
A F O U N D AT I O N F O R T Y P E D C O N C AT E N AT I V E L A N G U A G E S

robert kleffner

A Thesis Presented to

the department of computer & information science

in partial fulfillment of the requirements
for the degree of

master of science

Northeastern University
Boston, Massachusetts

April 2017

Robert Kleffner: A Foundation for Typed Concatenative Languages, April 2017

A B S T R A C T

The design space for concatenative programming languages, also known as
stack-based programming languages, is largely under-explored. Most formal
investigations of higher-order stack-based languages are done in the functional
setting, requiring a cumbersome and unnecessary encoding. This dissertation
describes a core programming language that captures the essence of the con-
catenative paradigm, provides a reduction semantics for this language, and
introduces a sound type system. It also presents a sound and complete type
inference algorithm. We expect that this model will serve as a starting point
for future explorations of the concatenative language design space.

iii

1
I N T R O D U C T I O N

Stack-oriented programming languages form an important niche in the pro-
gramming community. Forth has a rich history as a low-level systems develop-
ment language that can, with proper discipline, exhibit high-level readability
and expressivity; today it is most popular in the development of embedded
devices [16]. Similarly, PostScript is a popular stack-based language for print-
ing documents, but on occasion, it is used as a standalone programming lan-
guage [17].

The early 2000’s saw a strong interest in higher-order stack-based languages,
beginning with von Thun’s invention of Joy [20]. Joy is a combinatory lan-
guage, similar to the SKI-calculus in that it has no notion of variable binding.
The language found a small but active online following, a significant portion
of which was interested in the formal foundations of what are often called
concatenative languages [4]. The culmination of this development was the cre-
ation of the Factor language by Pestov [11], which continues to be maintained,
and which has been extended with a wide range of libraries for many soft-
ware development domains. Factor has a small but dedicated community of
developers.

1.1 what is concatenative?

While most people know Forth as a stack-based programming language, Fac-
tor uses the label concatenative language. This dissertation also uses the term
concatenative languages.

The lack of a widely agreed upon definition has been a source of argu-
ment within the concatenative programming community and without, and
inspired a widely-read blogpost [15] that attempted to contrast concatenative
languages with applicative (i.e. standard functional) programming languages.
Indeed, many concatenative languages can be seen as a subset of �-calculus
based languages, where every function takes a tuple and returns a tuple. We
thus make the tentative and loose assertion that concatenative programming is a
subset of functional programming in which:

1. Expressions are built by composing rather than applying functions.

2. All functions map a sequence of arguments to a sequence of results.

Additionally, traditional stack-based languages often feature a set of stack
shuffling operators or combinators to move items into the desired position
on the stack. Without practice and discipline on behalf of the programmer,
this variable-free style can result in highly obfuscated programs. We therefore
break from tradition and add variables to our language, which alleviates some
of this burden at the expense of complicating the language semantics.

1

2 introduction

1.2 why typed?

The majority of popular concatenative languages are untyped. Forth is noto-
rious in this regard: most variants provide basic operations on only one type:
a sequence of bits usually the size of a machine register. All other type infor-
mation is encoded and checked by programmer-defined functions. Factor is
dynamically typed in the traditional sense, providing runtime-checked opera-
tions on lists, numbers, objects, and other primitive types natively.

Discipline is required to make programs readable when developing in con-
catenative programming languages; still more discipline is required to make
sure that a function is passsed arguments of the types it expects, and in the
right order. In many cases, we would like to provide ahead-of-time guarantees
that our programs do not have type conflicts. Furthermore, the type system
should infer the majority of this information so that developers do not have
to write it themselves. Languages that remain dynamically-typed can make
use of inferred type information at runtime to improve the performance of
generated code.

Much of the prior work on type inference for stack-based languages comes
in two flavors: an algebraic system called stack effects, and a nested pair encoding
based on the standard Hindley-Milner type system.

The research on stack effects has mostly been done in the Forth setting. There
are several formal descriptions of stack effect notation and stack effect compo-
sition [12, 14, 19], which appear to have been developed independently of
the type inference literature. Although these systems can support many stan-
dard features studied in type theory [13, 18, 19], including intersection types,
parametric polymorphism, and subtyping, they all suffer from the same core
problem: the type system cannot express the types of functions that are poly-
morphic on stacks, an essential idiom in this space. As a result, it is essentially
impossible to infer the type of functions which themselves require function
values passed on the stack.

One solution for stack effect systems is to have a schema of primitive call

operators that specify the input and output arity of the functions they can
apply:

call1,1 : (a (a! z)! z)
call2,1 : (a b (a b! z)! z)
call1,2 : (a (a! y z)! y z)
etc...

With this solution, the programmer must redefine higher-order functions at
each arity; naturally, they would like to write map and compose once and be
done with it. Another solution is to have one call operator with a type of an
infinite intersection of stack effects. Unfortunately, all higher-order functions
written with this call operator would also have an infinite intersection of stack
effects, and whether there is a way to compute and represent these stack effects
finitely is an open question.

Type systems that encode stacks as nested pairs are an alternative to alge-
braic stack-effect systems. These were first developed in the context of func-

1.3 why bother? 3

tional languages [3, 10] and have since been used to infer types for some con-
catenative languages [1].

These languages provide a general call operator, usually as a primitive part
of the syntax, which has the following type:

call : (s, (s! s

0))! s

0

That is, call requires a function on top of the stack in addition to the stack ele-
ments s required by said function. It returns exactly those elements s 0 returned
by the called function. This type already allows developers to write many use-
ful higher-order functions, including function composition, partial application,
and recursion patterns like map and fold from standard functional languages.

On the downside, these type systems restrict stack variables to appear only
at the leftmost position of a function signature. The question arises whether
we can lift this restriction, allowing stack variables to appear in the middle of
a sequence or allowing more than one per sequence. In theory this is possible
because sequence unification is decidable [5]. However, sequence unification
is infinitary in the general case.

1.3 why bother?

The thesis I defend is that higher-order concatenative languages can be prof-
itably equipped with expressive and sound type systems; the system I develop
here also admits a type inference algorithm with principal types. Moreover, I
maintain that it is useful to study concatenative languages in their own context,
rather than from the viewpoint of an embedding in the �-calculus. Although
there is a well-known correspondence between concatenative languages and
familiar functional languages [10], it can be cumbersome and limiting to do
research for one language in the setting of another.

Concatenative programming is an often overlooked paradigm that I conjec-
ture has much to offer. However, it is difficult to persuade others of this value
when the foundations for these languages are still shaky. The design space for
these languages remains under-explored compared to other paradigms, espe-
cially in the typed setting. Diggins’ work [1, 2] is a good starting point but
mostly informal, and he does not provide a treatment of variables, focusing
instead on a purely combinatory language.

In this dissertation I set concatenative languages on firm theoretical ground
by introducing a core language called ��, pronounced "lambda compose". This
language attempts to capture the essence of concatenative programming in ex-
isting languages. In section 2, I present the syntax and semantics for the core
language. In section 3, I detail a first-rank polymorphic type system for the
language, and prove it sound. In section 4, I describe a type inference algo-
rithm, and prove soundness and completeness of the algorithm with regard
to the type system. In section 5, I point toward a reference implementation
of �� built in Racket. This implementation supports both type inference and
evaluation of type-checked programs.

2
T H E L A N G U A G E � �

Hidden within the nested-pair representation discussed in Section 1 is a dis-
tinction between two kinds of type variables: those that are substituted with
a single type, and those that are substituted with a sequence of types. The
former are the familiar Hindley-Milner type variables, whereas the latter are
referred to as sequence variables. Our model, the language ��

1, is a concatena-
tive language with a type system that enforces this distinction syntactically.

2.1 syntax

The syntax for �� is given in Fig. 1. In contrast to languages based on the
�-calculus, �� has a sequence structure. Thus we have two levels of syntax:
expressions e which are lists of words w, a term that comes from Forth. Ex-
pressions in �� are read from left to right, and individual words can be added
on to either side of an expression by whitespace-separated juxtaposition. We
denote concatenation of two expressions as e

1

· e
2

. The constant literals are the
non-negative integers n and boolean values b, but this set of constants can be
extended as desired; we focus on these two for simplicity. Similarly, + and if

are included as examples of primitive operators.
One key distinction in the syntax is our separation of variable binding from

function abstraction. Function abstractions consist of an arbitrary expression
wrapped in curly braces, called blocks; this leaves variable bindings free to oc-
cur anywhere in an expression. While this separation between notions of scope
and function value is not strictly necessary, it is both useful and familiar to pro-
grammers in the concatenative community, and it simplifies our presentation
of the semantics and the type system. This distinction can also be found, with
different semantics, in the call-by-push-value calculus of Levy [7].

1 The symbol for composition as a subscript emphasizes the importance our language places on
composability as a design concept.

e := �!
w

w := n | b | x | + | call | fix | if

| {e} | �x.e | let x = e in e

n := 0, 1, 2...
b := true | false

x := variables...

Figure 1: �� Syntax

5

6 the language ��

s := �!
v

v := n | b | {e}

n := 0, 1, 2...
b := true | false

m := hs | ei

Figure 2: �� Value Stacks & Machine States

Because our expressions are list-like, the only parentheses we write in larger
expressions are those around variable bindings and let-expressions. These
parentheses limit the scope of the bound variables in the case that the scope
does not extend to the end of the expression. We also sometimes denote empty
expressions with ✏ for extra clarity.

2.2 semantics

Our notion of evaluation results, presented in Fig. 2, is likewise split among
two layers: stacks s, which are finite sequences of individual values v. Like
expressions, stacks are read from left to right, with the rightmost value rep-
resenting the ‘top’ element of the stack. The model has three types of value:
numbers, booleans, and blocks. Blocks are essentially closures, and are related
to the notions of ‘suspended computation’ appearing in call-by-push-value [7]
and Frank [8].

Our reduction relation models a stack-based semantics as a set of transition
rules on machine states m. A machine state is a pair composed of a stack s and
an expression e, which is the remainder of the computation to be performed
on s. Since expressions are read from left to right, the leftmost word of e is
applied to the stack at each step.

The transition rules are presented in Fig. 3. The first three rules are simple:
numbers, booleans, and blocks are pushed on top of the stack. The rules for
+ and if are also intuitive: + consumes two numbers from the top of the
stack, and pushes the result of adding them, while if consumes a boolean
value and chooses to keep one of the two values below the condition based
on whether it is true or false. A call expects a block at the top of the stack,
and evaluates the expression inside the block before continuing to the rest of
the expression that follows it. The instruction fix does something similar, but
first wraps its function value in a fix-point block and pushes it to the stack
to enable recursion. A value binding �x.e consumes a value from the top of
the stack and substitutes it for all occurrences of x in the enclosed expression
e. Likewise, a let-expression substitutes its argument expression into the body
expression.

The semantics is dependent on a technical change to the definition of substi-
tution. Our variables do not necessarily map to a single value or word, but to

2.3 examples 7

hs | n ei 7! hs n | ei
hs | b ei 7! hs b | ei

hs | {e
1

} e
2

i 7! hs {e
1

} | e
2

i
hs n

2

n

1

| + ei 7! hs (n
2

+n

1

) | ei
hs v

2

v

1

true | if ei 7! hs v
1

| ei
hs v

2

v

1

false | if ei 7! hs v
2

| ei
hs {e

1

} | call e

2

i 7! hs | e
1

· e
2

i
hs {e

1

} | fix e

2

i 7! hs {{e
1

} fix} | e
1

· e
2

i
hs v | (�x.e

1

) e
2

i 7! hs | ([v/x]e
1

) · e
2

i
hs | (let x = e

1

in e

2

) e
3

i 7! hs | ([e
1

/x]e
2

) · e
3

i

Figure 3: Machine Transition Rules

expressions of arbitrary length. Hence, we cannot simply replace occurrences
of x with their mapped value. Rather, we concatenate the expression mapped
by x with the rest of the expression surrounding x. This change is forced by
the inclusion of let-bound expressions; in a language where let-bound vari-
ables are syntactically restricted to map to a single word, capture-avoiding
substitution can be adapted from �-based languages with only minor changes.
The resulting language is slightly less convenient to use but admits a similar
type system and inference algorithm.

We evaluate an expression e by creating an initial state comprised of e and
an empty stack. Let ⇣ be the reflexive and transitive closure of 7!. We would
like ⇣ on some machine state m to result in a state with no further words left
to apply to the stack or an infinite sequence of machine states. We say that m
is stuck if none of the transition rules can be applied and the expression part e
is not ✏. This gives our first result.

Proposition 1. 7! can get stuck.

Proof. The following initial state reduces to a state where no transition rule
applies, but the expression part is not empty:

h3 {{4}} {2} false | if call +i
7! h3 {{4}} | call +i
7! h3 {4} | +i

2.3 examples

The inclusion of variables via value bindings and let expressions is a depar-
ture from most theoretical investigations of concatenative languages. However,

8 the language ��

including variables in our language eliminates the need for primitive stack
shuffle combinators: using value bindings and blocks, we can write our own:

... let Dup = �x.x x in e ...

... let Swap = �x.�y.x y in e ...

... let Pop = �x. in e ...

We may also write these terms inline:

1 2 (�x.�y.x y) 3 ⇣ 1 (�y.2 y) 3 ⇣ 2 1 3

Variables are useful for more than defining arbitrary stack shuffle combinators:
they also allow programmers to write higher-order functions more succinctly:

... let Compose = �f.�g.{g call f call} in e ...

... let Partial = �f.�x.{x f call} in e ...

Allowing arbitrary expressions as the arguments of let-expressions also per-
mits developers to write ’partially applied’ functions. These functions are not
partially applied in the usual sense but look similar to the automatically ‘cur-
ried’ functions of ML and Haskell. They are often as expressive and useful:

... let Add1 = 1 + in e ...

... let Double = Dup + in e ...

3
T Y P E S F O R � �

3.1 type syntax

The type syntax defined in Fig. 4 is a variant of the Hindley-Milner type syn-
tax in which functions may have zero or more inputs and outputs. The set of
individual types ⌧ consists of base types Int and Bool, standard type variables
↵, and function types f. Sequences of types i (also denoted o for function out-
puts) may be optionally terminated with at most one sequence type variable
↵ on the left-hand side. We assume two disjoint infinite sets of type variables
for ↵ and ↵. All expressions have a function type f in ��, so our type schemes
� need only quantify over function types.

⌧ := Int | Bool | ↵ | f

i,o := �!⌧ | ↵

�!
⌧

f := i! o

� := 8�!↵ .f

Figure 4: Types for ��

As for expressions, we append a single type onto either side of a type se-
quence by whitespace-separated juxtaposition, and denote concatenation of
two type sequences by i

1

· i
2

. Sequence type variables are substituted with se-
quences of types i rather than individual types ⌧, but in contrast to the term
language, we must syntactically distinguish between individual and sequence
type variables to make type inference work. We let �!↵ range over both individ-
ual and sequence type variables in types schemes.

We write ftv(f) for the set of both individual and sequence type variables
that occur free in function types f:

ftv(Int) = ftv(Bool) = ;
ftv(↵) = {↵}

ftv(↵) = {↵}

ftv(i! o) = ftv(i)[ftv(o)
ftv(⌧

1

... ⌧
n

) = ftv(⌧
1

)[... [ftv(⌧
n

)

For type schemes � := 8�!↵ .f, we treat �!↵ as a set of type variables. The free
type variables of � are then defined as

ftv(8�!↵ .f) = ftv(f)-�!↵

9

10 types for ��

In the rest of this text, we do not distinguish between the empty type scheme
8.f and unquantified types f, choosing to write them both as the latter.

As for the Hindley-Milner type system, our type schemes are related to each
other by an instantiation relation. Instantiation is similar to its Hindley-Milner
counterpart, except that individual type variables may only be instantiated
with individual types ⌧, whereas sequence type variables are instantiated with
a finite sequence of types i. We denote instantiation by �

2

v �

1

with �

1

more
specific than �

2

:

S = [↵
i

7! ⌧

i

, ...,↵
j

7! i

j

, ...] {↵
i

, ...,↵
j

, ...} ⇢ �!↵ �

1

= S(�
2

)

8�!↵ .�
2

v �

1

3.2 type environments

Type environments are a finite map from term-level variables to type schemes:

� := x

1

: �
1

; ...; x
n

: �
n

We write � ; x : � to specify that a judgment is valid for any environment
containing at least x : �. We assume weakening to be valid for our purposes and
do not prove it here: the proof is a straightforward adaptation of weakening
from �-based languages.

We can also get the set of type variables free in a type environment:

ftv(x
1

: �
1

, ..., x
n

: �
n

) = ftv(�
1

)[... [ftv(�
n

)

This enables us to define the familiar notion of a generalized function type f

with respect to some type environment � , which we denote b
�(f):

b
�(f) = 8�!↵ .f where �!↵ = ftv(f)- ftv(�)

3.3 substitutions

Substitutions S (sometimes denoted by R and �) are finite mappings from
individual type variables to individual type ⌧, and sequence type variables
to a sequence of types. A substitution applied to a type replaces free vari-
ables present in the substitution domain with the mapped type or sequence if
the variable is present in the substitution. As for substitution in expressions,
we must flatten nested sequences using concatenation when replacing for se-
quence type variables. Since all sequence type variables occur in a sequence of
types in ��, the operation remains closed on types. When applying a substitu-
tion to a type scheme, we first remove all variables present in the quantifier
from the substitution domain:

S(8�!↵ .f) = 8�!↵ .(S-�!↵)(f)

To apply a substitution to a type environment, we apply the substitution to
each type scheme in the range of the environment. Applying a substitution to
another substitution, sometimes written S � S 0, is defined by

S � S 0 = S[[↵ 7! S(i), 8(↵, i) 2 S

0 such that ↵ /2 Dom(S)]

3.4 type system 11

Empty

� ` ✏ : i! i

Num

� ` e : i! o

� ` e n : i! o Int

Bool

� ` e : i! o

� ` e b : i! o Bool

Add

� ` e : i! o Int Int

� ` e + : i! o Int

If
� ` e : i! o ⌧ ⌧ Bool

� ` e if : i! o ⌧

Var

x : � 2 � � v i

2

! o

2

� ` e : i
1

! o

1

o

1

= i

2

� ` e x : i
1

! o

2

Lam

� ` e

1

: i
1

! o

1

� ; x : 8↵.↵! ↵ ⌧ ` e

2

: i
2

! o

2

o

1

= i

2

⌧

� ` e

1

�x.e
2

: i
1

! o

2

Block

� ` e

1

: i
1

! o

1

� ` e

2

: i
2

! o

2

� ` e

1

{e
2

} : i
1

! o

1

(i
2

! o

2

)

Let

� ` e

1

: f � ; x : b�(f) ` e

2

: i
2

! o

2

� ` e

3

: i
1

! o

1

o

1

= i

2

� ` e

3

let x = e

1

in e

2

: i
1

! o

2

Call

� ` e : i
1

! o

1

(i
2

! o

2

)
o

1

= i

2

� ` e call : i
1

! o

2

Fix

� ` e : i
1

! o

1

(i
2

(i
2

! o

2

)! o

2

)
o

1

= i

2

� ` e fix : i
1

! o

2

Stack

� ` s : o � ` v : ⌧

� ` s v : o ⌧

VNum

� ` n : Int

VBool

� ` b : Bool

VBlock

� ` e : f

� ` {e} : f

Machine

� ` s : i � ` e : i! o

� ` hs | ei : o

Figure 5: Type System for ��

3.4 type system

The syntax-directed typing rules for �� are given in Fig. 5. The rules define
the typing judgment � ` e : f, read as "in type environment � , expression e

has function type f". Expressions are treated as left-associative, in contrast to
the right-associative structure used in the specification of the transition rules.
Since our expressions are list-like, we can switch between the representations
as necessary.

The base case is the empty expression ✏, but the type rule for ✏ is somewhat
unintuitive. One might expect empty expressions to consume no input and pro-
duce no output, and the stack-effect systems discussed in Section 1.2 take this
route. However, that choice makes it difficult to thread stack-polymorphism
through the other type rules. Instead, we allow arbitrary choice of the input

12 types for ��

and output sequences in the type of ✏, so long as the two sequences are syn-
tactically equal. This fits with our intuition that the empty expression is the
identity function on all stacks.

In the recursive rules, we specify that the input consumed by a word must
be exactly the output produced by the previous expression, even if the word
‘does not care’ about some of those values and simply passes them through.
Hence, all expressions in �� are polymorphic with regard to the part of the
stack they ‘do not care’ about. This is a significant difference from the stack
effect systems, and the benefit we gain is that we do not need the notion
of stack-effect composition from the algebraic systems; instead, we use simple
function composition.

The rule for value bindings, Lam, is also strange at first glance. The bound
variable x has a quantified function type, which means we only need one type
rule for both let-bound and lambda-bound variables (recall that let binds an
expression to a variable, and all expressions have function type). Our intuition
says that lambda-bound variables are indeed functions, albeit functions that
just push the variable’s value onto the stack. We would like to be able to push
this value onto any stack, which justifies our use of the quantified sequence
type variable in the type rule: we can then instantiate the type of x at multiple
different stack types in e

2

.

3.5 type soundness

The proof of soundness for the type rules in Fig. 5 uses the standard progress
and preservation technique [21]. To continue with the main proofs, we require
a few minor lemmas.

Lemma 2. (Well-typed Concatenation) If � ` e

1

: i
1

! o

1

and � ` e

2

: i
2

! o

2

and o

1

= i

2

, then � ` e

1

· e
2

: i
1

! o

2

.

Proof. By structural induction on e

2

, taking the structure of e

2

to be left-
associative. The base case has e

2

= ✏, and e

1

· ✏ = e

1

, so � ` e

1

· ✏ : i
1

! o

1

with � ` ✏ : o
1

! o

1

according to the premises. In each inductive case, we
have e

2

= e

0
2

w for the word w corresponding to the particular case. Here,
� ` e

0
2

: o
1

! o

0
2

and � ` w : o 0
2

! o

2

. We apply the inductive hypothe-
sis to get � ` e

1

· e 0
2

: i
1

! o

0
2

, and then the corresponding type rule to get
� ` (e

1

· e 0
2

) w : i
1

! o

2

.

Lemma 3. (Well-typed Split) If � ` e

1

· e
2

: i! o, then there exists an i

0 such that
� ` e

1

: i! i

0 and � ` e

2

: i 0 ! o.

Proof. By structural induction on e

2

. In the base case, e
2

= ✏, and so for any
i

0 such that � ` e

1

: i ! i

0, we can derive � ` ✏ : i 0 ! i

0. In the inductive
cases, we have e

2

= e

0
2

w for the word w corresponding to the particular case.
Applying the inductive hypothesis, there exists some i

0 such that � ` e

1

: i !
i

0 and � ` e

0
2

: i 0 ! o

0, with � ` w : o 0 ! o. We then apply the type rule that
gives us � ` e

0
2

w : i 0 ! o to complete the case.

3.5 type soundness 13

Lemma 4. (Substitution) If � ; x : 8↵
1

...↵
n

.f ` e

1

: f 0 and x /2 � and � ` e

2

: f and
{↵

1

, ...,↵
n

}\ ftv(�) = ;, then � ` [e
2

/x]e
1

: f 0.

Proof. By induction on the typing derivation of e
1

, and case analysis on the last
rule used in the derivation. This is an adaptation of a similar proof in Wright
& Felleisen [21].

We start by showing that reduction preserves types. The techniques used
here are heavily adapted from Wright & Felleisen [21], but we rely on well-
typed splitting and concatenation rather than evaluation contexts.

Lemma 5. (Preservation) If � ` hs | ei : o and hs | ei 7! hs 0 | e 0i, then � ` hs 0 | e 0i :
o.

Proof. We proceed by case analysis on the transition rule hs | ei 7! hs 0 | e 0i.
All rules begin by destructing the machine state into its typed components by
Machine, so we only explicitly list this step in the first rule.

case hs | n ei 7! hs n | ei. We have � ` s : i and � ` n e : i! o by Machine.
By Lemma 3 and Num we have � ` n : i ! i Int and � ` e : i Int ! o. Then
by VNum we have � ` s n : i Int, and by Machine we have � ` hs n | ei : o as
required.

case hs | b ei 7! hs b | ei. Similar to the case for numbers.

case hs | {e
1

} e
2

i 7! hs {e
1

} | e
2

i. Similar to the case for numbers.

case hs n

2

n

1

| + ei 7! hs (n
2

+ n

1

) | ei. By the type rules we have � `
s n

2

n

1

: i Int Int and � ` + e : i Int Int ! o. By Lemma 3 and the type
rules we have � ` s : i and � ` e : i Int ! o. Then by VNum we have
� ` s (n

2

+n

1

) : i Int, and by Machine we have � ` hs (n
2

+n

1

) | ei : o.

case hs v

2

v

1

true | if ei 7! hs v

1

| ei. By the type rules we have � `
s v

2

v

1

true : i ⌧ ⌧ Bool and � ` if e : i ⌧ ⌧ Bool ! o. By Lemma 3 and If,
we have � ` e : i ⌧ ! o, and by multiple stack rules we have � ` s : i. Then
by Stack we have � ` s v

1

: i ⌧, and by Machine we have � ` hs v

1

| ei : o as
required.

case hs v
2

v

1

false | if ei 7! hs v
2

| ei. Similar to the case for if-expressions
on a true condition, with v

2

in place of v
1

in the final line.

case hs {e
1

} | call e

2

i 7! hs | e
1

· e
2

i. By the type rules we have � ` s {e
1

} :
i (i ! i

0) and � ` call e

2

: i (i ! i

0) ! o. By Stack and VBlock, we have
� ` s : i and � ` e

1

: i ! i

0. By Lemma 3 and Call we have � ` e

2

: i 0 ! o.
It follows from Lemma 2 that � ` e

1

· e
2

: i ! o. Hence, by Machine we have
� ` hs | e

1

· e
2

i : o as required.

14 types for ��

case hs {e
1

} | fix e

2

i 7! hs {e
1

fix} | e
1

· e
2

i. By the type rules we have
� ` s {e

1

} : i (i (i! i

0)! i

0) and � ` fix e

2

: i (i (i! i

0)! i

0)! o. By Stack

and VBlock, we have � ` s : i and � ` e

1

: i (i ! i

0) ! i

0. By Lemma 3 and
Fix we have � ` e

2

: i 0 ! o. By Lemma 2 we have � ` e

1

· e
2

: i (i ! i

0) ! o.
Next, by Block, Fix, and VBlock we have � ` {{e

1

} fix} : i (i ! i

0) ! i

0.
Hence by Stack we have � ` s {{e

1

} fix} : i (i ! i

0), and by Machine we have
� ` hs {{e

1

} fix} | e
1

· e
2

i : o as required.

case hs v | (�x.e
1

) e
2

i 7! hs | [v/x]e
1

· e
2

i. By the type rules we have � ` s v :
i ⌧ and � ` (�x.e

1

) e
2

: i ⌧ ! o. By Lemma 3 and Lam we have � ; x : 8↵.↵ !
↵ ⌧ ` e

1

: i ! i

0 where ↵ /2 ftv(�), and � ` e

2

: i 0 ! o. By Stack we have
� ` v : ⌧ and � ` s : i, and thus by Lemma 4 we have � ` [v/x]e

1

: i ! i

0.
Hence by Lemma 2 we have � ` [v/x]e

1

· e
2

: i ! o, and by Machine we have
� ` hs | [v/x]e

1

· e
2

i : o as required.

case hs | (let x = e

1

in e

2

) e
3

i 7! hs | [e
1

/x]e
2

· e
3

i. Then we have � ` s : i
and � ` (let x = e

1

in e

2

) e
3

: i ! o. By Lemma 3 and Let we have � ` e

1

: f,
� ; x : b�(f) ` e

2

: i ! i

0 and � ` e

3

: i 0 ! o. Since b
�(f) = 8↵

1

, ...,↵
n

.f where
{↵

1

, ...,↵
n

} = ftv(f)- ftv(�), we have by Lemma 4 � ` [e
1

/x]e
2

: i ! i

0, and
then by Lemma 2 we have � ` [e

1

/x]e
2

· e
3

: i ! o. Finally, by Machine we
have � ` hs | [e

1

/x]e
2

· e
3

i : o as required.

We continue by showing that a well-typed state can either take a step, or has
an empty expression part.

Lemma 6. (Progress) If ; ` hs | ei : o, then either e = ✏ or there exists some s

0, e 0

such that hs | ei 7! hs 0 | e 0i.

Proof. By induction on the typing derivation of e, and case analysis on the last
rule used in the derivation.

case Empty. Then e = ✏ and we have our result.

case Num. Then e = e

0
n. By the inductive hypothesis, we have either that

hs | e 0i can take a step, or e

0 = ✏. Suppose hs | e 0i 7! hs 0 | e 00i; then we have
hs | e 0 ni 7! hs | e 00 ni by Lemma 2. This case of the inductive hypothesis
is similar across all other derivation rules, so we skip it for the rest of them,
considering only the case where e

0 = ✏. For the present rule, we then have
hs | ni 7! hs n | ✏i, as required.

case Bool,Block. Similar to the case for Num.

case Var. Vacuous: variables are not well-typed when � = ;.

case Add. Then e = +. For ; ` hs | +i to be well-typed, s must be of the
form s

0
n

2

n

1

. Hence we have hs 0 n
2

n

1

| +i 7! hs 0 (n
2

+n

1

) | ✏i.

3.5 type soundness 15

case If. Then e = if. For ; ` hs | ifi to be well-typed, s must be of the form
s

0
v

2

v

1

true or s

0
v

2

v

1

false. Hence we have either hs 0 v
2

v

1

true | ifi 7!
hs 0 v

1

| ✏i or hs 0 v
2

v

1

false | ifi 7! hs 0 v
2

| ✏i.

case Call. Then e = call. For ; ` hs | calli to be well-typed, it must be the
case that s is of the form s

0 {e 0}. Hence we have hs 0 {e 0} | calli 7! hs 0 | e 0i.

case Fix. Then e = fix. For ; ` hs | fixi to be well-typed, it must be the case
that s is of the form s

0 {e 0}. Hence we have hs 0 {e 0} | fixi 7! hs 0 {{e 0} fix} | e 0i.

case Lam. Then e = �x.e 0. For ; ` hs | �x.e 0i to be well-typed, s must be of
the form s

0
v. Hence we have hs 0 v | �x.e 0i 7! hs 0 | [v/x]e 0i.

case Let. Then e = let x = e

1

in e

2

, and we need no further information
about s; we simply have hs | let x = e

1

in e

2

i 7! hs | [e
1

/x]e
2

i.

Finally, we get the desired result.

Theorem 7. (Type Soundness) For closed e, if ; ` e : ✏! o and h✏ | ei⇣ hs | e 0i,
then either e 0 = ✏ and ; ` s : o, or there exists s 0 and e

00 such that hs | e 0i 7! hs 0 | e 00i.

Proof. The proof falls out of Lemmas 5 and 6 in the usual way. By induction
and preservation on h✏ | ei ⇣ hs | e 0i, we have ; ` hs | e 0i : o, and by progress
we have either that hs | e 0i can take a step, or e 0 = ✏ and ; ` s : o.

4
T Y P E I N F E R E N C E F O R � �

4.1 inference algorithm

The type system of the previous section admits a type inference algorithm in
the style of Algorithm W [9], defined by Algorithm 1. This algorithm computes
the principal type of an expression under some type environment, if such a
type exists; otherwise, it fails. In addition to the type environment and the
expression, we supply the algorithm with a set of ’fresh’ type variables V ,
where all variables in V are disjoint. The successful results of the algorithm are
a substitution S, the inferred type f, and the subset of V that was not consumed
during inference. The substitution returned by the inference algorithm is used
to propagate the results of unification to the enclosing context.

Type inference is dependent on an algorithm for unification of type se-
quences, which yields a substitution � if the sequences can be unified. We
also make use of an auxiliary function inst(�,V):

inst(8(↵
i

, ...,↵
j

, ...).f,V) = ([↵
i

7! �

i

, ...,↵
j

7! �

j

, ...]f,V - {�
i

, ...,�
j

, ...})
where �

i

, ...,�
j

, ... 2 V

That is, inst substitutes fresh type variables for the quantified type variables
in � and returns the instantiated type along with the subset of fresh type
variables not used by the instantiation. We explicitly require that quantified
individual type variables map to fresh individual type variables, and similarly
for sequence variables.

4.2 unification algorithm

The unification method used in the inference algorithm is defined in Algo-
rithm 2. This algorithm is split into two parts: a variant of Robinson unification
specialized for the individual types ⌧ of ��, and unification of type sequences
i optionally terminated by a left-most sequence variable. It is known that uni-
fication in the presence of sequence variables is unitary when all sequences
in both terms have either no sequence variables or a single left-most sequence
variable [5]. Our algorithm is tailored for this case. We require two more prop-
erties when investigating the proof of algorithmic completeness:

1. ftv(Unify(i, i 0)) ✓ ftv(i)[ftv(i 0)

2. Unify(i, i 0) = � implies that � is the most general unifier of i and i

0

17

18 type inference for ��

Algorithm 1 Inference for ��
function Infer(� , e,V) . Infer : h� , e,Vi ! hS, f,Vi

if e is ✏ then

h;,↵! ↵,V - {↵}i where ↵ 2 V

else if e is e

0
n then

hS, i! o,V 0i Infer(� , e 0,V)
hS, i! o Int,V 0i

else if e is e

0
b then

hS, i! o,V 0i Infer(� , e 0,V)
hS, i! o Bool,V 0i

else if e is e

0 + then

hS, i! o,V 0i Infer(� , e 0,V)
� Unify(o,↵ Int Int) where ↵ 2 V

0

h� � S,�(i! ↵ Int),V 0 - {↵}i
else if e is e

0
x and x 2 � then

hi
2

! o

2

,V 0i inst(�(x),V)
hS, i

1

! o

1

,V 00i Infer(� , e 0,V 0)
� Unify(o

1

,S(i
2

))
h� � S,�(i

1

! S(o
2

)),V 00i
else if e is e

0 if then

hS, i! o,V 0i Infer(� , e 0,V)
� Unify(o,↵ � � Bool) where ↵,� 2 V

0

h� � S,�(i! ↵ �),V 0 - {↵,�}i
else if e is e

1

{e
2

} then

hS
1

, i
1

! o

1

,V 0i Infer(� , e
1

,V)
hS

2

, i
2

! o

2

,V 00i Infer(S
1

(�), e
2

,V 0)
hS

2

� S
1

, (S
2

(i
1

)! S

2

(o
1

) (i
2

! o

2

)),V 00i
else if e is e

0 call then

hS, i! o,V 0i Infer(� , e 0,V)
� Unify(o,↵ (↵! �)) where ↵,� 2 V

0

h� � S,�(i! �),V 0 - {↵,�}i
else if e is e

0 fix then

hS, i! o,V 0i Infer(� , e 0,V)
� Unify(o,↵ (↵ (↵! �)! �)) where ↵,� 2 V

0

h� � S,�(i! �),V 0 - {↵,�}i
else if e is e

1

�x.e
2

then

hS
1

, i
1

! o

1

,V 0i Infer(� , e
1

,V)
hS

2

, i
2

! o

2

,V 00i Infer(S
1

(�); x : 8↵.↵! ↵ �, e
2

,V 0 - {�}) where � 2 V

0

� Unify(S
2

(o
1

), i
2

S

2

(�))
h� � S

2

� S
1

,�(S
2

(i
1

)! o

2

),V 00i
else if e is e

1

let x = e

2

in e

3

then

hS
1

, i
1

! o

1

,V 0i Infer(� , e
1

,V)
hS

2

, f
2

,V 00i Infer(S
1

(�), e
2

,V 0)

hS
3

, i
3

! o

3

,V 000i Infer(S
2

(S
1

(�)); x : \
S

2

(S
1

(�))(f
2

), e
3

,V 00)
� Unify(S

3

(S
2

(o
1

)), i
3

)
h� � S

3

� S
2

� S
1

,�(S
3

(S
2

(i
1

))! o

3

),V 000i
end if

end function

4.3 correctness and completeness of the algorithm 19

Algorithm 2 Unification for �� Types
function Unify(i

1

, i
2

) . Unify : hi, ii ! �

if i

1

, i
2

is ✏, ✏ then []
else if i

1

is ↵ and i

2

is ↵ then []
else if i

1

is ↵ and ↵ /2 ftv(i
2

) then [↵ 7! i

2

]
else if i

2

is ↵ and ↵ /2 ftv(i
1

) then [↵ 7! i

1

]
else if i

1

is i

0
1

⌧

1

and i

2

is i

0
2

⌧

2

then

�

1

 UnifyInd(⌧
1

, ⌧
2

)
�

2

 Unify(�
1

i

0
1

,�
1

i

0
2

)
�

2

��
1

end if

end function

function UnifyInd(⌧
1

, ⌧
2

) . UnifyInd : h⌧, ⌧i ! �

if ⌧

1

, ⌧
2

is Int, Int then []
else if ⌧

1

, ⌧
2

is Bool, Bool then []
else if ⌧

1

is ↵ and ↵ /2 ftv(⌧
2

) then [↵ 7! ⌧

2

]
else if ⌧

2

is ↵ and ↵ /2 ftv(⌧
1

) then [↵ 7! ⌧

1

]
else if ⌧

1

, ⌧
2

is i

1

! o

1

, i
2

! o

2

then

�

1

 Unify(i
1

, i
2

)
�

2

 Unify(�
1

o

1

,�
1

o

2

)
�

2

��
1

end if

end function

4.3 correctness and completeness of the algorithm

The proofs of correctness and completeness are all adapted from Leroy’s proofs
for a functional language with a Hindley-Milner type system [6].

Lemma 8. (Typing is Stable under Substitution) For all substitutions S, if � ` e : f
then S(�) ` e : S(f).

Proof. By structural induction on e, where the structure of e is left-associative.
The proof found in Leroy [6] can be adapted to the syntax and type-system of
�� with mostly cosmetic changes.

Theorem 9. (Inference is Correct) Let e be an expression, � a type environment,
and V a set of fresh type variables. If Infer(� , e,V) = (S, f,V 0), then S(�) ` e : f.

Proof. We proceed by induction over e, taking the structure of e here to be
left-associative. Throughout the proof we use the fact that our unification algo-
rithm produces a most-general unifier [5].

case e = ✏. We have Infer(� , ✏,V) = (;,↵ ! ↵,V 0). By Empty we can
derive � ` ✏ : ↵ ! ↵, and we have ;(�) = � and ;(↵ ! ↵) = ↵ ! ↵ as
required.

case e = e

0
n. We apply the induction hypothesis to the recursive call of

Infer, yielding S(�) ` e

0 : i! o. By Num, we then have S(�) ` e

0
n : i! o Int,

which is the type returned by the algorithm.

20 type inference for ��

case e = e

0
b. Similar to the case for numbers.

case e = e

1

{e
2

}. We apply the induction hypothesis to the recursive calls
of Infer, which yields

S

1

(�) ` e

1

: i
1

! o

1

S

2

(S
1

(�)) ` e

2

: i
2

! o

2

By Lemma 8 we have S

2

(S
1

(�)) ` e

1

: S
2

(i
1

! o

1

), and by the definition
of substitution S

2

(i
1

! o

1

) = S

2

(i
1

) ! S

2

(o
1

). Hence by Block we have
S

2

(S
1

(�)) ` e

1

{e
2

} : S
2

(i
1

) ! S

2

(o
1

) (i
2

! o

2

), and this is the type returned
by the algorithm.

case e = e

0 +. Applying the induction hypothesis to the recursive call of
Infer yields S(�) ` e

0 : i ! o. For the algorithm to succeed, we must have
Unify(o,↵ Int Int) = �. Hence, by Lemma 8 we have �(S(�)) ` e

0 : �(i ! o).
Since � is a most-general unifier [5], we have �(S(�)) ` e

0 : �(i ! ↵ Int Int).
By Add we then have �(S(�)) ` e

0 + : �(i! ↵ Int), which is the type returned
by the algorithm.

case (e = e

0 if) or (e = e

0 call) or (e = e

0 fix). These cases are similar to
the case for addition.

case e = e

0
x. Applying the induction hypothesis to the recursive call of

Infer yields S(�) ` e

0 : i
1

! o

1

. We then have inst(S(�)(x),V 0) = (i
2

!
o

2

,V 00). By definition of inst, we have S(�)(x) v i

2

! o

2

. For the algorithm to
succeed, we must have Unify(o

1

, i
2

) = �. By Lemma 8 we have �(S(�)) ` e

0 :
�(i

1

! o

1

). Since �(o
1

) = �(i
2

), we have by (Var) �(S(�)) ` e

0
x : �(i

1

!
o

2

), and this is the type returned by the algorithm.

case e = e

1

�x.e
2

. Applying the induction hypothesis to the recursive calls
of Infer yields

S

1

(�) ` e

1

: i
1

! o

1

S

2

(S
1

(�)); x : S
2

(8↵.↵! ↵ �) ` e

2

: i
2

! o

2

By Lemma 8 we have S

2

(S
1

(�)) ` e

1

: S

2

(i
1

! o

1

). For the algorithm
to succeed, we must have Unify(S

2

(o
1

), i
2

S

2

(�)) = �. Hence, by Lemma 8

again, we have:

�(S
2

(S
1

(�))) ` e

1

: �(S
2

(i
1

! o

1

))

�(S
2

(S
1

(�))); x : �(S
2

(8↵.↵! ↵ �)) ` e

2

: �(i
2

! o

2

)

Since � is a most-general unifier, we have �(S
2

(o
1

)) = �(i
2

S

2

(�)), so by
Lam we have �(S

2

(S
1

(�))) ` e

1

�x.e
2

: �(S
2

(i
1

) ! o

2

), and this is the type
returned by the algorithm.

4.3 correctness and completeness of the algorithm 21

case e = e

1

let x = e

2

in e

3

. Applying the induction hypothesis to the
recursive calls of Infer yields

S

1

(�) ` e

1

: i
1

! o

1

S

2

(S
1

(�)) ` e

2

: f
2

S

3

(S
2

(S
1

(�)); x : gen(S
3

(S
2

(S
1

(�))), f
2

) ` e

3

: i
3

! o

3

By Lemma 8, we have

S

3

(S
2

(S
1

(�))) ` e

1

: S
3

(S
2

(i
1

! o

1

))

S

3

(S
2

(S
1

(�))) ` e

2

: S
3

(i
2

! o

2

)

For the algorithm to succeed, we must also have Unify(S
3

(S
2

(o
1

)), i
3

) =
�. Then, as �(S

3

(S
2

(o
1

))) = �(i
3

), we have by Let that �(S
3

(S
2

(S
1

(�)))) `
e

1

let x = e

2

in e

3

: �(S
3

(S
2

(i
1

)) ! o

3

), and this is the type returned by the
algorithm.

To make the statement of the completeness property less verbose, we intro-
duce a notation S- V , where S is a substitution and V a set of disjoint type
variables, defined as:

S- V = [↵
i

7! ⌧

i

] for all (↵
i

, ⌧
i

) 2 S where ↵

i

/2 V

Lemma 10. (Well-typed Under More-general Environment). Let � and �

0 be two
type environments with the same domain. If � 0(x) v �(x) for all x 2 � and � ` e : f,
then �

0 ` e : f.

Proof. By easy structural induction on e, where the structure is left-associative.
Again, the Leroy proof [6] is easily adapted to �� with the definition of v from
Section 3.4.

Theorem 11. (Inference is Complete) Let e be an expression, � a type environment,
and V a set of fresh type variables such that V \ ftv(�) = ;. If there exists a type
f

0 and a substitution S

0 such that S

0(�) ` e : f

0, then there exist a type f and
substitutions S,R such that the following hold:

1. Infer(� , e,V) = (S, f,V 0) for some V 0 ✓ V

2. f

0 = R(f)

3. (R � S)- V = S

0

Proof. We proceed by structural induction over e. Like for the proof of Theo-
rem 9, we specify here that the structure of e is left-associative. We also note
that, since V

0 ✓ V , we have V

0 \ ftv(f) = ; and V

0 \ ftv(S(�)) = ;.

case e = ✏. In this case we let S

0 = ;. The typing derivation ends with
� ` ✏ : i ! i. For e = ✏, the algorithm always succeeds, yielding type � ! �

and substitution ;, where � 2 V . We let R = [� 7! i], and thus we have

1. R(�! �) = i! i

2. (R � ;)- V = R- V = ;
as required.

22 type inference for ��

case e = e

0
n. The typing derivation ends with

S

0(�) ` e

0 : i! o

S

0(�) ` e n : i! o Int

We apply the inductive hypothesis to e

0, � , V , i! o and S

0 to get

Infer(� , e 0,V) = (S, i 0 ! o

0,V 0)

R(i 0 ! o

0) = i! o

(R � S)- V = S

0

The algorithm succeeds with type i

0 ! o

0
Int and the same substitution S from

the inductive hypothesis. This allows us to reuse the substitution R from the
inductive hypothesis for the remaining two properties.

case e = e

0
b. Similar to the case for numbers.

case e = e

1

{e
2

}. The typing derivation ends with

S

0(�) ` e

1

: i
1

! o

1

S

0(�) ` e

2

: i
2

! o

2

S

0(�) ` e

1

{e
2

} : i
1

! o

1

(i
2

! o

2

)

We apply the inductive hypothesis to e

1

, � , V , i
1

! o

1

, and S

0 to get

Infer(� , e
1

,V) = (S
1

, i 0
1

! o

0
1

,V 0)

R

1

(i 0
1

! o

0
1

) = i

1

! o

1

(R
1

� S
1

)- V = S

0

We then apply the inductive hypothesis to e

2

, S
1

(�), V 0, i
2

! o

2

and R

1

.

Infer(S
1

(�), e
2

,V 0) = (S
2

, i 0
2

! o

0
2

,V 00)

R

2

(i 0
2

! o

0
2

) = i

2

! o

2

(R
2

� S
2

)- V

0 = R

1

The remark at the beginning of the proof assures us this is possible.
Since ftv(V 0)\ ftv(i 0

1

! o

0
1

), we have that R
1

(i 0
1

! o

0
1

) = R

2

(S
2

(i 0
1

! o

0
1

)). As
the algorithm succeeded for both of its recursive calls, it then yields the type
S

2

(i 0
1

) ! S

2

(o 0
1

) (i 0
2

! o

0
2

) and the substitution S

2

� S
1

. We let R = R

2

, and
then we have

R

2

(S
2

(i 0
1

)! S

2

(o 0
1

) (i 0
2

! o

0
2

)) = R

1

(i 0
1

)! R

1

(o 0
1

) (R
2

(i 0
2

)! R

2

(o 0
2

))

= i

1

! o

1

(i
2

! o

2

)

(R
2

� S
2

� S
1

)- V = (R
1

� S
1

)- V = S

0

as required.

4.3 correctness and completeness of the algorithm 23

case e = e

0 +. The typing derivation ends with

S

0(�) ` e

0 : i! o Int Int

S

0(�) ` e

0 + : i! o Int

We apply the inductive hypothesis to e

0, � , V , i! o Int Int, and S

0 to get

Infer(� , e 0,V) = (S, i 0 ! o

0,V 0)

R(i 0 ! o

0) = i! o Int Int

(R � S)- V = S

0

Let � = [↵ 7! o] � R, where ↵ 2 V

0. We then have

�(o 0) = R(o 0) = o Int Int

�(↵ Int Int) = o Int Int

Thus � is a unifier of o

0 and ↵ Int Int. Because sequence unification with
only left-most sequence variables is unitary, these two sequences have a most-
general unifier �

0. Hence the algorithm is defined, yielding type �

0(i 0 !
↵ Int) and substitution �

0 � S. By the definition of most-general unifier, we
have � = S

�

�� 0 for some substitution S

�

. We then have

S

�

(� 0(i 0 ! ↵ Int)) = �(i 0 ! ↵ Int) = R(i)! o Int = i! o Int

(S
�

�� 0 � S)- V = (� � S)- V = (R � S)- V = S

0

as required.

case e = e

0 if or e = e

0 call or e = e

0 fix. These are similar to the case for
addition.

case e = e

0
x. The typing derivation ends with

x : � 2 S

0(�) � v i

2

! o

2

S

0(�) ` e

0 : i
1

! o

1

o

1

= i

2

S

0(�) ` e

0
x : i

1

! o

2

Applying the inductive hypothesis to e

0, � , V , i
1

! o

1

, and S

0, we get

Infer(� , e 0,V) = (S, i 0
1

! o

0
1

,V 0)

R(i 0
1

! o

0
1

) = i

1

! o

1

(R � S)- V = S

0

Since S

0(�) ` e

0
x : i

1

! o

2

, we know that x 2 S

0(�) and S

0(�)(x) v i

2

! o

2

.
Hence x 2 � , and we have i

0
2

! o

0
2

= [↵
1

7! �

1

, ...,↵
n

7! �

n

](i
x

! o

x

)
and V

00 = V

0 - {�
1

, ...,�
n

} according to the definition of inst, where �(x) =
8↵

1

, ...,↵
n

.i
x

! o

x

, where 8i 2 {1, ...,n} we have ↵

i

2 V

00 and thus the ↵

i

are
out of reach for S 0 and R.

Then we have S

0(�)(x) = 8↵
1

, ...,↵
n

.S 0(i
x

! o

x

). Let Q be the substitution
over the ↵

i

such that i
2

! o

2

= Q(S 0(i
x

! o

x

)), and let R 0 = Q � S 0 � [�
1

7!

24 type inference for ��

↵

1

, ...,�
n

7! ↵

n

]. We then have R

0(i 0
2

! o

0
2

) = Q(S 0(i
x

! o

x

)) = i

2

! o

2

.
As o

1

= i

2

, we have R(o 0
1

) = R

0(i 0
2

) = Q(S 0(i 0
x

)) = Q(R(S(i
x

))) = R(S(Q(i
x

)))
since the ↵

i

are out of reach for S 0 and R.
R is a unifier of o

0
1

and S(Q(i
x

)), so there exists a most-general unifier �

for the two sequences, and there exists a substitution R

1

such that R = R

1

��.
Hence, the algorithm succeeds, yielding type �(i 0

1

! S(Q(o
x

))) and substitu-
tion � � S. We then have

R

1

(�((i 0
1

! S(Q(o
x

))))) = i

1

! R(S(Q(o
x

))) = i

1

! o

2

(R
1

�� � S)- V = (R � S)- V = S

0

as required.

case e = e

1

�x.e
2

. The typing derivation ends with

S

0(�) ` e

1

: i
1

! o

1

S

0(�); x : 8↵.↵! ↵ ⌧ ` e

2

: i
2

! o

2

o

1

= i

2

⌧

S

0(�) ` e

1

�x.e
2

: i
1

! o

2

Applying the induction hypothesis to e

1

, � , V , i
1

! o

1

, and S

0, we get

Infer(� , e
1

,V) = (S
1

, i 0
1

! o

0
1

,V 0)

R

1

(i 0
1

! o

0
1

) = i

1

! o

1

(R
1

� S
1

)- V = S

0

Let the environment �
1

be � ; x : 8↵.↵ ! ↵ � and the substitution S

0
1

be [� 7!
⌧] � S 0, where � is taken from V

0. We apply the induction hypothesis to e

2

,
S

1

(�
1

), V 0 - {�}, i
2

! o

2

and R

1

to get

Infer(S
1

(�), e
2

,V 0 - {�}) = (S
2

, i 0
2

! o

0
2

,V 00)

R

2

(i 0
2

! o

0
2

) = i

2

! o

2

(R
2

� S
2

)- V = R

1

Since o

1

= i

2

⌧, we have R

1

(o 0
1

) = R

2

(S
2

(o 0
1

)) = R

2

(i 0
2

) ⌧. Hence, R
2

is a
unifier of S

2

(o 0
1

) and i

0
2

⌧, so there must be a most general unifier � of the
two type sequences, and there exists a substitution R

3

such that R
2

= R

3

��. It
follows that the algorithm is well-defined, yielding type �(S

2

(i 0
1

) ! o

0
2

) and
substitution � � S

2

� S
1

. Then we have

R

3

(�(S
2

(i 0
1

)! o

0
2

)) = R

2

(S
2

(i 0
1

))! R

2

(o 0
2

) = i

1

! o

2

(R
3

�� � S
2

� S
1

)- V = (R
2

� S
2

� S
1

)- V = (R
1

� S
1

)- V = S

0

as required.

case e = e

1

let x = e

2

in e

3

. Then the typing derivation ends with

S

0(�) ` e

2

: f S

0(�); x : [S 0(�)(f) ` e

3

: i
2

! o

2

S

0(�) ` e

1

: i
1

! o

1

o

1

= i

2

S

0(�) ` e

1

let x = e

2

in e

3

: i
1

! o

2

4.3 correctness and completeness of the algorithm 25

Applying the induction hypothesis to e

1

, � , V , i
1

! o

1

, and S

0 yields

Infer(� , e
1

,V) = (S
1

, i 0
1

! o

0
1

,V 0)

R

1

(i 0
1

! o

0
1

) = i

1

! o

1

(R
1

� S
1

)- V = S

0

We then apply the induction hypothesis to e

2

, S
1

(�), V 0, f, and R

1

to get

Infer(S
1

(�), e
2

,V 0) = (S
2

, f 0,V 00)

R

2

(f 0) = f

(R
2

� S
2

)- V = R

1

We have that S

0(�) = R

1

(S
1

(�)) = R

2

(S
2

(S
1

(�))). Since we know S

0(�); x :
[
S

0(�)(f) ` e

3

: i
2

! o

2

, we have by Lemma 10 that R
2

(S
2

(S
1

(�)); x : \
S

2

(S
1

(�))(f 0)) `
e

3

: i
2

! o

2

. We now apply the induction hypothesis to e

3

with S

2

(S
1

(�)); x :
\

S

2

(S
1

(�))(f 0), V 00, i
3

! o

3

, and R

2

to get

Infer(S
2

(S
1

(�)); x : \
S

2

(S
1

(�))(f 0), e
3

,V 00) = (S
3

, i 0
2

! o

0
2

,V 000)

R

3

(i 0
2

! o

0
2

) = i

2

! o

2

(R
3

� S
3

)- V = R

2

As o

1

= i

2

, we have R

1

(o 0
1

) = R

3

(S
3

(S
2

(o 0
1

))) = R

3

(i 0
2

). Thus, R
3

is a unifier
of S

3

(S
2

(o 0
1

)) and i

0
2

, so there must be a most general unifier � of the two
type sequences, and there exists a substitution R

4

such that R

3

= R

4

��. It
follows that the algorithm is well-defined, yielding type �(S

3

(S
2

(i 0
1

)) ! o

0
2

)
and substitution � � S

3

� S
2

� S
1

. Then we have

R

4

(�(S
3

(S
2

(i 0
1

))! o

0
2

)) = R

3

(S
3

(S
2

(i 0
1

)))! R

3

(o
2

) 0 = i

1

! o

2

(R
4

�� � S
3

� S
2

� S
1

)- V = (R
3

� S
3

� S
2

� S
1

)- V = ... = S

0

as required.

5
I M P L E M E N TAT I O N

A variant of �� has been implemented as a #lang in Racket. The variant, named
wort, is semantically similar to �� with a slightly different syntax and two ad-
ditional primitives for comparison on numeric values. The inference algorithm
of the implementation is somewhat simpler than the one presented above, but
equivalent; however, the paper algorithm is easier to write proofs about since it
lacks mutual recursion. The code is well documented and deliberately simple
to improve readability; the whole package is around 700 lines of Racket dis-
tributed over eight files. A few small sample programs are included with the
package; Figure 6 shows one of the samples in the DrRacket IDE that comes
with the Racket installation. Running a wort program in DrRacket will dis-
play both the results of evaluation and the inferred type of the expression. The
repository can be found online at either the Racket package listings as ’wort’,
or on GitHub at https://github.com/robertkleffner/wort.

Figure 6: A wort program in DrRacket

27

6
C O N C L U S I O N & F U T U R E D I R E C T I O N S

Concatenative languages share many useful theoretical properties with their
widely studied functional counterparts. I presented a core concatenative lan-
guage with variable binding, then formulated and proved sound a polymor-
phic type system for this language. In addition, I described a type inference
algorithm for this language, then proved it sound and complete with respect
to the type system.

There are many directions that research on concatenative languages might
take. In section 2 we examined a particular semantics that bears some resem-
blance to call-by-value; it would be interesting to investigate whether concate-
native languages might have a call-by-name semantics, and how it would dif-
fer from the semantics presented here. �� also has striking parallels with the
call-by-push-value paradigm [7] which may warrant further investigation.

In the type syntax of ��, we require sequence type variables to appear only
at the left-most position of a type sequence. This restriction made unification
unitary in the inference algorithm. If we abandon type inference and move
to explicit types, the restriction could be lifted. A concatenative calculus with
sequence type variables presents interesting challenges, and what a richer type
system would look like for concatenative languages is an interesting question;
even a simply-typed variant of �� is somewhat tricky to formulate properly.
The syntax, semantics, and type system of �� provides a starting point for
potential answers to these questions.

29

B I B L I O G R A P H Y

[1] Christopher Diggins. Simple Type Inference for Higher-Order Stack-Oriented
Languages. Tech. rep. 2008. doi: 10.1.1.156.406.

[2] Christopher Diggins. Typing Functional Stack-Based Languages. Tech. rep.
2008. url: https://www.researchgate.net/publication/228985001_
Typing_Functional_Stack-Based_Languages.

[3] Sami Hangaslammi. Concatenative Row-Polymorphic Programming in Haskell.
2012. url: https://github.com/leonidas/codeblog/blob/master/
2012/2012-02-17-concatenative-haskell.md.

[4] Brent Kerby. The Theory of Concatenative Combinators. 2002. url: http:
//tunes.org/{~}iepos/joy.html.

[5] Temur Kutsia. Theorem Proving with Sequence Variables and Flexible Arity
Symbols. Ed. by Matthias Baaz and Andrei Voronkov. Vol. 2514. Lecture
Notes in Computer Science. Berlin, Heidelberg: Springer Berlin Heidel-
berg, 2002. isbn: 978-3-540-00010-5. doi: 10.1007/3-540-36078-6.

[6] Xavier Leroy. Polymorphic typing of an algorithmic language. Research Re-
port RR-1778. Projet FORMEL. INRIA, 1992. url: https://hal.inria.
fr/inria-00077018.

[7] Paul Blain Levy. “Call-by-push-value: Decomposing Call-by-value and
Call-by-name.” In: Higher Order Symbol. Comput. 19.4 (Dec. 2006), pp. 377–
414. issn: 1388-3690. doi: 10.1007/s10990- 006- 0480- 6. url: http:
//dx.doi.org/10.1007/s10990-006-0480-6.

[8] Sam Lindley, Conor McBride, and Craig McLaughlin. “Do Be Do Be
Do.” In: Proceedings of the 44th ACM SIGPLAN Symposium on Principles of
Programming Languages. POPL 2017. Paris, France: ACM, 2017, pp. 500–
514. isbn: 978-1-4503-4660-3. doi: 10.1145/3009837.3009897. url: http:
//doi.acm.org/10.1145/3009837.3009897.

[9] Robin Milner. “A theory of type polymorphism in programming.” In:
Journal of Computer and System Sciences 17 (1978), pp. 348–375.

[10] Chris Okasaki. “Techniques for embedding postfix languages in Haskell.”
In: Proceedings of the ACM SIGPLAN workshop on Haskell - Haskell ’02
(2002), pp. 105–113. doi: 10.1145/581690.581699.

[11] Sviatoslav Pestov, Daniel Ehrenberg, and Joe Groff. “Factor: A Dynamic
Stack-based Programming Language.” In: SIGPLAN Not. 45.12 (Oct. 2010),
pp. 43–58. issn: 0362-1340. doi: 10.1145/1899661.1869637.

[12] Jaanus Poial. “Algebraic Specification of Stack Effects for Forth Programs.pdf.”
In: 1990 FORML Conference Proceedings. The Forth Interest Group, 1990,
pp. 12–14.

31

32 Bibliography

[13] Jaanus Poial. “Stack effect calculus with typed wildcards , polymor-
phism and inheritance.” In: 18th EuroForth Conference. 2002, p. 38.

[14] Jaanus Poial. “Typing Tools for Typeless Stack Languages.” In: 23rd Eu-
roForth Conference. 2006, pp. 40–46.

[15] Jon Purdy. Why Concatenative Programming Matters. 2012. url: https :

/ / evincarofautumn . blogspot . com / 2012 / 02 / why - concatenative -

programming-matters.html.

[16] Elizabeth D. Rather, Donald R. Colburn, and Charles H. Moore. “His-
tory of Programming languages—II.” In: ed. by Thomas J. Bergin Jr. and
Richard G. Gibson Jr. New York, NY, USA: ACM, 1996. Chap. The Evo-
lution of Forth, pp. 625–670. isbn: 0-201-89502-1. doi: 10.1145/234286.
1057832.

[17] Glenn C. Reid. Thinking in PostScript. Addison-Wesley, 1990.

[18] Ando Saabas and Tarmo Uustalu. “Compositional type systems for stack-
based low-level languages.” In: Proceedings of the 12th Computing: The Aus-
tralasian Theroy Symposium. Vol. 51. 2006, pp. 27–39. isbn: 1920682333.

[19] Bill Stoddart and Peter J. Knaggs. “Type inference in stack based lan-
guages.” In: Formal Aspects of Computing 5.4 (1993), pp. 289–298. issn:
0934-5043. doi: 10.1007/BF01212404.

[20] Manfred von Thun. “Joy : Forth’s Functional Cousin.” In: EuroForth Con-
ference. 2001. url: http://www.complang.tuwien.ac.at/anton/euroforth/
ef01/thomas01a.pdf.

[21] A.K. Wright and M. Felleisen. “A Syntactic Approach to Type Sound-
ness.” In: Inf. Comput. 115.1 (Nov. 1994), pp. 38–94. issn: 0890-5401. doi:
10.1006/inco.1994.1093. url: http://dx.doi.org/10.1006/inco.1994.
1093.

