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Abstract

We present a series of CPS-based intermediate languageklsui
for functional language compilation, arguing that theyenpvacti-
cal benefits over direct-style languages baseddemormal form
(ANF) or monads. Inlining of functions demonstrates theesen
fits most clearly: in ANF-based languages, inlining invehaere-
normalization step that rearranges let expressions argiljpn-
troduces a new ‘join point’ function, and in monadic langesg
commuting conversions must be applied; in contrast, ingjrin our
CPS language is a simple substitution of variables for e

We present a contification transformation implemented by si
ple rewrites on the intermediate language. Exceptions aretted
using so-called ‘double-barrelled’” CPS. Subtyping on piioa
constructors then gives a very straightforward effectysiafor ex-

ceptions. We also show how a graph-based representatioR8f C

terms can be implemented extremely efficiently, with lintiare
term simplification.

Categories and Subject Descriptors D.3.4 [Programming Lan-
guage§ Processors — Compilers

General Terms Languages

Keywords Continuations, continuation passing style, monads, op-

timizing compilation, functional programming languages

1. Introduction

Compiling with continuations is out of fashion. So repore #u-
thors of two classic papers on Continuation-Passing Styftegent
retrospectives:

“In 2002, then, CPS would appear to be a lesson aban-
doned.” (McKinley 2004; Shivers 1988)

“Yet, compiler writers abandoned CPS over the ten years

following our paper anyway.” (McKinley 2004; Flanagan
et al. 1993)

This paper argues for a reprieve for CPS: “Compiler writgige
continuations a second chance.”

This conclusion is borne of practical experience. In the MLj
and SML.NET whole-program compilers for Standard ML, co-
implemented by the current author, we adopted a direce;styl

monadic intermediate language (Benton et al. 1998, 2004b).
part, we were interested in effect-based program transftioms,
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so monads were a natural choice for separating computétiome
values in both terms and types. But, given the history of QR&-
ably there was also a feeling that “CPS is for call/cc”, sdrimef
that is not a feature of Standard ML.

Recently, the author has re-implemented all stages o
SML.NET compiler pipeline to use a CPS-based intermedate
guage. Such a change was not undertaken lightly, amourti
roughly 25,000 lines of replaced or new code. There are r
benefits: the language is smaller and more uniform, simafi
tion of terms is more straightforward and extremely effitiemd
advanced optimizations such as contification are moreyeasil
pressed. We use CPS only because it goad place to do opti
mization we are not interested in first-class control in the so
language (call/cc), or as a means of implementing otheufes
such as concurrency. Indeed, as SML.NET targets .NET IL|la
stack-based intermediate language with support for siredtex-
ception handling, the compilation process can be sumnthias
“transform direct style (SML) into CPS; optimize CPS; trimmm
CPS back to direct style ((NET IL)".

1.1 Some history

CPS. What's special about CPS? As Appel (1992, p2) pu
“Continuation-passing style is a program notation that esadv-
ery aspect of control flow and data flow explicit”. An import:
consequence is that fuB-reduction (function inlining) is sount
In contrast, for call-by-value languages based on the |landad
culus, only the weakep-value rule is sound. For examplg;
reduction cannot be applied (0x.0) (f y) becausef y may
have a side-effect or fail to terminate; but its CPS tramsft
f v (Az.(Ax.\k.k 0) z k) can be reduced without prejudic
There are obvious drawbacks: the complexity of CPS terme
need to eliminateadministrativeredexes introduced by the CI
transformation; and the cost of allocating closures forddas in-
troduced by the CPS transformation, unless some statisiarg
first applied. In fact, these drawbacks are more apparentréed:
the complexity of CPS terms is really a benefit, assigning
ful names to all intermediate computations and control {soitihe
CPS transformation can be combined with administrativeice
tion; and by employing a syntactic separation of contiraratand
source-lambdas it is possible to generate good code dirfeoth
CPS terms.

ANF. In their influential paper “The Essence of Compiling w
Continuations”, Flanagan et al. (1993) observed thatyfdikvel-
oped CPS compilers do not need to employ the CPS transfam
but can achieve the same results with a simple source-tavedfor-
mation”. They proposed a direct-style intermediate lagguaase:
on A-normal forms, in which &t construct assigns names to ev
intermediate computation. For example, the term abovepeer
sented att z = f y in (Az.0) 2, to which3-reduction can be aj
plied, obtaining the semantically equivaldet z = f vy in 0. This
style of language has become commonplace, not only in censy



but also to simplify the study of semantics for impure fuoitl
languages (Pitts 20057.4).

Monads. Very similar to ANF are so-callechonadiclanguages
based on Moggi's computational lambda calculus (Moggi 1991
Monads also make sequencing of computations explicit titrau

let < M in N binding construct, the main difference from ANF
being thatlet constructs can themselves lee-bound. The sepa-
ration of computations from values also provides a placeatogh
effectannotations (Wadler and Thiemann 1998) which compilers
can use to perform effect-based optimizing transformati@en-
ton et al. 1998).

1.2 The problem

A-Normal Form is put forward as a compiler intermediate |aaggu
with all the benefits of CPS (Flanagan et al. 19§8). Unfor-
tunately, the normal form is not preserved under useful ¢lemp
transformations such as function inlining-(eduction). Consider
the ANF term

M=letx=(Ayletz=abinc)dine.
Now naives-reduction produces
letx = (letz=abinc)ine

which is not in normal form. The ‘fix’ is to define a more complex
notion of 3-reduction that re-normalizést constructs (Sabry and
Wadler 1997), in this case producing the normal form

letz=abin (letz=cine).
In contrast, the CPS transform df, namely
Ay Ak.ab(Az.k ¢)) d (Mz.k e),
simplifies by simple3-reduction to
ab(Az.(Az.ke) ).
As Sabry and Wadler explain in their study of the relatiopdie-

monadic terms. Consider the term
let z = (Az.if x then a else b) cin M
This is in ANF, butg-reduction produces
let z = (if ¢ then a else b) in M,

which is not in normal form because it containdea-bound
conditional expression. To reduce it to normal form, onetr
either apply a standard commuting conversion that dugs
the termM, producing

if cthenlet z=ain M elselet z=0bin M,
or introduce a ‘join-point’ function for termi/, to give

letkz=M
inif cthenletz=aink zelseletz=bink z.

Observe thak is simply a continuation! In our CPS langua
k is already available in the original term, being the (nan
continuation that is passed to the function to be inlinedt dé-
sire to share subterms almost forces some kind of contimu
construct into the language. Better to start off with a laagg
that makes continuations explicit.

1.3 Contribution

Much of the above has been said before by others, though
ways in the context of compilation; in this author’s opinidhe
most illuminating works are Appel (1992); Danvy and Filin
(1992); Hatcliff and Danvy (1994); Sabry and Wadler (19%He
contribution of this paper, then, is to draw together thdsseova-
tions in a form accessible to implementers of functionagleages

As is often the case, the devil is in the details, and so an
purpose of this paper is to advocate a certain style of CPt
works very smoothly for compilation. Continuations asemedand
mandatory(just as every intermediate value is named, so is €
control point), aresecond-clas§they’re not general lambdas), ¢
represenbasic blocksaandloops can beshared(typically, througk
common continuations of branches), represxaeptionalcontrol

tween CPS and monadic languages, “the CPS language achieveg,, (using double-barrelled CPS), and ayppeable(but can be

this normalization using the metaoperation of substitutichich
traverses the CPS term to locdteand replace it by the contin-
uation thus effectively ‘pushing’ the continuation deepidle the
term” (Sabry and Wadler 199%,8).

Monadic languages permitt expressions to be nested, but
incorporate so-calledommuting conversior(gc’s) such as

lety < (letx <= M in N)in P
—letx < Min (lety < N in P).

ANF can be seen as a monadic language in whilaleduction is
combined with cc-normalization ensuring that terms reniraicc-
normal form.

All of the above seems quite benign; except for two things:

. Commuting conversions increase the complexity of sifyiplj
intermediate language terms. Reductions that strictlyedese
the size of the term can be applied exhaustively on CPS terms,
the number of reductions applied being linear in the sizéef t
term. The equivalent ANF or monadic reductions must neces-
sarily involve commuting conversions, which leadsQ¢n?)
reductions in the worst case. Moreover, as Appel and JimA199
have shown, given a suitable term representation, shdmdn
ductions on CPS can be applied in ti@én); itis far from clear
how to amortize the cost of commuting conversions to obtain a
similar measure for ANF or monadic simplification.

. Real programming languages include conditional exprass
or, more generally, case analysis on datatype constructors
These add considerable complexity to reductions on ANF or

used in untyped form too). By refining the types of excep
values in the double-barrelled variant we get an effectesydor
exceptions ‘for free'.

We make two additional contributions. Following Appel
Jim (1997), we describe a graph-based representation oféZ/S
that supports the application of shrinkipigreductions in time lin
ear in the size of the term. We improve on Appel and Jim’s st
tive use of back pointers for accessing variable binderd,ean-
ploy the union-find data structure to give amortized nearstant-
time access to binders fafl variable occurrences. This leads to
ficient implementation of)-reductions and other transformatio
We present benchmark results comparing our graph-CP Sseap
tation with (a) an earlier graphical representation of thiginal
monadic language used in our compiler, and (b) the origimat
tional representation of that language.

Lastly, we show how to transform functions into local conti
ations using simple term rewriting rules. This approachdnotié¢-
ication avoids the need for a global dominator analysisg€féand
Weeks 2001), and furthermore supports nested and first-tlas-
tions.

(4

2. Untyped CPS

We start by defining an untyped continuation-passing lagg
A&ps that supports non-recursive functions, the unit valuersp
and tagged values. Even for such a simple language, we can
many of the issues and demonstrate advantages over aiter
direct-style languages.



e The expressiofet x = m; y in K projects the’'th componen

Grammar of a pairy and binds it to variable in K.

(terms)  CTm 3 K, L Ietval_x - V.m K The expressioretcont ¥ x = K in L introduces docal
letz =mxzin K

g continuationk whose single argument is and whose bod
Ik?t;:ont ka=KinL is K .to be used in ternk. It corresponds toa Iapelled block
fha tradltlonal_ Iower-level_ representations. In _Sectlon 3 wteerd
local continuations with support for recursion, and soespni

loops directly.

A continuation applicatiort = corresponds to a jump (K is a
local continuation) or a return (i is the return continuatio
of a function value). As with values, continuations must

case x of k1 [ k2

(values) CVals VW == ()| (x,y)|iniz| ez K

Well-formed terms
TFVok TI'z;AF Kok

(let) - named: function application expressions and case coms
I;AFletval z = Vin K ok do not have subterms, but instead mention continuatior
Iz; A Kok TI';AkF Lok name. We need only ever substitute continuation varialoe
(letc) T AT Jetcont ko — K in L ok continuation variables.
zel T,y;AF K ok Local continuations can be applied more than once, as in
(proj) —; R iel,2
AR lety =mxin K ok letcont j y = K in
\keAxzel keA f,x el letcont k1 z1 = (letval x = Vi in j x) in
(appe) T:AF kxok (app) T.AF fkxok letcont k2 x> = (letval x = Vo in j ) in
CT ki ks € A case z of k1 || ko
(case) TE M, . . . L
I'; Ak case x of ki [| k2 ok Herej is the common continuation, or ‘join point’ for branct
Well-formed values k1 andks.

(pair) z,yel (tag) zel The expressiorf k x is the application of a functiorf to an
't (z,y) ok T'Fin; z ok argumentr and a continuatiot whose parameter receives
kb K ok result of applying the function. I% is the return continuatio
—_— for the nearest enclosing, then the application is a ‘tail call
'k Akz.K ok For example, consider the function value

i€1,2
(unit) W (abs)

Well-formed programs
Acz.(letcont jy=gkyin fjzx).

(Prog) =i F & ok

Hereg is in tail position, andf is not. In effect, we are definir
Figure 1. Syntax and scoping rules for untyped languagps Az.g(f(x)).

The construcicase x of ki [ k2 expectsz to be bound tc
a tagged valuén; y and then dispatches to the appropr
continuationk;, passingy as argument.

In Section 3, we add recursive functions, types, polymanphi
exceptions, and effect annotations. At that point, the uagg re-
sembles a practical CPS-based intermediate language abthe
that could form the core of a compiler for SML, Caml, or Scheme

Figure 1 presents the syntax of the untyped language. Here or
dinary variables are ranged over byy, f, andg, and continuation
variables are ranged over yand;. Indices: range over 1,2. We
specify scoping of variables using well-formedness rubesélues
and terms. Her& + V ok means that valu&” is well-formed in
the scope of a list of ordinary variabl€sandl’; A - K ok means
that term K is well-formed in the scope of a list of continuation
variablesA and a list of ordinary variables. Complete programs
are well-formed in the context of a distinguished top-lex@htin-
uation halt. (For the typed variant of our language there will be
typing rules withl" and A generalized to typing contexts.)

We describe the constructs of the language in turn.

Values include the unit valu@, pairs(z, y) and tagged value
in; z. Function values\k x.K include a return continuatioh
and argument. Note carefully the well-formedness rule (ak
its continuation context includes only the return contiiarak,
thus enforcing locality of continuations introduced Ibcont.

The semantics is given by environment-style evaluatioes,
presented in Figure 2. As is conventional, we define a synt:
run-time values, ranged over by supporting the unit value, pai
constructor applications, and closures. Environmentsvagpbles
to run-time values, and continuation variables to contilonaval-
ues. Continuation values are represented in a closure fahich
gives the impression that they are first-class. An alteraatiould
be to model stack frames more directly and thereby demda:
that continuations are in fact just code pointers. For theqse
of simply defining the meaning of programs we prefer the aies
e The expressioretval z = V in K binds a valueV’ to a based semantics. o )

variable z in the term K. This is theonly way a valueV’ The function[-] p interprets a value expression in an envir
can be used in a term; arguments to functions, case scrstinee Mentp. Terms are evaluated in an environmenthe only obser
components of pairs, and so on, must all be simple variables. Vations that we can make of programs are terminaiienthe ap-
Even the unit valug) must be bound to a variable before being  Plication of the top-level continuatiomalt to a unit value.

used (in the full language, the same holds even for constants
such as42). This means that there is no need for a general .
notion of substitution: we only substitute variables forigbles. 2.1 CPS transformation

Notice also that there is no notion of redundant binding asch  To illustrate how the CPS-based language can be used for
letx < yin K. tional language compilation, consider a fragment of Stechdél



Runtime values: r == () | (r1,72) | inir | {p, \k 2. K)
Continuation values: ¢ ::= (p, \z.K)
Environments: p:=e|p,xz— 1| pk—c

Interpretation of values:

M0l = 0 [(@,9)] p
[inVlp = ini(p(a) [eaK]p

Evaluation Rules:

(p(x), p(y))
(p,Akz.K)

px—[V]pkE K|
phHletvalz =V in K|

o, k— (p, e K)F L
phHletcontkz=KinL|

p,y—ri K|

pFlety=mzin K|
oLy pl@) F KL
/ pFkzl

py—r-KJ| p(z) =in;r
phcasexof ki [ k2 4 p(ki) = (o', Ay.K)

(e-appy Lt =P RLy 2 pW E KL oy 3Gy )

(e-let)

(e-letc)

(e-proj)

p(x) = (r1,72)

(e-app p(k) = (p', \y.K)

(e-case)

pEfkzl
(e-hal)— ko T
Figure 2. Evaluation rules foadpg
-1 ML — (Var — CTm) — CTm
[z] v = &(2)
[O] k = letvalz = () in k()
[ere2] k = [e1] (Nz1.
[[62]] (XZQ.
letcont k = k(z) in z1 k 22))
[Cer,e2)] & = [er] (Nz1.
[[62]] (XZQ.
letval z = (21, 22) in k(z)))
[inie] k = [e] (\z.letval z = in; z in k(x))
[#ie] k = )

[e] (A\z.let z = m; z in k(x)
[fnz=>€] & letval f = Ak z.[e] (N\z.k 2) in k()
[let val z =1 in ez end] k =

letcont j z = [e2] k in [e1] (Nz.j 2)

[case e of inl x1 => e1] in2 2 => ez kK =
[e] (\z.letcont k1 z1 = [e1] k in
letcont k2 x2 = [e2] & in
case z of ki [ k2)

Figure 3. Naive CPS transformation of toy ML ints¥ps

whose expressions (ranged overd)yhave the following syntax:

ML2e == z|eée |fnz=>e] (e,e) |#ie]| O
| ini e | let val = = e in €’ end
| case e of inl x1 => e1| in2 z2 => €2

We assume a datatype declared by
datatype (’a,’b) sum = inl of ’a | in2 of ’b
Expressions in this language can be translated into untgies

tion of the standard higher-order one-pass call-by-vataesfor-
mation (Danvy and Filinski 1992). An alternative, first-ergtrans-
formation is described by Danvy and Nielsen (2003).

The transformation works by taking a translation-time f
tion k as argument, representing the ‘context’ into which thesr
lation of the source term is embedded. For our language,dhe
text’'s argument is a variable, as all intermediate resuésiamed
Note some conventions used in Figure 3: translation-timebta
abstraction is written using and translation-time application
written (. . .), to distinguish from\ and juxtaposition used to d
note lambda abstraction and application in the target lagguAlsc
note that any object variables present in the target terradiun
the source are assumed fresh with respect to all other boanic
ables.

The translation ione-passin the sense that it introduces
‘administrative reductions’ (herg-redexes for continuations) th
must be removed in a separate phaseeptfor 1et constructs (tc
avoid these also would require analysis of e expression; w
prefer to apply simplifying rewrites on the output of thentséor-
mation). However, the translation is naive in two ways. t-itsn-
troducesy-redexes for continuations when translating tail func
applications. For examplgfn = => f (z,y)] ~ produces

letval g = Ak z.(letval p = (z,y) in letcont jz=k z in f j;
in x(g)

whosen-redex (highlighted) can be eliminated to obtain the n
compact

letval g = (Ak z.letval p = (z,y) in f k p) in k(g).

Second, the translation afase duplicates the context; consid
for example, f (case x of inl 1 => e1 | in2 x2 => e2) wWhose
translation involves two calls tg.

The more sophisticated translation scheme of Figure 4 a
both these problems; again, this is based on Danvy and Ki
(1992). The translation functioft] is as before, except (a) it il
troduces goin point continuation to avoid context duplication {
case, and (b) for terms in tail position it uses an alternativengr
lation function (-) that takes an explicit continuation variable
argument instead of a context.

2.2 Rewrites

After translating from source language to intermediatglagye
most functional language compilers perform a number ohoigt-
tion phases that are implemented as transformations omiatk-
ate language terms. Some phases are specific (for examipje,
raising of functions, or hoisting expressions out of lodps usu-
ally there is some set of general rewrites based on stanéa
ductions in the lambda-calculus. Figure 5 presents somergk
rewrites for our CPS-based language. The rewrites look care
plicated than the equivalent reductions in the lambdaubadcbe-
cause the naming of intermediate values forces introduciiod
elimination forms apart. For exampl@;reduction on pairs, whic
in the lambda calculus is simply; (e1,e2) — e;, has to suppol
an intervening context. In practice, the rewrites are not hard to i
plement. In functional style, value bindings (e.g. pairg)stored ir
an environment which is accessed at the reduction site degmp-
jection). In imperative style, bindings are accessed tirélerough
pointers, as we shall see in Section 4.1.

The payoff from this style of rewrite is theelectiveuse of3
rules. For example, in a lambda-calculus extended with aon-
struct, one might perform the reductidet p = (z,y) in M —
M|(z,y)/p] but this would be undesirable unless every sul
tution of (x,y) for p in M produced a redex. In our langua

terms using the function shown in Figure 3. This is an adapta- letval p = (z,y) in ...kp...let z=m pin K reduces t



I : ML — (Var — CTm) — CTm
letval f = Xkx. (e) k in &(f)

letcont j x = [ez2] kin (ei1) j

[fnz=>e]x =

[let valz =e; inep end] Kk =

[case e of inl z1 => e1] in2 o => €3] K

= [e] (\z. letcont j & = k() in letcont k1 x1 = (e1]) j in letcont k2 z2 = (e2) j in case z of k1 [| k2)

(case e of inl x1 => e1| in2 2 => €2

(].

()

(e1 ez

(fnz=>¢

(Ce1,e2)

(ini e

(O

(#i e

(let val z = e1 in ez end|

kx

T

ML — CVar — CTm

[[61]] (xl’1.ﬂ€2]] (XTQ.CLj k Iz))

letval f = Xjz.(e) jink f

[e1] (\z1.[ez] Aza.letval z = (z1,x2) in k z))

[e] (\z.letval z =in; z in k x)

letvalz = () ink x

[e] Nzletz < m;zink x)

letcont j z = (e2)) kin (e1) J

[e] (Az.letcont k1 x1 = (e1]) k in letcont ka2 z2 = (e2) k in case z of ki [ k2)

Figure 4. Tail CPS transformation (changes and additions only shown)

Cu=[|letvalz=VinC|letz=myinC|
letval z = Ak x.C in K | letcont k z =C in K |
letcont ko = K inC

DEAD-CONT letcont k x = L in K — L (k not free inK
DEAD-VAL letval z = Vin K — K (x notfreeink)
(B-CONT letcont k = K in Clk y]

— letcont k z = K in C[K[y/z]]

B-FUN letval f = Akx.K in C[f j y]
— letval f = kz.K in C[K[y/z, j/k]]
B-CASE letval x = in; y in Clcase x of k1 || k]
— letval z = in; y in C[k; y]
B-PAIR letval z = (z1,22) in Cllet y = m; z in K]
— letval z = (z1,z2) in C[K[z;/y]]
B-CONT-LIN letcont k = = K in Clk y]
— C[K][y/z]] (if k not free inC)
B-FUN-LIN letval f = Xkxz.K in C[f j y]
— ClK[y/z,j/H]] (f #y.  notfree inC)
n-CONT letcontkz=jzin K — K[j/k]
n-FUN  letval f=Xkzgkazin K — Klg/f]
n-PAIR  letz; =mizinClletz; =mjx
in C'[letval y = (z1,22) in K]
—letz;=mainClletz; =7z
inCKle/yll ({07} = {1,2})
n-CASE letcont k; x1 = (letval y1 = in;z1 in k y1) in

Clletcont k; z2 = (letval y2 = inj z2 in k y2) in
C'[case z of ki [ k2]

— letcont k; 1 = (letval y1 = in;z1 in k y1) in
Clletcont k; z2 = (letval y2 = inj z2 in k y2) in

C'lk=]] ({5} ={1,2})

Figure 5. General rewrites fohZps

letval p = (z,y) in ...k p... K[z/z] which applies the3-PAIR
rule tom; p but preserves other occurrencepof

It is easy to show that all rewrites preserve well-formedra:
terms. In particular, the scoping of local continuationsespectec

The g-FuN and 8-CoNT reductions arenlining transforma:
tions for functions and continuations. The remainder ofrtaic-
tions we callshrinking reductionsas they strictly decrease the s
of terms (Appel and Jim 1997). T CONT-LIN and3-FUN-LIN
reductions are special cases®bfeduction fodinear uses of a vari
able, in effect combining BAD- and 3- reductions. Shrinking re
ductions can be applied exhaustively on a term, and arealp
used to ‘clean up’ a term after some special-purpose globast
formation such as arity-raising or monomorphisation. €¥ethe
number of such reductions will be linear in the size of thente
moreover, using the representation of terms describeddtiddet
it is possible to perform such reductionsliimear time

2.3 Comparison with a monadic language

The original implementations of the MLj and SML.NET comy
ers used monadic languages inspired by Moggi's computat
lambda calculus (Moggi 1991). Figure 6 presents syntax 1
monadic languag&mon and selected reduction rules.

The defining feature of monadic languages is that seque!
of computations is made explicit through the construct; val
ues are converted into trivial computations usingwhleconstruct
Monadic languages share with CPS languages the propettfatt
miliar 8-reduction on functions is sound, as evaluation of the fi
tion argument is made explicit througdt. But there are drawback
as we outlined in the Introduction. (An orthogonal issue i
CPS based languages — is whether values can appear anywh
cept insideval. In Amon, for ease of presentation, we permit val
to be embedded in applications, pairs, and so on, whereadfg
we insist that they are named. The difference shows up ine¥
duction rules, which imZs make use of contexts. It should
noted that the drawbacks of monadic languages that we ar¢
to discuss are unaffected by this choice.)

Problem 1: need for let/let commuting conversion. The basic
reductions listed in Figure 5 have corresponding redustiol€PS
The let construct itself hag3 and n rules which correspond
B-CoNT and n-CoNT for AZss (consider the CPS transforms
the terms). In contrast to CPS-based languages, thoughadia



Grammar
MTm > M,N == valv|letz<=MinN |vw|mv
| case v of in1 1. My [ ing 2. M2
MValsv,w == x| Ax.M | (v,w)|insv | ()
Reductions
B-LET let z < valvin M — Mv/z]
n-LET letx < Minvalz — M
CC-LET let 2 <= (let x1 <= My in M2) in N
— letx1 < Mj in (Iet T2 < M> in N)
CC-CASE let z < (case v of iny x1. My [ in2 z2.M2) in N
— let f < val \z.N
in case v of iny x1.let x <= My in f x
I] ing x2.let x < Ms in f x
B-PAIR 7 (v1,v2) — vs
B-FUN  (Az.M)v — Mlv/x]
(B-CASE  case in; v of iny z1.M1 [| ing x2. Mo — M;[v/x4]

Figure 6. Syntax and selected rewrites for monadic languags

languages include a so-calledmmuting conversigrexpressing
associativity forlet:

CC-LET letxg < (let 1 <= My in M) in N

— letx1 < M; in (Ietmg < Ms in N)

This reduction plays a vital role in exposing further reduors.
Consider the source expression

#1 ((fnz=> (g z,2)) y)
Its translation intO\mon IS
let zo <= (Az.let z1 < g z in val (z1,2)) y in 71 z2.
Now suppose that we appl§-FuN, to get
let z2 <= (let z1 <= g y inval (z1,y)) in 71 22.
In order to make any further progress, we must use &@+b get
let z1 <= g yin let z2 <= val (z1,y) in 71 22.

Now we can apply3-LET and 8-PAIR to getlet z1 <= gy in 21
which further reduces by-LETt0 g y.

Solution 1. Use CPS. Now take the original source expression
and translate it into our CPS-based language, Withpresenting
the enclosing continuation.

let f = A\j1 x.
(letcont j2 z1 = (letval z2 = (21, ) in j1 22) in g j2 T)
in letcont js z3 = (let z4 = m1 23 in k 24)
infjsy
Applying 8-FUN-LIN gives the following, with substitutions high-
lighted:
letcont j3 z3 = (let z4 = 71 23 in k 24)
in letcont jo 21 = (letval z2 = (21, y ) in J3 z2)ingj2 |y

and by3-CoNT-LIN on j3 we get

letcont j2 21 =
(letval z2 = (z1,y) in let z4 = w1 22 in k 24)
ingj2y.
Finally, use of3-PaIrR and DEAD-VAL producedetcont j3 21 =
k z1 in g j2 y which reduces by)-CoNT to g k y. All reductions
were simple uses of and# rules, without the need for the addi-
tional ‘administrative’ reduction CC-T.

Problem 2: quadratic blowup. The CC-LET reduction seems ir
nocent enough. But observe that inist a shrinking reduction — s
it's not immediately clear whether reduction will termiaaFortu-
nately, the combination of CCHr and shrinking8/n-reductions
of Figure 6doesterminate (Lindley 2005), and moreover ther:
a formal correspondence between the reductions of the o
language and CPS (Hatcliff and Danvy 1994). Unfortunatislg
order in which conversions are applied is critical to thecedficy
of simplification by reduction. Consider the following temmM\mon:

let fr, < val (A\zn.let yn <= g Tnin g yn) in
let fn—1 < val (Azn—1.let yn—1 <= frn Tn-1in g Yyn—1) in

let f1 < val (Aziletyr < foz1iingyr)infia

If (linear) 3-FuN is applied to all functions in this term, followe
by a sequence of CCHT reductions, then no redexes rem
after O(n) reductions. If, however, the commuting conversi
are interleaved withB-FuN, thenO(n?) reductions are require
(There are other examples where it is better to apply conmp
conversions first.) Although this is a pathological examphe
‘simplifier’ was a major bottleneck in the MLj and SML.NE
compilers (Benton et al. 2004a), in part (we believe) beeaf:
the need to perform commuting conversions.

Solution 2: Use CPS. Itis interesting to note that monadic ter
can be translated into CPS in linear-time; shrinking reidustcar
be applied exhaustively there in linear-time (see Sectjpart the
term can be translated back into CPS in linear-time. Thesetfoe
quadratic blowup we saw above is not fundamental, and these
be some means of amortizing the cost of commuting conves
so that exhaustive reductions can be peformed in linear. thee-
ertheless, it is surely better to have the term in CPS fronsths,
and enjoy the benefit of linear-time simplification.

Problem 3: need for let/case commuting conversion. Matters
become more complicated with conditionals or case coristi
Consider the source expression

¢’ (g((fn x => case x of inl x1 => (x1,23) | in2 x5 => ¢’ )
Its translation intG\mon is

let 2 <= (Az.case z of iny z1.val (z1,x3) [ in2z2.9" ) yin
let 2/ < gzing 2.

This reduces by-FuN to

let z < (case y of iny z1.val (z1,23) [ in2 x2.g” y) in
let 2/ < gzing 2.

At this point, we want to ‘float’ thecase expression out of thiet.
The proof-theoretic commuting conversion that expressies
rewrite is

let © < (case v of iny x1.M1 | ingx2.M2) in N
-

case v of iny z1.(let & <= My in N) [ ing x2.(let <= M in N

This can have the effect of exposing more redexes; unfoilyn
it also duplicatesV which is not so desirable. So instead, com
ers typically adopt a variation of this commuting convenstbat
sharesM between the branches, creating a so-cajted point
function:

CC-Cast let z < (case v of iny z1.M1 [| ingx2.Ma2) in N
— let f < val Ax.N
incasevofiniziletz <= M;in fzx

linoxo.let x <= Mo in f x



Applying this to our example produces the result

let f < val (Az.let2' < gzing' 2')in
case z of
iny z1.(let z <= val (z1,z3) in f 2)
Jiniz2.(let z <= ¢g" xin f 2).

As observed earlier, join points such gare just continuations.

Solution 3: Use CPS. Consider the CPS transformation of the
original source expression, withbeing the enclosing return con-
tinuation.
letcont j' 2/ = g’ k 2" in
letcont j z =g j' zin
letval f = \j" x.
(letcont k1 =1 = (letval 2" = (z1,x3) in j” 2”) in
letcont ko z2 = g” " x in
case x of k1 [ k2)
infjy
Applying B-FUN-LIN immediately produces the following term,
with substitutions highlighted:

letcont j' 2’ = ¢’ k 2’ in
letcont j z =g j' zin
letcont k1 1 = (letval 2" = (z1,23) in j 2”)in
letcont ko x2 = ¢"” [j [y in
case |y of ki || k2

There is no need to apply anything analogous to C&SE; or to
introduce a join point: the original term already had onenely j,
which was substituted for the return continuatjdrof the function.

The absence of explicit join points in monadic languages is
an annoyance in itself. By representing join points as @ngin
functions, it is necessary to perform a separate staticysisalo
determine that such functions can be compiled efficientlgassc
blocks.

Explicitly named local continuations in CPS have the adxgat
that locality is immediate from the syntax, and preservedeun
transformation; furthermore traditionaitra-procedural compiler
optimizations (such as those performed on SSA represensti
can be adapted to operate on functions in CPS form.

2.4 Comparison with ANF

Flanagan et al. (1993) propose an alternative to CPS whighcl
A-Normal Form, or ANF for short. This is defined as the image
of the composition of the CPS, administrative normalizatamd
inverse CPS transformations.

05— o s

: l[i-normalization
A(CS) o
un-CPS
The source languag€'s is Core Scheme (corresponding to our
fragment of ML), and their CPS transformation composed With
normalization is equivalent to our one-pass transformafi$ of
Figure 4.

The languageA(CS) corresponds precisely to CCel/CC-
CASE normal forms inAmon. We can express these normal forms
by a grammar:

ATm > A,B == R|letz<=RinA
| case v of iny z1.A1 [ ing x2.A42
ACmp> R vw | mv|v
AValsv.w == zlAz. Al (v.w) linjv ()

Instead of going via a CPS language, the transformationANB
can be performed in one pass, as suggested by the dotted Im
the diagram above A similar transformation has been studied
Danvy (2003).

As Flanagan et al. (1993) suggest, the “back end of arormal
form compiler can employ the same code generation techs
that a CPS compiler uses”. However, as we mentioned in th
troduction, it is not so apparent whether ANF is ideally adito
optimization After all, it is not even closed under the usual r
for 8 reduction(Az.A) v —  A[v/z]. As Sabry and Wadle
(1997) later explained, it is necessary to combine subbtitwvith
re-normalization to get a sound rule féreduction: essentially tr
repeated application of CCHT. They do not consider conditione
or case constructs, but presumably to maintain terms in ANE
is necessary to normalize with respect to CEfland CC-CASE
following function inlining.

It is clear, then, that ANF suffers all the same problems &lfic
fect monadic languages: the need for (non-shrinking) cotimyi
conversions, quadratic blowup of ‘linear’ reductions, ahd ab-
sence of explicit join points.

3. Typed CPS with exceptions

We now add types and other features to the language of Sext
In the untyped world, we can model recursion using a call<lye
fixed-point combinator. For a typed language, we must adc
plicit support for recursive functions — which, in any caisenore
practical. Moreover, we would like to express recurspemtinu-
ationstoo, in order to represent loops. Finally, to support ex:
tions, functions in the extended language take continuations
an exception-handler continuation, and a return contionaf his
is the so-calleddouble-barrelledcontinuation-passing style (Tt
elecke 2002).

Figure 7 presents the syntax and typing rules for the exte
language\ips Types of values are ranged overhys and include
unit, a type of exceptions, products, sums and functions. (Te
space, we omit constructs for manipulating exception \&)u@on-
tinuation types have the formr which is interpreted as ‘continu
tions accepting values of type. Note that for simplicity of preser
tation we do not annotate terms with types; it is an easy eeto
add sufficient annotations to determine unique typing déons.
Typing judgments for values have the foif- V' : 7 in whichT"
maps variables to value types. Judgments for terms haveothe
I'; A + K ok in which the additional contexfA maps continua
tion variables to continuation types. Complete progranestygred
in the context of a single top-level continuatibalt acceptingunit
values.

We consider each construct in turn.

e Theletval construct is as before, with the obvious typing r
and associated value typing rules. Likewise for projecion

Theletcont construct is generalized to support mutually res
sive continuations. These represent loops directly. Looat
tinuations are also used for exception handlers.

e The letfun construct introduces a set of mutually recurs
functions; each function takes a return continuatpan excep
tion handler continuatioh, and an argument. As a languag
construct, there is nothing special about the handler coat
tion except that its type is fixed to beexn, and so a functio
typer — o is constructed from the argument typeand the
type —o of the return continuation. What really distinguist

1Though, curiously, the A-normalization algorithm’ in (Flanagan et .
1993, Fig. 9) does not actually normalize terms, as it ledeebound
conditionals alone.



Grammar
(value types) T, O
(values) CVal> V,W
(terms) CTm > K, L

01 @@y |iniz

(function def.) FunDef > FF = fkhax=K
(cont. def.) ContDef 5C := kzx=K
Variables
Fczx:7 ArFk:—-r

Well-typed terms

(Ietc) {F, Ti:Tyis A, kliﬁTh ceey kn:ﬁ’rn = Ki Ok}lgign

unit | exn | 7Xo | 7T+0 | T—o0o

letvalz =V in K | letx =mxin K | letcont Cin K | letfun F in K
| kz | fkha | casex of ky || ko

A ki, ..

. kn:—7m B L ok

T'; A+ letcont k1 21 = K, ..

Ty f1:m1 — 01,

(letrec) {2

. kn xn = K, in L ok

s fniTn — on; kiimoy, hiimexn B K okbigicn

T, firm — o1,..., fniTn — on; A E Lok

rev:r T,zm;AF K ok

I A ¢ letfun fi ki bz = Ko, ..
\ITFo:7 AFk:—-7

-afnknhnl’n:Kn in L ok

'tz:m xm Tym; AF K ok

(V) T AT fervalz = Vin Kok PP T AT haok Pro)—F Atfety=main Kok ‘b2
(Case\f‘l—:c:ﬁ-l-m Abki:—n Abky: 7 (@ )Fl—f:T—>0 AFk:-0c AFh:—-exn T'Fa:7
) ;A F case z of ki || k2 ok pp T.AF fkhaok
Well-typed values Well-typed programs
IFx:7 TkFy:0o I'tax:7; . .
(pair) 't(z,y):7x0o (tag) Thima:m+m €12 (unit) IF(): unit (prog) {}; halt:—unit - K ok

Figure 7. Syntax and typing rules for typed languas

exceptions is (a) their role in the translation from soue- |
guage into CPS, and (b) typical strategies for generatidg.co

Continuation applicatiot x is as before. Now there are four
possibilities fork: it may be a recursive or non-recursive occur-
rence of aetcont-bound continuation, compiled as a jump, it
may be the return continuation, or it may be a handler continu
ation, which is interpreted asising an exception.

Function applicationf k& h =z includes a handler continua-
tion argumenth. If & is the return continuation for the near-
est enclosing function, antd is its handler continuation, then
the application is a tail call. I% is a local continuation ané

is the handler continuation for the enclosing function,nthe
the application is a non-tail call without an explicit exeep

tion handler — so exceptions are propagated to the context.

Otherwise,h is an explicit handler for exceptions raised by
the function. (Other combinations are possible; for exanipl
letfun fkhxz =Clghhy] in K the function application is
essentiallyraise (g y) in a tail position.)

e Branching usingase is as before.

3.1 CPS transformation

We can extend the fragment of ML described in Section 2.1 with
exceptions and recursive functions:

ML >e == ...|raisee|e; handle x=> ez
| let fund in e end
MLDef 5d == fax=e

The revised CPS transformation is shown in Figure 8 (see (Kim
et al. 1998) for theselectiveuse of a double-barrelled CPS trans-
formation). Both[-] and(-) take an additional argument: a contin-
uationh for the exception handler in scope. Thesise e is trans-
lated as an application @f Fore; handle = => e alocal handler

continuation®’ is declared whose body is the translatioregfthis
is then used as the handler passed to the translation farfotie; .
3.2 Rewrites

The rewrites of Figure 5 can be adapted easilyde;, and extende
with transformations such as ‘loop unrolling’:

ﬂ-REC letfun fl kihix1 = C[fz kh CL‘]
fakahoxo = Ko
fn knhnzn = K,
in K
— letfun fl k1 h1x1 :C[Kz[k/kl,h/hl,m/mz]
fakahoxo = Ko
fn knhnzn = K,
in K
B-RECCONT letcont ki z1 = Clk; ]
ko x2 = Ko
i knzn =K,
in K
— letcont ki1 x1 = C[Kz [‘T/‘Tz”
kQ T2 = Kz
oo knzhn =K,
in K

There are no special rewrites for exception handliagj, corre-

sponding to(raise M) handle z.N — let x < M in N. Stan-
dard 3-reduction on functions and continuations gives us this

free. For example, the CPS transform of

let fun f x =raise x in f y handle z => (2,2) end
is
letfun fk'h z=h =
in letcont j z = (letval 2’ = (2,2) ink 2’ )in fkjy

which reduces by-FuN and3-CoNTtoletval 2" = (y,y) in k 2’



[']

[z] h &
[e1 e2] hw

[fnz=>¢] hk

[Cer,e)] h&

[ini e] h

[[[[() hk

#iel| hr

[let val z = e; in ez end] hk

[let fund ineend] hx

raise e| hk

[ex ha.ndli[ T =>es] hk

[case e of inl z1 => €1 ] in2 z2 => e2] K

-

(ex handle x => e2) hk
(case e of inl x1 => €1 | in2 x2 => e2) hk

ML — CVar — (Var —» CTm) — CTm

K(x)

[e1] h (Ax1.[e2] h (A\x2.letcont k x = k(z) in z1 k h x2))
letfun fkh'z = () h' k in s(f)

[ei] b (A\z1.[e2] h (Az2.letval z = (z1,x2) in k(x)))

[e] h (Nz.letval = in; z in k(x))

letval z = () in k()

[e] h (Az.let z <= 75 z in Kk(x))

letcont j « = [ez] hx in (e1) hj

letfun [d] in [e] hx

[e] b (A\z.h z)

letcont j x = k() in letcont b’ = = (e2) hjin (e1) h'j

= [e] h (\z.letcont j = = k(z) letcont k1 z1 = (e1]) hj in letcont ka2 z2 = (e2) hj in case z of ki1 [ k2)

[[1 : MLDef — FunDef
[fz=e] = fkhx=(e)hk
() : ML — CVar — CVar — CTm
() hk = k=
(ex e2x) hk = [er] h (\z1.[e2] h Ax2.z1 k h x2))
(fnz=>e) hk = letval f=Ajz.(e)hjink f
(Cer,e2)) hk = [e1] h (Ax1.[e2] h (Ax2.letval x = (z1,22) in k )
(inie) hk = [e] h(\z.letval z =in; z in k x)
(O)hk = letvalz=()inkx
#ie)hk = [e]h(N\zletz <= mzinkx)
(let val z =e1 inex end) hk = letcont jx = (e2) hkin (e1]) hj
(let fundineend) hk = letfun [d] in (e) hk
(raise e) hk = [e] h(N\z.h 2)

letcont b’ & = (e2) hkin (e1) A" k

= [e] h (\z.letcont k1 x1 = (e1]) hk in letcont k2 x2 = (e2) hk in case z of k1 [| k2)

Figure 8. Tail CPS transformation fokZps

Likewise, commuting conversions are not required, in @sitr
with monadic languages, where in order to define well-bethave
conversions it is necessary to generalize the usdidlandle x =
N construct tatry y <= M in N; unless © = N», incorporating a
success ‘continuationV; (Benton and Kennedy 2001).

3.3 Other features

It is straightforward to extendZps with other features useful for
compiling full-scale programming languages such as Staida.

¢ Recursive types of the forma.r can be supported by adding
suitable introduction and elimination constructs: a vdhié x
and a termlet x = unfold y inK.

Binary products and sums generalize tosthary case. For opti-
mizing representations it is common for intermediate |augps

to support functions with multiple arguments and resultgl a
constructors taking multiple arguments. This is easy: tionc
definitions have the fornf k hZ = K, and continuations have
the formk T = K and are used for passing multiple results

and forcase branches where the constructor takes multiple ar-

guments.

Polymorphic types of the foriia.— can be added. Typing con-
texts are extended with a set of type variablesThen to sup-
port ML-style let-polymorphism, each value binding coanstr
(letval, letfun, and projection) must incorporate polymorphic

generalization. For example:
V,a; 'V 7 VT, z:Va.r; A+ K ok
V;I5 A Fletval x =V in K ok

For elimination, we simply adapt the variable rule (var)
incorporate polymorphic specialization:

(letv)

var zVar el
(var) PFz:7[e/q]

3.4 Effect analysis and transformation

The use of continuations in an explicit ‘handler-passiytgstends
itself very nicely to an effect analysis for exceptions. fage, fo
simplicity, that there are a finite number of exception carcbrs
ranged over byE. We make the following changes ¥Mps

¢ We introduceexception setypes of the form{E1, ..., E,},
representing exception values built with any of the corst
tors E1, ..., E,. Set inclusion induces a subtype ordering
exception types, with top typexn representingany exception
and bottom typd } representingno exception.

e The type of handler continuations in function definitiong
refined to describe the exceptions that the function is gezd
to throw. For example:

(1) letfun fk(hi={})z=Kin...
(2) letfun fk(h:—exn)z = K in ...
(3) letfun fk(h:—{E.E'Nz=Kin...



The type of (1) tells us thak never raises an exception, in
(2) the function can raise any exception, and in (3) the fonct
might raiseF or £’.

e Now that handlers are annotated with more precise types, the
function types must reflect this too. We write=° & for the
type of functions thagitherreturn a result of type or raise an
exception of typer’ <: exn. Subtyping on function types and
continuation types is specified by the following rules:

! !
T2 <:T1 o1 <: 02 o] <: 03 o9 <: 01

-0 <: o2

’ ’
71— 01 <: T2—2 09

Exception effects enable effect-specific transformatif®esnton
and Buchlovsky 2007). Suppose that the typg o6 7 —1Z1} &,
Then we can apply a ‘dead-handler’ rewrite on the following:

letcont h:—{FE1, F2} © = (case x of F1.k1 | Ea.k2)in fkhy
— letcont hi—{E1} x = (case z of E1.k1)in fkhy

In fact, there is nothing exception-specific about this rwit is
just employing refined types for constructed values. Theafse
continuations has given us exception effects ‘for free’.

4. Implementing CPS

Many compilers for functional languages represent inteliate
language terms in a functional style, as instances of arbedge
datatype of syntax trees, and manipulate them functiorfadlyex-
ample, the languagklsscan be implemented by an SML datatype,
here using integers for variables, with all bound variablietinct:

type Var = int and CVar = int

datatype CVal
Unit | Pair of Var * Var | Inj of int * Var

| Lam of CVar * Var * CTm

and CTm

LetVal of Var * CVal * CTm

LetProj of Var * int * Var * CTm

LetCont of CVar * Var * CTm * CTm

AppCont of CVar * Var

App of Var * CVar * Var

Case of Var * CVar * CVar

Rewrites such as those of Figure 5 are then implemented by a
function that maps terms to terms, applying as many rewetes
possible in a single pass. Here is a typical fragment thdtegpine
-PaIR and DEAD-VAL reductions:

fun simp census env S K =
case K of
LetVal(x, V, L) =>
if count(census,x) = 0 (* Dead-Val *)
then simp census env S L
else LetVal(x, simpVal census env S V,
simp census (addEnv(env,x,V)) S L)

| LetProj(x, 1, y, L) =>
let val y’ applySubst S y
in case lookup(env, y’) of
(* Beta-Pair *)
Pair(z,_) =>
simp census env (extendSubst S (x,z)) L
| _ =>
LetProj(x, 1, y’, simp census env S L)
end

In addition to the ternk itself, the simplifier functionsimp
takes a parametednv that tracksletval bindings, a parametes
used to substitute variables for variables and a parametetus
that maps each variable to the number of occurrences of tie va
able, computed prior to applying the function.

The census becomes out-of-date as reductions are applied
this may cause reductions to be missed until the censusakte
lated andsimp applied again. For example, thiePAIR reduction
may trigger a [EAD-VAL in an enclosingetval binding (conside
letval z = (y1,y2) in ...let z = 1z in ... wherez occurs only
once). Maintaining accurate census information as resvate per
formed can increase the number of reductions performediimgée:
pass (Appel and Jim 1997), but even with up-to-date censos
mation, it is not possible to perform shrinking reductionbaus-
tively in a single pass, so a number of iterations may be reduie-
fore all redexes have been eliminated. In the worst case|ehds
to O(n?) behaviour.

What's more, each pass essentially copies the entire teaw
ing the original term to be picked up by the garbage colledtbis
can be expensive. (Nonetheless, the simplicity of our CRPS
guage, with substitutions only of variables for variablasd the
lack of commuting conversions as are required in ANF or man
languages, leads to a very straightforward simplifier algor.)

4.1 Graphical representation of terms

An alternative is to represent the term usirgraph and to perforn
rewrites by destructive update of the graph. Appel and J@8T)
devised a representation for which exhaustive applicatiothe
shrinking 8-reductions of Figure 5 takes time linear in the siz¢
the term. We improve on their representation to supportieffte-
reductions and other transformations. The representhtsrthree
ingredients.

1. The term structure itself is a doubly-linked tree. Evargterm
has an up-link to its immediately enclosing term. This sufx
constant time replacement, deletion, and insertion ofesuix.

. Each bound variable contains a link to one of its free o
rences, or is null if the variable is dead, and the free oetioes
themselves are connected together in a doubly-linked leir
list. This permits the following operations to be perforniet
constant time:

e Determining whether a bound variable has zero, one
more than one occurrence, and if it has only one occurre
locating that occurrence.

e Determining whether a free variable is unique.
¢ Merging two occurrence lists.

Furthermore, we separate recursive and non-recursiveat:
variables; in essence, insteadleffun fkhxz = K in L we
write let f = rec gkhxz.K[g/f] in L. This lets us detet
DEAD-x and3-x-LIN reductions.

. Free occurrences are partitioned into same-binder alguive
classes by using thenion-find data structure (Cormen et
2001¥. The representative in each equivalence class (that i
root of the union-find tree) is linked to its binding occurrenc

This supports amortized near-constant time access tonket
(thefind operation) and merging of occurrence lists (thgon
operation).

Substitution of variabler for variabley is implemented in nea
constant time by (a) merging the circular lists of occuremnec
that z now points to the merged list, and (b) applyinguaion
operation so that the occurrencesyadre now associated with tl
binder forz.

Consider the following value term, with doubly-linked ti
structure and union-find structure implicit but with bindesfree

2Readers familiar with type inference may recall that urfiod-underpins
the almost-linear time algorithm for term unification (Baa@nd Nipkow
1998).



pointer shown as a dotted arrow and circular occurrencedstwn
as solid arrows:

Now suppose that we wish to appliPAIR to the projectionr p.

Using thefind operation on the union-find structure we can locate

the pair(x, y) in near constant time. Now we substitutdor z by
disconnecting:’s binder from its circular list and connectings
occurrence list in its place, and merging the two lists, instant
time. At the same time, we apply thmionoperation to merge the
binder equivalence classes (not shown).

A k T .

Finally we remove the projection itself, deleting the oceace ofp
from the circular list, again in constant time:

Ak oz

One issue remains: the classical union-find data structuge dot
support deletion. There are recent techniques that ext@od-find
with amortized near-constant time deletion (Kaplan et 8D2).
However, the representation is non-trivial, and might adlalacept-
able overhead to the union and find operations, so we chosahs
a simpler solution: do nothing! Deleted occurrences renrathe
union-find data structure, possibly as root nodes, or asnodé¢he
path to the root. In theory, the efficiency of rewriting isthdepen-
dent on the ‘peak’ size of the term, not its current size, beihave
not found this to be a problem in practice.

Each of the shrinking reductions of Figure 5 can be imple-

mented in almost-constant time using our graph representato

put these together and apply them exhaustively on a termolve f

low Appel and Jim (1997):

¢ First sweep over the term, detecting redexes and collettiterg
in a worklist.

e Then pull items off the worklist one at a time (in any order),

applying the appropriate rewrite, and adding new redexes to
the worklist that are triggered by the rewrite. For example,
the removal of a free occurrence (as can happen for multiple
variables when applying EaD-VAL) can induce a BAD-x
reduction (if no occurrences remain) orBax-LIN reduction

(if only a single occurrence remains).

In the current implementation, the worklist is representesda
gueue, but it should be possible to thread it through the teseif.
Shrinking reductions could then be performed with conssaarce
overhead.

4.2 Comparison with Appel/Jim

The representation of Appel and Jim (1997) did not make u:
union-find to locate binders. Instead, (a) the circulardfstariable
occurrences included the bound occurrence, thus givingtant
time access to the binder in the case that the free variablédsie,
and (b) forletval-bound variables, each free occurrence conta
an additional pointer to its binder. When performing a sitison
operation, these binder links must be updated, using tingatiin
the number of occurrences; fortunately, for any particuaiable
this can happen only once during shrinking reductiondeal-
bound variables cannot become rebound. Thus the cost idiaett
across the shrinking reductions.

Unfortunately the lack of binder occurrences for rierval-
bound variables renders less efficient other optimizatsrch as
n-reduction. Take an instance gfPAIR:

let 71 = 71 z in Cllet x2 = w2 x in C'[letval y = (z1,22) in K]
— let z1 = mixin Cllet z2 = mo z in C'[K [z /y]]]

Just to locate the binder far, andx2 would take time linear in th
number of occurrences.

Our use of union-find gives us efficient implementation ol
shrinking reductions, and of other transformations tooreuwer,
when analysing efficiency we need not be concerned whethiet
ables ardetval-bound or not.

4.3 Performance results

We have modified the SML.NET compiler to make use of a ty
CPS intermediate language only mildly more complex tham
shown in Figure 7. It employs the graphical representatfaarms
described above; in particular, ttsgmplifier performs shrinking
reductions exhaustively on a term representing the whalgrpm,
and it is invoked a total of 15 times during compilation.

Table 1 presents some preliminary benchmark results s
ing average time spent in simplification, time spent in moawr
phisation, and time spent in unit-removal (e.g. transfaiomaof
unit*int values toint). We compare (a) the released versiot
SML.NET, implementing a monadic intermediate languageL(\
and functional-style simplification algorithm, (b) the Agfdim-
style graph representation adapted to MIL terms implentehte
Lindley (Benton et al. 20044a; Lindley 2005), and (c) the neapip-
based CPS representation with union-find. Tests were run
3Ghz Pentium 4 PC with 1GB of RAM running Windows Vis
The SML.NET compiler is implemented in Standard ML and c
piled using the MLton optimizing compiler, which generakagh
quality code from both functional and imperative codindesy- sc
giving both techniques a fair shot.

As can be seen from the figures, the graph-based simplifit
the monadic language is significantly faster than the fonetisim-
plifier — and although all times are small, bear in mind that
simplifier is run many times during compilation. Unit rembia
roughly comparable in performance across implementatiotey-
estingly, the graph-based CPS implementation of mononisag
tion runs up to twice as slowly as the functional monadic &n
mentation. We conjecture that this is because monomotjbric
necessarily copies (and specializes) terms, and CPS termdsd
be larger than MIL terms, and the graph representation gef:
still.

These figures come with a caveat: the comparison is some
“apples and oranges”. There are differences between the
MIL and g-CPS representations that are unrelated to mona



Table 1. Optimization times (in seconds)

Benchmark Lines Phase MIL g-MIL g-CPS
raytrace 2,500 Simp 0.12 0.01 0.01
mlyacc 6,200 Simp 0.44 0.02 0.02
smlnet 80,000 Simp 7.29 0.29 0.15
Mono 0.75 nla 1.41
Deunit 0.76 1.3 0.6
hamlet 20,000 Simp 0.97 0.08 0.04
Mono 0.15 nl/a 0.19
Deunit 0.12 0.16 0.14

CPS. Future work is to make a fairer comparison, implemgntin
a functional version of the CPS terms, and perhaps also &sprec

monadic analogue.

5. Contification

Our CPS languages make a syntactic distinction betweetidmsc
and local continuations. The former are typically comp#sdeap-
allocated closures or as known functions, whilst the latter al-
ways be compiled as inline code with continuation applarati
compiled as jumps. For efficiency it is therefore desirablgdns-
form functions into continuations, a process that has beendad
contification(Fluet and Weeks 2001).

Functions can be contified when they always return to the same

place. Consider the following code written in the subset BiLS
studied in Section 2:

let fun f x = ...
in g (case d of inl d1 => f y | in2 42 => f d2) end

If £ returns at all, it must pass control go Here, this is obvious,
but for more complex examples it is not so apparent. Now clansi
its CPS transform:

letval f = (Akz.---k--+)in
letcont ko w =g r win
letcont j1 di = f ko y in
letcont jo do = f ko dz2 in
case d of 71 [] j2

It is clear thatf is always passed the same continuatign- and
S0, unless it diverges, it must return throughand so pass control
to g. We can transfornf into a local continuation, as follows:

letcont ko w =g r w in
letcontjz=---ko---in
letcont j1 dv = j y in
letcont jo d2 = j dz2 in
case d of j1 [ j2

We have done three things: (a) we have replaced the fungtimn

a continuatiory, deleting the return continuation at both definition

and call sites, (b) we have substituted the argumignfor the
formal k in the body of f, and (c) we have moved so that it is
in the scope of;.

Fluet and Weeks (2001) use the dominator tree of a program’s

call graph to contify programs that consist of a collectidn o
mutually-recursive first-order functions. They show tHatit al-
gorithm isoptimat no contifiable functions remain after applying
the transformation. Their dominator-based analysis caadbpted
to our CPS languages, and is simpler to describe in this xobée
cause all function definitions and uses have a named cotithua
(Fluet and Weeks use named continuations only for non-gd)c
When applied to top-level functions, the transformationifepler
too, but in the presence of first-class functions and geridoak
structure the transformation becomes significantly morapmex
to describe.

We prefer an approach based on incremental transforméri
essence repeatedly applying the rewrite illustrated alooxié no
further rewrites are possible. We consider first the caseoof
recursive functions, then generalize to mutually-resarsiunc-
tions, and conclude by relating our technique to dominhtmec
contification.

5.1 Non-recursive functions

In the untyped languag&Zss without recursion, it is particularl
straightforward to spot contifiable functions: they aresthdor
which all occurrences are applications with the same coation
argument. We define the following rewrite:

CONT (f not free inC, D andD minimal):

letval f = Akx.K in C[D[f ko 1, .., f ko xn]]
—
Clletcont j z = K[ko/k] in D[j x1,...,] ]

HereC is a single-hole context as presented in Figure 5risl a
multi-hole context whose formalization we omit.

The CoNT rewrite combines three actions: (a) the functip
is replaced by a continuatiof, with each application replact
by a continuation application; (b) the common continuatigris
substituted for the formal continuation parameéten the body K’
of f; and (c) the new continuation is pulled into the scop
of the continuationky. The multi-hole contex® is the smalles
context enclosing all uses ¢f, which ensures that is in scope
after transformation. The analysis is trivial (just cheel sites for
common continuation arguments), yet iterating this tramsftion
leads to optimal contification, in the sense of Fluet and W
(2001). Here is an example adapted frlma. cit. §5.2,

letval h = Akp zp.- -+ in
letval g1 = Ak1x1.---h ki z1---k1 zg---in
letval g2 = Mks xo.---h ko zo0---in

letval f = Akpxyp.---g1 kyz3---g2kyza---g2kpzs---in
letval m = ANk, @+ f j1 26+ - f J2 z7in. ..

We can immediately see thagt and g, (but noth) are always
passed the same continuatibp, and so we can apply @\T to
contify them both:

letval h = \kp, xp.-- - in

letval f = Akpay.
(letcont kg1 x1 = -+-h kg 21+ kg 2+ - in
letcont kgz x2 = ---h ky z2---in
kgl Z3kg2 24...k9225...) in

letval A ko @ f J1 26+ f j2 2z = in...

Now h can be contified as it is always passed

letval f = Akpay.

(letcont kh xp = - - in
letcont kg1 x1 =---kh z1---kf 23 in
letcont kg 2 = ---kh z2---in
kg zz-- kg2 za kg2 z5---) in
letval \mv ko Xm- - f J1 26+ f j2 27 = in...

5.2 Recursive functions

Generalizing to recursive functions and continuations itk
trickier. Suppose we haveX{psterm of the form

fikithiz1 = K1
fnknhnmn :Kn

letfun
in K.

A set of functionsF’ C {f1,..., f»} can be contified collectivel:
written Contifiable(F'), if there is some pair of continuatioris
and ho such that each occurrence ffe F' is either a tail call



within F' or is a call with continuation arguments and hg. In-
tuitively, each function (eventually) returns to the sartexe o),
or throws an exception that is caught by the same handigr, (
though control may pass tail-recursively through othercfioms
in F. There may be many such subsétswe assume thaF is in
fact strongly-connected with respect to tail calls corgdiwithin it
(or is a trivial singleton with no tail calls). Then for a givéetfun
term there is a unique partial partition of the function®idisjoint
subsets satisfyinGontifiable(—).
Let F = {f1,..., fm}. Define a translation on function appli-

cations
kh = .
(f z) {f k h x otherwise

and extend this to all terms. Assuming tid&intifiable(F') holds,
there are two possibilities.

1. All applications of the formf ko ho « for f € F are in the

term K. Then we can apply the following rewrite, which is the

direct analogue of ONT.

RECCONT (f1,. .., fm not free inC, and K’ minimal):
letfun f1 ki hixz1 = K;
fnknhnxn:Kn
in CIK]
—
letfun f’m+1 km+1 hm+1 ITm+1 = K’m+1
fn k'n hn In = Kn
in C[Ietcont J1x1 = Kf [k()/lﬁ, h()/h1]
o Jm m = K [ko /K, ho /him]
in K*]

2. Otherwise, all applications of the forfh ko ho = for f € F
are in the body of one of the functions outside Fof without
loss of generality we assume thisfis.

RECCONT2 (f1, ..., fm notfree inC, and K,, minimal):
letfun  fi1 ki hiz1 = K
f’nfl knfl hnfl In—1 = K’nfl
fn kn hn Tn = C[Kn]
in K
—
letfun fm+1 k'm+1 h'm+1 Tm+1 = Km+1
fnfl kn—1hno1xn_1=Kn_1
fn kn hn xp =
Clletcont j1 1 = K7 [ko/k1,ho/h1]
c j’m Tm = K;q, [k()/k'm» h()/h'm}
in K,
in K

For an example of the latter, more complex, transformation,

consider the following SML code:

let fun unif(Ap(a,xs),Ap(b,ys)) = (unif(a,b);unifV(xs,ys))
unif (Ar(a,b),Ar(c,d)) = unifV([a,b], [c,d])

and unifV(x::xs,y::ys) = (unif(x,y);unifV(xs,ys))
unifv([1,[1) = O

in unif end

The functionunifyV can be contified into the definition ahif: it
tail-calls itself, and its uses insideaif have the same continuation.

5.3 Comparing dominator-based contification

The dominator-based approach of Fluet and Weeks (2001)&an b

recast in our CPS language as follows. (For simplicity we db n
consider exception handler continuations here). Firssitant a

continuation flow grapHor the whole program. Nodes consist of

continuation variables and a distinguishedt node. Then for each

function f with return continuatiork, if f is passed around as
first-class value then create an edge frnamt to k; otherwise, fol
each applicatiorf 5 x create an edge fromto k. Finally, for eact
local continuatiork create an edge fromot to k.

The non-recursive GNT rewrite has the effect of merging tv
nodes in the graph, as follows:

-

The recursive RCCONT and RECCONT2 rewrites are simila
except that in place of we have a strongly-connected compor
{klv- . ukm}

Conversely, any part of the flow graph matching the left-hsicle
of this diagram corresponds to a contifiable subset of fonstin a
letfun to which the REcCoNT or RECCONT2 rules can be applie

It is immediately clear that exhaustive rewriting termas
as the flow graph decreases in size with each rewrite, evgn
producing a graph with no occurrences of the pattern above.

The algorithm described by Fluet and Weeks (2001) contifi
if it is strictly dominated by some continuatignvhose immediat
dominator isroot. It can be shown that if a rooted graph conte
such a pair of nodeg andk, then some part of the graph matcl
the pattern above. Hence exhaustive rewriting has the séeut
as as optimal contification based on dominator trees.

6. Related work and conclusion

The use of continuation-passing style for functional laaggps ha
its origins in Scheme compilers (Steele 1978; Kranz et &86).¢
It later formed the basis of the Standard ML of New Jersey ¢
piler (Appel 1992; Shao and Appel 1995).

In early compilers, lambdas originating from the CPS tran
mation were not distinguished from lambdas present in thiecsg
so some effort was expended at code generation time to date
which lambdas could be stack-allocated and which could be+
allocated. Later compilers made a syntactic distinctiotwben
true functions and ‘second-class’ continuations intredlisy CPS
and sometimes transformed one into the other (Kelsey andk
1989), though contification was not studied formally.

A number of more recent compilers use what has been ¢
almost CPSThe Sequentialized Intermediate Language (SIL)
ployed by Tolmach and Oliva (1998) is a monadic-style laggua
which aletcont-like feature is used to introduce join points. Sor
what closer to our CPS language is the First Order Language)
of the MLton compiler (Fluet and Weeks 2001). It goes furtihan
SIL in making use of named local continuations in all branch-
structs and non-tail calls. However, functions are notipetarizec
on return (or handler) continuations, and there is spegiabs for
tail calls and returns. This non-uniform treatment of condtions
complicates transformations — inlining of non-tail fulects mus
replace all ‘return points’ with jumps, and the contificatianaly-
sis and transformation must treat tail and non-tail calfiecéntly.

We have found the uniform treatment of continuations in
CPS language to be a real benefit, not only as a simplifyirgefor
implementation, but also in thinking about compiler optiations:



contification, in particular, is difficult to characterizethe absence
of a notion of continuation passing.

As far as we are aware, we are the first to implement linear-

time shrinking reductions in the style of Appel and Jim (1%h
earlier term-graph implementation by Lindley was for a ndioa
language and had worst-caggn?) behaviour due to commuting
conversions (Benton et al. 2004a; Lindley 2005). Shiveds\&and
(2005) have proposed a rather different graph representéoir
lambda terms, with the goal of sharing subterms afteeduction.
Their representation does bear some resemblance to oougjhth
with up-links from subterms to enclosing terms, and circlikts
that connect the sites where a term is substituted for ahlaria

This paper would not be complete without a mention of Static

Single Assignment form (SSA), the currently fashionabterime-
diate representation for imperative languages. As is watiwk,

SSA is in some sense equivalent to CPS (Kelsey 1995) and to

ANF (Appel 1998). Its focus isntra-proceduraloptimization (as
with ANF, it's necessary to renormalize when inlining fuinais,

in contrast to CPS) and there is a large body of work on such op-

timizations. Future work is to transfer SSA-based optirtiizres to

CPS. We conjecture that CPS is a good fit for both functiondl an

imperative paradigms.
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