
Type inference in systems of recursive types with

subtyping

Trevor Jim∗ Jens Palsberg†

June 1999

Abstract

We present general methods for performing type inference and deciding sub-
typing in languages with recursive types. Our type inference algorithm general-
izes a common idea of previous work: type inference is reduced to a constraint
satisfaction problem, whose satisfiability can be decided by a process of clo-
sure and consistency checking. We prove a general correctness theorem for this
style of type inference. We define subtyping co-inductively, and we prove by
co-induction that a closed and consistent constraint set has a solution. Our
theorem makes it easier to find new type inference algorithms. For example, we
provide definitions of closure and consistency for recursive types with a greatest
type, but not a least type; we show that the definitions satisfy the conditions of
our theorem; and the theorem immediately provides a type inference algorithm,
thereby solving an open problem.

1 Introduction

Subtyping and recursive types are common in modern programming languages. For
example, Java [14] has a notion of subtyping by name based on explicit subtype
declarations, and it allows interfaces to be mutually recursive, although there is no
unfolding rule. In theoretical studies and experimental languages, one more often
finds subtyping by structure without subtype declarations, and full-fledged recursive
types which can be unfolded, e.g., [1, 3]. Some languages rely on explicit type
annotations and static type checking, e.g., Java [14] and C++ [11]. Others do not
require type annotations and rely on dynamic type checking, e.g., Smalltalk [13] and
Self [38].

What is not common is type inference for real languages with subtyping and
recursive types. Although type inference is known for some systems combining both

∗Department of Computer and Information Science, University of Pennsylvania, 200 S. 33rd

Street, Philadelphia, PA 19104–6389, tjim@saul.cis.upenn.edu.
†Purdue University, Dept of Computer Science, W Lafayette, IN 47907, palsberg@cs.purdue.edu.

1

features, these systems tend to lack many features of full-fledged languages. We
believe that by studying the problem in general, for a large class of languages, we
can learn how to extend type inference to production languages. Our method has
already given us algorithms for some languages for which type inference was not
previously known.

We formulate recursive types as possibly infinite trees. This is more general than
alternatives such as µ notation, because it includes nonregular types. All of our
constructions work on both regular and nonregular trees, and result in algorithms
when types are restricted to be regular.

We consider two kinds of subtyping. In atomic subtyping, a subtype order is given
for a set of base types. For example, the base types might be nat, int, and bool,
where nat is a subtype of int, but bool is unrelated to the other types. Subtyping
with a least type ⊥ and greatest type > has a distinctly different character than
atomic subtyping. In atomic subtyping it is possible to have a least base type, but
no base type is a subtype of any function type. In contrast, ⊥ is a subtype of every
type, including both atomic and function types, and > is a supertype of every type.
Thus subtyping with > and ⊥ is nonstructural : subtyping does not follow the tree
structure of types.

Our method applies to systems with both atomic subtyping and nonstructural
subtyping, or to systems with one but not the other. A nice consequence of the
generality of our method is that it provides a common framework for expressing
algorithms for all of these systems. This makes it easy to analyse why difficulties
inherent in one system do not arise in another. In particular, we will see that having
> and ⊥ actually makes type inference easier, and we give the first algorithms for the
system with > but not ⊥, and the system with ⊥ but not >. Well-known languages
with > but not ⊥ include F<: [6] and O–1 [1].

Our algorithm uses well-known ideas, starting with the equivalence between type
inference and finding solutions to sets of constraints. A constraint set is simply a
relation R on types, and a solution to R is a substitution S such that S(σ) ≤ S(τ)
for all (σ, τ) ∈ R. So, to find a typing for a term M , we first construct a constraint
set RM ; M is typable if and only if RM has a solution, and a typing for M is easily
obtained from any solution.

The constraints RM are “closed” by certain rules, obtaining an equivalent set R

of constraints—that is, R and RM have exactly the same solutions. A “consistency”
test then determines whether R (and therefore, RM) has a solution. Again, this is a
standard technique. However, known methods for constructing solutions, or showing
that solutions exist, are complicated. For example, Aiken and Wimmers [2] show
that their constraints have solutions by transforming them to contractive equations,
a class that MacQueen et al. [20] demonstrated to be solvable by Banach’s Fixed
Point Theorem. Tiuryn and Wand [36] reduce solvability to the emptiness problem
for Büchi automata. Other work [18, 28] transforms R into a language of graphs,
and then to a nondeterministic automaton whose language represents the solution.

2

Our method of constructing a solution is much simpler. To find the solution for
a variable t, we start with the “closed” R, and consider the upper and lower bounds
of t in R. The bounds constitute a state corresponding to a node in a type. A symbol
function maps a state to a symbol (→, ⊥, etc.), and if that symbol is →, a transition
function maps the state to two new states which represent the argument and result
types.

Our definition of the subtyping relation is based on simulations, an idea from
concurrency theory [21, 29]. This leads to a very simple algorithm for deciding
subtyping, based on co-induction. Co-induction is also used to prove the correctness
of our method of finding solutions to constraints.

Brandt and Henglein also use co-inductive techniques to decide subtyping for
recursive types [5]. They use µ notation, so their definition applies only to regular
types. We show that it applies as well to nonregular types. Pierce and Sangiorgi
[30] used simulations to define a subtyping relation, however, they did not base
their subtyping algorithm on co-induction. Simulations have been used to compare
elements of recursive domains, for example, to compare infinite lists, where the
domain of lists is recursively defined.

The main observation of this paper is that co-induction can be used to prove a
general correctness theorem for a widely applicable approach to type inference.

Overview. In §2 we define the subtyping relation using simulations, and give
the co-inductive subtyping algorithm. In §3, we define the type system. In §4 we
show how to construct solutions for constraints, and in §5, we show how our method
applies to some examples. In §6 we discuss related work.

2 Recursive types and subtyping

We work with a countably infinite set, Tv, of type variables, ranged over by s, t. A
signature is a set, Σ, of symbols including at least Tv and a distinguished symbol,
→. A signature may also contain distinguished symbols > and ⊥, and symbols for
base types, e.g., the natural numbers nat, the integers int, the booleans bool, and
so on.

We assume that any signature Σ has an associated partial order, ≤Σ, on Σ,
satisfying the following conditions.

• If > ∈ Σ, then > is the greatest element in ≤Σ.

• If ⊥ ∈ Σ, then ⊥ is the least element in ≤Σ.

• Any type variable is ≤Σ-comparable only to itself, and to > and ⊥ if they are
members of Σ.

• The symbol → is ≤Σ-comparable only to itself, and to > and ⊥ if they are
members of Σ.

3

A path is a finite sequence, α, of 0’s and 1’s; ε denotes the empty path. We use
` to range over {0, 1}. A Σ type, σ, is a partial function from paths into Σ, whose
domain is nonempty and prefix closed, and such that σ(α`) is defined if and only if
σ(α) = →. We omit Σ when it can be recovered from context, and we use σ, τ , ρ

to range over types. A type is finite if its domain has finite cardinality. A subtree of
a type σ is a type τ such that for some path α, we have σ(αβ) = τ(β) for all paths
β. A type is regular if it has only a finite number of subtrees. All regular types are
finitely representable (for example, by finite state automata, or µ notation).

We now introduce some convenient notation. We write σ(α) = ↑ if σ is undefined
on α. We abuse notation and write s for the type σ such that σ(ε) is the type
variable s and σ(α) = ↑ for all α 6= ε. Similarly, we define >, ⊥, nat, and so on,
as Σ types (provided they are members of Σ). We define σ0 → σ1 to be the type σ

such that σ(ε) = →, σ(0α) = σ0(α), and σ(1α) = σ1(α).
Our definition of the subtyping relation generated by a signature is based on the

simulations familiar from concurrency theory.

Definition 1 A relation R on Σ types is called a Σ simulation if it satisfies the
following conditions.

(C1) If (σ, τ) ∈ R, then σ(ε) ≤Σ τ(ε).

(P1) If (σ0 → σ1, τ0 → τ1) ∈ R, then (τ0, σ0) ∈ R and (σ1, τ1) ∈ R.

For example, the empty relation on Σ types and the identity relation on Σ types
are both Σ simulations. Σ simulations are closed under union, so there is a largest
Σ simulation. We define our subtyping relation, ≤, to be this largest simulation:

≤ =
⋃

{ R | R is a simulation }.

The subtyping relation ≤ should properly be annotated with Σ, as we will be con-
sidering a number of signatures. However, we wish to avoid possible confusion with
the ordering ≤Σ on symbols, so we assume that Σ can be recovered from context.

Alternately, ≤ can be seen as the maximal fixpoint of a monotone function on
relations between Σ types. Then we immediately have the following result.

Lemma 2 σ ≤ τ if and only if

• σ(ε) ≤Σ τ(ε); and

• if σ = σ0 → σ1 and τ = τ0 → τ1, then τ0 ≤ σ0 and σ1 ≤ τ1.

This result is standard in concurrency theory, and has an easy proof, cf. [22]. Sim-
ilarly, it is easy to show that ≤ is a preorder, and that all simulations are antisym-
metric. Therefore we have the following result.

4

Lemma 3 ≤ is a partial order.

A principle advantage of using simulations to define our subtyping relation is
that we may apply the principle of co-induction to prove that one type is a subtype
of another:

Co-induction: To show σ ≤ τ , it is sufficient to find a simulation R

such that (σ, τ) ∈ R.

The co-induction principal gives us an easy algorithm for subtyping on regular
types. Suppose R is a relation on types, and we want to know whether σ ≤ τ for
every (σ, τ) ∈ R. By co-induction this is equivalent to the existence of a simulation
containing R. And since simulations are closed under intersection, this is equivalent
to the existence of a smallest simulation containing R. This smallest simulation,
if it exists, can be found by “closing” R under property P1. If the “closure” is
“consistent” (i.e., satisfies property C1), then it is the smallest simulation; and if
not, no such simulation exists.

More formally, suppose R′ is a relation on types. The P1-closure of R′ is the
least relation R containing R′ and satisfying property P1 above. If R satisfies P1,
we say R is P1-closed. The P1-closure of a relation is well defined, because the
P1-closed relations are closed under intersection. Every simulation is P1-closed, and
P1-closure is a monotone operation.

We say R is C1-consistent if it satisfies property C1 above. Note that any subset
of a C1-consistent set is C1-consistent.

Lemma 4 Let R be a relation on types. The following statements are equivalent.

1. The P1-closure of R is C1-consistent.

2. The P1-closure of R is a simulation.

3. σ ≤ τ for every (σ, τ) ∈ R.

Proof:

• (1) ⇒ (2): Immediate by the definition of simulation.

• (2) ⇒ (3): Immediate by co-induction.

• (3) ⇒ (1): R is a subset of ≤, so by the monotonicity of P1-closure and the
fact that ≤ is P1-closed, the P1-closure of R is a subset of ≤. Then since ≤ is
C1-consistent, its subset, the P1-closure of R, is C1-consistent.

�

This immediately suggests an algorithm for testing whether σ ≤ τ when σ and τ

are regular: construct the P1-closure of {(σ, τ)} and test whether it is C1-consistent.

5

(const) A ` cσ : σ

(var) A ` x : A(x)

(abs)
A\x ∪ {x : σ} ` M : τ

A ` λxM : σ → τ

(app)
A ` M : σ → τ, A ` N : σ

A ` MN : τ

(sub)
A ` M : σ

A ` M : τ
σ ≤ τ

Figure 1: Typing rules.

If n is the number of distinct subtrees of σ and τ , then the P1-closure of {(σ, τ)} has
at most n2 pairs, and can be constructed in O(n2) time. The only remaining task is
to check C1-consistency. Thus we have the following theorem.

Theorem 5 If ≤Σ can be checked in constant time, then subtyping for regular Σ
types is decidable in O(n2) time.

3 Lambda calculi with subtyping

Let Σ be a signature, and let C be a set of constants, each of which has the form cσ

for a closed Σ type σ. We now define the language Λ(Σ,C), or ΛΣ for short.
There is a countably infinite set of (term) variables, ranged over by x, y. The

terms of ΛΣ are defined by the following grammar.

M,N ::= x | (λxM) | (MN) | cσ

A Σ type environment is a finite set {x1 : σ1, . . . , xn : σn} of (variable, Σ type)
pairs, where the variables x1, . . . , xn are distinct. We use A to range over type
environments. We write A(x) for the type paired with x in A, and A\x for the type
environment A with any pair for the variable x removed. We write A1 ∪ A2 for the
union of two type environments whose variables are disjoint.

We write ΛΣ . A ` M : σ if the judgment A ` M : σ follows by the rules of
Figure 1, where types are restricted to Σ types, terms are restricted to ΛΣ terms,
and ≤ is the subtyping relation generated by ≤Σ. The rules (const), (var), (abs),
and (app) are the usual typing rules of the lambda calculus with constants, and rule
(sub) is the rule of subsumption.

6

Example 6
• The system ΛΣ1

, where Σ1 = Tv ∪ {⊥,>,→,nat}, is the system of recursive
types studied by Amadio and Cardelli [3].

• The system ΛΣ2
, where Σ2 = Tv∪{>,→,nat}, is sometimes called the system

of partial types, after the work of Thatte [32, 33, 34], who studied a nonrecursive
version. Other well-known calculi with > but not ⊥ include F<: [6] and O–1
[1].

• The system ΛΣ3
, where Σ3 = Tv ∪ {⊥,→,nat} may be viewed as a dual of

ΛΣ2
.

• The system ΛΣ0
, where Σ0 = Tv ∪ {→,nat}, is the system of recursive types

without subtyping (≤ is just syntactic equality of types).

As we will see, type inference algorithms for all of these systems are simple
applications of our general result.

4 Type inference

It is well known that type inference can be reduced to the problem of finding solutions
to constraint sets (in fact, the problems are equivalent for the languages we consider).

Recall that a constraint set is simply a relation, R, on types. To see whether R

has a solution, we will use a strategy similar to that used in our subtyping algorithm:
first, R is closed by certain rules, then, a consistency check establishes whether a
solution exists. A solution to R can be easily “read off” from the closure of R.

A difference from the subtyping algorithm is that for certain signatures, our
closure conditions will add “fresh” type variables to the constraints. Therefore, with
any relation R, we implicitly associate a set of “fresh” type variables appearing in
R. This is a standard technique from unification theory, and is used to ensure that
our closure conditions do not change the set of solutions of a relation.

Definition 7 A Σ substitution is a partial function from type variables to Σ types.
As usual, any Σ substitution can be extended to a total function from Σ types to Σ
types. If R is a relation on Σ types with fresh variables V , then a Σ solution to
R is a Σ substitution S, such that there is a Σ substitution S ′, such that for every
(σ, τ) ∈ R, we have S ′(σ) ≤ S′(τ), and S(s) = S ′(s) for every s 6∈ V . We say two
relations are equivalent if they have the same Σ solutions.

The closure and consistency conditions for finding solutions will be different than
those of our subtyping algorithm. And, unlike the subtyping algorithm, the closure
and consistency conditions will differ depending on the signature Σ.

Our closure conditions for R will always be stronger than the closure condition
P1 used for subtyping. For example, in addition to P1, we will include

7

(P2) R is transitive.

The Property P2, like P1, makes some inconsistencies “immediately apparent.” For
example, consider a relation R1 consisting of the pairs

(σ0 → s, σ0 → σ1 → σ2) (nat, s)

If R is the closure of R1 under P1 and P2, then R contains the pair (nat, σ1 → σ2).
It is immediately apparent that R has no solution, and we will see that this implies
that R1 has no solution.

Our consistency conditions will always be weaker than the condition C1 we used
for subtyping. A typical condition is

(C2) σ(ε) ≤Σ τ(ε) whenever (σ, τ) ∈ R and σ and τ are not type variables.

For example, suppose R2 is a relation consisting of the pairs

(nat → t, s) (s,nat → nat)

Although R2 does not satisfy C1, it has a solution—so C1 is too strong. R2 does
satisfy C2, though, as does its closure under P1 and P2:

(nat → t, s) (s,nat → nat) (nat → t,nat → nat) (t,nat) (nat,nat)

Once we have obtained a closed, consistent relation R, we use the following
idea to construct a solution. We must assign each type variable appearing in R a
type, while satisfying the constraints imposed by R. The constraints relevant to
a particular type variable are just its lower and upper bounds in R. The bounds
constitute a state that contains all the information needed to construct the type for
the variable.

Consider the closure of R2, above. We will show how to construct types for the
variables s and t. The states of s and t are drawn suggestively below. (For technical
reasons, s is considered to be its own lower bound even though (s, s) does not appear
in the closed relation.)

nat → nat

s

•

@@@@@@@@@

~~~~~~~~~

~~
~~

~~
~~

~

@@
@@

@@
@@

@

s

nat → t

nat

t

•

11111111











��
��

��
�

33
33

33
3

t

The idea is to construct a type that will lie between the upper and lower bounds,
at the ‘•’. Assume we are working in the signature Σ1 = Tv ∪ {⊥,>,→,nat}.
Because the state for s, on the left, contains function types in both the upper and

8



lower bounds, the type we construct for s must have → as its root symbol. On the
other hand, the state for t gives us a choice: we may use either ⊥ or nat without
violating any constraints.

Having chosen → as the root symbol for the type of s, we must construct its
argument and result types. These types correspond to states that can be derived
from the state for s. By the rules for function subtyping, we obtain the following
states.

nat

•

CCCC
CCCC

{{{{

{{
{{ CC

CC

nat

nat

•

CCCC
CCCC

{{{{

{{
{{ CC

CC

t

The state on the left forces us to make nat the argument type of s (the only type
lying between nat and nat is nat). The state on the right indicates that the result
type of s should lie between the type of t and nat. This is a tricky point. Recall
that we had a choice for the type of t: either ⊥ or nat. If we chose nat for t, we
must choose nat as the return type of s. But if we chose ⊥ for the type of t, then
we may choose either ⊥ or nat for the return type. This means that in order to
construct a type for a state, we must be aware of how types will be constructed for
other states. Our contribution is to give general conditions that say when a choice
of symbols will result in a solution.

The three solutions to our example are given below.

s = nat → nat
t = nat

s = nat → ⊥
t = ⊥

s = nat → nat
t = ⊥

We begin with some routine definitions. For any type σ we use the following
notation for lower and upper bounds:

σ↓R = {σ} ∪ {τ | (τ, σ) ∈ R},

σ↑R = {σ} ∪ {τ | (σ, τ) ∈ R}.

If σ = σ0 → σ1, we define σ.0 to be σ0 and σ.1 to be σ1. This is extended to arbitrary
paths: if α = `1`2 · · · `n, n ≥ 0, then σ.α = (· · · ((σ.`1).`2) · · ·).`n. For sets of types
we define

T.0 = { σ0 | ∃σ1. σ0 → σ1 ∈ T }

T.1 = { σ1 | ∃σ0. σ0 → σ1 ∈ T }

T↑R =
⋃

σ∈T

σ↑R

T↓R =
⋃

σ∈T

σ↓R

9



Note that T.0 and T.1 are defined even when T contains types that are not function
types, e.g., {nat, σ0 → σ1, s}.0 = {σ0}.

We say σ appears in R if for some (τ, τ ′) ∈ R and path α, σ = τ.α or σ = τ ′.α.
A Σ pre-state is a pair (S,T) where S and T are sets of Σ types. We use g, h to

range over pre-states, and we define a partial order, ≤s, on pre-states:

(S,T) ≤s (S′,T′) iff T′ ⊆ T and S ⊆ S′.

Intuitively, if (S,T) ≤s (S′,T′), then (S,T) represents a subtype of the type repre-
sented by (S′,T′):

T′

T •′

GGGGGGG

xxxxxxx

xx
xx

xx
xx

xx
xx

xx
x

FF
FFFFF

FFFFFF
F

•

xx
xx

xx

II
II

II
I

EEEEEEEEEEEEEEE

wwwwwwwwwwwwwwww
S′

S

If R is a relation on types, then (σ, τ) ��� R is defined to be the pre-state (σ↓R, τ↑R),
and similarly, (S,T) ��� R is the pre-state (S↓R,T↑R). If R and R′ are relations on
types, then R′ ��� R is the set of pre-states { (σ, τ) ��� R | (σ, τ) ∈ R′ }.

If R is a relation on Σ types, and Sym is a partial function from Σ pre-states
to Σ, then δSym,R is a partial function on pre-states defined as follows.

δSym,R(S,T)(`) =







↑ if Sym(S,T) 6= →,

(T.0,S.0) ��� R if Sym(S,T) = → and ` = 0,

(S.1,T.1) ��� R if Sym(S,T) = → and ` = 1.

When we decide that a pre-state (S,T) corresponds to a function type (that is,
Sym(S,T) = →), the δSym,R function is used to find the states corresponding to
the argument and result types. We gave an example of its use above.

We also define a function mapping pre-states to partial functions from paths
to Σ:

TypeSym,R(g)(ε) = Sym(g),

TypeSym,R(g)(`α) = TypeSym,R(δSym,R(g)(`))(α).

Finally, we define SR to be the least partial function such that for every type vari-
able s appearing in R, we have

SR(s) = TypeSym,R((s, s) ��� R).

Our idea is that SR will be a solution to R. However, we have not yet given
enough conditions to guarantee this. For example, TypeSym,R(g) is not necessar-
ily a type. We may have TypeSym,R(g)(ε) = ↑, or TypeSym,R(g)(α) = → but
TypeSym,R(g)(α0) = ↑. Below, we will give sufficient conditions to ensure that
TypeSym,R(g) is a type and SR is a solution.

10



Definition 8 (Structures) A Σ pre-structure, Γ, consists of:

• a predicate on relations on Σ types called Γ-consistency;

• a predicate on relations on Σ types called Γ-closure;

• a partial function from pre-states to Σ called SymΓ;

• and, for every Γ-closed and Γ-consistent R, a set of Σ pre-states called the
(Γ, R) states.

We write δΓ,R for δSymΓ,R, and TypeΓ,R for TypeSymΓ,R, and we omit Γ, R when
they can be recovered from context.

A Σ pre-structure is a Σ structure if it satisfies the following requirements.

(R1) If R has a Σ solution, then R is Γ-consistent.

(R2) Every relation has an equivalent Γ-closure.

(R3) SymΓ is a total function from states to Σ.

(R4) δΓ,R is a partial function from states to states.

(R5) If R is Γ-closed and Γ-consistent, and σ appears in R, then (σ, σ) � � R is a state.

(R6) If R is Γ-closed, then R satisfies Properties P1 and P2.

(R7) If (S,T) is a state, then σ(ε) ≤Σ SymΓ(S,T) for every σ ∈ S − Tv, and
SymΓ(S,T) ≤Σ τ(ε) for every τ ∈ T−Tv.

(R8) SymΓ is a monotone function: if g ≤s h then SymΓ(g) ≤Σ SymΓ(h).

Intuitively, R1 ensures that consistency does not contradict solvability, R2 en-
sures that a Γ-closure exists for every relation R on Σ types, R3 and R4 ensure that
TypeΓ,R(g) is in fact a type for every state g, R5 ensures that there is a state for
every type appearing in a closed and consistent R, and R6, R7, and R8 ensure that
SR is a solution.

Our two main theorems show that in any structure, typability can be answered by
constructing the closure of a relation and checking consistency, and a type inference
solution can be constructed from any closed, consistent relation.

Theorem 9 Suppose Γ is a Σ structure and R is a relation on Σ types. Then R

has a Σ solution iff there is a Γ-closure of R that is Γ-consistent.

Theorem 10 If Γ is a Σ structure, R is a relation on Σ types, and R is Γ-closed
and Γ-consistent, then SR is a Σ solution to R.

The Theorems are proved in an appendix. The proof of Theorem 10 is interesting
in that it uses co-induction.

11



5 Structures

In this section we give particular examples of structures for a variety of signatures.
We will also show that the operations of closure and consistency are decidable for
these structures when we restrict attention to regular types, and, similarly, that
the solution SR given by our construction above is finitely representable for regular
types.

5.1 Type inference with > and ⊥

We first consider the signature Σ1 = Tv ∪ {⊥,>,→} ∪ B, where B is a finite set.
We assume that Σ1 is a complete lattice. A type inference algorithm for the regular
subset of ΛΣ1

in the special case of B = {nat} was first given by Palsberg and
O’Keefe [26]. We will need the following notation: if R is a relation on Σ types, then
R= is defined to be the relation R ∪ {(σ, σ) | σ is a Σ type}.

Definition 11 The structure Γ1 is defined as follows.

• SymΓ1
(S,T) =







> if T(ε) −Tv =
�

,

⊥ if T(ε) −Tv 6=
�

and S(ε) −Tv =
�

,

glbΣ1
(T(ε) −Tv) otherwise.

• A relation R on Σ1 types is Γ1-closed if it satisfies Properties P1 and P2.

• A relation R on Σ1 types is Γ1-consistent if it satisfies Condition C2 (with
Σ = Σ1).

• If R is Γ1-closed and Γ1-consistent, then a Σ1 pre-state (S,T) is a (Γ1, R)
state if S×T ⊆ R=.

An alternative definition of SymΓ1
(S,T) is glbΣ1

(T(ε) − Tv). We have chosen
the more complicated definition because it can lead to types of smaller shape, in
cases where it chooses ⊥.

Lemma 12 Γ1 is a Σ1 structure.

Proof: Since C2 is strictly weaker than C1, Γ1 satisfies R1: if R has a Σ1 solution,
then R satisfies C1, and therefore, C2; thus R is Γ1 consistent.

It is not hard to see that for every relation R, there is a smallest relation satisfying
Properties P1 and P2, and including R, and this smallest relation has exactly the
same solutions as R; therefore, R2 is satisfied.

To show that SymΓ1
is a total function on states (R3), it is sufficient to note

that by assumption, glbΣ1
(T(ε) −Tv) exists.

Clearly Γ1 satisfies R5, R6, and R8. To prove R7, we need C2 and the fact that
S×T ⊆ R=.

12



Finally, we must establish that δ maps states to states (condition R4). This is
proved by the lemma below.

�

Lemma 13 (δ preserves R=) If R is Γ-closed, S×T ⊆ R=, and δSym,R(S,T)(`)
is defined, then (× δSym,R(S,T)(`)) ⊆ R=.

Proof: Let (S′,T′) = δSym,R(S,T)(`).

• Suppose ` = 0, so that (S′,T′) = (T.0,S.0) � � R, and (σ, τ) ∈ S′ ×T′. We must
show that (σ, τ) ∈ R=.

Since σ ∈ S′, there must be types σ0, σ1 such that σ0 → σ1 ∈ T, and (σ, σ0) ∈
R=.

Since τ ∈ T′, there must be types τ0, τ1 such that τ0 → τ1 ∈ S, and (τ0, τ) ∈
R=.

Since S×T ⊆ R=, we have (τ0 → τ1, σ0 → σ1) ∈ R=.

Then by P1, we have (σ0, τ0) ∈ R=, and by P2, we have (σ, τ) ∈ R, as desired.

• If ` = 1 the result follows similarly.
�

To show that typability and type inference are decidable when restricted to regu-
lar types, note that the P1 and P2 closure of a relation on regular Σ1 types has size at
most n2, where n is the number of subtrees of the relation, and can be constructed in
O(n3) time (transitive closure requires cubic time). Checking that a relation satisfies
C2 takes time linear in the number of pairs of the relation, O(n2). Hence typability
is O(n3).

The complexity of type inference is harder to measure, and depends on the rep-
resentation we choose for the solution. In the worst case, there are an exponential
number of states reachable from R � � R, which forms the solution. If we choose this
representation for the solution, then, the complexity of type inference is exponential.
However, we could also say that a closed, consistent R is tantamount to a solution,
so that the complexity of type inference is cubic. Such a representation is arguably
more cryptic than the exponential representation, however, we feel that this is no
worse than what is required to obtain the linear lower bound for the well-understood
problem of unification.

In unification, when types are represented naively as strings, the size of the
solution to a unification problem can be exponential in the size of the problem.
When a dag representation is used for types, the size of the unification solution is
quadratic in the size of the problem. In order to achieve the linear lower bound
for unification, a more cryptic representation must be used, similar to our closed,
consistent relations.

13



5.2 Type inference with > but not ⊥

We now consider the signature Σ2 = Tv ∪ {>,→} ∪ B, where B is a finite set. We
will use the terminology that a lattice is downwards conditionally complete if every
subset with a lower bound has a greatest lower bound. Similarly, we say that a
lattice is upwards conditionally complete if every subset with an upper bound has a
least upper bound. We assume that Σ2 is downwards conditionally complete.

The case of B = {nat} is interesting both historically and technically. Type
inference has not previously been solved for this case. When recursive types and the
base type nat are omitted, we have the system of partial types introduced by Thatte
[34]. Thatte gave a semi-decision procedure for type inference in his system. O’Keefe
and Wand [25] gave the first type inference algorithm for Thatte’s system. Kozen,
Palsberg, and Schwartzbach [18, 19] improved on O’Keefe and Wand’s algorithm,
and extended it to recursive types.

The addition of the base type nat to the type system makes type inference more
difficult. The signature seems simpler than Σ1, since it omits ⊥, but we will see
that type inference is actually more complicated. The difference is illustrated by the
following example.

(s, σ0 → σ1) (s, τ0 → τ1)

Here we have two pairs of a relation; suppose s does not appear in σ0, σ1, τ0, τ1. If S

is a solution to the relation, then S(s) is a lower bound of σ0 → σ1 and τ0 → τ1. In
Σ1, an obvious solution maps s to ⊥. This is not possible in Σ2: s must be mapped
to a function type, say, ρ0 → ρ1. Then ρ1 must be a lower bound of S(σ1) and S(τ1).
The existence of such a lower bound was not implied in Σ1.

This is exactly where nat causes difficulties. The type inference algorithm in [18]
for the system without nat constructs a closed solution, that is, a solution containing
no type variables. The possible types in the solution are thus generated by the
signature {→,>}. This class of types has a special property: every nonempty set of
such types has a lower bound. Therefore, in constructing a closed solution S to the
relation above, the constraint that S(σ1) and S(τ1) have a lower bound is satisfied
vacuously.

When nat is added to the system, it is no longer possible to find a lower bound
for every set of closed types. Therefore, the implied lower bounds must be checked
for. This affects both the closure and consistency conditions.

We now return to the more general case of Σ2 = Tv ∪ {>,→} ∪ B, where B is
a finite set and Σ2 is assumed to be downwards conditionally complete. Before we
define our structure, we need an auxilliary definition: A set S of types is pairwise
bounded below (PBB) in R if for all types σ, τ ∈ S, if σ 6= τ , then there exists a type
ρ such that (ρ, σ), (ρ, τ) ∈ R.

Definition 14 The structure Γ2 is defined as follows.

• SymΓ2
(S,T) = glbΣ2

(T(ε) −Tv).

14



(Note that glbΣ2
(

�
) = >.)

• A relation R on Σ2 types is Γ2-closed if it satisfies Properties P1 and P2, and
the following additional property.

(P3) If (s, σ0 → σ1) ∈ R and (s, τ0 → τ1) ∈ R, then there is some σ such that
(σ, σ1) ∈ R= and (σ, τ1) ∈ R=.

• A relation R on Σ2 types is Γ2-consistent if it satisfies C2 (with Σ = Σ2) and
the following condition.

(C3) For all types σ, (σ↑R)(ε) −Tv has a ≤Σ2
-lower bound.

• A Σ2 pre-state (S,T) is a (Γ2, R) state if S×T ⊆ R= and T is PBB in R=.

Lemma 15 Γ2 is a Σ2 structure.

Proof: Not surprisingly, the proof is quite similar to that for the structure Γ1. The
differences show up in conditions R2, R3, and R4, so we concentrate on those here.

For R2, we must show that there is a Γ2-closure for every R. The only rule that
causes difficulty is P3. P3 asserts that a lower bound exists for certain types in R=.
In order to close arbitrary relations under P3 we will pick a fresh type variable to be
this lower bound if a lower bound does not already exist. For example, the closure
of a relation containing the pairs

(s, σ0 → σ1)
(s, τ0 → τ1)

(t, τ0 → τ1)
(t, ρ0 → ρ1)

will include in addition the pairs

(s′, σ1)
(s′, τ1)

(t′, τ1)
(t′, ρ1)

where s′ and t′ are marked as fresh. It is easy to show that this always results in a
closure, and the closure will have exactly the same solutions as the original relation.
Moreover, when working solely with regular types, we will need to add at most n2

fresh type variables, where n is the number of subtrees in the original relation: one
for each pair of subtrees whose root symbol is →.

To prove R3 (SymΓ2
is a total function on states), we use Lemma 16, below.

That leaves only R4 (δ maps states to states). By Lemma 13, δ preserves R=, so
we only need to show that δ preserves the PBB property.

Suppose (S,T) is a (Γ2, R) state, and glbΣ2
(T(ε)−Tv) = →, so that δΓ2,R(S,T)(0)

and δΓ2,R(S,T)(1) are defined.
Since δΓ2,R(S,T)(0) = (T.0,S.0) ��� R, we must show that S.0↑R is PBB in R=.

By transitivity (P2), it is sufficient to show that S.0 is PBB in R=, so assume

15



σ0, τ0 ∈ S.0. Then there must exist types σ1, τ1 such that σ0 → σ1, τ0 → τ1 ∈ S.
And there must be a type ρ0 → ρ1 ∈ T, because glbΣ2

(T(ε) − Tv) = →. Since
S×T ⊆ R=, we have (σ0 → σ1, ρ0 → ρ1) ∈ R= and (τ0 → τ1, ρ0 → ρ1) ∈ R=. Then
by P1, we have (ρ0, σ0) ∈ R= and (ρ0, τ0) ∈ R= as desired.

Since δΓ2,R(S,T)(1) = (S.1,T.1) ��� R, we must show that T.1↑R is PBB in R=.
By transitivity (P2), it is sufficient to show that T.1 is PBB in R=, so assume
σ1, τ1 ∈ T.1. Then there must exist types σ0, τ0 such that σ0 → σ1, τ0 → τ1 ∈ T.
Since (S,T) is a state, T is PBB in R=. Therefore there is a type ρ such that
(ρ, σ0 → σ1) ∈ R= and (ρ, τ0 → τ1) ∈ R=. If ρ is a type variable, then by P3, σ1 and
τ1 have a lower bound in R=. If ρ = ρ0 → ρ1, then by P1, ρ1 is a lower bound of σ1

and τ1 in R=. And ρ cannot be other than a type variable or of the form ρ0 → ρ1

by C2. Thus in all cases, σ1 and τ1 have a lower bound in R=, so T.1 is PBB in R=,
as desired.

�

Lemma 16 If T is PBB in R= and R satisfies C3 then glbΣ2
(T(ε) −Tv) exists.

Proof: Since Σ2 is assumed to be downwards conditionally complete, it is sufficient
to show that (T(ε)−Tv) has a ≤Σ2

-lower bound. Since Σ2−Tv is finite, it sufficient
to show that any two elements of (T(ε) − Tv) have a ≤Σ2

-lower bound. Let σ, τ ∈
(T − Tv) be such that σ(ε) 6= τ(ε). Since T is PBB in R=, we can choose ρ such
that (ρ, σ), (ρ, τ) ∈ R=. Since R satisfies C3, we have that R= satisfies C3, so σ(ε)
and τ(ε) have a ≤Σ2

-lower bound.
�

5.3 Type inference with ⊥ but not >

Consider Σ3 = Tv ∪ {⊥,→} ∪ B, where B is a finite set. We assume that Σ3

is upwards conditionally complete. The Σ3 types have a least type ⊥, but not a
greatest type >. The problems arising in constructing a structure for Σ3 are dual
to those encountered for Σ2, and we leave to the reader to construct an appropriate
structure. The result is the first type inference algorithm for this system.

6 Related work

Huet [16] gave the first unification algorithm for recursive types; see also the papers
by Cardone and Coppo [7, 8]. Mitchell [23, 24] gave the first inference algorithm for
atomic subtyping, without recursive types. With no further assumptions about the
partial order, this problem is PSPACE-complete [35, 15, 12], and if the partial order
is a disjoint union of lattices or trees, then type inference is in polynomial time [35, 4].
Tiuryn and Wand [36] gave the first inference algorithm for atomic subtyping with
recursive types: this problem is in EXPTIME. Thatte [34] introduced the problem
of type inference with partial types (simple types plus >), and showed that it was
semi-decidable. O’Keefe and Wand [25] gave the first type inference algorithm for

16



Thatte’s system. Kozen, Palsberg, and Schwartzbach [18, 19] improved on O’Keefe
and Wand’s algorithm, and extended it to recursive types: these problems are P-
complete. Palsberg, Wand, and O’Keefe [28] gave an O(n3) time algorithm for simple
types plus > and ⊥. Amadio and Cardelli [3] gave the first subtyping algorithm for
the system of recursive types with >, ⊥, and discretely-ordered base types. Later,
Kozen, Palsberg, and Schwartzbach showed that the subtype ordering can be decided
in O(n2) time [19]. Palsberg and O’Keefe [26] gave a type inference algorithm for
the Amadio-Cardelli system: this problem is in O(n3) time.

The type system with recursive types and > and ⊥ is equivalent in expressive
power to a type system with constrained types [27]. A constrained type is a combi-
nation of a type and a constraint set. Recursive types corresponds to allowing cycles
in the constraint set; > correspond to allowing constructs of the form, say, nat ≤ s,
nat → nat ≤ s, where s is a type variable; and ⊥ corresponds to allowing constraints
of the form, say, s ≤ nat, s ≤ nat → nat. Constrained types without cycles in the
constraint set were studied by Kaes [17] and Smith [31]. Type inference for con-
strained types extended with let-polymorphism was studied for functional languages
by Aiken and Wimmers [2], and later for object-oriented languages by Eifrig, Smith,
and Trifonov [10, 9]. An algorithm for deciding a subtyping relation for constrained
types, including type quantifiers, was presented by Trifonov and Smith [37].

The first use of simulations to define a subtyping relation that we are aware
of is Pierce and Sangiorgi [30], who used it for a process calculus. Later, Brandt
and Henglein [5] used co-inductive methods to obtain complete axiomatizations of
type equality and subtyping, and to obtain an easy proof of the O(n2) algorithm for
deciding the subtyping relation.

Acknowledgment: Palsberg is supported by a National Science Foundation Fac-
ulty Early Career Development Award, CCR–9734265.

A Proof of the main theorems

Recall that TypeSym,R(g) is not always a type. Whenever TypeSym,R(g) is in fact
a type, we have the following result.

Lemma 17 If σ = TypeSym,R(g), then σ.` = TypeSym,R(δSym,R(g)(`)).

Proof: Immediate from the definition of TypeSym,R.
�

We use R to range over relations on states, and we extend the function TypeSym,R

to relations on states as follows:

TypeSym,R(R) = {(TypeSym,R(g),TypeSym,R(h)) | (g, h) ∈ R}

Thus TypeSym,R maps relations on states to relations on types.

17



Lemma 18 Suppose Γ is a Σ structure, and R is Γ-closed and Γ-consistent. If
σ 6∈ Tv appears in R, then SymΓ((σ, σ) ��� R) = σ(ε).

Proof: Let (S,T) = (σ, σ) ��� R. By R5, (S,T) is a state, and then by R3, SymΓ(S,T)
is defined. Note, σ ∈ S and σ ∈ T. By R7, σ(ε) ≤Σ SymΓ(S,T) ≤Σ σ(ε), so
SymΓ(S,T) = σ(ε) as desired.

�

Lemma 19 Suppose Γ is a Σ structure, and R is Γ-closed and Γ-consistent.

1. If (σ, τ) ∈ R, then (σ, σ) ��� R ≤s (τ, τ) � � R.

2. If g is a (Γ, R) state, then TypeΓ,R(g) is a type.

3. If R is a relation on (Γ, R) states, and R ⊆ ≤s, then TypeΓ,R(R) is C1-
consistent.

Proof:

1. By P2.

2. By R3 and R4.

3. By (2), TypeΓ,R(R) is a relation on Σ types, so it makes sense to ask whether
it is C1-consistent. And C1-consistency follows from R8.

�

Proof of Theorem 9: (⇒) Suppose R has a Σ solution. By R2, R has a Γ-
closure, R′, that is equivalent to R. Hence, R′ has a Σ solution. Then by R1, R′ is
Γ-consistent.

(⇐) By Theorem 10.
�

Proof of Theorem 10: We want to show that SR(R) ⊆ ≤. By Lemma 4, it is
sufficient to show that the P1-closure of SR(R) is C1-consistent.

First, we define a sequence R0, R1, R2, . . . , of relations on types:

R0 = SR(R)

Ri+1 = Ri ∪ {(τ0, σ0) | ∃σ1, τ1. (σ0 → σ1, τ0 → τ1) ∈ Ri}

∪ {(σ1, τ1) | ∃σ0, τ0. (σ0 → σ1, τ0 → τ1) ∈ Ri}

The P1-closure of SR(R) is just
⋃

0≤i<∞ Ri. Since the union of C1-consistent rela-
tions is C1-consistent, it is sufficient to show that each relation Ri is C1-consistent.

Define a sequence R0, R1, R2, . . . , of relations on (Γ, R) states:

R0 = R ��� R
Ri+1 = Ri ∪ {(δΓ,R(h)(0), δΓ,R(g)(0)) | (g, h) ∈ Ri}

∪ {(δΓ,R(g)(1), δΓ,R(h)(1)) | (g, h) ∈ Ri}

18



That R0 is a relation on states follows from R5, and that Ri+1 is a relation on states
follows from R4.

By induction on i, we will show that Ri = TypeΓ,R(Ri), and that Ri ⊆ ≤s.
Then by Lemma 19(3), every Ri is C1-consistent.

For the base case, by Lemma 20, TypeΓ,R(R0) = TypeΓ,R(R ��� R) = SR(R) = R0,
and by Lemma 19(1), R0 = R � � R ⊆ ≤s.

For the inductive case, assume Ri = TypeΓ,R(Ri) and Ri ⊆ ≤s. Then by
Lemma 17, Ri+1 = TypeΓ,R(Ri+1), and by Lemma 22, Ri+1 ⊆ ≤s.

�

Lemma 20 If Γ is a Σ structure, and R is Γ-closed and Γ-consistent, then for any
type σ appearing in R,

SR(σ) = TypeΓ,R((σ, σ) ��� R).

Proof: If σ is a type variable, then the result is immediate by the definition of SR.
The interesting case is when σ is not a type variable.

For all α and σ, we show that SR(σ)(α) = TypeΓ,R((σ, σ) ��� R)(α). The proof is
by induction on α.

• If α = ε and σ is a type variable, then the result follows immediately from the
definition of SR.

• If α = ε and σ(ε) 6∈ (Tv ∪ {→}), then SR(σ) = σ, and thus, SR(σ)(ε) = σ(ε).

By Lemma 18, SymΓ((σ, σ) ��� R) = σ(ε). Therefore, TypeΓ,R((σ, σ) ��� R)(ε) =
SR(σ)(ε), as desired.

• If α = ε and σ = σ0 → σ1, then SR(σ)(ε) = →.

And TypeΓ,R((σ, σ) ��� R)(ε) = SymΓ((σ, σ) � � R), which is → by Lemma 18.

• If α = `α′ and σ is a type variable, then the result follows immediately from
the definition of SR.

• If α = `α′ and σ(ε) 6∈ (Tv∪{→}), then both SR(σ)(α) and TypeΓ,R((σ, σ) � � R)(α)
are undefined.

• If α = 0α′ and σ = σ0 → σ1, then SR(σ)(α) = SR(σ0)(α
′). By induc-

tion, SR(σ)(α) = TypeΓ,R((σ0, σ0) ��� R)(α′). Finally by Lemma 21 below,
SR(σ)(α) = TypeΓ,R((σ, σ) ��� R)(0α′).

• If α = 1α′ and σ = σ0 → σ1, we proceed just as in the previous case.
�

Lemma 21 If Γ is a Σ structure, R is Γ-closed and Γ-consistent, and σ = σ0 → σ1

appears in R, then
δΓ,R((σ, σ) ��� R)(`) = (σ.`, σ.`) � � R.

19



Proof: First note that the left-hand side is defined: by Lemma 18, it must be →.
The right-hand side is always defined.

We will show only the case ` = 0; the case ` = 1 is proved similarly. We must
show ((σ↑R).0, (σ↓R).0) � � R = (σ.0, σ.0) � � R, that is,

σ↑R.0↓R = σ.0↓R and σ↓R.0↑R = σ.0↑R.

Note, {σ} ⊆ σ↑R and {σ} ⊆ σ↓R. Since .0 is monotone with respect to set
inclusion, {σ}.0 = {σ.0} ⊆ σ↑R.0 and {σ}.0 = {σ.0} ⊆ σ↓R.0.

And since ·↓R is monotone with respect to set inclusion, σ.0↓R = {σ.0}↓R ⊆
(σ↑R).0↓R and σ.0↑R = {σ.0}↑R ⊆ (σ↓R).0↑R.

Now suppose τ ∈ σ↓R.0↑R. Then there must be types τ ′ ∈ σ↓R, τ0 ∈ σ↓R.0, and
τ1 such that (τ0, τ) ∈ R, τ ′ = τ0 → τ1, and (τ ′, σ) ∈ R.

Since (τ ′, σ) ∈ R, by Property P1 we have (σ0, τ0) ∈ R. Then since (τ0, τ) ∈ R,
by Property P2 we have (σ0, τ) ∈ R. Therefore τ ∈ σ0↑R as desired.

We can similarly show that τ ∈ σ↑R.0↓R ⇒ τ ∈ σ0↓R, as desired.
�

Lemma 22 If g ≤s h and Sym(g) = Sym(h) = →, then:

1. δSym,R(h)(0) ≤s δSym,R(g)(0); and

2. δSym,R(g)(1) ≤s δSym,R(h)(1).

Proof: Suppose g = (Sg,Tg) and h = (Sh,Th). Since g ≤s h we know Th ⊆ Tg

and Sg ⊆ Sh.

1. Let (S′
g,T

′
g) = δSym,R(g)(0) and (S′

h,T′
h) = δSym,R(h)(0).

Since Th ⊆ Tg and the .0 operation is monotone, we have Th.0 ⊆ Tg.0. Since
the ·↓R operation is monotone, we have we have (Th.0)↓R ⊆ (Tg.0)↓R. This
says exactly that S′

h ⊆ S′
g.

Similarly, from Sg ⊆ Sh we have (Sg.0)↑R ⊆ (Sh.0)↑R. This says exactly that
T′

g ⊆ T′
h.

Thus we have δSym,R(h)(0) ≤s δSym,R(g)(0) as desired.

2. This case is proved similarly to the previous case.
�

References

[1] Mart́ın Abadi and Luca Cardelli. A Theory of Objects. Springer-Verlag, 1996.

[2] Alexander Aiken and Edward Wimmers. Type inclusion constraints and type
inference. In Proc. Conference on Functional Programming Languages and Com-
puter Architecture, pages 31–41, 1993.

20



[3] Roberto M. Amadio and Luca Cardelli. Subtyping recursive types. ACM Trans-
actions on Programming Languages and Systems, 15(4):575–631, September
1993.

[4] Marcin Benke. Efficient type reconstruction in the presence of inheritance.
Manuscript, 1994.

[5] Michael Brandt and Fritz Henglein. Coinductive axiomatization of recursive
type equality and subtyping. In Proceedings, 3rd International Conference on
Typed Lambda Calculi and Applications, 2–4 April 1997.

[6] Luca Cardelli, Simone Martini, John C. Mitchell, and Andre Scedrov. An exten-
sion of system F with subtyping. Information and Computation, 109(1/2):4–56,
15 February/March 1994.

[7] Felice Cardone and Mario Coppo. Two extensions of Curry’s type inference
system. In Piergiorgio Odifreddi, editor, Logic and Computer Science, volume 31
of APIC Studies in Data Processing, pages 19–75. Academic Press, 1990.

[8] Felice Cardone and Mario Coppo. Type inference with recursive types: Syntax
and semantics. Information and Computation, 92(1):48–80, May 1991.

[9] Jonathan Eifrig, Scott Smith, and Valery Trifonov. Sound polymorphic type
inference for objects. In Proc. OOPSLA’95, ACM SIGPLAN Tenth Annual
Conference on Object-Oriented Programming Systems, Languages and Applica-
tions, pages 169–184, 1995.

[10] Jonathan Eifrig, Scott Smith, and Valery Trifonov. Type inference for recur-
sively constrained types and it application to OOP. In Proc. Mathematical
Foundations of Programming Semantics, 1995. To appear.

[11] Margaret A. Ellis and Bjarne Stroustrup. The Annotated C++ Reference Man-
ual. Addison-Wesley, 1990.

[12] Alexandre Frey. Satisfying systems of subtype inequalities in polynomial space.
In Proc. SAS’97, International Static Analysis Symposium. Springer-Verlag
(LNCS ), 1997.

[13] Adele Goldberg and David Robson. Smalltalk-80—The Language and its Im-
plementation. Addison-Wesley, 1983.

[14] James Gosling, Bill Joy, and Guy Steele. The Java Language Specification.
Addison-Wesley, 1996.

[15] My Hoang and John Mitchell. Lower bounds on type inference with subtypes.
In Conference Record of POPL ’95: 22nd ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, pages 176–185, 1995.

21



[16] G. Huet. Résolution d’équations dans les langages d’ordre 1, 2, . . . , ω. Thèse
de Doctorat d’Etat, Université de Paris VII, 1976.

[17] Stefan Kaes. Typing in the presence of overloading, subtyping, and recursive
types. In Proceedings of the 1992 ACM Conference on Lisp and Functional
Programming, pages 193–204, 1992.

[18] Dexter Kozen, Jens Palsberg, and Michael I. Schwartzbach. Efficient inference of
partial types. Journal of Computer and System Sciences, 49(2):306–324, 1994.

[19] Dexter Kozen, Jens Palsberg, and Michael I. Schwartzbach. Efficient recursive
subtyping. Mathematical Structures in Computer Science, 5(1):113–125, 1995.

[20] David MacQueen, Gordon Plotkin, and Ravi Sethi. An ideal model for re-
cursive polymorphic types. Information and Control, 71(1/2):95–130, Octo-
ber/November 1986.

[21] R. Milner. A calculus of communicating systems. volume 92 of Lecture Notes
in Computer Science. Springer-Verlag, 1980.

[22] Robin Milner. Communication and Concurrency. Prentice Hall, 1989.

[23] John Mitchell. Coercion and type inference. In Conference Record of the
Eleventh Annual ACM Symposium on Principles of Programming Languages,
pages 175–185, 1984.

[24] John Mitchell. Type inference with simple subtypes. J. Functional Program-
ming, 1(3):245–285, July 1991.

[25] Patrick M. O’Keefe and Mitchell Wand. Type inference for partial types is decid-
able. In B. Krieg-Brückner, editor, 4th European Symposium on Programming,
volume 582 of Lecture Notes in Computer Science, pages 408–417. Springer-
Verlag, February 1992.

[26] Jens Palsberg and Patrick O’Keefe. A type system equivalent to flow analysis.
ACM Transactions on Programming Languages and Systems, 17(4):576–599,
July 1995.

[27] Jens Palsberg and Scott F. Smith. Constrained types and their expressiveness.
ACM Transactions on Programming Languages and Systems, 18(5):519–527,
September 1996.

[28] Jens Palsberg, Mitchell Wand, and Patrick O’Keefe. Type inference with non-
structural subtyping. Formal Aspects of Computing, 9:49–67, 1997.

22



[29] D.M.R. Park. Concurrency and automata on infinite sequences. In Proceedings
of the 5th GI Conference, volume 104 of Lecture Notes in Computer Science,
pages 15–32. Springer-Verlag, 1981.

[30] Benjamin Pierce and Davide Sangiorgi. Typing and subtyping for mobile pro-
cesses. In Proceedings, Eighth Annual IEEE Symposium on Logic in Computer
Science, pages 376–385, Montreal, Canada, 19–23 June 1993. IEEE Computer
Society Press.

[31] Geoffrey S. Smith. Principal type schemes for functional programs with over-
loading and subtyping. Science of Computer Programming, 23:197–226, 1994.

[32] Satish Thatte. Type inference with partial types. In Automata, Languages and
Programming: 15 th International Colloquium, volume 317 of Lecture Notes in
Computer Science, pages 615–629. Springer-Verlag, 1988.

[33] Satish R. Thatte. Quasi-static typing. In Conference Record of the Seventeenth
Annual ACM Symposium on Principles of Programming Languages, pages 367–
381, 1990.

[34] Satish R. Thatte. Type inference with partial types. Theoretical Computer
Science, 124:127–148, 1994.

[35] Jerzy Tiuryn. Subtype inequalities. In Proceedings, Seventh Annual IEEE Sym-
posium on Logic in Computer Science, pages 308–315, Santa Cruz, California,
22–25 June 1992. IEEE Computer Society Press.

[36] Jerzy Tiuryn and Mitchell Wand. Type reconstruction with recursive types and
atomic subtyping. In CAAP ’93: 18th Colloquium on Trees in Algebra and
Programming, Lecture Notes in Computer Science, pages 686–701. Springer-
Verlag, July 1993.

[37] Valery Trifonov and Scott Smith. Subtyping constrained types. In Proc.
SAS’96, International Static Analysis Symposium. Springer-Verlag (LNCS
1145), September 1996.

[38] David Ungar and Randall B. Smith. SELF: The power of simplicity. In Proc.
OOPSLA ’87, Object-Oriented Programming Systems, Languages and Applica-
tions, pages 227–241, 1987. Also published in Lisp and Symbolic Computation
4(3), Kluwer Acadamic Publishers, June 1991.

23


