! and alloc to update the values in
lists, and to allocate the return values of primitive operations.

	
δ(“list-getitem” 〈anyc1,[val0 ... val1 val2 ...],any1〉 〈anyc2,number2,any2〉) = val1
 where (equal? (length (val0 ...)) number2)
δ(“list-getitem” 〈anyc1,[val1 ...],any1〉 〈anyc2,number2,any2〉) = 〈%none, meta-none ,{}〉

δ(“list-setitem” 〈anyc1,[val0 ... val1 val2 ...],any1〉 〈x2,number2,any2〉 val3 val4) = 〈val4,[val0 ... val3 val2 ...],{}〉

 where (equal? (length (val0 ...)) number2)
δ(“num+” 〈anycls,number1,any1〉 〈anycls2,number2,any2〉) = 〈anycls,(+ number1 number2),{}〉

Figure 4: A sample of λπ primitives

We desugar to patterns like the above from Python’s actual
surface operators for accessing the elements of a list in
expressions like mylist[2].

2.3 Updating and Accessing Fields
So far, the dictionary part of λπ objects have always been
empty. Python does, however, support arbitrary field assign-
ments on objects. The expression

eobj[estr := eval]

has one of two behaviors, defined in figure 6. Both behaviors
work over references to objects, not over objects themselves,
in contrast to δ. If estr is a string object that is already a
member of eobj, that field is imperatively updated with eval.
If the string is not present, then a new field is added to
the object, with a newly-allocated store position, and the
object’s location in the heap is updated.

The simplest rule for accessing fields simply checks in the
object’s dictionary for the provided name and returns the ap-
propriate value, shown in E-GetField in figure 6. E-GetField
also works over reference values, rather than objects directly.

2.4 First-class Functions
Functions in Python are objects like any other. They are
defined with the keyword def, which produces a callable
object with a mutable set of fields, whose class is the built-in
function class. For example a programmer is free to write:

def f():
return f.x

f.x = -1
f() # ==> -1

We model functions as just another kind of object value, with
a type of mval that looks like the usual functional λ:

λ(x ...) opt-var.e

The opt-var indicates whether the function is variable-
arity: if opt-var is of the form (y), then if the function is
called with more arguments than are in its list of variables
(x ...), they are allocated in a new tuple and bound to y
in the body. Since these rules are relatively unexciting and
verbose, we defer their explanation to the appendix.

2.5 Loops, Exceptions, and Modules
We defer a full explanation of the terms in figure 1, and
the entire reduction relation, to the appendix. This includes
a mostly-routine encoding of control operators via special
evaluation contexts, and a mechanism for loading new code
via modules. We continue here by focusing on cases in λπ
that are unique in Python.

3. Classes, Methods, and Desugaring
Python has a large system with first-class methods, implicit
receiver binding, multiple inheritance, and more. In this sec-
tion we discuss what parts of the class system we put in λπ ,
and which parts we choose to eliminate by desugaring.

3.1 Field Lookup in Classes
In the last section, we touched on field lookup in an object’s
local dictionary, and didn’t discuss the purpose of the class
position at all. When an object lookup 〈valc,mval,d〉[estr]

doesn’t find estr in the local dictionary d, it defers to a lookup
algorithm on the class value valc. More specifically, it uses
the “__mro__” (short for method resolution order) field of the
class to determine which class dictionaries to search for the
field. This field is visible to the Python programmer:

class C(object):
pass # a class that does nothing

print(C.__mro__)
(<class ’C’>, <class ’object’>)

Field lookups on objects whose class value is C will first
look in the dictionary of C, and then in the dictionary of
the built-in class object. We define this lookup algorithm
within λπ as class-lookup, shown in figure 7 along with the
reduction rule for field access that uses it.

This rule allows us to model field lookups that defer to a
superclass (or indeed, a list of them). But programmers don’t
explicitly define “__mro__” fields; rather, they use higher-
level language constructs to build up the inheritance hier-
archy the instances eventually use.

3.2 Desugaring Classes
Most Python programmers use the special class form to
create classes in Python. However, class is merely syntac-

	
(E[@refobj [@refstr := val1]] ε Σ) [E-SetFieldUpdate]

(E[val1] ε Σ[ref1:=val1])
 where 〈anycls1,mval,{string2:ref2,...,string1:ref1,string3:ref3,...}〉 = Σ(refobj),

〈anycls2,string1,anydict〉 = Σ(refstr)

(E[@refobj [@refstr := val1]] ε Σ) [E-SetFieldAdd]

(E[val1] ε Σ2)

 where 〈anycls1,mval,{string:ref,...}〉 = Σ(refobj),
(Σ1 refnew) = alloc(Σ,val1),
〈anycls2,string1,anydict〉 = Σ(refstr),
Σ2 = Σ1[refobj:=〈anycls1,mval,{string1:refnew,string:ref,...}〉],
(not (member string1 (string ...)))

(E[@ref [@refstr]] ε Σ) [E-GetField]

(E[Σ(ref1)] ε Σ)

 where 〈anycls1,string1,anydict〉 = Σ(refstr),
〈anycls2,mval,{string2:ref2,...,string1:ref1,string3:ref3,...}〉 = Σ(ref)

Figure 6: Simple field access and update in λπ

(E[@refobj [@refstr]] ε Σ) [E-GetField-Class]

(E[valresult] ε Σresult)

 where 〈anycls,string,anydict〉 = Σ(refstr),
〈@ref ,mval,{string1:ref2,...}〉 = Σ(refobj),
(Σresult valresult) = class-lookup[[@refobj , Σ(ref), string, Σ]] ,

(not (member string (string1 ...)))

class-lookup[[@refobj , 〈anyc,anymval,{string1:ref1,...,“__mro__”:ref,string2:ref2,...}〉,
string, Σ]]

 = (Σ valresult)

 where 〈any1,(valcls ...),any3〉 = fetch-pointer[[Σ(ref), Σ]] ,

valresult = class-lookup-mro[[(valcls ...), string, Σ]]

class-lookup-mro[[(@refc valrest ...), string, Σ]] = Σ(ref)
 where 〈any1,any2,{string1:ref1,...,string:ref,string2:ref2,...}〉 = Σ(refc)
class-lookup-mro[[(@refc valrest ...), string, Σ]] = class-lookup-mro[[(valrest ...),

string, Σ]]

 where 〈any1,any2,{string1:ref1,...}〉 = Σ(refc), (not (member string (string1 ...)))

fetch-pointer[[@ref , Σ]] = Σ(ref)

Figure 7: Class lookup

tic sugar for a use of the builtin Python function type.3 The
documentation states explicitly that the two following forms
[sic] produce identical type objects:

class X:
a = 1

X = type(’X’, (object,), dict(a=1))

This means that to implement classes, we merely need to
understand the built-in function type, and how it creates

3 http://docs.python.org/3/library/functions.html#type

new classes on the fly. Then it is a simple matter to desugar
class forms to this function call.

The implementation of type creates a new object value
for the class, allocates it, sets the “__mro__” field to be the
computed inheritance graph,4 and sets the fields of the class
to be the bindings in the dictionary. We elide some of the
verbose detail in the iteration over dict by using the for syn-
tactic abbreviation, which expands into the desired iteration:

4 This uses an algorithm that is implementable in pure Python:
http://www.python.org/download/releases/2.3/mro/.

	

%type :=
fun (cls bases dict)

let newcls = (alloc 〈%type,(meta-class cls),{}〉) in
newcls[〈%str,“__mro__”〉 :=
(builtin-prim “type-buildmro” (newcls bases))]
(for (key elt) in dict[〈%str,“__items__”〉] ()

newcls[key := elt])
(return newcls)

This function, along with the built-in type class, suffices
for bootstrapping the object system in λπ .

3.3 Python Desugaring Patterns
Python objects can have a number of so-called magic fields
that allow for overriding the behavior of built-in syntactic
forms. These magic fields can be set anywhere in an object’s
inheritance hierarchy, and provide a lot of the flexibility for
which Python is well-known.

For example, the field accesses that Python programmers
write are not directly translated to the rules in λπ . Even
the execution of o.x depends heavily on its inheritance
hierarchy. This program desugars to:

o[〈%str,“__getattribute__”〉] (o 〈%str,“x”〉)

For objects that don’t override the “__getattribute__” field,
the built-in object class’s implementation does more than
simply look up the “x” property using the field access rules
we presented earlier. Python allows for attributes to imple-
ment special accessing functionality via properties,5 which
can cause special functions to be called on property access.
The “__getattribute__” function of object checks if the
value of the field it accesses has a special “__get__” method,
and if it does, calls it:
object[〈%str,“__getattribute__”〉 :=
fun (obj field)

let value = obj[field] in
if (builtin-prim “has-field?” (value

〈%str,“__get__”〉))
(return value[〈%str,“__get__”〉] ())
(return value)]

This pattern is used to implement a myriad of features.
For example, when accessing function values on classes, the
“__get__” method of the function binds the self argument:

class C(object):
def f(self):

return self

c = C() # constructs a new C instance
g = c.f # accessing c.f creates a

method object closed over c
g() is c # ==> True

We can also bind self manually:
self_is_5 = C.f.__get__(5)
self_is_5() # ==> 5

5 http://docs.python.org/3/library/functions.html#property

Thus, very few object-based primitives are needed to create
static class methods and instance methods.

Python has a number of other special method names that
can be overridden to provide specialized behavior. λπ tracks
Python this regard; it desugars surface expressions into calls
to methods with particular names, and provides built-in im-
plementations of those methods for arithmetic, dictionary
access, and a number of other operations. Some examples:

o[p] desugars to... o[〈%str,“__getitem__”〉] (p)
n + m desugars to... n[〈%str,“__add__”〉] (m)

fun(a) desugars to... fun[〈%str,“__call__”〉] (a)

With the basics of type and object lookup in place,
getting these operations right is just a matter of desugaring
to the right method calls, and providing the right built-in
versions for primitive values. This is the form of much of
our desugaring, and though it is labor-intensive, it is also the
straightforward part of the process.

4. Python: the Hard Parts
Not all of Python has a semantics as straightforward as
that presented so far. Python has a unique notion of scope,
with new scope operators added in Python 3 to provide
some features of more traditional static scoping. It also has
powerful control flow constructs, notably generators.

4.1 Generators
Python has a built-in notion of generators, which provide a
control-flow construct, yield, that can implement lazy or
generative sequences and coroutines. The programmer in-
terface for creating a generator in Python is straightforward:
any function definition that uses the yield keyword in its
body is automatically converted into an object with a gener-
ator interface. To illustrate the easy transition from function
to generator, consider this simple program:

def f():
x = 0
while True:

x += 1
return x

f() # ==> 1
f() # ==> 1
...

When called, this function always returns 1.
Changing return to yield turns this into a generator.

As a result, applying f() no longer immediately evaluates
the body; instead, it creates an object whose next method
evaluates the body until the next yield statement, stores its
state for later resumption, and returns the yielded value:

	
def f():

x = 0
while True:

x += 1
yield x

gen = f()
gen.__next__() # ==> 1
gen.__next__() # ==> 2
gen.__next__() # ==> 3
...

Contrast this with the following program, which seems to
perform a simple abstraction over the process of yielding:

def f():
def do_yield(n):

yield n
x = 0
while True:

x += 1
do_yield(x)

Invoking f() results in an infinite loop. That is because
Python strictly converts only the innermost function with a
yield into a generator, so only do_yield is a generator.
Thus, the generator stores only the execution context of
do_yield, not of f.

Failing to Desugar Generators with (Local) CPS
The experienced linguist will immediately see what is going
on. Clearly, Python has made a design decision to store
only local continuations. This design can be justified on the
grounds that converting a whole program to continuation-
passing style (CPS) can be onerous, is not modular, can
impact performance, and depends on the presence of tail-
calls (which Python does not have). In contrast, it is natural
to envision a translation strategy that performs only a local
conversion to CPS (or, equivalently, stores the local stack
frames) while still presenting a continuation-free interface
to the rest of the program.

From the perspective of our semantics, this is a potential
boon: we don’t need to use a CPS-style semantics for the
whole language! Furthermore, perhaps generators can be
handled by a strictly local rewriting process. That is, in
the core language generators can be reified into first-class
functions and applications that use a little state to record
which function is the continuation of the yield point. Thus,
generators seem to fit perfectly with our desugaring strategy.

To convert programs to CPS, we take operators that can
cause control-flow and reify each into a continuation func-
tion and appropriate application. These operators include
simple sequences, loops combined with break and con-
tinue, try-except and try-finally combined with
raise, and return. Our CPS transformation turns every
expression into a function that accepts an argument for each

of the above control operators, and turns uses of control op-
erators into applications of the appropriate continuation in-
side the function. By passing in different continuation argu-
ments, the caller of the resulting function has complete con-
trol over the behavior of control operators. For example, we
might rewrite a try-except block from

try:
raise Exception()

except e:
print(e)

to

def except_handler(e): print(e)
except_handler(Exception())

In the case of generators, rewriting yield with CPS
would involve creating a handler that stores a function hold-
ing the code for what to do next, and rewriting yield ex-
pressions to call that handler:

def f():
x = 1
yield x
x += 1
yield x

g = f()
g.__next__() # ==> 1
g.__next__() # ==> 2
g.__next__() # throws "StopIteration"

would be rewritten to something like:6

def f():

def yielder(val, rest_of_function):
next.to_call_next = rest_of_function
return val

def next():
return next.to_call_next()

def done(): raise StopIteration()
def start():

x = 1
def rest():

x += 1
return yielder(x, done)

return yielder(x, rest)

next.to_call_next = start

return { ’next’ : next }

6 This being a sketch, we have taken some liberties for simplicity.

	

g = f()
g[’next’]() # ==> 1
g[’next’]() # ==> 2
g[’next’]() # throws "StopIteration"

We build the yielder function, which takes a value,
which it returns after storing a continuation argument in the
to_call_next field. The next function always returns
the result of calling this stored value. Each yield statement
is rewritten to put everything after it into a new function def-
inition, which is passed to the call to yielder. In other
words, this is the canonical CPS transformation, applied in
the usual fashion.

This rewriting is well-intentioned but does not work. If
this program is run under Python, it results in an error:

x += 1
UnboundLocalError: local variable ’x’

This is because Python creates a new scope for each func-
tion definition, and assignments within that scope create new
variables. In the body of rest, the assignment x += 1
refers to a new x, not the one defined by x = 1 in start.
This runs counter to traditional notions of functions that can
close over mutable variables. And in general, with multiple
assignment statements and branching control flow, it is en-
tirely unclear whether a CPS transformation to Python func-
tion definitions can work.

The lesson from this example is that the interaction of
non-traditional scope and control flow made a traditional
translation not work. The straightforward CPS solution is
thus incorrect in the presence of Python’s mechanics of
variable binding. We now move on to describing how we
can express Python’s scope in a more traditional lexical
model. Then, in section 4.3 we will demonstrate a working
transformation for Python’s generators.

4.2 Scope
Python has a rich notion of scope, with several types of
variables and implicit binding semantics that depend on the
block structure of the program. Most identifiers are local;
this includes function parameters and variables defined with
the = operator. There are also global and nonlocal vari-
ables, with their own special semantics within closures, and
interaction with classes. Our core contribution to explaining
Python’s scope is to give a desugaring of the nonlocal and
global keywords, along with implicit local, global
and instance identifiers, into traditional lexically scoped
closures. Global scope is still handled specially, since it ex-
hibits a form of dynamic scope that isn’t straightforward to
capture with traditional let-bindings.7

7 We actually exploit this dynamic scope in bootstrapping Python’s object
system, but defer an explanation to the appendix.

We proceed by describing Python’s handling of scope
for local variables, the extension to nonlocal, and the
interaction of both of these features with classes.

4.2.1 Declaring and Updating Local Variables
In Python, the operator = performs local variable binding:

def f():
x = ’local variable’
return x

f() # ==> ’local variable’

The syntax for updating and creating a local variable are
identical, so subsequent = statements mutate the variable
created by the first.

def f():
x = ’local variable’
x = ’reassigned’
x = ’reassigned again’
return x

f() # ==> ’reassigned again’

Crucially, there is no syntactic difference between a state-
ment that updates a variable and one that initially binds it.
Because bindings can also be introduced inside branches of
conditionals, it isn’t statically determinable if a variable will
be defined at certain program points. Note also that vari-
able declarations are not scoped to all blocks—here they are
scoped to function definitions:

def f(y):
if y > .5: x = ’big’
else : pass
return x

f(0) # throws an exception
f(1) # ==> "big"

Handling simple declarations of variables and updates
to variables is straightforward to translate into a lexically-
scoped language. λπ has a usual let form that allows for
lexical binding. In desugaring, we scan the body of the
function and accumulate all the variables on the left-hand
side of assignment statements in the body. These are let-
bound at the top of the function to the special ☠ form, which
evaluates to an exception in any context other than a let-
binding context (section 2). We use x := e as the form for
variable assignment, which is not a binding form in the core.
Thus, in λπ , the example above rewrites to:

	
let f = ☠ in

f :=

fun (y) (no-var)

let x = ☠ in

if (builtin-prim “num>” (y 〈%float,0.5〉))

x := 〈%str,“big”〉
none

(return x)

f (〈%int,0〉)

f (〈%int,1〉)

In the first application (to 0) the assignment will never hap-
pen, and the attempt to look up the ☠-valued x in the return
statement will fail with an exception. In the second applica-
tion, the assignment in the then-branch will change the value
of x in the store to a non-☠ string value, and the string “big”

will be returned.
The algorithm for desugaring scope is so far:

• For each function body:

Collect all variables on the left-hand side of = in a set
locals, stopping at other function boundaries,

For each variable var in locals, wrap the function
body in a let-binding of var to ☠.

This strategy works for simple assignments that may or may
not occur within a function, and maintains lexical structure
for the possibly-bound variables in a given scope. Unfortu-
nately, this covers only the simplest cases of Python’s scope.

4.2.2 Closing Over Variables
Bindings from outer scopes can be seen by inner scopes:

def f():
x = ’closed-over’
def g():

return x
return g

f()() # ==> ’closed-over’

However, since = defines a new local variable, one cannot
close over a variable and mutate it with what we’ve seen so
far; = simply defines a new variable with the same name:

def g():
x = ’not affected’
def h():

x = ’inner x’
return x

return (h(), x)

g() # ==> (’inner x’, ’not affected’)

This is mirrored in our desugaring: each function adds a
new let-binding inside its own body, shadowing any bindings

from outside. This was the underlying problem with the
attempted CPS translation from the last section, highlighting
the consequences of using the same syntactic form for both
variable binding and update.

Closing over a mutable variable is, however, a common
and useful pattern. Perhaps recognizing this, Python added
a new keyword in Python 3.0 to allow this pattern, called
nonlocal. A function definition can include a nonlocal
declaration at the top, which allows mutations within the
function’s body to refer to variables in enclosing scopes
on a per-variable basis. If we add such a declaration to the
previous example, we get a different answer:

def g():
x = ’not affected by h’
def h():

nonlocal x
x = ’inner x’
return x

return (h(), x)

g() # ==> (’inner x’, ’inner x’)

The nonlocal declaration allows the inner assignment to
x to “see” the outer binding from g. This effect can span any
nesting depth of functions:

def g():
x = ’not affected by h’
def h():

def h2():
nonlocal x
x = ’inner x’
return x

return h2
return (h()(), x)

g() # ==> (’inner x’, ’inner x’)

Thus, the presence or absence of a nonlocal declara-
tion can change an assignment statement from a binding oc-
currence of a variable to an assigning occurrence. We aug-
ment our algorithm for desugaring scope to reflect this:

• For each function body:

Collect all variables on the left-hand side of = in a set
locals, stopping at other function boundaries,

Let locals’ be locals with any variables in nonlocal
declarations removed,

For each variable var in locals’, wrap the function
body in a let-binding of var to ☠.

Thus the above program would desugar to the following,
which does not let-bind x inside the body of the function
assigned to h.

	

def f(x, y):
print(x); print(y); print("")
class c:

x = 4
print(x); print(y)
print("")
def g(self):

print(x); print(y); print(c)
return c

f("x-value", "y-value")().g()

produces this result:

x-value
y-value

4
y-value

x-value
y-value
<class ’__main__.c’>

Figure 8: An example of class and function scope interacting

let g = ☠ in

g :=
fun ()
let x = ☠ in

let h = ☠ in

x := 〈%str,“not affected by h”,{}〉

h :=
fun ()
x := 〈%str,“inner x”,{}〉

(return x)
(return tuple〈%tuple,(h () () x)〉)

g ()

The assignment to x inside the body of h behaves as a
typical assignment statement in a closure-based language
like Scheme, mutating the let-bound x defined in g.

4.2.3 Classes and Scope
We’ve covered some subtleties of scope for local and nonlo-
cal variables and their interaction with closures. What we’ve
presented so far would be enough to recover lexical scope
for a CPS transformation for generators if function bodies
contained only other functions. However, it turns out that we
observe a different closure behavior for variables in a class
definition than we do for variables elsewhere in Python, and
we must address classes to wrap up the story on scope.

Consider the example in figure 8. Here we observe an
interesting phenomenon: in the body of g, the value of the

Figure 9: Interactions between class bodies and function
scope

variable x is not 4, the value of the most recent apparent
assignment to x. In fact, the body of g seems to "skip" the
scope in which x is bound to 4, instead closing over the outer
scope in which x is bound to "x-value". At first glance
this does not appear to be compatible with our previous
notions of Python’s closures. We will see, however, that the
correct desugaring is capable of expressing the semantics
of scope in classes within the framework we have already
established for dealing with Python’s scope.

Desugaring classes is substantially more complicated
than handling simple local and nonlocal cases. Consider the
example from figure 8, stripped of print statements:

def f(x, y):
class c:

x = 4
def g(self): pass

return c
f("x-value", "y-value")().g()

In this example, we have three local scopes: the body of
the function f, the body of the class definition c, and the body
of the function g. The scopes of c and g close over the same
scope as f, but have distinct, non-nesting scopes themselves.
Figure 9 shows the relationship graphically. Algorithmically,
we add new steps to scope desugaring:

• For each function body:

For each nested class body:

− Collect all the function definitions within the class
body. Let the set of their names be defnames and
the set of the expressions be defbodies,

− Generate a fresh variable deflifted for each vari-
able in defnames. Add assignment statements to the
function body just before the class definition as-

	
signing each deflifted to the corresponding ex-
pression in defbodies,

− Change each function definition in the body of the
class to defname := deflifted

Collect all variables on the left-hand side of = in a set
locals, stopping at other function boundaries,

Let locals’ be locals with any variables in nonlocal
declarations removed,

For each variable var in locals’, wrap the function
body in a let-binding of var to ☠.

Recalling that the instance variables of a class desugar
roughly to assignments to the class object itself, the function
desugars to the following:

let f = ☠ in

f :=

fun (x y)
let extracted-g = ☠ in

let c = ☠ in
extracted-g := fun () none
c := (class “c”)
c[〈%str,“x”〉 := 〈%int,4〉]
c[〈%str,“g”〉 := extracted-g]
(return c)

This achieves our desired semantics: the bodies of func-
tions defined in the class C will close over the x and y from
the function definition, and the statements written in c-scope
can still see those bindings. We note that scope desugaring
yields terms in an intermediate language with a class key-
word. In a later desugaring step, we remove the class key-
word as we describe in section 3.2.

4.2.4 Instance Variables
When we introduced classes we saw that there is no apparent
difference between classes that introduce identifiers in their
body and classes that introduce identifiers by field assign-
ment. That is, either of the following forms will produce the
same class C:

class C:
x = 3

or ...
class C: pass
C.x = 3

We do, however, have to still account for uses of the in-
stance variables inside the class body, which are referred to
with the variable name, not with a field lookup like c.x.
We perform a final desugaring step for instance variables,
where we let-bind them in a new scope just for evaluating
the class body, and desugar each instance variable assign-
ment into both a class assignment and an assignment to the
variable itself. The full desugaring of the example is shown
in figure 10.

let f = ☠ in

f :=

fun (x y)
let extracted-g = ☠ in

let c = ☠ in
extracted-g := fun () none
c := (class “c”)
let g = ☠ in

let x = ☠ in
c[〈%str,“x”〉 := 〈%int,4〉]
x := 〈%int,4〉
c[〈%str,“g”〉 := extracted-g]
g := extracted-g

(return c)

Figure 10: Full class scope desugaring

We have now covered Python classes’ scope seman-
tics: function bodies do not close over the class body’s
scope, class bodies create their own local scope, state-
ments in class bodies are executed sequentially, and defi-
nitions/assignments in class bodies result in the creation of
class members. The nonlocal keyword does not require
further special treatment, even when present in class bodies.

4.3 Generators Redux
With the transformation to a lexical core in hand, we can
return to our discussion of generators, and their implemen-
tation with a local CPS transformation.

To implement generators, we first desugar Python down
to a version of λπ with an explicit yield statement, passing
yields through unchanged. As the final stage of desugar-
ing, we identify functions that contain yield, and convert
them to generators via local CPS. We show the desugaring
machinery around the CPS transformation in figure 11. To
desugar them, in the body of the function we construct a
generator object and store the CPS-ed body as a ___re-
sume attribute on the object. The __next__ method on
the generator, when called, will call the ___resume clo-
sure with any arguments that are passed in. To handle yield-
ing, we desugar the core yield expression to update the
___resume attribute to store the current normal continua-
tion, and then return the value that was yielded.

Matching Python’s operators for control flow, we have
five continuations, one for the normal completion of a state-
ment or expression going onto the next, one for a return
statement, one each for break and continue, and one
for the exception throwing raise. This means that each
CPSed expression becomes an anonymous function of five
arguments, and can be passed in the appropriate behavior
for each control operator.

We use this configurability to handle two special cases:

• Throwing an exception while running the generator
• Running the generator to completion

	

def f(x ...): body-with-yield

desugars to...
fun (x ...)

let done =
fun () (raise StopIteration ()) in

let initializer =
fun (self)

let end-of-gen-normal =
fun (last-val)
self[〈%str,“__next__”〉 := done]
(raise StopIteration ()) in

let end-of-gen-exn =
fun (exn-val)
self[〈%str,“__next__”〉 := done]
(raise exn-val) in

let unexpected-case =
fun (v)
(raise SyntaxError ()) in

let resumer =
fun (yield-send-value)
(return

(cps-of body-with-yield)
(end-of-gen-normal
unexpected-case
end-of-gen-exn
unexpected-case
unexpected-case)) in

self[〈%str,“___resume”〉 := resumer] in
%generator (initializer)

where...

class generator(object):
def __init__(self, init):

init(self)

def __next__(self):
return self.___resume(None)

def send(self, arg):
return self.___resume(arg)

def __iter__(self):
return self

def __list__(self):
return [x for x in self]

Figure 11: The desugaring of generators

In the latter case, the generator raises a StopItera-
tion exception. We encode this by setting the initial “nor-
mal” continuation to a function that will update ___re-
sume to always raise StopIteration, and then to raise
that exception. Thus, if we evaluate the entire body of the
generator, we will pass the result to this continuation, and
the proper behavior will occur.

Similarly, if an uncaught exception occurs in a generator,
the generator will raise that exception, and any subsequent
calls to the generator will result in StopIteration. We
handle this by setting the initial raise continuation to be
code that updates ___resume to always raise StopIt-
eration, and then we raise the exception that was passed
to the continuation. Since each try block in CPS installs a
new exception continuation, if a value is passed to the top-
level exception handler it means that the exception was not
caught, and again the expected behavior will occur.

5. Engineering & Evaluation
Our goal is to have desugaring and λπ enjoy two properties:

• Desugaring translates all Python source programs to λπ
(totality).

• Desugared programs evaluate to the same value as the
source would in Python (conformance).

The second property, in particular, cannot be proven because
there is no formal specification for what Python does. We
therefore tackle both properties through testing. We discuss
various aspects of implementing and testing below.

5.1 Desugaring Phases
Though we have largely presented desugaring as an atomic
activity, the paper has hinted that it proceeds in phases.
Indeed, there are four:

• Lift definitions out of classes (section 4.2.3).
• Let-bind variables (section 4.2.2). This is done sec-

ond to correctly handle occurrences of nonlocal and
global in class methods. The result of these first two
steps is an intermediate language between Python and the
core with lexical scope, but still many surface constructs.

• Desugar classes, turn Python operators into method calls,
turn for loops into guarded while loops, etc.

• Desugar generators (section 4.3).

These four steps yield a term in our core, but it isn’t ready
to run yet because we desugar to open terms. For instance,
print(5) desugars to

print (〈%int,5〉)

which relies on free variables print and %int.

	
5.2 Python Libraries in Python
We implement as many libraries as possible in Python8 aug-
mented with some macros recognized by desugaring. For ex-
ample, the builtin tuple class is implemented in Python, but
getting the length of a tuple defers to the δ function:

class tuple(object):
def __len__(self):

return ___delta("tuple-len", self)
...

All occurrences of ___delta(str, e, ...) are desug-
ared to (builtin-prim str (e ...)) directly. We only do
this for library files, so normal Python programs can use
___delta as the valid identifier it is. As another example,
after the class definition of tuples, we have the statement

___assign("%tuple", tuple)

which desugars to an assignment statement %tuple := tuple.
Since %-prefixed variables aren’t valid in Python, this
gives us an private namespace of global variables that are
un-tamperable by Python. Thanks to these decisions, this
project produces far more readable desugaring output than a
previous effort for JavaScript [6].

5.3 Performance
λπ may be intended as a formal semantics, but composed
with desugaring, it also yields an implementation. While
the performance does not matter for semantic reasons (other
than programs that depend on time or space, which would
be ill-suited by this semantics anyway), it does greatly affect
how quickly we can iterate through testing!

The full process for running a Python program in our
semantics is:

1. Parse and desugar roughly 1 KLOC of libraries imple-
mented in Python

2. Parse and desugar the target program

3. Build a syntax tree of several built-in libraries, coded by
building the AST directly in Racket

4. Compose items 1-3 into a single λπ expression

5. Evaluate the λπ expression

Parsing and desugaring for (1) takes a nontrivial amount of
time (40 seconds on the first author’s laptop). Because this
work is needlessly repeated for each test, we began caching
the results of the desugared library files, which reduced the
testing time into the realm of feasibility for rapid develop-
ment. When we first performed this optimization, it made
running 100 tests drop from roughly 7 minutes to 22 sec-
onds. Subsequently, we moved more functionality out of λπ

8 We could not initially use existing implementations of these in Python
for bootstrapping reasons: they required more of the language than we
supported.

Feature # of tests LOC

Built-in Datatypes 81 902
Scope 39 455
Exceptions 25 247
(Multiple) Inheritance 16 303
Properties 9 184
Iteration 13 214
Generators 9 129
Modules 6 58

Total 205 2636

Figure 12: Distribution of passing tests

and into verbose but straightforward desugaring, causing se-
rious performance hit; running 100 tests now takes on the
order of 20 minutes, even with the optimization.

5.4 Testing
Python comes with an extensive test suite. Unfortunately,
this suite depends on numerous advanced features, and as
such was useless as we were building up the semantics.
We therefore went through the test suite files included with
CPython, April 2012,9 and ported a representative suite of
205 tests (2600 LOC). In our selection of tests, we focused
on orthogonality and subtle corner-cases. The distribution of
those tests across features is reported in figure 12. On all
these tests we obtain the same results as CPython.

It would be more convincing to eventually handle all of
Python’s own unittest infrastructure to run CPython’s
test suite unchanged. The unittest framework of CPython
unfortunately relies on a number of reflective features on
modules, and on native libraries, that we don’t yet cover. For
now, we manually move the assertions to simpler if-based
tests, which also run under CPython, to check conformance.

5.5 Correspondence with Redex
We run our tests against λπ↓, not against the Redex-defined
reduction relation for λπ . We can run tests on λπ , but per-
formance is excruciatingly slow: it takes over an hour to run
complete individual tests under the Redex reduction relation.
Therefore, we have been able to perform only limited test-
ing for conformance by hand-writing portions of the envi-
ronment and heap (as Redex terms) that the Python code in
the test uses. Fortunately, executing against Redex should be
parallelizable, so we hope to increase confidence in the Re-
dex model as well.

9 http://www.python.org/getit/releases/3.2.3/

	
6. Future Work and Perspective
As section 5 points out, there are some more parts of Python
we must reflect in the semantics before we can run Python’s
test cases in their native form. This is because Python is a
large language with extensive libraries, a foreign-function
interface, and more.

Libraries aside, there are some interesting features in
Python left to tackle. These include special fields, such as
the properties of function objects that compute the content
of closures, complex cases of destructuring assignments, a
few reflective features like the metaclass form, and others.

More interestingly, we are not done with scope! Consider
locals, which returns a dictionary of the current variable
bindings in a given scope:

def f(x):
y = 3
return locals()

f("val") # ==> {’x’: ’val’, ’y’: 3}

This use of locals can be desugared to a clever combi-
nation of assignments into a dictionary along with variable
assignments, which we do. However, this desugaring of lo-
cals relies on it being a strictly local operation (for lack of
a better word). But worse, locals is a value!

def f(x, g):
y = 3
return g()

f("x-val", locals)
==> {’x’: ’x-val’, ’y’: 3,
’g’: <builtin function locals>}

Thus, any application could invoke locals. We would
therefore need to deploy our complex desugaring every-
where we cannot statically determine that a function is not
locals, and change every application to check for it. Other
built-in values like super and dir exhibit similar behavior.

On top of this, import can splice all identifiers (*)
from a module into local scope. For now, we handle only
imports that bind the module object to a single identifier.
Indeed, even Python 3 advises that import * should only
be used at module scope. Finally, we do not handle exec,
Python’s “eval” (though the code-loading we do for modules
comes close). Related efforts on handling similar operators
in JavaScript [6] are sure to be helpful here.

We note that most traditional analyses would be seriously
challenged by programs that use functions like locals in a
higher-order way, and would probably benefit from checking
that it isn’t used in the first place. We don’t see the lack of
full support for such functions as a serious weakness of λπ ,
or an impediment to reasoning about most Python programs.
Rather, it’s an interesting future challenge to handle a few of

these remaining esoteric features. It’s also useful to simply
call out the weirdness of these operators, which are liable to
violate the soundness of otherwise-sound program tools.

Overall, what we have learned most from this effort is
how central scope is to understanding Python. Many of its
features are orthogonal, but they all run afoul on the shoals of
scope. Whether this is intentional or an accident of the con-
torted history of Python’s scope is unclear (for example, see
the discussion around the proposal to add nonlocal [15]),
but also irrelevant. Those attempting to improve Python or
create robust sub-languages of it—whether for teaching or
for specifying asset-backed securities—would do well to put
their emphasis on scope first, because this is the feature most
likely to preclude sound analyses, correctness-preserving
refactorings, and so on.

7. Related Work
We are aware of only one other formalization for Python:
Smeding’s unpublished and sadly unheralded master’s the-
sis [9]. Smeding builds an executable semantics and tests it
against 134 hand-written tests. The semantics is for Python
2.5, a language version without the complex scope we han-
dle. Also, instead of defining a core, it directly evaluates (a
subset of) Python terms. Therefore, it offers a weaker ac-
count of the language and is also likely to be less useful for
certain kinds of tools and for foundational work.

There are a few projects that analyze Python code. They
are either silent about the semantics or explicitly eschew
defining one. We therefore do not consider these related.

Our work follows the path laid out by λJS [7] and its
follow-up [6], both for variants of JavaScript.

Acknowledgments
We thank the US NSF and Google for their support. We
thank Caitlin Santone for lending her graphical expertise to
figure 9. The paper title is entirely due to Benjamin Lerner.
We are grateful to the Artifact Evaluation Committee for
their excellent and detailed feedback, especially the one re-
viewer who found a bug in iteration with generators.

This paper was the result of an international collaboration
resulting from an on-line course taught by the first and last
authors. Several other students in the class also contributed
to the project, including Ramakrishnan Muthukrishnan, Bo
Wang, Chun-Che Wang, Hung-I Chuang, Kelvin Jackson,
Victor Andrade, and Jesse Millikan.

Bibliography
[1] Appcelerator. PyDev. 2013. http://pydev.org/

[2] Johann C. Rocholl. PEP 8 1.4.5. 2013. https://
pypi.python.org/pypi/pep8

[3] Matthias Felleisen, Robert Bruce Findler, and Matthew
Flatt. Semantics Engineering with PLT Redex. 2009.

	
[4] Matthias Felleisen and Robert Hieb. The Revised Re-

port on the Syntactic Theories of Sequential Control
and State. Theoretical Computer Science 103(2), 1992.

[5] Phil Frost. Pyflakes 0.6.1. 2013. https://pypi.
python.org/pypi/pyflakes

[6] Joe Gibbs Politz, Matthew J. Carroll, Benjamin S.
Lerner, Justin Pombrio, and Shriram Krishnamurthi.
A Tested Semantics for Getters, Setters, and Eval in
JavaScript. In Proc. Dynamic Languages Symposium,
2012.

[7] Arjun Guha, Claudiu Saftoiu, and Shriram Krishna-
murthi. The Essence of JavaScript. In Proc. European
Conference on Object-Oriented Programming, 2010.

[8] JetBrains. PyCharm. 2013. http://www.
jetbrains.com/pycharm/

[9] Gideon Joachim Smeding. An executable operational
semantics for Python. Universiteit Utrecht, 2009.

[10] James McCauley. About POX. 2013. http://www.
noxrepo.org/pox/about-pox/

[11] Neal Norwitz. PyChecker 0.8.12. 2013. https://
pypi.python.org/pypi/PyChecker

[12] Securities and Exchange Commission. Release
Nos. 33-9117; 34-61858; File No. S7-08-10. 2010.
https://www.sec.gov/rules/proposed/
2010/33-9117.pdf

[13] Sylvain Thenault. PyLint 0.27.0. 2013. https://
pypi.python.org/pypi/pylint

[14] Wingware. Wingware Python IDE. 2013. http://
wingware.com/

[15] Ka-Ping Yee. Access to Names in Outer Spaces.
2009. http://www.python.org/dev/peps/
pep-3104/

Appendix 1: The Rest of λπ
The figures in this section show the rest of the λπ semantics.
We proceed to briefly present each of them in turn.

1. Contexts and Control Flow

Figures 13, 14, 15, and 16 show the different contexts
we use to capture left-to-right, eager order of operations in
λπ . E is the usual evaluation context that enforces left-to-
right, eager evaluation of expressions. T is a context for the
first expression of a tryexcept block, used to catch instances
of raise. Similarly, H defines contexts for loops, detecting
continue and break, and R defines contexts for return state-
ments inside functions. Each interacts with a few expression
forms to handle non-local control flow.

Figure 17 shows how these contexts interact with expres-
sions. For example, in first few rules, we see how we handle
break and continue in while statements. When while takes a

E ::= []
 | (fetch E) | (set! E e) | (set! val E)
 | (alloc E)
 | (module E e)
 | 〈E,mval〉
 | ref := E | x := E
 | E[e := e] | v[E := e] | v[v := E]
 | E e
 | if E e e
 | let x = E in e
 | list〈E,[e ...]〉 | list〈val,Es〉
 | tuple〈E,(e ...)〉 | tuple〈val,Es〉
 | set〈E,(e ...)〉 | set〈val,Es〉
 | E[e] | val[E]
 | (builtin-prim op Es)
 | (raise E)
 | (return E)
 | (tryexcept E x e e) | (tryfinally E e)
 | (loop E e) | (frame E)
 | E (e ...) | val Es
 | E (e ...)*e | val Es*e
 | val (val ...)*E
 | (construct-module E) | (in-module E ε)

Es ::= (val ... E e ...)

Figure 13: Evaluation contexts

T ::= []
 | (fetch T) | (set! T e) | (set! val T)
 | (alloc T)
 | 〈T,mval〉
 | ref := T | x := T
 | T[e := e] | v[T := e] | v[v := T]
 | T e
 | if T e e
 | let x = T in e
 | list〈T,e〉 | list〈val,Ts〉
 | tuple〈T,e〉 | tuple〈val,Ts〉
 | set〈T,e〉 | set〈val,Ts〉
 | T[e] | val[T]
 | (builtin-prim op Ts)
 | (raise T)
 | (loop T e) | (frame T)
 | T (e ...) | val Ts
 | T (e ...)*e | val Ts*e
 | val (val ...)*T
 | (construct-module T)

Ts ::= (val ... T e ...)

Figure 14: Contexts for try-except

	

H ::= []
 | (fetch H) | (set! H e) | (set! val H)
 | (alloc H)
 | 〈H,mval〉
 | ref := H | x := H
 | H[e := e] | v[H := e] | v[v := H]
 | H e
 | if H e e
 | let x = H in e
 | list〈H,e〉 | list〈val,Hs〉
 | tuple〈H,e〉 | tuple〈val,Hs〉
 | set〈H,e〉 | set〈val,Hs〉
 | H[e] | val[H]
 | (builtin-prim op Hs)
 | (raise H)
 | (tryexcept H x e e)
 | H (e ...) | val Hs
 | H (e ...)*e | val Hs*e
 | val (val ...)*H
 | (construct-module E)

Hs ::= (val ... H e ...)

Figure 15: Contexts for loops

R ::= []
 | (fetch R) | (set! R e) | (set! val R)
 | (alloc R)
 | 〈R,mval〉
 | ref := R | x := R
 | R[e := e] | v[R := e] | v[v := R]
 | R e
 | if R e e
 | let x = R in e
 | list〈R,e〉 | list〈val,Rs〉
 | tuple〈R,e〉 | tuple〈val,Rs〉
 | set〈R,e〉 | set〈val,Rs〉
 | R[e] | val[R]
 | (builtin-prim op Rs)
 | (raise R)
 | (loop R e)
 | (tryexcept R x e e)
 | R (e ...) | val Rs
 | R (e ...)*e | val Rs*e
 | val (val ...)*R
 | (construct-module E)

Rs ::= (val ... R e ...)

Figure 16: Contexts for return statements

(while e1 e2 e3) [E-While]

if e1 (loop e2 (while e1 e2 e3)) e3

(loop H[continue] e) e [E-LoopContinue]

(loop H[break] e) vnone [E-LoopBreak]

(loop val e) e [E-LoopNext]

(tryexcept val x ecatch eelse) eelse [E-TryDone]

(tryexcept T[(raise val)] x ecatch eelse) [E-TryCatch]

let x = val in ecatch

(frame R[(return val)]) val [E-Return]

(frame val) val [E-FramePop]

(tryfinally R[(return val)] e) [E-FinallyReturn]

e (return val)

(tryfinally H[break] e) [E-FinallyBreak]

e break

(tryfinally T[(raise val)] e) [E-FinallyRaise]

e (raise val)

(tryfinally H[continue] e) [E-FinallyContinue]

e continue

(E[if val e1 e2] ε Σ) [E-IfTrue]

(E[e1] ε Σ)

 where (truthy? val Σ)

(E[if val e1 e2] ε Σ) [E-IfFalse]

(E[e2] ε Σ)

 where (not (truthy? val Σ))

val e e [E-Seq]

Figure 17: Control flow reductions

	
step, it yields a loop form that serves as the marker for where
internal break and continue statements should collapse to. It
is for this reason that H does not descend into nested loop

forms; it would be incorrect for a break in a nested loop to
break the outer loop.

One interesting feature of while and tryexcept in
Python is that they have distinguished “else” clauses. For
while loops, these else clauses run when the condition
is False, but not when the loop is broken out of. For
tryexcept, the else clause is only visited if no exception
was thrown while evaluating the body. This is reflected in
E-TryDone and the else branch of the if statement produced
by E-While.

We handle one feature of Python’s exception raising im-
perfectly. If a programmer uses raise without providing an
explicit value to throw, the exception bound in the most re-
cent active catch block is thrown instead. We have a limited
solution that involves raising a special designated “reraise”
value, but this fails to capture some subtle behavior of nested
catch blocks. We believe a more sophisticated desugaring
that uses a global stack to keep track of entrances and exits
to catch blocks will work, but have yet to verify it. We still
pass a number of tests that use raise with no argument.

2. Mutation
There are three separate mutability operators in λπ , (set! e e),
which mutates the value stored in a reference value, e := e,
which mutates variables, and (set-field e e e), which up-
dates and adds fields to objects.

Figure 18 shows the several operators that allocate and
manipulate references in different ways. We briefly catego-
rize the purpose for each type of mutation here:

• We use (set! e e), (fetch e) and (alloc e) to handle
the update and creation of objects via the δ function,
which reads but does not modify the store. Thus, even
the lowly + operation needs to have its result re-allocated,
since programmers only see references to numbers, not
object values themselves. We leave the pieces of object
values immutable and use this general strategy for up-
dating them, rather than defining separate mutability for
each type (e.g., lists).

• We use e := e for assignment to both local and global
variables. We discuss global variables more in the next
section. Local variables are handled at binding time by
allocating references and substituting the new references
wherever the variable appears. Local variable accesses
and assignments thus work over references directly, since
the variables have been substituted away by the time the
actual assignment or access is reached. Note also that E-
AssignLocal can override potential ☠ store entries.

• We use (set-field e e e) to update and add fields to
objects’ dictionaries. We leave the fields of objects’ dic-
tionaries as references and not values to allow ourselves

the ability to share references between object fields and
variables. We maintain a strict separation in our current
semantics, with the exception of modules, and we expect
that we’ll continue to need it in the future to handle pat-
terns of exec.

Finally, we show the E-Delete operators, which allow a
Python program to revert the value in the store at a particular
location back to ☠, or to remove a global binding.

3. Global Scope
While local variables are handled directly via substitution,
we handle global scope with an explicit environment ε that
follows the computation. We do this for two main reasons.
First, because global scope in Python is truly dynamic in
ways that local scope is not (exec can modify global scope),
and we want to be open to those possibilities in the future.
Second, and more implementation-specific, we use global
scope to bootstrap some mutual dependencies in the object
system, and allow ourselves a touch of dynamism in the
semantics.

For example, when computing booleans, λπ needs to
yield numbers from the δ function that are real booleans
(e.g., have the built-in %bool object as their class). However,
we need booleans to set up if-tests while we are bootstrap-
ping the creation of the boolean class itself! To handle this,
we allow global identifiers to appear in the class position of
objects. If we look for the class of an object, and the class
position is an identifier, we look it up in the global environ-
ment. We only use identifiers with special %-prefixed names
that aren’t visible to Python in this way. It may be possible
to remove this touch of dynamic scope from our semantics,
but we haven’t yet found the desugaring strategy that lets us
do so. Figure 19 shows the reduction rule for field lookup in
this case.

4. True, False, and None
The keywords True, False, and None are all singleton
references in Python. In λπ , we do not have a form for
True, instead desugaring it to a variable reference bound
in the environment. The same goes for None and False.
We bind each to an allocation of an object:

let True = (alloc 〈%bool,1,{}〉) in
let False = (alloc 〈%bool,0,{}〉) in
let None = (alloc 〈%none, meta-none ,{}〉) in
eprog

and these bindings happen before anything else. This pattern
ensures that all references to these identifiers in the desug-
ared program are truly to the same objects. Note also that the
boolean values are represented simply as number-like val-
ues, but with the built-in %bool class, so they can be added
and subtracted like numbers, but perform method lookup on
the %bool class. This reflects Python’s semantics:

isinstance(True, int) # ==> True

	

(E[@reffun (val ...)] ε Σ) [E-App]

(E[(frame subst[[(x ...), (refarg ...), e]])] ε Σ1)

 where 〈anyc,λ(x ...) (no-var).e ,anydict〉 = Σ(reffun),
(equal? (length (val ...)) (length (x ...))),

(Σ1 (refarg ...1)) = extend-store/list[[Σ, (val ...)]]

(E[let x = v+undef in e] ε Σ) [E-LetLocal]

(E[[x/ref]e] ε Σ1)

 where (Σ1 ref) = alloc(Σ,v+undef)

(E[let x = v+undef in e] ε Σ) [E-LetGlobal]

(E[e] extend-env[[ε, x, ref]] Σ1)

 where (Σ1 ref) = alloc(Σ,v+undef)

(E[ref] ε Σ) (E[val] ε Σ) [E-GetVar]
 where Σ = ((ref1 v+undef1) ... (ref val) (refn v+undefn) ...)

(E[ref] ε Σ) (E[val] ε Σ) [E-GetVar]
 where Σ = ((ref1 v+undef1) ... (ref val) (refn v+undefn) ...)

(E[ref := val] ε Σ) (E[val] ε Σ[ref:=val]) [E-AssignLocal]

(E[x := val] ε Σ) (E[val] ε Σ[ref:=val]) [E-AssignGlobal]
 where ε = ((x2 ref2) ... (x ref) (x3 ref3) ...)

(E[(alloc val)] ε Σ) (E[@refnew] ε Σ1) [E-Alloc]
 where (Σ1 refnew) = alloc(Σ,val)

(E[(fetch @ref)] ε Σ) (E[Σ(ref)] ε Σ) [E-Fetch]

(E[(set! @ref val)] ε Σ) (E[val] ε Σ1) [E-Set!]
 where Σ1 = Σ[ref:=val]

(E[@refobj [@refstr := val1]] ε Σ) (E[val1] ε Σ2) [E-SetFieldAdd]
 where 〈anycls1,mval,{string:ref,...}〉 = Σ(refobj),

(Σ1 refnew) = alloc(Σ,val1),
〈anycls2,string1,anydict〉 = Σ(refstr),
Σ2 = Σ1[refobj:=〈anycls1,mval,{string1:refnew,string:ref,...}〉],
(not (member string1 (string ...)))

(E[@refobj [@refstr := val1]] ε Σ) [E-SetFieldUpdate]

(E[val1] ε Σ[ref1:=val1])
 where 〈anycls1,mval,{string2:ref2,...,string1:ref1,string3:ref3,...}〉 = Σ(refobj),

〈anycls2,string1,anydict〉 = Σ(refstr)

(E[(delete ref)] ε ((ref1 v1) ... (ref v) (refn vn) ...)) [E-DeleteLocal]

(E[v] ε ((ref1 v1) ... (ref ☠) (refn vn) ...))

(E[(delete x)] ((x1 ref1) ... (x ref) (xn refn) ...) Σ) [E-DeleteGlobal]

(E[Σ(ref)] ((x1 ref1) ... (xn refn) ...) Σ)

Figure 18: Various operations on mutable variables and values

	
(E[@refobj [@refstr]] ε Σ) [E-GetField-Class/Id]

(E[valresult] ε Σresult)

 where 〈anycls,string,anydict〉 = Σ(refstr),
〈xcls,mval,{string1:ref2,...}〉 = Σ(refobj),
(Σresult valresult) = class-lookup[[@refobj , Σ(env-lookup[[ε, xcls]]), string, Σ]] ,

(not (member string (string1 ...)))

env-lookup[[((x1 ref1) ... (x ref) (xn refn) ...), x]] = ref

Figure 19: Accessing fields on a class defined by an identifier

(E[@reffun (val ...)] ε Σ) [E-AppArity]

(E[(err 〈%str,“arity-mismatch”,{}〉)] ε Σ)

 where 〈anyc,λ(x ...) (no-var).e ,anydict〉 = Σ(reffun),
(not (equal? (length (val ...)) (length (x ...))))

(E[@reffun (val ...)] ε Σ) [E-AppVarArgsArity]

(E[(err 〈%str,“arity-mismatch-vargs”,{}〉)] ε Σ)

 where 〈anyc,λ(x ...) (y).e ,anydict〉 = Σ(reffun),
(< (length (val ...)) (length (x ...)))

(E[@reffun (val ...)] ε Σ) [E-AppVarArgs1]

(E[(frame subst[[(x ... yvarg), (refarg ... reftupleptr), e]])] ε Σ3)

 where 〈anyc,λ(x ...) (yvarg).e ,anydict〉 = Σ(reffun),
(>= (length (val ...)) (length (x ...))),

(valarg ...) = (take (val ...) (length (x ...))),

(valrest ...) = (drop (val ...) (length (x ...))),

valtuple = 〈%tuple,(valrest ...),{}〉,

(Σ1 (refarg ...)) = extend-store/list[[Σ, (valarg ...)]] ,

(Σ2 reftuple) = alloc(Σ1,valtuple),
(Σ3 reftupleptr) = alloc(Σ2,@reftuple)

(E[@reffun (val ...)*@refvar] ε Σ) [E-AppVarArgs2]

(E[@reffun (val ... valextra ...)] ε Σ)

 where 〈anyc,(valextra ...),anydict〉 = Σ(refvar)

Figure 20: Variable-arity functions

5. Variable-arity Functions
We implement Python’s variable-arity functions directly in
our core semantics, with the reduction rules shown in fig-
ure 20. We show first the two arity-mismatch cases in the
semantics, where either no vararg is supplied and the argu-
ment count is wrong, or where a vararg is supplied but the
count is too low. If the count is higher than the number of
parameters and a vararg is present, a new tuple is allocated
with the extra arguments, and passed as the vararg. Finally,
the form e (e ...)*e allows a variable-length collection of
arguments to be passed to the function; this mimics apply
in languages like Racket or JavaScript.

6. Modules
We model modules with the two rules in figure 21. E-
ConstructModule starts the evaluation of the module, which
is represented by a meta-code structure. A meta-code con-
tains a list of global variables to bind for the module, a name
for the module, and an expression that holds the module’s
body. To start evaluating the module, a new location is allo-
cated for each global variable used in the module, initialized
to ☠ in the store, and a new environment is created mapping
each of these new identifiers to the new locations.

Evaluation that proceeds inside the module, replacing the
global environment ε with the newly-created environment.
The old environment is stored with a new in-module form
that is left in the current context. This step also sets up an

	
(E[(construct-module @refmod)] εold Σ) [E-ConstructModule]

(E[(in-module ebody εold)
(alloc 〈$module,(no-meta),{stringarg:refnew,...}〉)]
εnew Σ1)

 where 〈anycls,(meta-code (xarg ...) xname ebody),anydict〉 = Σ(refmod),

(Σ1 εnew (refnew ...)) = vars->fresh-env[[Σ, (xarg ...)]] ,

(stringarg ...) = (map symbol->string (xarg ...))

(E[(in-module v εold)] εmod Σ) (E[vnone] εold Σ) [E-ModuleDone]

vars->fresh-env[[Σ, ()]] = (Σ () ())

vars->fresh-env[[Σ, (x)]] = (Σ1 ((x ref)) (ref))
 where (Σ1 (ref)) = (alloc Σ ☠)

vars->fresh-env[[Σ, (x xr ...)]] = (Σ2 ((x ref) (xrest refrest) ...) (ref refrest ...))

 where (Σ1 ref) = alloc(Σ,☠),

(Σ2 ((xrest refrest) ...) (refrest ...)) = vars->fresh-env[[Σ1, (xr ...)]]

Figure 21: Simple modules in λπ

expression that will create a new module object, whose fields
hold the global variable references of the running module.

When the evaluation of the module is complete (the
in-module term sees a value), the old global environment
is reinstated.

To desugar to these core forms, we desugar the files to
be imported, and analyze their body to find all the global
variables they use. The desugared expression and variables
are combined with the filename to create the meta-code ob-
ject. This is roughly an implementation of Python’s com-
pile, and it should be straightforward to extend it to imple-
ment exec, though for now we’ve focused on specifically
the module case.

Appendix 2: Confusing Rename Refactorings
This program:

def f(x):
class C(object):

x = "C’s x"
def meth(self):

return x + ’, ’ + C.x
return C

f(’input x’)().meth()
==> ’input x, C’s x’

confuses the variable rename refactoring of all the Python
IDEs we tried. We present these weaknesses to show that
getting a scope analysis right in Python is quite hard! We
found these tools by following recommendations on Stack-
Overflow, a trusted resource. Two of the tools we tested, Py-
Charm and WingWare IDE, are products that developers ac-
tually purchase to do Python development (we performed
this experiment in their free trials).

For PyCharm, if we rename the x parameter to y, the
class variable x also gets changed to y, but the access at
C.x does not. This changes the program to throw an error.
If we instead select the x in C.x and refactor to y, The class
variable and use of x change, but the original definition’s
parameter does not. This changes the behavior to an error
again, as y is an unbound identifier in the body of meth.

PyDev has the same problem as PyCharm with renaming
the function’s parameter. If we instead try rename the x in
the body of C, it gets it mostly right, but also renames all the
instances of x in our strings (something that even a parser,
much less a lexical analyzer should be able to detect):

def f(x):
class C(object):

y = "C’s y"
we highlighed the x before = above
and renamed to y
def meth(self):

return x + ’ ’ + C.y
return C

f(’input y’)().meth()
==> ’input y, C’s y’

WingWare IDE for Python is less obviously wrong: it
pops up a dialog with different bindings and asks the user
to check the ones they want rewritten. However, if we try
to refactor based on the x inside the method, it doesn’t
give us an option to rename the function parameter, only
the class variable name and the access at C.x. In other
cases it provides a list that contains a superset of the actual
identifiers that should be renamed. In other words, it not only
overapproximates (which in Python may be inevitable), it
also (more dangerously) undershoots.

