
ar
X

iv
:2

30
7.

08
75

9v
1

 [
cs

.P
L

]
 1

7
Ju

l 2
02

3

201

Generic Programming with Extensible Data Types
Or,Making Ad Hoc Extensible Data Types Less Ad Hoc

ALEX HUBERS, The University of Iowa, USA

J. GARRETT MORRIS, The University of Iowa, USA

We present a novel approach to generic programming over extensible data types. Row types capture the

structure of records and variants, and can be used to express record and variant subtyping, record extension,

and modular composition of case branches. We extend row typing to capture generic programming over rows

themselves, capturing patterns including lifting operations to records and variations from their component

types, and the duality between cases blocks over variants and records of labeled functions, without placing

specific requirements on the fields or constructors present in the records and variants. We formalize our

approach in System Rl , an extension of Fl with row types, and give a denotational semantics for (stratified)

Rl in Agda.

CCS Concepts: • Theory of computation→Type theory; • Software and its engineering→Data types

and structures.

Additional Key Words and Phrases: generic programming, extensible data types, row types, row polymor-

phism, qualified types.

ACM Reference Format:

Alex Hubers and J. Garrett Morris. 2023. Generic Programming with Extensible Data Types: Or, Making Ad

Hoc Extensible Data Types Less AdHoc. Proc. ACMProgram. Lang. 7, ICFP, Article 201 (August 2023), 29 pages.

https://doi.org/10.1145/3607843

1 INTRODUCTION

The goal of extensible data types is to bring type safety to modular software development. Row
types [Rémy 1992;Wand 1987] are one approach to that goal. Rows express the structure of records
or variants; row polymorphism captures properties like subtyping while maintaining a purely
parametric approach to typing. Row typing was originally designed to model object-oriented in-
heritance, but its applications include: extensible variants in OCaml [Garrigue 1998]; extensible
effects [Lindley and Cheney 2012]; typing algebraic effects and handlers [Hillerström and Lindley
2016; Leijen 2014, 2017]; and, extensible protocols in session types [Lindley and Morris 2017].
This paper explores generic programming over rows. Consider defining equality functions for

extensible records. Of course, given a particular set of fields, and knowledge of how to compare
the field types, existing row type systems can express the equality function for records of those
fields. Even with metaprogramming support, however, having to explicitly define equality func-
tions for each record type (and each extension of a record type) creates a significant burden for
programmers—a disadvantage for an approach designed to encourage this style of programming!
Moreover, approaches that depend on particular sets of fields cannot extend to row polymorphism,

Authors’ addresses: Alex Hubers, Department of Computer Science, The University of Iowa, 14 MacLean Hall, Iowa City,

Iowa, USA, alexander-hubers@uiowa.edu; J. Garrett Morris, Department of Computer Science, The University of Iowa, 14

MacLean Hall, Iowa City, Iowa, USA, garrett-morris@uiowa.edu.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,

contact the owner/author(s).

© 2023 Copyright held by the owner/author(s).

2475-1421/2023/8-ART201

https://doi.org/10.1145/3607843

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 201. Publication date: August 2023.

201:2 Alex Hubers and J. Garre� Morris

Eq : ★ → ★

Eq = _t .t → t → Bool

eqΣ : ∀z : R★ . Π(Eq z) → Eq (Σz)

eqΣ = _d v w. ana (_l y.(case l (_x . sel d l x y) ▽ const False) v) w

Fig. 1. Comparing extensible variants in Rl

a key contributor to the expressiveness of row types. While we could express the extension of a
particular record type, we could not (modularly) express that such an extension supports equality.
We propose novel record and variant operations, generic in the particular labels that appear in

those records and variants, and realize these operations in System Rl , a core calculus that extends
System Fl with row types based on Rose [Morris and McKinna 2019]. Consider the equality func-
tion for extensible variants: if we know how to compare the values at each constructor in two
variants, we ought to know how to compare the variants. Figure 1 captures this idea in Rl ; we
have elided type abstractions, applications, and annotations on bound variables, as they can be
inferred from the given type signatures. Type operator Eq maps types to equality operators for
those types. Function eqΣ compares two variant values v and w, given a record d of comparison
operators for their fields. Suppose that z is instantiated with the row {a ⊲ Int, b ⊲ List Bool}: d will
be a record of comparison functions Π{a ⊲ Int → Int → Bool, b ⊲ List Bool → List Bool → Bool},
and v and w will each be variants Σ{a ⊲ Int, b ⊲ List Bool}. (We follow Pottier and Rémy [2005]
in implicitly lifting operators on types, like Eq, to the corresponding operators on rows.) Our key
novelty is the ana combinator: ana f w analyzes variant w, calling f with its constructor label l
and contents y. With these in hand, we can then rely on the variant branching combinator (▽) of
Rose: in case v is constructed with label l, we select from d the l-labeled function, and use it to
compare the contents x and y of the two variants; otherwise, regardless of the contents of v, we
can return False. We will return to each component of this definition in the remainder of the paper.
The generic operations in Rl build on the row type theory Rose. Rose is distinguished from

other row type theories by two features. First, Rose uses qualified types [Jones 1994] to capture
the structure of row types, rather than incorporating the structure of rows directly into the types
of records and variants. This indirection makes it possible to capture structural invariants in Rose

that are difficult or impossible to capture in other row type systems. We rely on this expressiveness
in typing the combinators in Rl : the function argument to ana, for example, is typed given the
assumption that l labels a value of type u in row z. Second, Rose builds on a general account of
rows as partial monoids, encompassing a variety of different row type theories in the literature.
While we will fix a particular theory of rows in our formalization of Rl , we will show how our
account would generalize other theories of rows as well.
One way to realize the behavior of eqΣ would be to treat (hashes of) labels as keys at runtime:

variants would be labeled by these keys and records would be dictionaries over keys. While direct,
this approach is neither practically nor theoretically sound: we would be disappointed to learn
that selecting a field from a record was not a constant time operation, and it would be difficult to
show that well-typed operations only relied on keys that were dynamically present in records or
case blocks. We will show that Rl has a type-safe implementation with no runtime comparison
or manipulation of labels, guided by the use of predicates in the types of the generic operations.
To do so, we will give a denotational semantics for universe-stratified Rl typing derivations in
Agda, in which rows are interpreted as functions from finite naturals to types, row inclusions and
combinations are witnessed by maps from finite naturals to finite naturals, and we have static
guarantees that our indexing of records and variants is well-typed.
To summarize, this paper contributes:

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 201. Publication date: August 2023.

Generic Programming with Extensible Data Types 201:3

• The extension of Rose to generic programming over rows (§3), particularly the design of
combinators that express generic transformations of row-typed products and sums;

• A formalization of our approach in the Rl calculus (§4), which extends System Fl with
Rose-style row typing, first-class labels, and generic programming over rows; and,

• The denotation of Rl derivations in Agda (§5), showing that Rl is sound and need not
introduce runtime manipulation or comparison of labels.

We begin with a review of extensible datatypes in Rose (§2) and conclude with discussions of
related (§6) and future (§7) work.

2 EXTENSIBLE DATATYPES AND THE ROSE TYPE THEORY

The goal of row typing is to support type-safe extensible data types. This section gives an intuitive
overview of row typing, and the Rose type system in particular, preparatory to its extension in
the following section.

2.1 The Need for Extensibility

Existing functional language type theories are remarkably expressive, and further additions are
rightly viewed with some suspicion. We begin with two examples of the additional value of exten-
sible data types.

The expression problem. Wadler [1998] describes the expression problem as “a new name for an
old problem”. Consider an abstract data type along with several operations. For example, we could
have a simple type for arithmetic expressions, consisting of constants and sums, along with an op-
erations to reduce expressions to integer values. The challenge is to extend this in two dimensions—
say, by adding a new constructor for products, and a new operation to print expressions as charac-
ter strings—without rewriting or recompiling existing code, andwithout compromising type safety.
In modern functional languages, adding new operations is easy, but adding new constructors re-
quires changing the original type definition and all the existing definitions. In object-oriented
languages, adding new cases is easy but adding new operations requires changing the base class
and all of its inheritors. Programmers in either camp must resort to encoding tricks to capture the
remaining case, making code more difficult to read and maintain.

Modular transformations. The expression problem may not seem entirely compelling: why arti-
ficially restrict a common refactoring operation to preserve existing code? As an alternative view
of the same problem, consider desugaring or optimization passes in a compiler. We might hope to
limit many of our passes to operating on a subset of the whole language [Keep and Dybvig 2013;
Sarkar et al. 2004]: for example, a single pass might resolve infix applications, while not changing
the remainder of the syntax tree. In writing these passes, we would like to make them generic over
the untouched (or only recursively transformed) parts of the syntax tree. This will both make the
compiler more readable and maintainable, and provide type-based guarantees of the limited scope
of these passes. This problem is essentially the dual of the expression problem: instead of planning
to extend our AST, we hope to write passes without fixing most of the AST.

2.2 Row Types

Consider the type of a function that selects the field x from a record—we might write this function
_r .sel r x, where sel is our function for selecting record fields, and we use the teletype font to
distinguish label constants from label variables. We can imagine many record types which might
contain an x field—points on a plane, or in space; pixels on a screen; nodes for lambda expressions
in the AST of a functional programming language—and in each case, xmight have a different type.

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 201. Publication date: August 2023.

201:4 Alex Hubers and J. Garre� Morris

A general type for this function ought to encompass all its possible arguments, associating each
with the corresponding result type. This problem, along with its dual for variants, is the starting
point for row type systems.

Rows and row polymorphism. A row is an association of labels to types. For example, we write
{x ⊲Double, y ⊲Double} for the row that associates both the labels x and ywith the type of double-
precision floating point numbers. Record and variant types are constructed from rows; for example,
a type for Cartesian coordinates is Π{x ⊲Double, y ⊲Double}, while a more general type for points
is Σ{Cart ⊲ Π{x ⊲ Double, y ⊲ Double}, Polar ⊲ Π{r ⊲ Double, theta ⊲ Double}}.
Just introducing rows gets us little closer to solving our initial problem: we can say that _r .sel r x

could have type Π{x ⊲ Double} → Double or Π{x ⊲ Int, y ⊲ Int} → Int, but these are not a general
account of its behavior. Instead, this function should have a polymorphic type. In many row type
systems [Rémy 1989; Wand 1987], its type would be written similarly to ∀t z.Π{x ⊲ t | z} → t. The
syntax {x ⊲ t | z} denotes the extension of row z with the field x ⊲ t. As a whole, the type denotes a
function from a record containing anyfields z, and also x⊲t, to a value of type t. Similarly, a function
that added a new x field to an existing record could be given a type like∀t z. t → Πz → Π{x⊲t | z}.
This account of row types leaves several questions. First: in the types above, can the instantiation

of z already include an association for x?
• Wand [1987] allows free instantiation of z; extension is then interpreted as overwriting the

existing meaning of fields (in both types and terms).
• Rémy [1989] uses the kind system to preclude conflicting meaning of fields, but must intro-

duce a new kind to capture functions which can either overwrite or extend objects.
• Berthomieu and le Moniès de Sagazan [1995] and Leijen [2005] allow free instantiation of z,

and interpret extension as shadowing the existing meaning of fields, such that the original meaning
can be recovered later.
Second: does this account generalize from single field extension to arbitrary concatenation of

objects? For example, given two records, one of location data and one of color data, canwe combine
them to form a single record of colored location (or located color) data?

Polymorphism and predicates. Wand [1989] proposes the following term as a test of row type sys-
tems with record concatenation:

_mn. sel (m ++ n) k

Here m and n are arbitrary records, and the function projects the field k from their concatenation.
(In Wand’s original example, m and n were records of method implementations, k is a method
name, and the term as a whole models multiple inheritance.) The crux of the problem is that if we
have to assign a type to either m or n that already commits to field k, then we have over-specified
the behavior of the function. On the other hand, if we do not commit to either m or n containing
field k, then how can we be sure the function is well-defined at all?
This is the starting point for the Rose type theory [Morris and McKinna 2019]. Instead of cap-

turing the structure of rows directly in the types of records and variants, Rose captures them using
predicates in qualified types. For example, in Rose, the type of the x-selection function would be
expressed as

∀t z. {x ⊲ t} . z ⇒ Πz → t

That is: this is a function that maps z-shaped records to t results, for any types t and z, such that

the singleton row {x ⊲ t} is contained in z. Rose supports concatenation of records via predicates
as well. The type for Wand’s example in Rose is:

∀t z1 z2 z3 . (z1 ⊙ z2 ∼ z3, {k ⊲ t} . z3) ⇒ Πz1 → Πz2 → t

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 201. Publication date: August 2023.

Generic Programming with Extensible Data Types 201:5

Γ ⊢ M : g

Γ ⊢ ℓ ⊲M : ℓ ⊲ g

Γ ⊢ M : Πd1 Γ d2 . d1

Γ ⊢ prjM : Πd2

Γ ⊢ M1 : Πd1 Γ ⊢ M2 : Πd2 Γ d1 ⊙ d2 ∼ d3

Γ ⊢ M1 ++M2 : Πd3

Γ ⊢ M : ℓ ⊲ g

Γ ⊢ M/ℓ : g

Γ ⊢ M : Σd1 Γ d1 . d2

Γ ⊢ injM : Σd2

Γ ⊢ M1 : Σd1 → g Γ ⊢ M2 : Σd2 → g Γ d1 ⊙ d2 ∼ d3

Γ ⊢ M1 ▽M2 : Σd3 → g

Fig. 2. Typing of record and variant operations in Rose

That is: this is a function that maps a z1-shaped record and a z2 shaped record to a t result, such
that z1 and z2 can be concatenated to give row z3, and z3 contains the singleton row {k ⊲ t}. This
type captures the full generality of Wand’s challenge: we do not overconstrain either m or n to
always provide field k, but still guarantee that the projection will always be well-defined.
Figure 2 gives the typing rules for the record and variant operations in Rose. The projection

and injection operators are the generalizations of record selection and variant construction; each
relies on being able to prove that one row is contained in another. Branching (M1 ▽M2) is dual to
record concatenation (M1 ++ M2): it combines eliminators for two variants to give the eliminator
for their combination. As with concatenation, it relies on being able to prove that the two smaller
rows can be combined.

Theories of rows. As Rose does not commit directly to the structure of rows, but abstracts their
structure via the containment (d1 . d2) and combination (d1⊙d2 ∼ d3) predicates, it can be adapted
to any of the different notions to row extension:
• To capture non-overlapping rows: we stipulate that d1 ⊙ d2 ∼ d3 is only satisfiable when d1

and d2 have no fields in common. For this approach, we can define d1 . d2 to hold either when
there is some d ′ such that d1 ⊙ d ′ ∼ d2 or when d ′ ⊙ d1 ∼ d2.
• To capture overwriting: d1⊙d2 ∼ d3 is always satisfiable, where d3 reflects d1 for any labels that

appear in both. We can define d1 . d2 to hold exactly when there is d ′ such that d1 ⊙ d ′ ∼ d2. (On
the other side, when d ′ ⊙ d1 ∼ d2, we cannot necessarily recover fields in d1 from the combination
d2 because they may have been overwritten by fields in d ′.)
• To capture shadowing: d1 ⊙ d2 ∼ d3 is always satisfiable, and we get two containment predi-

cates, d1 .L d2 ⇐⇒ d1 ⊙ d ′ ∼ d2 and d1 .R d2 ⇐⇒ d ′ ⊙ d1 ∼ d2, with corresponding injection
and projection functions.
Rose itself is defined generically over a row theory, which defines the underlying structure of

rows and interpretation of row predicates. So, Rose encompasses all of the above cases, as well as
both simpler (e.g., unlabeled) and more complex (e.g. modules) cases.

2.3 Open Problems in Extensibility

Despite Rose’s expressiveness, it is still limited in how it describes individual rows. Rose can
capture the structure of rows, but it has no predicates that capture properties of the types in a row.
This limitation has several consequences.

If we know that every type in a variant or record supports equality comparisons, we should
expect that the variant or record supports equality comparison as well. However, even expressing
this problem is not possible in Rose—the constraint we need to express is on the types that appear
in the row, not on the structure of the row itself. The problem recurs when considering higher-
order polymorphism. Recall the example of modular AST transformations (§2.1). To maximize
flexibility and readability, the pass that transforms infix to prefix applications should not constrain
the remainder of the syntax tree. However, this transformation is not only applied at the top level

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 201. Publication date: August 2023.

201:6 Alex Hubers and J. Garre� Morris

of expressions or definitions; it must also be applied recursively, regardless of the other nodes in
the AST. This, in turn, implies some constraint (such as functoriality) on the remainder of the AST,
which cannot be captured in Rose.

We know that records and variants enjoy strong duality properties: a case expression elimi-
nating a variant corresponds to a record of functions, containing one (appropriately typed) func-
tion for each branch in the case expression. This duality is not just of theoretical interest. For
example, in implementing a system of algebraic effects and handlers [Plotkin and Power 2003;
Plotkin and Pretnar 2009], we could represent effectful computations as abstract syntax trees over
operations, and handlers as records of implementations of those operations. We might then hope
to define a general handling combinator, which combines an effectful computation with an appro-
priate handler. However, we cannot implement this operation in Rose: while we can use the same
row variable to describe both records and variants (i.e., both computations and their handlers), the
branching and projection operators all refer to specific labels.
Existing row type theories address some of these problems. Blume et al. [2006] distinguishes

case blocks from functions, and realizes case blocks by records of functions in their semantics.
However, this step in the semantics is not available to programmers. Pottier and Rémy [2005] im-
plicitly lift operations on types to operations on rows: if z is a row of associations ℓi ⊲ gi, then
z → h is the row of associations ℓi ⊲ gi → h. They further postulate an operation rapply which
applies a record of functions to a record of (identically labeled) arguments, producing a record
of results. However, this operation is treated as a primitive extension of their calculus. Chlipala
[2010] includes a mapping operator on records in a calculus based on Fl , generalizing the lifting
of Pottier and Rémy, and provides type-directed generation of record folding operations. He does
not consider variants in his approach; moreover, it is not immediately clear that folds, and their
duals for variants, would be sufficient to capture the open problems we identify.

3 GENERIC PROGRAMMING IN Rl

System Rl generalizes Rose in two dimensions. Rose imposes Hindley-Milner constraints on typ-
ing; Rl is based on System Fl extended with qualified types, and so supports first-class polymor-
phism and general type operators. More significantly, the record and variant operations in Rose

are all specific to concrete labels or sets of labels; Rl introduces label-generic combinators. This
section introduces Rl by example.
Through the majority of this section, we will assume simple rows: labels are restricted to appear

at most once in a given row, row combination is commutative (and so there is a single containment
operator), and d1 ⊙ d2 ∼ d3 is unsatisfiable if d1 and d2 contain any of the same fields. This
is the most common approach to typing records and variants and rules out many unexpected
behaviors. At the end of the section (§3.5), we will discuss the specific challenges in extending our
development to a non-commutative row theory.

3.1 First-Class Labels

In Rose, labels exist in types, but not in terms. The construction (ℓ ⊲ M) and destruction (M/ℓ)
terms, which are overloaded for both singleton records and variants, are each essentially infinite
families of terms, one for each label. To support label-generic operations, however, we will need
to make labels first-class citizens in the term language as well as the type language.
To do so, we follow the approach used byGaster and Jones [1996] and Sulzmann [1997].We have

added a singleton type constructor ⌊−⌋ to Rl : if ℓ is a label type, then ⌊ℓ⌋ is the corresponding
singleton type. (For a label constant L, we also write L for the unique inhabitant of ⌊L⌋.) First-class
labels allow us to abstract several common patterns in Rose. For example, to select an individual

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 201. Publication date: August 2023.

Generic Programming with Extensible Data Types 201:7

field from a record, we first apply prj to project a singleton record and then use the singleton de-
construction operator. Rose introduced syntactic sugar for this pattern; in contrast, we can define
the selection function directly in Rl by:

sel : ∀l : L, t :★, z : R★ . {l ⊲ t} . z ⇒ Πz → ⌊l⌋ → t

sel = Λ(l : L) (t :★) (z : R★). _(r : Πz) (g : ⌊l⌋). prj r/g

(Note that predicate abstraction and application remain implicit in Rl .) The type abstractions and
annotations in this example, andmost of the following, can be determined from the type signatures
alone, so we will generally omit them:

sel = _r l. prj r/l

Row type systems are frequently forced to distinguish between record extension (which adds
new fields to existing records) and record update (which changes the value—and possibly type—of
an existing field in a record), because their types impose different requirements on the input record
type. Rémy [1989] introduces presence polymorphism, allowing a single term to play both roles at
the cost of additional type system complexity. A single term that captures both in Rl :

upd : ∀l : L, t, u :★, z1, z2 : R
★ . z1 . {l ⊲ t} ⇒ ⌊l⌋ → u → Π(z1 ⊙ z2) → Π({l ⊲ u} ⊙ z2)

upd = _l u r . (l ⊲ u) ++ prj r

We treat ⊙ as a partial type constructor [Ingle et al. 2022; Jones and Diatchki 2008]: wewrite d1⊙d2
as a type to denote a fresh type variable z under the constraint d1 ⊙ d2 ∼ z. Row z1 is either the
empty row or the singleton row mapping l to t; row z2 is constrained to combine with {l ⊲ t}, so
cannot contain label l. The input record, of type Π(z1 ⊙ z2) may contain field l (depending on the
choice of z1); the output record definitely contains l, mapped to type u.
First-class labels are also useful for capturing programming patterns with variants. We can de-

fine a generic function for constructing variants:

con : ∀l : L, t :★, z : R★ . {l ⊲ t} . z ⇒ ⌊l⌋ → t → Σz

con = _l x . inj (l ⊲ x)

The base case for the branching operator ▽ is a function that maps a singleton variant to a result.
We can capture this pattern as well:

case : ∀l : L, t :★,u :★. ⌊l⌋ → (t → u) → Σ{l ⊲ t} → u

case = _l f x . f (x/l)

Representing Booleans as Bool = Σ{True⊲Π{}, False⊲Π{}} (syntactic sugar for Σ({True⊲Π{}}⊙
{False ⊲ Π{}})), we could then define the usual conditional by:

i�e : ∀t :★. Bool → t → t → t

i�e = _b t f . (case True (_u. t) ▽ case False (_u. f)) b

Perhaps most surprisingly, while Rose lacked syntax or types for first-class labels, adding them
does not require extending its semantics in any non-trivial way. The necessary information for
the sel function, for example, is already captured entirely by the predicate {l ⊲ t} . z. The value of
type ⌊l⌋ provides no additional information—as you would expect for a value of a singleton type!

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 201. Publication date: August 2023.

201:8 Alex Hubers and J. Garre� Morris

reify : ∀z : R★, t :★. (Σz → t) → Π(z → t)

reify = _f . syn (_l x . f (con l x))

reflect : ∀z : R★, t :★. Π(z → t) → (Σz → t)

reflect = _d w. ana (_l u. sel d l u) w

Fig. 3. Witnessing the duality of records and variants

3.2 The Duality of Records and Variants

We begin our exploration of generic programming over rows with the duality between records and
variants. This duality is foundational to row type systems in general, and to Rose in particular. Its
introduction rule for variants and the elimination rule for records are clearly dual, and the rules
for concatenating variant eliminators and concatenating records are nearly as evidently dual. (To
make the duality more explicit, one could have defined a rule for combining record constructors—
from g → Πz1 and g → Πz2, obtain g → Π(z1 ⊙ z2)—but this seems to obtain theoretical elegance
at the cost of usability.) In fact, we can witness this duality in Rose, but only for concrete rows.
For example, we can define the following operations for the Boolean type:

CasesB : ★ → R★

CasesB = _t .{True ⊲ Π{} → t, False ⊲ Π{} → t}

reifyB : ∀t :★. (Bool → t) → Π(CasesB t)

reifyB = _f . (True ⊲ f (conTrue ())) ++ (False ⊲ f (conFalse ()))

reflectB : ∀t :★. Π(CasesB t) → Bool → t

reflectB = _d . (case True (sel r True)) ▽ (case False (sel r False))

The type CasesB abbreviates operations over the constructors of the Boolean type. The reifyB func-
tion transforms a function that scrutinizes a Boolean value into a record of functions, one for the
True case and one for the False case; dually, the reflectB function uses such a record of functions
to scrutinize a Boolean value. (We write () for the unique value of the Π{} type.) Knowing the
constructors of the Boolean type is essential to writing this example; while such functions exist
for any variant type in Rose, their definition would have to be repeated for each type.
In Rl , we can write generic versions of these operators, applicable to any variant type and the

corresponding record of cases, as shown in Figure 3. The types of reify and reflect rely on lifting
operations on types to operations on rows: if z is the row of types ℓi ⊲ gi, then z → t is the row
of types ℓi ⊲ hi → t. In reifyB and reflectB, we relied on concrete constructors in two places: when
deconstructing a Boolean value in reflectB, and when building the record of constructors in reifyB.
Rl provides label-generic versions of these two operations, one for analyzing variants and a dual
operator for synthesizing records. Here is our first attempt at their typing rules:

Γ ⊢ d : R★ Γ ⊢ M : ∀l : L, u :★.{l ⊲ u} . d ⇒ ⌊l⌋ → u → g
(t-ana1)

Γ ⊢ anaM : Σd → g

Γ ⊢ d : R★ Γ ⊢ M : ∀l : L, u :★.{l ⊲ u} . d ⇒ ⌊l⌋ → u
(t-syn1)

Γ ⊢ synM : Πd

Wewrite R^ for the kind of rows over types of kind ^ . To avoid a sea of metavariables, we combine
kinding and typing assertions in Γ; the judgment Γ ⊢ d : R★ is a kinding assertion on d , and
Γ ⊢ anaM : Σd → g is a typing assertion on anaM .
In anaM , the bodyM is a label-generic version of the cases in a branch expression: given a label

l, a type u, and evidence that {l ⊲ u} appears in d , M consumes a single case—(a witness for) the
constructor, and its contents—and produces a result of type g . If M can do so for any constructor
appearing in d , then anaM can consume a value of Σd to produce a result of type g . We use ana

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 201. Publication date: August 2023.

Generic Programming with Extensible Data Types 201:9

in implementing reflect. Given the constructor label l and contents u of an arbitrary variant value
w, we invoke the l-labeled entry from the record d with argument u. Again, lifting plays a central
role: from {l ⊲ u} . z, we can conclude that {l ⊲ u → t} . z → t, and so sel d l is a u → t function.
In synM , the bodyM is a label-generic version of the components of a concatenation expression:

given a label l, a type u, and evidence that {l ⊲ u} appears in d ,M produces a value of type u. If M
can do so for each label appearing in d , then synM can produce a record of type Πd . We use syn
in implementing reify. In the body, we have access to f : Σz → t. We build a new function u → t,
which wraps its argument in constructor l and then invokes f . Lifting plays a similar role to its
role in reflect: as {l ⊲ u} . z, the result type includes l ⊲ u → t.

3.3 Transformations

Next, we consider generic transformations on extensible types.

Type-preserving maps. We begin with type-preserving mappings, such as reversing each field of a
record of lists. Here is the version for records; the version for variants is nearly identical.

map′
Π
: ∀z : R★ .(∀l : L, u :★. {l ⊲ u} . z ⇒ ⌊l⌋ → u → u) → Πz → Πz

map′
Π
= _f r . syn (_l. f l (sel r l))

The mapped function is label-generic: for any label l and type u appearing in z, the function trans-
forms the old u value into a new u value. Given such a function f and a record r , we synthesize a
new record in which each field l contains the result of f applied to the old field and its label.

Type-transforming maps. The far more interesting case is type-transforming mappings, such as
transforming a record of lists into a record of their lengths. The challenge here is not defining
the term (in fact, it will turn out to appear identical to the previous term), but rather to find an
appropriately expressive type. Suppose that we have type constructors List : ★ → ★ and Int : ★,
such that the length function has type∀t :★. List t → Int. Wemight then imagine that the pointwise
length function on records would have a type like

∀z : R★ .Π(List z) → Π(const Int z)

where const : ★ → ★ → ★ is the expected constant operator, on types. In the input type, we lift
the type constructor List over the row z; this allows us to capture the idea of a row of list types. In
the output type, we lift const Int over z; this replaces each type in z by Int. Instantiating this type
with the concrete row {a ⊲ Bool, b ⊲ Char} would give

Π{a ⊲ List Bool, b ⊲ List Char} → Π{a ⊲ Int, b ⊲ Int}

Of course, we cannot inhabit this type with a term based on map′
Π
, as the input and output types

are not identical. More seriously, however, it is not clear how we could inhabit it with any term
based on our previous typing rule for syn. The only types in the output row are Int, and it is not
clear how we could reconstruct an application of length to a field of the input row given only the
information that l ⊲ Int appears in the output row.
Our solution is to generalize the types of ana and syn to incorporate a type operator q :

Γ ⊢ d : R^ Γ ⊢ q : ^ → ★ Γ ⊢ M : ∀l : L, u : ^. {l ⊲ u} . d ⇒ ⌊l⌋ → q u → g
(t-ana2)

Γ ⊢ anaq M : Σ(q d) → g

Γ ⊢ d : R^ Γ ⊢ q : ^ → ★ Γ ⊢ M : ∀l : L, u : ^. {l ⊲ u} . d ⇒ ⌊l⌋ → q u
(t-syn2)

Γ ⊢ synq M : Π(q d)

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 201. Publication date: August 2023.

201:10 Alex Hubers and J. Garre� Morris

Iter(^) : (^ → ★) → (^ → ★) → R^ → ★

Iter(^) = _f g z.∀l : L, u : ^. ({l ⊲ u} . z) ⇒ ⌊l⌋ → f u → g u

map
(^)
Π

: ∀z : R^ , f : ^ → ★, g : ^ → ★. Iter f g z → Π(f z) → Π(g z)

map
(^)
Π

= Λz f g. _i r . syng (_l. i l (sel r l))

map
(^)
Σ

: ∀z : R^ , f : ^ → ★, g : ^ → ★. Iter f g z → Σ(f z) → Σ(g z)

map
(^)
Σ

= Λz f g. _i v. anaf (_l x . con l (i l x)) v

Fig. 4. Transforming records and variants

Differences from the previous rules are shaded. We now allow d to range over rows of arbitrary
kind ^—we will make use of this in capturing functoriality later in the section—and require that q
be a type operator mapping from ^ to ★. We then uniformly introduce q in the uses of d , both in
typing results of ana and syn and in typing their body. Rules (t-ana1) and (t-syn1) are special cases
of these rules, and going forward we will write ana and syn for ana_t. t and syn_t. t , respectively.
With the generalized typing rules for ana and syn, we can now define kind-indexed families

type-transforming maps for record and variants, shown in Figure 4. We write X(^) for a family of
X’s indexed by kind^ .Wewould expect languages based on Rl to also include kind-polymorphism;
we have omitted it from our formalization simply to avoid an orthogonal source of complexity. The

type Iter(^) f g z captures iterated functions over row z; type operator f is used to construct the

input type, and g is used to construct the output type. We make the type abstractions in map
(^)
Π

and map
(^)
Σ

explicit, as we will need to refer to the abstracted types in the calls to syn and ana.

The implementation of map
(^)
Π

is almost identical to the implementation of map′
Π
. The crucial

difference is in providing the operator g to syn. This means that the body of syn has the type

∀l : L, u : ^. {l ⊲ u} . z ⇒ ⌊l⌋ → g u

That is to say: knowing that l ⊲u appears in z, we must produce a value of type g u. The assumption
is sufficient to conclude that l ⊲ f u appears in f z, and so sel r l is a suitable input to the iterated
function i : Iter (^) f g z.

The implementation of map
(^)
Σ

is the expected dual of the implementation of map
(^)
Π

. We anno-
tate ana with the input-side operator f , so its body has the type

∀l : L, u : ^. {l ⊲ u} . z ⇒ ⌊l⌋ → f u → Σ (g z)

Here we are immediately sure that the value x is a suitable input for i; from {l ⊲ u} . z we have
{l ⊲ g u} . g z, and so con l (i l x) can be of type Σ(g x).

Pointwise application. Pottier and Rémy [2005] describe a pointwise-application operator for records,
which maps a record of functions and record of arguments to a record of results. We can describe
a similar family of operators in Rl , as follows:

Xf (^) : (^ → ★) → (^ → ★) → (^ → ★)

Xf (^) = _f g a. f a → g a

rapply(^) : ∀f : ^ → ★, g : ^ → ★, z : R^ .Π(Xf (^) f g z) → Π(f z) → Π(g z)

rapply(^) = _d r .map
(^)
Π

(_l x . sel d l x) r

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 201. Publication date: August 2023.

Generic Programming with Extensible Data Types 201:11

Functor : (★ → ★) → ★

Functor = _f .∀t :★, u :★. (t → u) → f t → f u

fmapΣ : ∀z : R★→★ .Π(Functor z) → Functor (Σ z)

fmapΣ = _d f w.map
(★→★)
Σ

(_l x . sel d l f x) w

fmapΠ : ∀z : R★→★ .Π(Functor z) → Functor (Π z)

fmapΠ = _d f r .map
(★→★)
Π

(_l x . sel d l f x) r

Fig. 5. Li�ing functoriality to records and variants

The type Xf (^) describes the individual transformation functions; as we expect to have a record
of these functions, suited to their record of arguments, we do not have to describe them in a label-

generic way. The rapply(^) function then takes a record of such transformers (note that we lift

Xf (^) f g from an operator on ^ to an operator on R^) and a record of arguments, and produces a
record of results. Its implementation is a direct application of map

Π
, in which the body need only

look up the appropriately labeled function in the input d.
Our rapply is not quite the same as Pottier and Rémy’s: where we rely on type applications f z

and g z based on a single row, they define a pointwise lifting of the function constructor to rows
z1 → z2. However: their rows are infinite, with a default type for all labels not mentioned in the
row; correspondingly, their records are infinite, with a default value for all labels not mentioned
in building the record. This means that z1 → z2 can always be well-defined, by using z1’s default
type as the domain for any labels not mentioned in z1 and z2’s default type as the codomain for any
labels not mentioned in z2. With finite rows, we do not have the same luxury. Should we interpret
z1 → z2 as undefined if the label sets of z1 and z2 are not identical? Or restrict it to the intersection
of those label sets? The former would introduce additional partiality in the type of rapply, while
the latter would seem to make rapply impossible to define. Without a more compelling application
of this additional flexibility, we have limited ourselves to lifting type operators over rows.

Li�ing functoriality. Amore substantial application of the map functions is in lifting functoriality—
as realized in languages like Haskell—to records and variants. The idea is that if we have a row
of type constructors, where each constructor in the row has a suitable mapping operator, then we
can derive mapping operators for record and variant type constructors built from that row. Our
implementation is shown in Figure 5.
We begin by defining the Functor type operator. This should be read as capturing the evidence

that a type operator is a functor: Functor List, for example, is ∀t u.(t → u) → List t → List u.
We turn to the types of fmapΣ and fmapΠ. We abstract over a row z of type constructors. Lifting

Functor over z gives a row of types, so Π(Functor z) is a record of evidence that each constructor
in z is functorial. Now, we want to make a claim about record and variant types built from z. To do
so, we generalize Π and Σ to families of type constructors, where for z : ^1 → ^2 we write Σz for
the type constructor _t . Σ(z t) and similarly for Π. This generalization is not necessary—we could
write the constructors out—but this abbreviation seems intuitive, and makes the types of fmapΣ
and fmapΠ natural.
Finally, we can implement fmapΣ and fmapΠ directly using map

Σ
and map

Π
; in each case, the

mapped function simply looks up the appropriate evidence in d, then applies it to lift f over x.

3.4 Comparing Records and Variants

We continue exploring component-wise operations on variants. Our goal is to compare values of
two variant types, given that we can compare the values at each of their constructors. Our intended
code in shown in Figure 6. We begin by defining the type operator Eq, which captures equality

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 201. Publication date: August 2023.

201:12 Alex Hubers and J. Garre� Morris

Eq : ★ → ★

Eq = _t .t → t → Bool

eqΣ : ∀z : R★ . Π(Eq z) → Eq (Σz)

eqΣ = _d v w. ana (_l y.(case l (_x . sel d l x y) ▽ const False) v) w

Fig. 6. Comparing values of variant type

eqΠ : ∀z : R★ .Π(Eq z) → Eq (Πz)

eqΠ = _d r . fold (_l x . (sel d l) (sel r l) x) (&&) True

Fig. 7. Comparing values of record type

comparisons (actually, any binary comparison); given a row z, Π(Eq z) is a record of comparison
operators for each type in z. To compare two values v,w of type Σz, we begin by analyzing w. We
can then fall back on the branching combinator of Rose: if v is also built with constructor l, we
can compare their contents using the l field of d; otherwise, the two are definitely unequal.
The only difficulty with this implementation is that it does not type. Consider the branch expres-

sion in the body of ana. As v : Σz, wemust show that the two branches combine to give z. However,
all we know is that {l ⊲ u} . z; while logically this implies that there must be a “remainder” of z
less {l ⊲ u}, we do not have access to it.
Our solution is to update the typing rules for ana and syn, generalizing the type of the body.

Γ ⊢ d : R^ Γ ⊢ q : ^ → ★ Γ ⊢ M : ∀l : L, u : ^, y : R^ . {l ⊲ u} ⊙ y ∼ d ⇒ ⌊l⌋ → q u → g
(t-ana3)

Γ ⊢ anaq M : Σ(q d) → g

Γ ⊢ d : R^ Γ ⊢ q : ^ → ★ Γ ⊢ M : ∀l : L, u : ^, y : R^ . {l ⊲ u} ⊙ y ∼ d ⇒ ⌊l⌋ → q u
(t-syn3)

Γ ⊢ synq M : Π(q d)

The changed components of the rules are shaded. Instead of providing evidence that {l ⊲ u} . d ,
we now decompose d into {l ⊲ u} and a row type y. The previous iteration of the rule is a special
case of this one. With this rule, our intended implementation of eqΣ is well-typed.
Unfortunately, the solution for variants does not obviously dualize to give a comparison operator

for records. Again, assume we have comparators for each field. The operators we have discussed
so far would allow us to build a record of Booleans. However, for the records to be equal, we must
then determine whether those Booleans are all true, and (without knowing the specific fields) we
have no tools to do so.
To capture functions like these, we introduce a folding operation over records:

M1 : ∀l : L, t :★, y : R★ .({l ⊲ t} ⊙ y ∼ d) ⇒ ⌊l⌋ → t → h

Γ ⊢ M2 : h → h → h Γ ⊢ M3 : h Γ ⊢ N : Πd
(t-fold)

Γ ⊢ foldM1M2M3 N : h

The term M1 is a label-generic mapping from the fields of the input record N : Πd to the result
type h; M2 combines values of type h, and M3 is an identity for M2, used for folding the empty
record. Given this folding operator, we can define equality comparison for records, as shown in
Figure 7.
Introducing this operator immediately raises several questions. For example: in what order are

the mapped fields passed to the folding function? Is the identity included once? At all? And so
forth. Our conclusion is that the values passed to foldmust follow the same rules as the underlying

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 201. Publication date: August 2023.

Generic Programming with Extensible Data Types 201:13

row theory. Following Morris and McKinna [2019], row theories must be associative and have the
empty row as their unit; thus,M2 should be associative and haveM3 as its unit. For a commutative
row theory (as we have been assuming),M2 should be commutative aswell. For a non-commutative
theory, on the other hand, fold would pass values to M2 consistent with the ordering of fields in
the row. And so forth. Absent these constraints, the exact behavior of fold ought to be unspecified.
The dual operator for variants would be an unfold, generating a variant by unrolling a starting

value. Introducing such an operator would raise all the same problems as we have for fold. As we
have found no compelling uses for unfolding variants, we do not consider this operator further.

3.5 Generic Programming for Non-Commutative Rows

Rose encompasses multiple models of rows. Our discussion so far has assumed simple rows, a
commutative row theory which seems to be the most natural approach to typing records and vari-
ants. However, other theories may be more suited to particular applications. For example, scoped
rows [Berthomieu and le Moniès de Sagazan 1995; Leijen 2005], a non-commutative row theory,
are particularly well suited to capturing algebraic effects and handlers. A language that includes
both extensible data types and algebraic effects, then, might want to include both simple rows (for
data types) and scoped rows (for effects). Alternatively, a language could support encoding alge-
braic effects via extensible data types, such as by using free monads. But then, to capture effects
naturally, the language could support extensible data types over both simple and scoped rows!
The challenge in adapting our account to non-commutative row theories is that we no longer

have a single idea of containment. The same label ℓ , or indeed the same labeled type ℓ ⊲ g , may
appear multiple times in a single row. To support non-commutative row theories, Rose introduced
two containment operators: the “left” version, d1 .L d2, which holds if there is a d ′ such that
d1 ⊙ d ′ ∼ d2, and the “right” version, d1 .R d2, which holds if there is a d ′ such that d ′ ⊙ d1 ∼ d2.
Unfortunately, neither of these is a drop-in replacement for the predicates in our generic oper-

ators, as individual entries need not be at either the beginning or end of the input row. We can
apply a similar idea, by replacing the constraint {l ⊲ u} ⊙ y ∼ d with y1 ⊙ {l ⊲ u} ⊙ y2 ∼ d .
(Note that we cannot define a corresponding “containment” predicate: l, u, and d do not uniquely
determine y1 and y2.) As we only have a binary row combination predicate, we express this by
y1 ⊙ {l ⊲ u} ∼ z, z ⊙ y2 ∼ d :

Γ ⊢ d : R^ Γ ⊢ q : ^ → ★

Γ ⊢ M : ∀l : L, u : ^, y1, z, y2 : R
^ . (y1 ⊙ {l ⊲ u} ∼ z, z ⊙ y2 ∼ d) ⇒ ⌊l⌋ → q u → g

(t-ananc)
Γ ⊢ anaq M : Σ(q d) → g

Γ ⊢ d : R^ Γ ⊢ q : ^ → ★

Γ ⊢ M : ∀l : L, u : ^, y1, z, y2 : R
^ . (y1 ⊙ {l ⊲ u} ∼ z, z ⊙ y2 ∼ d) ⇒ ⌊l⌋ → q u

(t-syn
nc
)

Γ ⊢ synq M : Π(q d)

M1 : ∀l : L, t :★, y1, z, y2 : R
^ . (y1 ⊙ {l ⊲ u} ∼ z, z ⊙ y2 ∼ d) ⇒ ⌊l⌋ → t → h

Γ ⊢ M2 : h → h → h Γ ⊢ M3 : h Γ ⊢ N : Πd
(t-foldnc)

Γ ⊢ foldM1M2M3 N : h

These rules generalize those previously presented: in a commutative theory, if y1⊙ {l ⊲u} ⊙y2 ∼ d ,
then there is a y such that {l ⊲ u} ⊙ y ∼ d , given by y1 ⊙ y2 ∼ y, and conversely.

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 201. Publication date: August 2023.

201:14 Alex Hubers and J. Garre� Morris

Term variables x Type variables U Labels ℓ Directions d ∈ {L, R}

Kinds ^ ::= ★ | L | R^ | ^ → ^

Predicates c,k ::= d .d d | d ⊙ d ∼ d

Types q, g,h, d, b ::= U | (→) | c ⇒ g | ∀U : ^.g | _U : ^.g | g g

| ℓ | ⌊b⌋ | b ⊲ g | {g1, . . . , gn} | Πd | Σd

Terms M,N ::= x | _x : g .M | M N | ΛU : ^.M | M [g]

| ℓ | M ⊲M | M/M | prjd M | M ++M | injd M | M ▽M

| synq M | anaq M | foldMMMM

Environments Γ ::= Y | Γ, U : ^ | Γ, x : g | Γ, c

Fig. 8. Syntax

4 THE Rl CALCULUS

This section provides a formal description of the syntax and type system of Rl . As inMorris and McKinna
[2019], Rl is parameterized by a row theory, giving the intended interpretation of rows. A row the-
ory T is a triple 〈⊢T ,≡T ,T〉, where

• ⊢T is a kinding relation, capturing when rows are well-formed;
• ≡T is an equivalence relation, identifying rows; and,
• T is an entailment relation, giving the meaning of the . and ⊙ predicates.

We write Rl (T) to indicate Rl instantiated with theory T . Our description of Rl syntax (§4.1),
types (§4.2), and terms (§4.3) are all given generically over an arbitrary row theory T . We then
provide three concrete row theories. The minimal row theory (§4.4) captures labeled rows, but
makes no commitment to when (non-singleton) rows are well-formed. The examples in the pre-
vious section are all well-typed given only the minimal row theory. We then describe the simple

row theory (§4.5), which captures commutative Rémy-style rows, and the scoped row theory (§4.6),
which captures non-commutative Leijen-style rows. We develop the expected metatheory in the
following section, when we discuss our denotational interpretation of Rl in Agda.

4.1 Syntax

The syntax of Rl (T) is given in Figure 8.
Kinds include types★, labels L, rows R^ of kind ^ , and type constructors ^ → ^ . Not all possible

kinds are currently used in Rl . For example: while nothing prevents describing a type of kind RL

(i.e., a row of labels), we have no primitives that operate on such a type, and indeed suspect that
such a type would be very difficult to use (§7).
Predicates include containment d.dd and combination d⊙d ∼ d . To account for non-commutative

row theories, we include directed variants of the containment predicate; intuitively, if d1⊙ d2 ∼ d3,
then d1 .L d3 and d2 .R d3. Given a commutative row theory, these predicates are equivalent. In
a practical language based on Rl , we anticipate that the predicate language would be extended
with other forms of predicates, such as type classes [Wadler and Blott 1989], linearity constraints
[Gan et al. 2014; Morris 2016], or general equality constraints [Peyton Jones et al. 2006].
We let q,g,h, d and b range over types; when possible, we use q where we expect a type con-

structor, d where we expect a row type, and b where we expect a label. Standard type constructs
include variables U , constants (here only the function arrow), quantifiers, abstractions, and appli-
cations. Predicates appear in qualified types c ⇒ g . To incorporate labeling, we include labels (ℓ)
themselves, singletons ⌊b⌋, and labeled types b ⊲g . Following Rose, we treat labeled types and row

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 201. Publication date: August 2023.

Generic Programming with Extensible Data Types 201:15

⊢ Γ

(c-emp)
⊢ Y

⊢ Γ
(c-tvar)

⊢ Γ, U : ^

⊢ Γ Γ ⊢ g : ★
(c-var)

⊢ Γ, x : g

⊢ Γ Γ ⊢ c
(c-pred)

⊢ Γ, c

Γ ⊢ g : ^ Γ ⊢ c

⊢ Γ U : ^ ∈ Γ
(k-var)

Γ ⊢ U : ^

⊢ Γ
(k-(→))

Γ ⊢ (→) : ★ → ★ → ★

Γ ⊢ c Γ, c ⊢ g : ★
(k-⇒)

Γ ⊢ c ⇒ g : ★

Γ, U : ^ ⊢ g : ★
(k-∀)

Γ ⊢ ∀U : ^.g : ★

Γ, U : ^1 ⊢ g : ^2
(k-→ I)

Γ ⊢ _U : ^1.g : ^1 → ^2

Γ ⊢ g1 : ^1 → ^2 Γ ⊢ g2 : ^1
(k-→E)

Γ ⊢ g1 g2 : ^2

⊢ Γ
(k-lab)

Γ ⊢ ℓ : L

Γ ⊢ b : L
(k-sing)

Γ ⊢ ⌊b⌋ : ★

Γ ⊢ b : L Γ ⊢ g : ^
(k-lty)

Γ ⊢ b ⊲ g : ^

Γ ⊢T {b ⊲ g} : R^
(k-row)

Γ ⊢ {b ⊲ g} : R^

Γ ⊢ d : R^
(k-Π)

Γ ⊢ Πd : ^

Γ ⊢ d : R^
(k-Σ)

Γ ⊢ Σd : ^

Γ ⊢ d : R^1→^2 Γ ⊢ g : ^1
(k-lift1)

Γ ⊢ d g : R^2

Γ ⊢ q : ^1 → ^2 Γ ⊢ d : R^1
(k-lift2)

Γ ⊢ q d : R^2

Γ ⊢ di : R
^

(k-.d)
Γ ⊢ d1 .d d2

Γ ⊢ di : R
^

(k-⊙)
Γ ⊢ d1 ⊙ d2 ∼ d3

Fig. 9. Contexts and kinding.

types independently. Finally, we include rows {g1, . . . , gn} (including the empty row), records, and
variants. Well-formedness of concrete rows is delegated to the row theory T .

We letM,N range over terms. Standard terms include variables, type and term abstractions, and
applications. Introduction and elimination of qualifiers is implicit. To support labeling terms, we
include label (singleton) constants ℓ and terms to label (M ⊲M) and unlabel (M/M). As the singleton
record and variant types are isomorphic to their underlying single field or constructor type, we
do not provide separate syntax to construct singleton records and variants. Finally, we include the
(directed) variant and record operators of Rose, and the label-generic operators new to Rl (T).

Environments track three kinds of assumptions: kindings of type variables U : ^ , typings of term
variables x : g , and predicates c (as qualified type elimination is implicit, we do not need to name
predicate assumptions). We combine these assumptions into a single context Γ simply to avoid a
superfluity of (mostly unchanging) metavariables.

4.2 Types and Kinds

Figure 9 gives rules for context formation (⊢ Γ), kinding (Γ ⊢ g : ^), and predicate formation (Γ ⊢ c),
parameterized by row theory T .
The kinding rules are mostly standard. Rule (k-row) delegates well-formedness of rows to the

row theory T . Rules (k-Π) and (k-Σ) capture the formation of record and variant types, lifted
to arbitrary kinds ^ . In the functor example (Figure 5, §3.3), we had a row of type constructors
z : R★→★. Applying (k-Σ), we can conclude that Σz : ★ → ★, and so that (Σz) t : ★.
Rules (k-lift1) and (k-lift2) license the lifting that has played a prominent role in our examples.

Rule (k-lift2) says that a type constructor ^1 → ^2, applied to a row of ^1s, generates a row of
^2s. Consider a type like z → t, or more pedantically (→) z t, where z : R★ and t : ★. We begin

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 201. Publication date: August 2023.

201:16 Alex Hubers and J. Garre� Morris

g ≡ g c ≡ c

(e-refl)
g ≡ g

g1 ≡ g2
(e-sym)

g2 ≡ g1

g1 ≡ g2 g2 ≡ g3
(e-trans)

g1 ≡ g3
(e-V)

(_U : ^.g) h ≡ g [h/U]

c1 ≡ c2 g1 ≡ g2
(e-b⇒)

c1 ⇒ g1 ≡ c2 ⇒ g2

g [W/U] ≡ h [W/V]
(e-b∀) (W ∉ fv(g, h))

∀U : ^.g ≡ ∀V : ^.h

gi ≡ hi
(e-bapp) g1 g2 ≡ h1 h2

b1 ≡ b2 g1 ≡ g2
(e-b⊲)

b1 ⊲ g1 ≡ b2 ⊲ g2

{bi ⊲ gi} ≡T {b ′j ⊲ g
′
j }

(e-row)
{bi ⊲ gi} ≡ {b ′j ⊲ g

′
j }

b1 ≡ b2
(e-b ⌊·⌋)

⌊b1⌋ ≡ ⌊b2⌋

(e-lift1)
{b ⊲ q} g ≡ {b ⊲ q g}

(e-lift2)
q {b ⊲ g} ≡ {b ⊲ q g}

d1 ≡ d2
(e-bΠΣ)

Kd1 ≡ Kd2
(e-lift3)

(Kd) g ≡ K (d g)
(e-sing)

K{b ⊲ g} ≡ b ⊲ g
(K ∈ {Π, Σ})

gi ≡ hi
(e-b.d) g1 .d g2 ≡ h1 .d h2

gi ≡ hi
(e-b⊙)

g1 ⊙ g2 ∼ g3 ≡ h1 ⊙ h2 ∼ h3

Fig. 10. Type and predicate equivalence

by applying (k-lift2) to apply (→) to z, concluding (→) z : R★→★. Then, we apply (k-lift1) to
apply (→) z to t, concluding that (→) z t : R★.
One might argue that these are simply syntactic abbreviations, and complicate the reading of

types. Instead, we should follow the lead of Featherweight Ur [Chlipala 2010], and use an explicit
map operation to lift types over rows. However, in developing our examples, we found that the ex-
tra weight introduced by amore explicit approach obscured the meaning of the terms. For example,
contrast our types for reify and reflect (Figure 3, §3.2) with the more explicit

reify : ∀z : R★, t : ★. (Σz → t) → Π(map (_(s :★). s → t) z)

reflect : ∀z : R★, t : ★.Π(map (_(s :★). s → t) z) → (Σz → t)

Or, similarly, contrast our type for fmapΣ (Figure 5, §3.3) with the more explicit

fmapΣ : ∀z : R★→★.Π(map Functor z) → Functor (_(t :★). Σ (map (_f :★ → ★. f t) z))

But in the end, this is a matter of taste; restricting Σ and Π to arguments of kind R★ and making
row mapping explicit would not fundamentally restrict the expressiveness of Rl .
The type equivalence rules are shown in Figure 10. The first three lines are standard. The rules

(e-lift1) and (e-lift2) realize the promise made in (k-lift1) and (k-lift2), lifting single type opera-
tors or type arguments to rows. Rule (e-row) delegates equivalence of row types to the row theory
T . Rule (e-lift3) gives Π and Σ their intended meaning at higher kinds. Finally, (e-sing) captures
the isomorphism between singleton records, singleton variants, and their underlying field (or con-
structor) type. Again, this latter rule is not integral to Rl ; a more explicit version, with separate
terms to introduce and eliminate singleton records and variants, would be just as expressive.

4.3 Terms

Figure 11 gives the typing rules for Rl . We have already developed its novelties in the previous
section, but will briefly highlight the remaining features of the type system. Lines 1–3 contain

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 201. Publication date: August 2023.

Generic Programming with Extensible Data Types 201:17

Γ ⊢ M : g

⊢ Γ x : g ∈ Γ
(t-var)

Γ ⊢ x : g

Γ ⊢ g1 : ★ Γ, x : g1 ⊢ M : g2
(t-→ I)

Γ ⊢ _x : g1.M : g1 → g2

Γ ⊢ M1 : g1 → g2 Γ ⊢ M2 : g1
(t-→E)

Γ ⊢ M1M2 : g2

Γ ⊢ M : g g ≡ h
(t-≡)

Γ ⊢ M : h

Γ ⊢ c Γ, c ⊢ M : g
(t-⇒ I)

Γ ⊢ M : c ⇒ g

Γ ⊢ M : c ⇒ g Γ T c
(t-⇒E)

Γ ⊢ M : g

Γ, U : ^ ⊢ M : g
(t-∀I)

Γ ⊢ ΛU : ^.M : ∀U : ^.g

Γ ⊢ M : ∀U : ^.g Γ ⊢ h : ^
(t-∀E)

Γ ⊢ M [h] : g [h/U]

⊢ Γ
(t-sing)

Γ ⊢ ℓ : ⌊ℓ⌋

Γ ⊢ M1 : ⌊ℓ⌋ Γ ⊢ M2 : g
(t-⊲ I)

Γ ⊢ M1 ⊲M2 : ℓ ⊲ g

Γ ⊢ M1 : ℓ ⊲ g Γ ⊢ M2 : ⌊ℓ⌋
(t-⊲E)

Γ ⊢ M1/M2 : g

Γ ⊢ M : Πd1 Γ T d2 .d d1
(t-ΠE)

Γ ⊢ prjd M : Πd2

Γ ⊢ M1 : Πd1 Γ ⊢ M2 : Πd2 Γ T d1 ⊙ d2 ∼ d3
(t-Π I)

Γ ⊢ M1 ++M2 : Πd3

Γ ⊢ M : Σd1 Γ T d1 .d d2
(t-ΣI)

Γ ⊢ injd M : Σd2

Γ ⊢ M1 : Σd1 → g Γ ⊢ M2 : Σd2 → g Γ T d1 ⊙ d2 ∼ d3
(t-ΣE)

Γ ⊢ M1 ▽M2 : Σd3 → g

Γ ⊢ d : R^ Γ ⊢ q : ^ → ★

Γ ⊢ M : ∀l : L, u : ^, y1, z, y2 : R
^ . (y1 ⊙ {l ⊲ u} ∼ z, z ⊙ y2 ∼ d) ⇒ ⌊l⌋ → q u → g

(t-ana)
Γ ⊢ anaq M : Σ(q d) → g

Γ ⊢ d : R^ Γ ⊢ q : ^ → ★

Γ ⊢ M : ∀l : L, u : ^, y1, z, y2 : R
^ . (y1 ⊙ {l ⊲ u} ∼ z, z ⊙ y2 ∼ d) ⇒ ⌊l⌋ → q u

(t-syn)
Γ ⊢ synq M : Π(q d)

M1 : ∀l : L, t :★, y1, z, y2 : R
^ . (y1 ⊙ {l ⊲ u} ∼ z, z ⊙ y2 ∼ d) ⇒ ⌊l⌋ → t → h

Γ ⊢ M2 : h → h → h Γ ⊢ M3 : h Γ ⊢ N : Πd
(t-fold)

Γ ⊢ foldM1M2M3 N : h

Fig. 11. Typing

a standard treatment of functions, qualified types, and quantified types. Rule (t-sing) is used to
introduce label singleton constants, which can then be used to label (t-⊲I) or unlabel (t-⊲E) terms.
Rule (t-≡) can be used (among other things) to move between labeled terms and singleton records
or variants. The rules for projection, concatenation, injection, and branching are identical to the
corresponding rules for Rose. Finally, the rules for analyzing variants and synthesizing and folding
rows are discussed in the previous section.

4.4 Minimal Rows

Figure 12 gives the minimal row theoryM.
The minimal row theory only includes singleton rows, and so Rl (M) can express very few

practical uses of extensible data types. However, the minimal row theory captures the fundamental
properties that all (labeled) row theories share. Our motivating examples (§3) all type in Rl (M).
The interesting content of the minimal row theory is its entailment relation. Rules (n-refl) and

(n-trans) make containment a preorder. Rules (n-.lift1) and (n-.lift2) capture that contain-
ment is preserved by lifted application. Rules (n-⊙lift1) and (n-⊙lift2) similarly capture that

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 201. Publication date: August 2023.

201:18 Alex Hubers and J. Garre� Morris

Γ ⊢m d : ^ d ≡m d

Γ ⊢ b : L Γ ⊢ g : ^
(k-mrow)

Γ ⊢m {b ⊲ g} : R^

b ≡ b′ g ≡ g ′
(e-mrow)

{b ⊲ g} ≡m {b′ ⊲ g ′}

Γ m c

c ∈ Γ
(n-ax)

Γ m c
(n-refl)

Γ m d .d d

Γ m d1 .d d2 Γ m d2 .d d3
(n-trans)

Γ m d1 .d d3

Γ m c1 c1 ≡ c2
(n-≡)

Γ m c2

Γ m d1 .d d2
(n-.lift1)

Γ m q d1 .d q d2

Γ m d1 .d d2
(n-.lift2)

Γ m d1 g .d d2 g

Γ m d1 ⊙ d2 ∼ d3
(n-⊙lift1)

Γ m d1 g ⊙ d2 g ∼ d3 g

Γ m d1 ⊙ d2 ∼ d3
(n-⊙lift2)

Γ m q d1 ⊙ q d2 ∼ q d3

Γ m d1 ⊙ d2 ∼ d3
(n-⊙.L)

Γ m d1 .L d3

Γ m d1 ⊙ d2 ∼ d3
(n-⊙.R)

Γ m d2 .R d3

Fig. 12. Minimal row theoryM = 〈⊢m,≡m,m〉

Γ ⊢s d : R^ d ≡s d

Γ ⊢ bi : L Γ ⊢ gi : ^ ∀i, j ≠ i. bi # bj
(k-srow)

Γ ⊢s

{

bi ⊲ gi

}i∈1...n
: R^

where b # b′ iff b = ℓ, b′ = ℓ′, ℓ ≠ ℓ′

bi ≡ b′
p (i)

gi ≡ g ′
p (i)

(e-srow)
{

bi ⊲ gi

}i∈1...n
≡s

{

b′j ⊲ g
′
j

}j∈1...n

where p permutes 1 . . . n

Γ s c

(the rules of m)

bi ≡ b′
p (i)

gi ≡ g ′
p (i)

(ns-.d)

Γ s

{

bi ⊲ gi

}i∈1...m
.d

{

b′j ⊲ g
′
j

}j∈1...n

where p injects 1 . . .m into 1 . . . n

bi ≡ b′′
p (i)

gi ≡ g ′′
p (i)

b′j ≡ b′′
r (j)

g ′j ≡ g ′′
r (j)

(ns-⊙)

Γ s

{

bi ⊲ gi

}i∈1...m
⊙
{

b′j ⊲ g
′
j

}j∈1...n
∼
{

b′′
k
⊲ g ′′

k

}k∈1...m+n

where p injects 1 . . .m into 1 . . .m + n, r injects 1 . . . n into 1 . . .m + n, and for all i, j, p(i) ≠ r (j)

Fig. 13. The simple row theory S = 〈⊢s,≡s, s〉; the entailment relation extends m.

combination is preserved by lifted application. Finally, rules (n-⊙.l) and (n-⊙.r) capture the
relationship between containment and combination.

4.5 Simple Rows

Figure 13 gives the simple row theory S.

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 201. Publication date: August 2023.

Generic Programming with Extensible Data Types 201:19

The simple theory is a commutative theory, in which labels may appear at most once in any
row; it captures the most common approach to row types, originally introduced by Rémy [1989].
The challenge to expressing the simple row theory in Rl arises from first-class labels. As noted
by Leijen [2004], among others, first-class labels can introduce surprising corner cases. Consider
a type like Π{b1 ⊲ Int, b2 ⊲ Int}, where b1 and b2 are types of kind L. This type only makes sense if
b1 and b2 are guaranteed to be different labels. This restriction is captured in (k-srow): each pair
of labels in a row must be different concrete labels. Of course, this condition is satisfied trivially
for the empty and singleton rows. Nor does this requirement limit the use of first-class labels,
as longer rows may always be expressed as concatenations of singleton rows—indeed, such an
elaboration could be done automatically, treating rows as partial type constructors [Ingle et al.
2022; Jones and Diatchki 2008; Jones et al. 2020].
The entailment relation extends that of the minimal row theory with rules for concrete rows.

In each case, the essential evidence is a mapping between rows in the predicate; as we will see
in the next section, these mappings are exactly the information needed to implement the record
and variant operations. There are more generic entailment rules that could be useful in a practical
realization of Rl (s). For example, combination gives a least upper bound for the containment
relation:

Γ m d1 .d d Γ m d2 .d d Γ m d1 ⊙ d2 ∼ d3

Γ m d3 .d d

Nevertheless, the rules we give here capture the essential properties of the simple row theory; we
regard further extension of the entailment relation as an orthogonal concern.

4.6 Scoped Rows

Figure 14 gives the scoped row theory C.
The scoped row theory is a non-commutative theory, in which the left-most instance of a given

label is preferred; it was introduced by Berthomieu and le Moniès de Sagazan [1995] and inde-
pendently by Leijen [2005]. Because labels can be repeated, there is no difficulty in the kinding
rule (k-crow). However, more care must be taken in the entailment relation: we want to allow
{y ⊲ Int} .L {x ⊲ Int, y ⊲ Int}, as there is no harm in permuting distinct labels, while excluding
{x ⊲ Bool} .L {x ⊲ Int, x ⊲ Bool}, as this permutes identical labels. This is captured by the side con-
dition on the permutations in each of the entailment rules, which requires that swapped labels be
provably distinct.

5 INTERPRETING (STRATIFIED) Rl IN AGDA

We have two goals in defining semantics for Rl . Primarily, of course, is to demonstrate the sound-
ness of Rl ’s type system. Secondarily is to show that Rl need not introduce runtime dependence
on or manipulation of labels compared to extensible data types without label-generic operators.
To accomplish both goals, we embedded Rl (M) typings in the Agda type theory, and then

defined a denotational interpretation of those typings in Agda itself, interpreting the Rl function
space as Agda functions, Rl records and variants as dependent products and sums with finite
natural indices, evidence for containment and combination as maps between finite naturals, and
so forth. In particular, labels are interpreted as the unit type, and the indexing of products and
sums does not depend on the identities of labels in the source derivations.
While our mechanization of the entailment relation is limited to the minimal row theory, our

denotations are not correspondingly limited to singleton rows, records, and variants. To the con-
trary, because our denotations do not depend on labels directly, they are sufficient for all the row

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 201. Publication date: August 2023.

201:20 Alex Hubers and J. Garre� Morris

Γ ⊢c d : R^ d ≡c d

Γ ⊢ bi : L Γ ⊢ gi : ^
(k-crow)

Γ ⊢c

{

bi ⊲ gi

}i∈1...n
: R^

bi ≡ b′
p (i)

gi ≡ g ′
p (i)

(e-crow)
{

bi ⊲ gi

}i∈1...n
≡c

{

b′j ⊲ g
′
j

}j∈1...n

where p permutes 1 . . . n, if i < j, p(i) > p(j), then bi # bj

Γ c c

(the rules of m)

bi ≡ b′j gi ≡ g ′j for i ∈ 1 . . .m, p(j) = i
(nc-.L)

Γ c

{

bi ⊲ gi

}i∈1...m
.L

{

b′j ⊲ g
′
j

}j∈1...n

where p permutes 1 . . . n, if i < j and p(i) > p(j), then b′i # b
′
j

bi ≡ b′j gi ≡ g ′j for i ∈ 1 . . .m, p(j) = n −m + i
(nc-.R)

Γ c

{

bi ⊲ gi

}i∈1...m
.R

{

b′j ⊲ g
′
j

}j∈1...n

where p permutes 1 . . . n, if i < j and p(i) > p(j), then b′i # b
′
j

bi ≡ b′′
k

gi ≡ g ′′
k

for i ∈ 1 . . .m, p(k) = i

b′j ≡ b′′
k

g ′j ≡ g ′′
k

for j ∈ 1 . . . n, p(k) = m + j
(nc-⊙)

Γ c

{

bi ⊲ gi

}i∈1...m
⊙
{

b′j ⊲ g
′
j

}j∈1...n
∼
{

b′′
k
⊲ g ′′

k

}k∈1...m+n

where p permutes 1 . . .m + n, if i < j and p(i) > p(j) then b′′i # b′′j .

Fig. 14. Scoped rows: kinding, entailment, and equivalence

theories discussed in this paper. Concretely: while the minimal theory provides no row z that sat-
isfies the constraint x ⊲ Int ⊙ y ⊲ Int ∼ z, our Agda denotation includes both suitable instantiations
for z and the evidence that they satisfy the constraint.
Our claim of type soundness is semantic in nature and relies on the totality of Agda as a type

theory: we show that the denotations of well-kinded types are in the denotations of their kinds,
that the denotations of well-typed terms are in the denotations of their types, and so forth. Because
our denotations are in a typed theory, we do not have a wrong value (as in Milner [1978]); instead,
we extend the guarantees provided by Agda’s type system to Rl .

This section gives a high-level overview of our Agda development; interested readers are re-
ferred to the full development [Hubers and Morris 2023]. There are two significant threads. First:
our specification of Rl so far is impredicative, while Agda is a predicative type theory. We address
this by stratifying Rl , preserving its practical expressiveness while being suitable for embedding
in Agda. Second: we need Agda definitions of the Rl primitives. With these out of the way, the
remainder of the development was pleasingly straightforward, and demonstrates soundness of
kinding, typing, and equivalence.

5.1 Stratifying Rl

Our first challenge is developing a predicative version of Rl . FollowingDunfield and Krishnaswami
[2013], we could identify the monotypes of Rl (those types without quantifiers), and limit quan-
tifier instantiation to monotypes. However, this approach would unacceptably compromise the

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 201. Publication date: August 2023.

Generic Programming with Extensible Data Types 201:21

Γ ⊢S g : ^

⊢ Γ U : ^ ∈ Γ
(ks-var)

Γ ⊢S U : ^

Γ ⊢S g : ★i i ≤ j
(ks-≤)

Γ ⊢S g : ★j

⊢ Γ
(ks-(→))

Γ ⊢S (→) : ★i → ★i → ★i

Γ, U : ^1 ⊢S g : ^2
(ks-→ I)

Γ ⊢S _U : ^1.g : ^1 → ^2

Γ ⊢S g1 : ^1 → ^2 Γ ⊢S g2 : ^1
(ks-→E)

Γ ⊢S g1 g2 : ^2

⊢ Γ
(ks-lab)

Γ ⊢S ℓ : L

Γ ⊢S c : i Γ, c ⊢S g : ★j
(ks-⇒)

Γ ⊢S c ⇒ g : ★(i+1)⊔j

Γ, U : ^ (i) ⊢S g : ★j
(ks-∀)

Γ ⊢S ∀U : ^ (i) .g : ★(i+1)⊔j

Γ ⊢S b : L
(ks-sing)

Γ ⊢S ⌊b⌋ : ★0

Γ ⊢S b : L Γ ⊢S g : ^
(ks-lty)

Γ ⊢S b ⊲ g : ^

Γ ⊢S b : L Γ ⊢S g : ^
(ks-row)

Γ ⊢S {b ⊲ g} : R^

Γ ⊢S d : R^
(ks-Π)

Γ ⊢S Πd : ^

Γ ⊢S d : R^
(ks-Σ)

Γ ⊢S Σd : ^

Γ ⊢S d : R^1→^2 Γ ⊢S g : ^1
(ks-lift1)

Γ ⊢S d g : R^2

Γ ⊢S q : ^1 → ^2 Γ ⊢S d : R^1
(ks-lift2)

Γ ⊢S q d : R^2

Γ ⊢S c : i

Γ ⊢S dn : R^
(i)

Γ ⊢S d1 . d2 : i

Γ ⊢S dn : R^
(i)

Γ ⊢S d1 ⊙ d2 ∼ d3 : i

Fig. 15. Stratified kinding and predicate formation

expressiveness of Rl . The following type captures a dictionary for Haskell’s Monad type class:

Monad : ★ → ★

Monad = _m.Π{return ⊲ ∀t :★. t → m t, bind ⊲ ∀t, u :★.m t → (t → mu) → mu}

with selector functions such as:

return : ∀m :★ → ★, t :★.Monadm → t → m t

return = _d x . sel d return x

However, to type return, we have to instantiate sel with the type of the returnfield, ∀t :★, t → m t,
which is not a monotype.

Instead, we follow the approach of System SF2 [Leivant 1991], ensuring predicativity by strati-
fying the Rl type system. Each type in stratified Rl is associated with a level. We write ^ (i) for
the kinds of types at level i:

Kinds ^ (i)
= ★i | L | R^

(i)
| ^ (j) → ^ (k) (where i = j ⊔ k)

The base kind ★ is now annotated with a level. Labels are types at any level, and the types of
rows and type constructors are determined by their component types. We write ^ for the union
⋃

i∈N ^
(i) .

The stratified kinding relation is shown in Figure 15. Overall, stratification has a relatively minor
impact. Rule (ks-≤) includes earlier levels in later levels; our mechanization incorporates this rule
into the other rules. Rules (ks-⇒) and (ks-∀) ensure that the result type is at least one level higher
than the level of the quantified type or predicate. The remaining rules are unchanged. However,
note that we do now require that quantification and type abstraction explicitly mention the level
of the quantified or argument type. In our mechanization, in turn, we can abstract derivations over

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 201. Publication date: August 2023.

201:22 Alex Hubers and J. Garre� Morris

the base level. Figure 15 also includes a stratified version of the predicate formation rule, tracking
the level of types that appear in the predicate.
In mechanizing Rl kinds and types, we have separated the environment Γ into three: a kinding

environment Δ, a predicate environment Φ, and a typing environment Γ. We use an intrinsically-
kinded representation of types:

Kind : Level → Set

KEnv : Level → Set

Ty : ∀ {i j : Level} → KEnv i → Kind j → Set

We define interpretation functions for kinds, kinding environments, and types:

J_Kk : ∀ {i : Level} → Kind i → Set (lsuc i)

J_Kke : ∀ {i : Level} → KEnv i → Set (lsuc i)

J_Kt : ∀ {i j : Level} {Δ : KEnv i}{^ : Kind j} → TyΔ^ → JΔKke → J^Kk

These definitions are unsurprising. For example: the kind★i is interpreted as Set i; kinding environ-
ments are interpreted as tuples of types; the type ∀U :^.g in kinding environment H is interpreted
as a dependent function (X : J^Kk) → JgKt (H ,X). Label singleton types are all interpreted as ⊤
(the unit type), buttressing our claim that Rl can be implemented without runtime manipulation
or comparison of labels. The interpretation of row types, records, and variants is discussed next.
The interpretation of types gives a constructive proof of the following claim:

Theorem. The kind system of Rl is sound.

Of course, this is only convincing if the interpretations themselves are non-trivial. Here we rely on
the underlying type theory: for example, as we interpret the kind of type constructors ^1 → ^2 as
Agda functions J^1Kk → J^2Kk , we can be confident that our interpretations of types of that kind
are meaningful. For the full details, please see the Agda development [Hubers and Morris 2023].

5.2 Rows and Indices

We intend our interpretation of records and variants to be both type-safe, and to align with the
intuition of those types. That is, a record should be a sequence of its field values, and a variant
should be a single tagged value.
We begin with rows themselves. Intuitively, a row is a sequence of types. Our encoding in Agda

is almost that direct:
Row : ∀{i : Level} → Set i → Seti

RowA = Σ[n ∈ N] (Fin n → A)

That is to say: a row at level i is a dependent pair of its length n and a map from finite indices less
than n to types at level i. We can define record and variant constructors (at type ★i) as dependent
functions on rows:

Π : ∀{i : Level} → Row (Set i) → Set i

Π (n, P) = (i : Fin n) → P i

Σ : ∀{i : Level} → Row (Set i) → Set i

Σ (n, P) = i : Σ[i ∈ Fin n] (P i)

(We will rely on some overloading to avoid tedious qualified names: Σ followed by a variable
binding is the dependent sum constructor; followed by a row, it is the variant constructor.) In each
case, we pattern match on the input row, obtaining its length n and a mapping from indices to
types P . A variant is the expected tagged value, pairing a tag less than n with a value of the type
indexed by the tag. A record is another dependent function: given an index into the record, it
returns a value of the type at that index.
We have made one simplification relative to Rl : we implement records and variants only at the

base kind, and express the type constructor variants using type functions. This does not reflect

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 201. Publication date: August 2023.

Generic Programming with Extensible Data Types 201:23

a fundamental limitation in our embedding, but simply a choice made for expediency in develop-
ment.
These definitions emulate our intuition of records and variants. For variants, we are quite close:

erasing the types leaves a pair of a tag and a value, just as you might expect to represent a value
of a traditional variant type. For records, we are further away: while we emulate accessing fields
of a record by offset, the practical construction of records is not emulated by our encoding. Nev-
ertheless, we hope that these encodings demonstrate the potential of a real implementation, even
if they do not claim to address all the problems that such an implementation would encounter.
Note that these types have none of the properties we have assumed for the corresponding types

in Rl : there are no traces of labels to be found, and order is very much significant in determining
the meaning of rows, records, and variants. The mapping between rows in the source language
and rows in Agda will be found in the concrete evidence for the row predicates, discussed next.

5.3 Containment and Combination

The next piece of our encoding is the evidence for the containment and combination predicates.
The stratification of the entailment relation Γ m c is entirely unsurprising. As usual in qualified
types, evidence for predicates plays a central role in interpreting the overloaded operators. Pur
goal is to combine the intuition of a practical realization of Rl with dependent types to ensure
type safety.
Intuitively, containment maps indices in the smaller row to indices in the larger row.

. : ∀{i : Level} {A : Set i} → RowA → RowA → Set i

(n, P) . (m,Q) = (i ∈ Fin n) → Σ[j ∈ Finm] (P i ≡ Q j)

(We have omitted some straightforward but tedious bookkeeping to do with levels.) The evidence
for containment is a dependent function over indices in the smaller row, associating eachwith both
an index in the larger row and a proof that the associated types are the same. Implementing record
projection and variant injection in terms of this evidence is simple: the former simply precomposes
with the evidence function while the latter replaces the existing tag with its image in the evidence
function.
Similarly, combination maps indices in the resulting row to indices in one of the two starting

rows:

⊙∼_ : ∀{i : Level} {A : Set i} → RowA → RowA → RowA → Set i

(l, P) ⊙ (m,Q) ∼ (n, R) = (i ∈ Fin n) → (Σ[j ∈ Fin l] (P j ≡ R i)) or (Σ[j ∈ Finm] (Q j ≡ R i))

We pair the intuitive mapping on indices with evidence that types agree. As for containment,
the implementation of the branching and concatenation operators in terms of this evidence is im-
mediate. Unfortunately, however, this is not sufficient to implement all of the entailment rules of
Rl . Our intuition is not just that this be any map between the indices, but a surjective map: every
index in one of the original rows should appear somewhere in the combined row. This intuition
justifies the entailment rules (n-⊙.l) and (n-⊙.r), which conclude containment from combina-
tion. However, this intuition is not captured in our evidence. We have taken a brute force approach
to doing so, by storing the evidence for the two containments in the evidence for combination:

(l, P) ⊙ (m,Q) ∼ (n, R) = (i ∈ Fin n) → (Σ[j ∈ Fin l] (P j ≡ R i)) or (Σ[j ∈ Finm] (Q j ≡ R i))

× (l, P) . (n, R) × (m,Q) . (n, R)

This definition allows us to realize all of Rl ’s entailment rules.
We define an intrinsically-kinded representation of predicates, interpreted as evidence:

Pred : ∀ {i j : Level} → KEnv i → Kind j → Set

J_Kp : ∀{i j : Level} {Δ : KEnv i} {^ : Kind j} → PredΔ^ → JΔKke → Set (lsuc j)

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 201. Publication date: August 2023.

201:24 Alex Hubers and J. Garre� Morris

We define a corresponding intrinsically well-formed definition of predicate environments and en-
tailment:

PEnv : ∀{i : Level} → KEnv i → Level → Set

Ent : ∀ {i1 i2 i3 : Level}{^ : Kind i3} → (Δ : KEnv i1) → PEnvΔ i2 → PredΔ^ → Set

Finally, we define the meaning of an entailment judgment in terms of the meaning of the predicate
it entails:

J_Kpe : ∀ {i j : Level}{Δ : KEnv i} → PEnvΔ j → JΔKke → Set j

J_Kn : ∀ {i1 i2 i3 : Level}{^ : Kind i3} {Δ : KEnv i1} {Φ : PEnvΔ i2} {c : PredΔ i3} →

EntΔΦc → (H : JΔKke) → JΦKpe H → JcKp H

The latter provides a constructive proof of the following.

Theorem. The entailment relation of Rl is sound.

5.4 Label-Generic Operations

The label-generic operators ana, syn, and fold work by invoking a suitably parametric function
on entries in their source rows. To implement this, we must be able to work backwards from the
index used in a variant or record to the corresponding evidence that its type is in the original row.
We capture this in Agda as follows.

We begin by introducing an abbreviation for indices over a given row.

Ix : ∀ {i : Level} {A : Set i} → RowA → Set

Ix (n, _) = Fin n

The pick operator selects from a row the singleton row at a particular index, and we can construct
evidence that each singleton row is contained within the original row.

pick : ∀ {i : Level} {A : Set i} → (d : RowA) → Ix d → RowA

pickedIn : ∀ {i : Level} {A : Set i} {d : RowA} {n : Ix d} → d pick n . d

Similarly, the delete operator returns the row containing everything but the given index. We can
also construct evidence that this row is contained within the original.

delete : ∀ {i : Level} {A : Set i} → (d : RowA) → Ix d → RowA

deletedIn : ∀ {i : Level} {A : Set i} {d : RowA} {n : Ix d} → d delete n . d

Finally, for a given index into a row, we can produce the evidence needed to invoke the body of a
label-generic operator: that combining the singleton row and that index and the remainder of the
row gives the original row.

recombine : ∀ {i : Level} {A : Set i} → (d : RowA) → (n : Ix d) → d pick n ⊙ d delete n ∼ d

The implementations of the label-generic operators follow easily.

5.5 Terms and Equivalences

Finally, we come to the representations of terms, and of type equivalences. We use intrinsically
kinded representations of type and predicate equivalence:

≡p : ∀ {Δ : KEnv} {^ : Kind} → PredΔ^ → PredΔ^ → Set

≡t : ∀ {Δ : KEnv} {^ : Kind} → TyΔ^ → TyΔ^ → Set

(We will omit the level bookkeeping for the remainder of this section, as it is entirely routine.)
We have made one important simplification in mechanizing the type equivalence relation. If we

restrict type equivalence to kinds ★i, then we have shown that the interpretation of equivalence
derivations is an isomorphism in Agda. That is to say, if we have a derivation that g1 ≡ g2, then
(for a suitable type environment H) we can show not only functions to : Jg1KH → Jg2KH and
from : Jg2KH → Jg1KH , but also that their compositions are the identity function. In particular, we

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 201. Publication date: August 2023.

Generic Programming with Extensible Data Types 201:25

validate rule (e-sing), that singleton record and variant types are isomorphic to their underlying
field type.
However, this definition of isomorphism is not applicable at higher kinds: type constructors

have no elements, so it makes little sense to talk about mappings between them. Moreover, if we
remove rule (e-sing), we are able to show stronger results, which generalize to all kinds:

J_Kep : ∀{Δ : KEnv} {^ : Kind} {c1 c2 : PredΔ^} → c1 ≡p c2 → (H : JΔKke) → Jc1Kp H ≡ Jc2Kp H
J_Ket : ∀{Δ : KEnv} {^ : Kind} {g1 g2 : TyΔ^} → g1 ≡t g2 → (H : JΔKke) → Jg1Kt H ≡ Jg2Kt H

That is to say: we show that when equivalence is derivable between two predicates or two types
(at any kind), their interpretations are propositionally equal in Agda. Given our limitations, these
provide constructive proofs of the following claim.

Theorem. The type and predicate equivalence relations of Rl are sound.

To account for the loss of (e-sing), our term language is extended with terms to construct and
deconstruct singleton records and variants. We define intrinsically-typed representations of terms,
and their interpretation:

Env : KEnv → Set

Tm : (Δ : KEnv) → PEnvΔ → EnvΔ → TyΔ★ → Set

J_Ke : ∀{Δ : KEnv} → EnvΔ → JΔKkeSet
J_Kt : ∀{Δ : KEnv} {Φ : PEnv} {Γ : Env} {g : TyΔ★} →

TmΔΦ Γ g → (H : JΔKke) → JΦKpe H → JΓKe H → JgKt H

The latter provides a constructive proof of our final claim.

Theorem. The type system of Rl is sound.

6 RELATED WORK

There is a significant and growing literature on row types and their applications, and a larger
literature on extensible data types in general. We highlight that work that is most relevant to Rl .

Featherweight Ur. Themost immediately relevant languages are Featherweight Ur and its practical
realization in Ur/Web [Chlipala 2010, 2015a,b]. As in Rose, Ur supports row and record concate-
nation with first-class labels, enabled by first-class label inequality proofs. As for Rl , Ur is based
on System Fl , and supports mapping type-level operations over rows. Ur has practical evaluation
as a framework for database-connected web applications. We view Rl and Ur as complementary
explorations of the design space of extensible data types.
There are several differences in focus between Rl andUr. Ur does not include extensible variants.

Consequently, the duality of records and variants does not appear in Ur, and examples like our reify
and reflect functions do not apply to Ur. We view extensible variants as an important application
of row typing, useful for examples like the expression problem and encoding extensible effects;
however, we do not think there is any fundamental reason that Ur’s approach to extensible records
could not be equally applicable to extensible variants. Ur also does not attempt to generalize over
different row theories, but assumes that row disjointness is sufficient to capture extensibility.
The more significant difference between Rl and Ur is in our approach to generic programming

with records. Ur provides a family of folding functions for concrete records types. Instead of our
view, in which folds should respect the identities of the underlying row theory, Ur uses the type
of its folder to capture the particular order in which the programmer intends to visit fields in
the records. We believe that Rl ’s synthesis operator provides a novel, alternative view of generic
programming with records. In particular, we are able to define many of our operations to apply
to records regardless of their structure; while we believe that Ur’s folder could capture the same
operation for any concrete record type, it is less clear that Ur captures them in the general case.

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 201. Publication date: August 2023.

201:26 Alex Hubers and J. Garre� Morris

Other row type systems. Row types were originally proposed by Wand [1987] as a mechanism
for typing records and variants; he defined rows by extension, one field at a time, and allowed
subsequent extensions to overwrite fields already in a record. Rémy [1989] generalized Wand’s
approach in several significant ways. He restricts row extension to fields not already present in
the row, enforced using kinds. His rows record both present and absent fields, with explicit opera-
tions to “forget” entries in rows. Finally, he introduces polymorphism over field presence, allowing
his calculus to capture patterns like a single operation for both record extension and record up-
date. Rémy’s approach has been used as the foundation for numerous other row type systems.
Blume et al. [2006] extends Rémy’s approach to incorporate first-class blocks over extensible vari-
ants. Their implementation relies on the duality between records and variants, translating case
blocks into records. However, this duality is not exposed to the programmer; unlike Rl , they rely
on having a specific type for case blocks distinct from the normal function type. Other application
of Rémy-style row type systems include: Makholm and Wells’s 2005 system for mixin modules;
Lindley and Cheney’s 2012 type system for effect polymorphism; Hillerström and Lindley’s 2016
system for extensible effects and handlers; and, Lindley and Morris’s 2017 account of extensible
session types. Gaster and Jones [1996] implement a system with operations similar to Rémy’s, but
using qualified types instead of kinds to assure that row extension is well-defined. Lindley et al.
[2017] start from Rémy-style rows, but consider several extensions including generic support for
renaming entries in rows. Berthomieu and le Moniès de Sagazan [1995] and Leijen [2005] indepen-
dently proposed scoped rows, in which row extension preserves both the original and new fields.
Wand [1991] identified the problems that can arise in typing record concatenation, and proposed

an approach based on intersection types. Harper and Pierce [1991] support record concatenation
using a new form of quantification, in which quantification is over types disjoint from a given row.
Their system cannot express Wand’s problem: while it can require that two rows be disjoint, it
cannot require that a single field appear in their concatenation without requiring that it appear in
a particular input row.
There have been numerous encodings of row types in other type system features, most notably

Haskell’s type classes and type families [Bahr 2014; Kiselyov et al. 2004; Morris 2015; Oliveira et al.
2015; Swierstra 2008]. While impressive, these encodings inevitably rely on encoding rows as par-
ticular sequences as types, and so struggle to capture the flexibility that row typing is intended
to provide. Extensible data types can also be expressed directly using intersection types and the
merge operator [Dunfield 2012; Rioux et al. 2023].
Rl is differentiated from other row type theories by its focus on label-generic operations. It also

inherits the expressiveness of Rose, and its adaptability to multiple different row theories.

Shallow embeddings in Agda. Our approach to mechanizing the metatheory of Rl is unusual; far
more typical would have been to define an operational semantics of Rl directly, and then mech-
anize the expected properties of that operational semantics. We chose to embed the semantics of
Rl directly in Agda for two reasons: we wanted an account that clearly did not rely on labels
themselves, and we needed to rely on dependent typing to guarantee that record and variant oper-
ations were well-typed. This made it natural to embed our semantics in a dependent type theory,
and Agda provides flexible dependently-typed programming and a rich standard library.
Embedding simply-typed _-calculi in rich type theories is well-traveled ground. There is recent

work on shallow or mixed deep and shallow embeddings of rich type theories in rich type the-
ories [Kaposi et al. 2019; McBride 2010]. Our embedding is less impressive than theirs: while we
demonstrate that our notions of type equality and predicate entailment are sound, we still require
explicit equality and entailment proofs in our derivations.

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 201. Publication date: August 2023.

Generic Programming with Extensible Data Types 201:27

7 CONCLUSION

We have presented a novel approach to programming with extensible data types, based on label-
generic operators for variant destruction and record construction and destruction. We conclude
by identifying several directions of future work.

Relating row components. Lindley et al. [2017] proposes a renaming operator for rows, as a tool
for simulating scoped rows with simple rows.Wemight hope to capture such an idea in Rl ; indeed,
our kind system even includes rows of labels, which seem like a promising start. However, while
we could attempt to describe a function that relabeled the fields of a row or constructors of a
variant, we have no way to guarantee that the renamed fields are unique! That is, we have nothing
that accepts the row {a ⊲ b, b ⊲ c} while rejecting the row {a ⊲ z, b ⊲ z}. More generally, we have no
way to impose conditions on the relationship between an entry in a row and the remainder, other
than that provided by the row combination predicate.

Realizing Rl . Rl ’s goal is to demonstrate the expressiveness of its core features.We identify two
challenges in making Rl more practical. The first is exposing its features in a programmer-friendly
surface language, such as a variant of Haskell. Doing so would allow us to use Rl to capture prac-
tical examples from algebraic effects and handlers to extensible compiler passes. While adapting
Rl to a type system without type-level functions would certainly make type reconstruction more
likely, it may also introduce limitations in Rl ’s expressiveness. The second is an efficient imple-
mentation of extensible records and variants, in particular, an account of record construction that
does not require copying record values or leave records fragmented.

ACKNOWLEDGMENTS

We thank: James McKinna, for providing initial direction to our mechanization of Rl as well as
general discussion of Rose; Christa Jenkins, for guidance in developing the mechanization; and,
Fabian Ruch for extensive feedback on the final mechanization. This work was supported by the
National Science Foundation under Grant No. CCF-2044815.

DATA AVAILABILITY STATEMENT

Our Agda mechanization of Rl is available online [Hubers and Morris 2023].

REFERENCES

Patrick Bahr. 2014. Composing and decomposing data types: a closed type families implementation of data types à la carte.

In Proceedings of the 10th ACM SIGPLAN workshop on Generic programming, WGP 2014, Gothenburg, Sweden, August 31,

2014, José Pedro Magalhães and Tiark Rompf (Eds.). ACM, 71–82.

Bernard Berthomieu and Camille le Moniès de Sagazan. 1995. A Calculus of Tagged Types, with applications to process

languages. InWorkshop on types for program analysis. Aarhus.

Matthias Blume, Umut A. Acar, and Wonseok Chae. 2006. Extensible programming with first-class cases. In Proceedings of

the 11th ACM SIGPLAN International Conference on Functional Programming, ICFP 2006, Portland, Oregon, USA, September

16-21, 2006, John H. Reppy and Julia L. Lawall (Eds.). ACM, 239–250.

Adam Chlipala. 2010. Ur: statically-typed metaprogramming with type-level record computation. In Proceedings of the 2010

ACM SIGPLAN Conference on Programming Language Design and Implementation, PLDI 2010, Toronto, Ontario, Canada,

June 5-10, 2010, Benjamin G. Zorn and Alexander Aiken (Eds.). ACM, 122–133.

Adam Chlipala. 2015a. An optimizing compiler for a purely functional web-application language. In Proceedings of the 20th

ACM SIGPLAN International Conference on Functional Programming, ICFP 2015, Vancouver, BC, Canada, September 1-3,

2015, Kathleen Fisher and John H. Reppy (Eds.). ACM, 10–21. https://doi.org/10.1145/2784731.2784741

Adam Chlipala. 2015b. Ur/Web: A Simple Model for Programming the Web. In Proceedings of the 42nd Annual ACM

SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2015, Mumbai, India, January 15-17, 2015,

Sriram K. Rajamani and David Walker (Eds.). ACM, 153–165. https://doi.org/10.1145/2676726.2677004

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 201. Publication date: August 2023.

201:28 Alex Hubers and J. Garre� Morris

Joshua Dunfield. 2012. Elaborating intersection and union types. In ACM SIGPLAN International Conference on Functional

Programming, ICFP’12, Copenhagen, Denmark, September 9-15, 2012, Peter Thiemann and Robby Bruce Findler (Eds.).

ACM, 17–28.

Jana Dunfield and Neelakantan R. Krishnaswami. 2013. Complete and easy bidirectional typechecking for higher-rank poly-

morphism. In ACM SIGPLAN International Conference on Functional Programming, ICFP’13, Boston, MA, USA - September

25 - 27, 2013, Greg Morrisett and Tarmo Uustalu (Eds.). ACM, 429–442. https://doi.org/10.1145/2500365.2500582

Edward Gan, Jesse A. Tov, and Greg Morrisett. 2014. Type Classes for Lightweight Substructural Types. In Proceedings

Third International Workshop on Linearity, LINEARITY 2014, Vienna, Austria, 13th July, 2014 (EPTCS, Vol. 176), Sandra

Alves and Iliano Cervesato (Eds.). 34–48. https://doi.org/10.4204/EPTCS.176.4

Jacques Garrigue. 1998. Programming with Polymorphic Variants. In ML Workshop. ACM.

Benedict R. Gaster and Mark P. Jones. 1996. A Polymorphic Type System for Extensible Records and Variants. Technical

Report NOTTCS-TR-96-3. University of Nottingham.

Robert Harper and Benjamin Pierce. 1991. A Record Calculus Based on Symmetric Concatenation. In Proceedings of the

18th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL ’91). ACM, 131–142.

Daniel Hillerström and Sam Lindley. 2016. Liberating effects with rows and handlers. In TyDe@ICFP. ACM, 15–27.

Alex Hubers and J. Garrett Morris. 2023. Generic Programming with Extensible Data Types; Or, Making Ad Hoc Extensible

Data Types Less Ad Hoc—Artifact. https://doi.org/10.5281/zenodo.8116889.

Apoorv Ingle, Alex Hubers, and J. Garrett Morris. 2022. Partial type constructors in practice. In Haskell ’22: 15th ACM

SIGPLAN International Haskell Symposium, Ljubljana, Slovenia, September 15 - 16, 2022, Nadia Polikarpova (Ed.). ACM,

95–107. https://doi.org/10.1145/3546189.3549923

Mark P. Jones. 1994. Qualified Types: Theory and Practice. Cambridge University Press.

Mark P. Jones and Iavor S. Diatchki. 2008. Language and program design for functional dependencies. In Proceedings of the

first ACM SIGPLAN symposium on Haskell (Haskell ’08). ACM, Victoria, BC, Canada, 87–98.

Mark P. Jones, J. Garrett Morris, and Richard A. Eisenberg. 2020. Partial type constructors: or, making ad hoc datatypes

less ad hoc. Proc. ACM Program. Lang. 4, POPL (2020), 40:1–40:28.

Ambrus Kaposi, András Kovács, and Nicolai Kraus. 2019. Shallow Embedding of Type Theory is Morally Cor-

rect. In Mathematics of Program Construction - 13th International Conference, MPC 2019, Porto, Portugal, October

7-9, 2019, Proceedings (Lecture Notes in Computer Science, Vol. 11825), Graham Hutton (Ed.). Springer, 329–365.

https://doi.org/10.1007/978-3-030-33636-3_12

AndrewW. Keep and R. KentDybvig. 2013. A nanopass framework for commercial compiler development. InACMSIGPLAN

International Conference on Functional Programming, ICFP’13, Boston, MA, USA - September 25 - 27, 2013, Greg Morrisett

and Tarmo Uustalu (Eds.). ACM, 343–350. https://doi.org/10.1145/2500365.2500618

Oleg Kiselyov, Ralf Lämmel, and Keean Schupke. 2004. Strongly typed heterogeneous collections. In Proceedings of the

ACM SIGPLANWorkshop on Haskell, Haskell 2004, Snowbird, UT, USA, September 22-22, 2004, Henrik Nilsson (Ed.). ACM,

96–107.

Daan Leijen. 2004. First-class labels for extensible rows (technical report uu-cs-2004-51

ed.). Technical Report UU-CS-2004-51. Dept. of Computer Science, Universiteit Utrecht.

https://www.microsoft.com/en-us/research/publication/first-class-labels-for-extensible-rows/

Daan Leijen. 2005. Extensible records with scoped labels. In Revised Selected Papers from the Sixth Symposium on Trends in

Functional Programming, TFP 2005, Tallinn, Estonia, 23-24 September 2005. 179–194.

Daan Leijen. 2014. Koka: Programming with Row Polymorphic Effect Types. In Proceedings 5thWorkshop onMathematically

Structured Functional Programming, MSFP@ETAPS 2014, Grenoble, France, 12 April 2014. (EPTCS, Vol. 153), Paul Levy and

Neel Krishnaswami (Eds.). 100–126.

Daan Leijen. 2017. Type directed compilation of row-typed algebraic effects. In Proceedings of the 44th ACM SIGPLAN

Symposium on Principles of Programming Languages, POPL 2017, Paris, France, January 18-20, 2017, Giuseppe Castagna

and Andrew D. Gordon (Eds.). ACM, 486–499.

Daniel Leivant. 1991. Finitely Stratified Polymorphism. Inf. Comput. 93, 1 (1991), 93–113.

https://doi.org/10.1016/0890-5401(91)90053-5

Sam Lindley and James Cheney. 2012. Row-based effect types for database integration. In Proceedings of TLDI 2012: The

Seventh ACM SIGPLAN Workshop on Types in Languages Design and Implementation, Philadelphia, PA, USA, Saturday,

January 28, 2012, Benjamin C. Pierce (Ed.). ACM, 91–102.

Sam Lindley, Conor McBride, and Craig McLaughlin. 2017. Do be do be do. In Proceedings of the 44th ACM SIGPLAN

Symposium on Principles of Programming Languages, POPL 2017, Paris, France, January 18-20, 2017, Giuseppe Castagna

and Andrew D. Gordon (Eds.). ACM, 500–514.

Sam Lindley and J. Garrett Morris. 2017. Lightweight functional session types. In Behavioural Types: from Theory to Tools,

Simon Gay and António Ravara (Eds.). River Publishers.

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 201. Publication date: August 2023.

Generic Programming with Extensible Data Types 201:29

Henning Makholm and J. B. Wells. 2005. Type inference, principal typings, and let-polymorphism for first-class mixin mod-

ules. In Proceedings of the 10th ACM SIGPLAN International Conference on Functional Programming, ICFP 2005, Tallinn,

Estonia, September 26-28, 2005, Olivier Danvy and Benjamin C. Pierce (Eds.). ACM, 156–167.

Conor McBride. 2010. Outrageous but meaningful coincidences: dependent type-safe syntax and evaluation. In Proceedings

of the ACM SIGPLANWorkshop on Generic Programming, WGP 2010, Baltimore, MD, USA, September 27-29, 2010, Bruno C.

d. S. Oliveira and Marcin Zalewski (Eds.). ACM, 1–12. https://doi.org/10.1145/1863495.1863497

Robin Milner. 1978. A theory of type polymorphism in programming. J. Comput. System Sci. (1978), 348–375.

J. Garrett Morris. 2015. Variations on variants. In Proceedings of the 8th ACM SIGPLAN Symposium on Haskell (Haskell ’15),

Ben Lippmeier (Ed.). ACM, Vancouver, BC, 71–81.

J. Garrett Morris. 2016. The best of both worlds: linear functional programming without compromise. In Proceedings of the

21st ACM SIGPLAN International Conference on Functional Programming, ICFP 2016, Nara, Japan, September 18-22, 2016,

Jacques Garrigue, Gabriele Keller, and Eijiro Sumii (Eds.). ACM, 448–461. https://doi.org/10.1145/2951913.2951925

J. Garrett Morris and James McKinna. 2019. Abstracting extensible data types: or, rows by any other name. Proc. ACM

Program. Lang. 3, POPL (2019), 12:1–12:28. https://doi.org/10.1145/3290325

Bruno Oliveira, Shin-Cheng Mu, and Shu-Hung You. 2015. Modular reifiable matching: a list-of-functors approach to

two-level types. In Haskell. ACM, 82–93.

Simon L. Peyton Jones, Dimitrios Vytiniotis, Stephanie Weirich, and Geoffrey Washburn. 2006. Simple unification-based

type inference for GADTs. In Proceedings of the 11th ACM SIGPLAN International Conference on Functional Program-

ming, ICFP 2006, Portland, Oregon, USA, September 16-21, 2006, John H. Reppy and Julia Lawall (Eds.). ACM, 50–61.

https://doi.org/10.1145/1159803.1159811

Gordon D. Plotkin and John Power. 2003. Algebraic Operations and Generic Effects. Applied Categorical Structures 11, 1

(2003), 69–94. https://doi.org/10.1023/A:1023064908962

Gordon D. Plotkin and Matija Pretnar. 2009. Handlers of Algebraic Effects. In Programming Languages and Systems, 18th

European Symposium on Programming, ESOP 2009, Held as Part of the Joint European Conferences on Theory and Practice

of Software, ETAPS 2009, York, UK, March 22-29, 2009. Proceedings (Lecture Notes in Computer Science, Vol. 5502), Giuseppe

Castagna (Ed.). Springer, 80–94. https://doi.org/10.1007/978-3-642-00590-9_7

François Pottier and Didier Rémy. 2005. The essence of ML type inference. In Advanced Topics in Types and Programming

Languages, Benjamin C. Pierce (Ed.). The MIT Press.

Didier Rémy. 1989. Typechecking Records and Variants in a Natural Extension of ML. In Conference Record of the Sixteenth

Annual ACM Symposium on Principles of Programming Languages, Austin, Texas, USA, January 11-13, 1989. ACM Press,

77–88.

Didier Rémy. 1992. Typing Record Concatenation for Free. In POPL ’92. ACM, Albuquerque, New Mexico, 166–176.

Nick Rioux, Xuejing Huang, Bruno C. d. S. Oliveira, and Steve Zdancewic. 2023. A Bowtie for a Beast: Over-

loading, Eta Expansion, and Extensible Data Types in F⊲⊳. Proc. ACM Program. Lang. 7, POPL (2023), 515–543.

https://doi.org/10.1145/3571211

Dipanwita Sarkar, Oscar Waddell, and R. Kent Dybvig. 2004. A nanopass infrastructure for compiler education. In Proceed-

ings of the Ninth ACM SIGPLAN International Conference on Functional Programming, ICFP 2004, Snow Bird, UT, USA, Sep-

tember 19-21, 2004, Chris Okasaki and Kathleen Fisher (Eds.). ACM, 201–212. https://doi.org/10.1145/1016850.1016878

Martin Sulzmann. 1997. Designing Record Systems. Technical Report YALEU/DCS/RR-1128. Yale University.

Wouter Swierstra. 2008. Data types à la carte. J. Funct. Program. 18, 04 (2008), 423–436.

Philip Wadler. 1998. The Expression Problem. http://homepages.inf.ed.ac.uk/wadler/papers/expression/expression.txt.

Philip Wadler and Stephen Blott. 1989. How to Make ad-hoc Polymorphism Less ad-hoc. In Conference Record of the

Sixteenth Annual ACM Symposium on Principles of Programming Languages, Austin, Texas, USA, January 11-13, 1989.

ACM Press, 60–76. https://doi.org/10.1145/75277.75283

Mitchell Wand. 1987. Complete Type Inference for Simple Objects. In Proceedings of the Symposium on Logic in Computer

Science (LICS ’87), Ithaca, New York, USA, June 22-25, 1987. IEEE Computer Society, 37–44.

MitchellWand. 1989. Type Inference for Record Concatenation andMultiple Inheritance. In Proceedings of the Fourth Annual

Symposium on Logic in Computer Science (LICS ’89), Pacific Grove, California, USA, June 5-8, 1989. IEEE Computer Society,

92–97.

Mitchell Wand. 1991. Type Inference for Record Concatenation and Multiple Inheritance. Inf. Comput. 93, 1 (1991), 1–15.

Received 2023-03-01; accepted 2023-06-27

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 201. Publication date: August 2023.

