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Abstract. We describe a new concrete approach to giving predictable
error locations for sequential (flow-sensitive) effect systems. Prior im-
plementations of sequential effect systems rely on either computing a
bottom-up effect and comparing it to a declaration (e.g., method annota-
tion) or leaning on constraint-based type inference. These approaches do
not necessarily report program locations that precisely indicate where a
program may “go wrong” at runtime.
Instead of relying on constraint solving, we draw on the notion of a
residual from literature on ordered algebraic structures. Applying these
to effect quantales (a large class of sequential effect systems) yields an
implementation approach which accepts exactly the same program as an
original effect quantale, but for effect-incorrect programs is guaranteed to
fail type-checking with predictable error locations tied to evaluation order.
We have implemented this idea in a generic effect system implementation
framework for Java, and report on experiences applying effect systems
from the literature and novel effect systems to Java programs. We find
that the reported error locations with our technique are significantly
closer to the program points that lead to failed effect checks.

1 Introduction

Effect systems are a well-established technique for extending a base type system
that reasons about input and output shapes and available operations, to also
statically reason about behaviors of code. However, error reporting for effect
systems has not been systematically studied. Existing implementations of effect
systems report errors in one of two ways.

The classic approach is checking that each individual operation’s effect is less
than some bound [6,70,60,32,30] and reporting errors for any individual operation
whose check fails. For example, this is how Java’s checked exceptions are handled:
every possibly-throwing expression’s throws clause is checked against that of
the enclosing method. This yields highly precise error locations (e.g., reporting
specific problematic method invocations or throw statements), but applies only
for the (common) case of flow-insensitive effect systems.

The more general approach is to raise an error for whatever program point
gave rise to a failing constraint during type inference [2,50,8,34,53,36,37,67], which
works for a wide variety of effect systems. However this leads to the well-known
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2 Gordon and Yun

difficulty with localizing mistakes from type inference errors: the constraint which
failed may be far away from an actual programmer mistake.

Technically a third possibility is available, of comparing the computed effect
of a method body against an annotated or assumed bound. This can work for any
effect system, but we know of no implementations taking this approach, which
would yield highly imprecise error messages (basically, “this method has an effect
error”).1

This is an unforunate state of affairs: less powerful effect systems have localized
error reporting (the first approach), while more powerful flow-sensitive effect
systems — arguably in more dire need of precise error reporting — are stuck
with error reports that are unpredictable (approach 2) or maximally imprecise
(approach 3). This paper shows how to derive precise, predictable error reporting
for flow-sensitive effect systems as well, by noticing that the first approach is
in fact an error reporting optimization of the third: applied to the same effect
system, they accept exactly the same programs, but while the third directly
implements typical formalizations, the first in fact cleverly exploits algebraic
properties of the third for more precise error reporting. By articulating and
generalizing these properties, we obtain a new more precise error reporting
mechanism for sequential [68] effect systems.

In the common case of an effect system where effects are partially ordered
(or pre-ordered), while type-and-effect checking code with a known upper bound
(such as a Java method with a throws clause), it is sufficient to check for each
operation (e.g., method invocation or throw statement) whether the effect (e.g.,
the possibly-thrown checked exceptions) is less than the upper bound (e.g., throws
clause). If not, an error is reported for that operation. This is a deviation from
how such effect systems are typically formalized, which is as a join semilattice,
where formally the error would not occur until the least upper bound over all
subexpressions’ effects was compared against the declared bound for the code.
Directly implementing this typical formalization is sound, but for a large method
provides no direct clue as to where the problematic code may be in the method.

This paper explores in detail why this optimization is valid, and uses that
insight to generalize this precise error reporting to sequential effect systems.
While the validity of this switch from joins in metatheory to local ordering checks
in implementations is intuitively clear given basic properties of joins (namely,
∀X, b. ((

⊔
X) ⊑ b) ⇔ (∀a ∈ X. a ⊑ b)), it is not obvious that there exists a

corresponding transformation that can be applied to sequential effect systems to
move from global error checking to incremental error checking. Our contributions
include:

– We explicitly identify and explain the common pattern of formalizing an
effect system using operators that compute effects, while implementing the
systems differently. We explain why this is valid.

1 Some implementations are designed for effect inference to always succeed, with a
secondary analysis rejecting some effects outside the effect system [65,64], and others
with unavailable source do not provide enough detail to ascertain their effect checking
algorithm [21,7,19,20,61].
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– We generalize this to arbitrary sequential effect systems characterized as
effect quantales.

– We describe an implementation of this approach for single-threaded Java
programs, which is also the first implementation framework for sequential
effect systems for Java.

– We describe experiments implementing sequential effect systems in this
framework and applying them to real Java programs, arguing that this
theoretically grounded approach yields precise errors.

2 Background

Effect systems extend traditional type systems with information about side effects
of program evaluation, which can be tailored to program behaviors of interest. Ap-
plications have included analyzing what regions of memory are accessed [47,26,69];
ensuring data race freedom [18,6,16,1], deadlock freedom [66,17,31,36], or other
more targeted concurrency safety properties like safe use of GUI primitives [30,70,46];
checking atomicity in concurrent programs [22,21]; checking safety of dynamic
software updates [49]; checking communication properties [2,50]; dataflow prop-
erties [37,4] or general safety properties of execution traces [65,63,39].

Effect systems extend the typing judgement to include an additional com-
ponent, the effect, which is a syntactic description of an upper bound on an
expression’s behavior. The typical judgment form Γ ⊢ e : τ | χ is interpreted as
meaning the under variable typing assumptions Γ , evaluating expression e will
produce a result of type τ (if execution terminates), exhibiting at most behaviors
described by χ. Function types are also extended in effect systems to carry a

latent effect χ, typically written superscript above a function arrow, as in τ
χ−→ τ ′,

indicating that χ is a bound on the function body’s behavior, which the type
rule for function application incorporates into the effect of function invocation.

Most often the (representations of) behaviors an effect system reasons about
are assumed to form a join semilattice, and intuitively the effect of an expression
is then the least upper bound (join) of the effects of all (executed) subexpres-
sions. But this model of effect systems, while broad and including many useful
and powerful effect systems, is incomplete. Many of the effect systems of inter-
est [66,31,50,2,65,65,39,22,21,36,49,37,4] have additional structure because they
track behaviors sensitive to evaluation order, and therefore have not only a
partial ordering on effects to model a notion which behaviors subsume others,
but also a notion of sequencing effects to track ordering of behaviour. There
is still some active debate as to what the appropriate common model of these
sequential effect systems should be. They are captured most generally by Tate’s
effectoids [68] (or equivalently, by the independently-proposed notion of poly-
monads [34]), but these are typically acknowledged to be more general than most
systems require. More pragmatic proposals include graded monads [38] and effect
quantales [27,29], which differ primarily in what kinds of distributive laws are
assumed (or not assumed) for how least-upper-bound and sequencing interact.
Gordon [29] gives a detailed survey of general models of sequential effect systems,
and their relationships.
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In the sequel, we work with sequential effect systems characterized by effect
quantales, because their application to mainstream programming languages seems
furthest-developed. For effect quantales there are general approaches to deriving
treatments of loops [29] as well as constructs derivable from tagged delimited
continuations [28] (e.g., exceptions, generators) from a basic effect quantale, while
for related frameworks only single examples exist. Gordon [29] also gives a survey
of how a wide range of specific sequential effect systems from the literature are
modeled by effect quantales.

Definition 1 (Effect Quantale [29]). An effect quantale is a structure Q =
⟨E,⊔,�, I⟩ composed of:

– A set of effects (behaviors) E
– A partial join (least-upper-bound) ⊔ : E × E ⇀ E
– A partial sequencing operator � : E × E ⇀ E
– A unit element I

such that

– ⟨E,�, I⟩ is a partial monoid with unit I (i.e., � is an associative operator
with left and right unit I)

– ⟨E,⊔⟩ is a partial join semilattice (i.e., ⊔ is commutative, associative, and
idempotent)

– � distributes over ⊔ on both sides
• x� (y ⊔ z) = (x� y) ⊔ (x� z)
• (x ⊔ y)� z = (x� z) ⊔ (y � z)

Note that when writing relations involving possibly-undefined expressions (e.g.,
since x ⊔ y may be undefined), we consider two expressions equal if they both
evaluate to the same element of E, or are both undefined.2

From the partial join we can derive a partial order on effects: x ⊑ y ⇔ x⊔y = y.
Again we must specify the meaning of ⊑ on possibly-undefined expressions: x ⊑ y
is defined only if the join of x and y is defined.

Both � and ⊔ are monotone in both arguments, in the sense that if a ⊑ b and
x ⊑ y, then a� x ⊑ b� y (when the right side is defined) and similarly for ⊔.

Note that any join-semilattice-based effect system can be modeled in this
system, using ⊥ for identity, and reusing join for sequencing as well.

Gordon [29] also describes properties of a partial unary iteration operation
−∗ used to characterize loop effects, guaranteed to be:

Extensive ∀x. x ⊑ x∗

Idempotent ∀x. (x∗)∗ = x∗

Monotone ∀x, y. x ⊑ y ⇒ x∗ ⊑ y∗

Foldable ∀x. (x∗)� (x∗) ⊑ x∗

Possibly-Empty ∀x. I ⊑ x∗

2 Readers who tire of thinking about partiality can approximate this by imagining there
is an additional distinguished error element, greater than all others, and preserved
by all operators, representing undefined results, and which is invalid in later type
rules. This is in fact, consistent with the original axiomatization [27], though that
definition complicates some metatheory.
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An optimally precise iteration operator can be derived for most effect quantales
of interest [29]: all finite effect quantales, and all effect quantales which have
finite meets of elements greater than the unit element. This includes all prior
specific effect systems considered in the survey section of that paper.

2.1 Implementing Effect Systems

We concern ourselves with implementing effect system checking in a setting where
the expected effect of every method in the program is given, rather than inferred.
This models a reasonable integration of effects into languages that require explicit
method signatures, consistent with a number of prior implementations of effect
systems [70,30,32,21]. Experience has shown that while full inference has value,
for many effect systems, a reasonable default (or local customization of defaults) is
often sufficient to achieve modest annotation overhead. This also models scenarios
where full inference has been employed, but manual annotations are required
to refine undesirable inferences and force type checking to produce errors in a
method that is intended to have a certain effect, but was inferred to have an
incompatible effect. We speak of methods because our prototype (Section 5)
targets Java, but the same principles would apply to procedural or functional
languages.

Global Reporting Many formalizations of effect systems use a join-semilattice or
effect-quantale-like formulation of the system, so an implementation can generally
compute the effect of an expression bottom-up. The result is that for code with
a fixed bound χ (say, the declared effect of a method), the implementation uses
the ⊔ and/or � operators to compute the body effect χ′, and then once for
each method checks that χ′ ⊑ χ. This is a direct implementation of common
metatheory for effect systems, but as the only effect check occurs at the granularity
of entire method or function bodies, there is only one possible error location
for such a technique to report: the entire method or function body. We are
unaware of any concrete systems that explicitly acknowledge implementing this
approach, though language in some papers is suggestive of such an approach
(e.g., mentioning that “inspection of a method” with an error revealed a problem,
as opposed to indicating an error was flagged on a specific line of code).

Precise Reporting for Commutative Effect Systems Most effect system implemen-
tations are limited to join-semilattice or partial order structures, which ignore
program order. Of those with available implementations, all we know of give pre-
cise error locations for code expressions which would lead to failing effect system
checks by exploiting the trick mentioned in the introduction, that this class of
system permits checking effects incrementally by checking if each subexpression’s
effect is less than the bound, since this is equivalent to computing the join of
subexpression effects and comparing to the bound. This is true of all available
implementations we are aware of, including Java’s checked exceptions [32], the
modern implementation of Gordon et al.’s UI effects [30] in the Checker Frame-
work [55,14], Toro and Tanter’s framework [70] for gradual effects [62], Rytz et
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al.’s work for Scala [60], Deterministic Parallel Java [6], and others. As mentioned
earlier, this trick does not work for general sequential effect systems.

Constraint-Based Reporting Most prior implementations of sequential effect
systems –— and all prior implementations frameworks for sequential effect
systems [34,8,9,10,53] — use type inference to infer effects. This results in the
standard trade-offs for global constraint-based type inference: types (and effects)
are inferred with low developer effort when possible, but errors can be cryptic,
and implicate program locations unrelated to the error. In particular, these
implementations tend to generate subtyping (and subeffecting) constraints from
the program structure, which are then solved incrementally by a fixpoint solver.
Errors are reported at the location corresponding to the first constraint which is
found to be inconsistent. However, that constraint may be totally unrelated to
any problematic statement. Consider the brief JavaScript program

var x = 3; var y = x; requiresString(y)

It is possible for a constraint solver to flag any of the three statements as a type
error, assuming the invoked method is typed as requiring a string input. Flagging
the first or third lines is reasonable, as they are the sources of the contradiction.
However, solvers are permitted to report the middle line as erronneous as well
(for storing a number into a string-containing variable), which is not terrible in
this case, but becomes problematic with larger blocks of code. This has inspired
a wealth of work on various techniques to reduce or partially compensate for
(but not eliminate) this unpredictability [56,57,45,33,43,11]. In principle such
work is applicable to existing approaches to inferring effects in sequential effect
systems [20,53,51], but unpredictability would remain.

3 Local Errors for Sequential Effect Systems

We would like to obtain precise error reporting for sequential effect systems in
general. Because effect quantales subsume the join semilattice model of effect
systems [29], we can hope to draw some inspiration from the corresponding
optimization on traditional commutative effect systems: that optimization should
be a special case of a general solution.

Let us fix an expression e whose effect we would like to ensure is less than χ.
Let us assume a set {χi | i ∈ Subterms(e)} where χi is the static effect of subterm
i from a bottom-up effect synthesis. For now, we will assume all such effects are
defined (i.e., that the bottom-up synthesis of effects never results in undefined
effects). For the case where effects form a join-semilattice, and all bottom-up
computation is joins (no other operators play a role), we can formally relate the
global and precise implementations of join-semilattice effect systems by observing⊔

{χi | i ∈ Subterms(e)} ⊑ χ ⇔ ∀i ∈ Subterms(e). χi ⊑ χ

as suggested in the introduction. The left side of the iff expresses the global
view that the join of all subexpression effects must be bounded by χ. The right
side expresses the local view that each individual subexpression’s effect must be
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less than the bound χ. (This formulation suggests some redundant checks; we
return to this later.) One way to express the intuition behind this formula is that
performing all of the local checks corresponds to ensuring that each individual
χi can be further combined with some other effects (here, by join), and the
result will still be bounded by χ. Conversely, if there exists some j ∈ Subterms(e)
such that χj ̸⊑ χ, then no combination with other effects can yield something
satisfying the bound χ.

We dub this informal characterization as the notion of completing an effect.
An effect χi can be completed to χ if there exists some effect χ′ such that the
combination of χi and χ′ is ⊑ χ. The general intuition is that if χi can be
completed to χ, it is possible to “add more behaviors” to χi and obtain an effect
less than χ, in the sense that it is possible to extend a program with effect χi

with additional behaviors such that the overall effect is less than χ. We formalize
this later in this section, but to do so we must recall and customize a bit of
relevant math.

3.1 Residuals

The literature on ordered semigroups [5] (particularly on non-commutative sub-
structural logics [42,25]) contains many applications of the notion of a resid-
ual [73,15]:

Definition 2 ((Right) Residual). A (right) residual operation on an ordered
monoid M is a binary operation −\− : M ×M → M such that for any x, y, and
z, x ≤ y \ z ⇔ y · x ≤ z

That is, the right residual y \z of z by y (also read as y under z) is an element
of M such that, when sequenced to the right of y, yields an element no greater
than z (but definitely ordered ≤ z).

We can adapt this for effect quantales as well:

Definition 3 ((Right) Quantale Residual). A (right) residual operation on
an effect quantale Q is a partial binary operation − \ − : Q×Q ⇀ Q such that
for any x, y, and z, x ⊑ y \ z ⇔ y � x ⊑ z. A (right) residuated effect quantale
is an effect quantale with a specified choice of (right) residual operation.

Consider the case of type-checking e1; e2, where Γ ⊢ e1 : χ1 and Γ ⊢ e2 : χ2,
and ensuring that the effect of the sequential composition of these expressions —
χ1�χ2 — is bounded by χ. A residual on effects can tell us if this is possible based
on analyzing only e1, in some cases rejecting programs before even analyzing e2.

If χ1\χ is undefined, then there does not exist χ′ such that χ1�χ′ ⊑ χ. If there
were some such χ′, then by the definition of the residual operation, χ′ ⊑ χ1 \ χ,
which would imply the residual was defined. Thus an implementation could
eagerly return an error after synthesizing the effect χ1 for e1, and determining
the residual was undefined. This is a subtle point about the definition above: it
states not only properties of the residual when it is defined, but also requires it
to be defined in certain cases.
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Many effect quantales have a right residual in the sense of Definition 2, but
not all do, and since effect systems are primarily concerned with sound bounds
on behavior rather than exact characterizations of behavior, we actually require
only a slightly weaker variant of residual:

Definition 4 (Weak (Right) Quantale Residual). A weak (right) residual
operation on an effect quantale Q is a partial binary operation −\− : Q×Q ⇀ Q
such that for any x, y, and z:

– Residual bounding: x ⊑ y \ z ⇒ y � x ⊑ z
– Residual existence: y � x ⊑ z ⇒ ∃r. r = y \ z
– Self-residuation: ∃r. z \ z = r
– Unit residuation: I \ z = z

A (right) residuated effect quantale is an effect quantale with a specified choice
of weak (right) residual operation.

This is the notion of residual we work with, and this weakening is necessary
to capture aspects of non-local control flow [28]. Every residual operation in the
remainder of this paper is a weak residual, though for brevity we simply refer
to them as residuals. The total residual (Definition 3) implies the axioms of the
weak residual, so in some cases we present a total residual as a weak residual.

We take this weak right residual to be our formal notion of completion: an
effect χ can be completed to χ′ if the weak residual χ \ χ′ is defined.

It is worth noting that the literature also contains a definition of left residual,
which we could use to similarly issue an eager warning given only χ and χ2.
However, notice that the right residual corresponds to type-checking traversals
proceeding in the standard left-to-right evaluation order standard in (most)
languages using call-by-value reduction. Because most other analysis tools, and
in practice most developer investigation of program-order dependent behaviors
proceeds in tandem with evaluation order, we focus solely on the right residual.
However, all results in the rest of the paper can be dualized to the left residual.
Because we focus exclusively on the right residual, for the rest of the paper we
will drop the qualifier “right” and simply refer to unqualified residuals.

This seems a promising approach, but detailing it fully requires also connecting
our notion of completion to the way effects are actually combined during type-
checking (e.g., most programs are not basic blocks of primitive actions). Before
doing so, we build further intuition by describing the residual operations for a few
existing effect quantales in the literature, based on Gordon’s formalization [29].

3.2 Residual Examples

This section gives several examples of residuated effect quantales, to show that
many existing effect systems already naturally satisfy the requirements of our
weak residual, so while it is not mathematically the case that all effect quantales
have a weak residual, it appears known effect systems typically do. Appendix A
contains additional examples.
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Traditional Commutative Effects In the case where the effect quantale is
simply a (partial) join semilattice (so � = ⊔), the residual is simply:

X \ Y = Y when X ⊑ Y

Thus the residual is exactly the local subeffect comparison performed by local
implementations of effect checking.

Formal Languages and Quotients Thereof As formal languages can model
sets of acceptable behaviors (and are often used for this purpose, most frequently
in automata-theoretic model checking), it is worth considering formal languages
as effects. Indeed, languages of finite words over a finite alphabet form an effect
quantale: Here we recall a distillation of a number of general behavioral trace
effect systems [65,63,39] given by Gordon [29]:

Definition 5 (Finite Trace Effects). Effects tracking sets of finite event traces,
for events in an alphabet Σ, form an effect quantale:

E = P(Σ∗) \ ∅ X � Y = X · Y X ⊔ Y = X ∪ Y I = {ϵ}
Where sequencing is pairwise concatenation of sets, X ·Y = {xy | x ∈ X∧y ∈ Y }.

We write this effect quantale for a particular alphabet Σ as FinTrace(Σ).
Intuitively, the residual should be defined whenever the dividend is some kind

of prefix of all behaviors in the numerator. The formalization is more subtle, but
captures this intuition:

X \ Y = {w ∈ Σ∗ | ∀x ∈ X.x · w ∈ Y } when non-empty

That is, the residual X \ Y is the set of words which, when sequenced after X,
will produce a subset of Y .

Note that this is not the quotient of formal languages, which uses the same
notation with a different meaning. The (right) quotient of X under Y X \q Y
(using the subscript q to distinguish the quotient from the residual) is {w ∈ Σ∗ |
∃x ∈ X.x · w ∈ Y }. Sequencing this after the set X yields {xw | x ∈ X ∧ ∃x′ ∈
X.x′ · w ∈ Y }, which may be larger than Y .

The above (full) residual is in fact an operation that exists in Action Logic,
a cousin of Kleene Algebra. Pratt [59] notes that the two are related; in our
notation, X \ Y = (X \q (Y −1))−1. Since regular languages are closed under
complement and quotient, this means they are also closed under residuation, and
therefore there is a sub-effect-quantale Reg(Σ) ⊆ FinTrace(Σ) which also has
weak residuals, which can be computed using operations on finite automata (and
mapped back to regular expressions for error reporting).

The induced iteration operator on this effect quantale corresponds to the
Kleene star, so in later examples we sometimes use regular expression syntax for
writing these effects. Note, however, that while these effect quantale operations
correspond conveniently to regular expressions, the effect quantale itself is not
limited to regular languages: concatenation, union, and Kleene iteration are
well-defined operations on any formal languages, including context-free, context-
sensitive, or recursively enumerable languages. Regular languages are restricted
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⊤

A

RL

B

� B L R A ⊤
B B L R A ⊤
R R A R A ⊤
L L L ⊤ ⊤ ⊤
A A A ⊤ ⊤ ⊤
⊤ ⊤ ⊤ ⊤ ⊤ ⊤

(a) Atomicity effects [22]

ε

criticallocking entrant unlocking

� locking unlocking critical entrant ε

locking − entrant locking − locking
unlocking critical − − unlocking unlocking
critical − unlocking critical − critical
entrant locking − − entrant entrant

ε locking unlocking critical entrant ε

(b) Critical section effects [68].

Fig. 1: Lattices and sequencing for atomicity and critical section (reentrancy)
effects. − represents an undefined result for sequential composition.

to be built from only these operations and singleton sets, but no such assumption
is present here.

3.3 Atomicity

Flanagan and Qadeer [22,21] proposed well-known approaches to capturing
atomicity as effects. Their original proposal turns out to be a particular finite
effect quantale [27,29], whose join semilattice and sequential composition are
shown in Figure 1a3] (in the bottom table, the effect in row i sequenced via �
with the effect in column j is equal to the effect in cell i, j of the table). The key
idea is to adopt Lipton’s theory of reduction [44] to label each expression with
an effect capturing how it commutes with shared-memory operations in other
threads: B for both directions (e.g., thread-local actions), L for left (i.e., earlier,
such as lock releases), right (R, later, such as lock acquisitions), atomic A (does
not commute, including atomic hardware operations and already-proven-atomic
critical sections), or compound ⊤ (interleaves in non-trivial ways with other
threads).

Sequential composition captures Lipton’s idea that any sequence of R or B
actions, followed by at most one atomic A action, then any sequence of L or B
actions, can be grouped together as if the whole sequence occurred atomically
from the perspective of another thread. We omit iteration for brevity, but the
original definition of (−)∗ coincides with the results of a general construction on
finite effect quantales as well [29].

We can define a (total) residual χ \ χ′ according to the classic mathematical
definition: χ \ χ′ =

⊔
{χ′′ | χ� χ′′ ⊑ χ′}, which is well-defined because the join

3 They subsequently proposed an extension to conditional atomicity [21], which is also
an effect quantale when combined with a data race freedom quantale.
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semilattice is complete. So for example, L \A is the greatest effect which, when
sequenced after L, yields a result less than A — which in this case works out to
be L itself.

3.4 Reentrancy

Tate [68] developed a maximally-general framework for sequential effect systems,
and his running example was the system given in Figure 1b, which has partial joins
and sequencing. (He did not describe an iteration operator, but one can be derived
from the general construction of iteration operations on finite effect quantals [29].)
This is an effect system motivated by tracking critical sections for a single global
resource lock which does not permit recursive acquisition. This turns out to also
be a natural effect system for tracking non-reentrant code: the start of a non-
reentrant operation can be given the effect locking. Notice that locking � locking
is undefined, so attempting to reenter an operation that is non-reentrant will not
type-check. This covers non-reentrant locks (as in the original example, and in
implementations such as Java’s StampedLock), but also database APIs that do not
support nested transactions (starting and finishing transactions), or the evaluation
API for Java’s XPath expressions (XPathExpression.evaluate(...)).

3.5 Connecting Residuals to Type Checking

Figure 2 defines two typing judgments. Γ ⊢ e : τ | χ is a standard judgment
form for effect systems, interpreted as “under variable typing assumptions Γ ,
expression e has type τ with effect χ.” This judgment is readable in Figure
2 by ignoring the extensions in blue, and corresponds to a subset of the type
rules Gordon [29,27] proved sound for a wide array of possible primitives and
state models. In short, the judgment types expressions, using the effect quantale
operators to synthesize the effect of the expression, capturing evaluation ordering
with � and alternative paths (e.g., in T-If) with ⊔. We call this judgment the
standard judgment.

Including the text in blue, Figure 2 defines an additional judgment χ0 7→
χm ∥ Γ ⊢ e : τ | χ, interpreted as “under typing assumptions Γ expression e has
type τ and effect χ, and moreover if e is executed after effect χ0, it is still possible
for the result to have effect less than χm.” Later we formalize this interpretation.
This extended judgment form performs additional checks (also in blue). These
additional checks do not reject (or accept) any additional programs, but restrict
how, when, and why programs are rejected.

Lemma 1 (Conservative Extension 2). If χ0 7→ χm ∥ Γ ⊢ e : τ | χ, then
Γ ⊢ e : τ | χ.

This lemma, and others marked with a 2 icon, have been mechanically checked
in the Coq proof assistant.

Critically, this result implies than any soundness results holding for the
standard judgment are inherited by the extended judgment. Gordon [29] gives
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Effects χ ∈ Q (effect quantale)

Types τ ::= bool | unit | τ χ−→ τ
Expressions e ::= x | c | λχx : τ. e | e@e | if e then e else e | while e e

χ 7→ χ ∥ Γ ⊢ e : τ | χ
T-Var

Γ (x) = τ

χ0 7→ χm ∥ Γ ⊢ x : τ | I

T-Const

χ0 7→ χm ∥ Γ ⊢ c : τc | I
T-Lambda

I 7→ χ ∥ Γ, x : τ ⊢ e : τ ′ | χ′ χ′ ⊑ χ

χ0 7→ χm ∥ Γ ⊢ λχx : τ. e : τ
χ→ τ ′ | I

T-App

χ0 7→ χm ∥ Γ ⊢ e1 : τ ′ χl→ τ | χ1

χ0 � χ1 7→ χm ∥ Γ ⊢ e2 : τ | χ2 χl \ (χ2 \ (χ1 \ (χ0 \ χm))) defined

χ0 7→ χm ∥ Γ ⊢ e1@e2 : τ | χ1 � χ2 � χl

T-If

χ0 7→ χm ∥ Γ ⊢ ec : bool | χc χ0 � χc 7→ χm ∥ Γ ⊢ et : τ | χt

χ0 � χc 7→ χm ∥ Γ ⊢ ef : τ | χf (χt ⊔ χf ) \ (χc \ (χ0 \ χm)) defined

χ0 � χm ∥ Γ ⊢ if ec then et else ef : τ | χc � (χt ⊔ χf )

T-While
χ0 7→ χm ∥ Γ ⊢ ec : bool | χc

χ0 � χc 7→ χm ∥ Γ ⊢ eb : τ | χb (χb � χc)
∗ \ (χc \ (χ0 \ χm)) defined

χ0 7→ χm ∥ Γ ⊢ while ec eb : unit | χc � (χb � χc)
∗

Fig. 2: Type rules with and without residual checks.

generic type safety results for a configurable framework of sequential effect
systems, parameterized by primitives and choices of states. Since our standard
judgment is an instantiation of that framework (for a specific choice of constants),
our extended judgment is also type-safe for appropriate choices of state and
primitive semantics. We do not give further consideration to type-safety in this
paper, as Gordon’s framework can be instantiated to yield type-safety results for
all of our examples effect systems (in some cases, demonstrated in that work [29]).

Proving the other direction of the correspondence relies on weakened versions
of standard residual properties:

Lemma 2 (Residual Sequencing 2). For any effects x, y ∈ Q for a residuated
effect quantale Q, if x \ y is defined, then x� (x \ y) ⊑ y.

Lemma 3 (Residual Shifting 2). For any effects x, y, z ∈ Q for a residuated
effect quantale Q, (x� y) \ z is defined if and only if y \ (x \ z) is defined.

Lemma 4 (Antitone Residuation 2). If x ⊑ y and y \ z is defined, then x\ z
is defined.

These are enough to prove that the standard typing judgment implies the extended
judgment holds, for reasonable choices of χ0 and χm. By reasonable, we mean
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that it is possible to “reach” χm by running code with effect χ0, then code with
the effect the standard judgment assigns, followed by some additional effect,
without exceeding a total upper bound of χm.

Lemma 5 (Liberal Extension 2). If Γ ⊢ e : τ | χ, then for any χ0 and χm

such that χ \ (χ0 \ χm) is defined, χ0 7→ χm ∥ Γ ⊢ e : τ | χ.

Loop Unrolling While not required for the proof above, readers may wonder if
the desired residual is provable for finite loop unrollings, i.e., if (χb � χc)

n \ (χc \
(χ0 \ χm)) is defined for all naturals n. Indeed it is: the properties of iteration
imply (χb � χc)

n ⊑ (χb � χc)
∗, so this follows from Lemma 4.

Completability These results highlight that the extended judgment accepts exactly
the same programs as the standard judgment, but ensures our informally-stated
requirement that the extended judgment checks that given a prefix effect and
target bound, the program has a valid effect in that usage context:

Theorem 1 (Completability 2). When χ0 \ χm is defined and χ0 7→ χm ∥
Γ ⊢ e : τ | χ, then χ \ (χ0 \ χm) is defined.

This result highlights a subtlety of the nested residual checks in several rules.
While at a glance it may appear to lump many checks into one since the residuals
checked for existence are larger nested residuals, these checks actually verify only
one residual definition beyond what is guaranteed by the subexpressions’ typing
results. Consider as an example T-App. If the antecedent subexpression typings
hold, then by Completability (χ1 \ (χ0 \ χm)) is defined and χ2 \ (χ1 \ (χ0 \ χm))
is defined. So T-App is truly checking only the residual with respect to the
latent effect of the invoked function. Likewise, T-If and T-While are checking
only the residual with respect to the respective constructs, with residuals for
the subexpression effects already guaranteed by the antecedents. Later this
allows us to ensure that algorithmically, only one residual check is required per
source construct, and that if it would fail due to a subexpression rather than
the construct being checked, that error would have already been reported when
checking the subexpressions individually.

The combination of Theorem 1 and Lemma 5 guarantees that if an expression
is well-typed under standard typing, but not under extended typing for a given
χ0 and χm with χ0 \ χm defined, it is because the subexpressions are arranged
in a way that is incompatible with the effect context χ0 7→ χm. And because
the residual checks in each rule fail (the residual becomes undefined) as soon
as any execution prefix’s residual is undefined, if the extended judgment rejects
a term accepted by the standard judgment, the specific (nested) residual check
pinpoints the inadmissible execution prefix for that context.

3.6 Limitations

For the residual to localize errors effectively, it must be the case that some
residuals are undefined, since if all residuals exist, then there is no basis for
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issuing the early errors we seek. A trivial example is the effect quantale given by
a group with only the reflexive ordering. In such an effect quantale, it is always
possible to start with a prefix effect X and reach a final effect Y by sequencing
X−1Y after X, so no residual check will fail — only the final subeffect check
in T-Lam. While such effect quantales exist mathematically, we are unaware of
any such quantales actually being used as effect systems, as conceptually, they
are at odds with the typical goal of an effect system, which is to build a sound
summary of (selected) program behavior and reject certain subsets.

Kleene Algebras [41] are iterable effect quantales [29] which are typically
used in program analysis, and typically include a least element in lattice order
which corresponds to “no behavior” (e.g., an empty set or empty relation). Since
most programs are expected to have some kind of behavior, one could modify a
Kleene Algebra to be partial (i.e., removing the least element from its domain)
and obtain an effect quantale with meaningful notions of residuals. However,
even then there may be “too many” residuals to be useful. For example, in a
Kleene Algebra of binary relations (pre- and post-conditions) or of transition
functions (e.g., modeling abstract interpretation as a Kleene Algebra [40]), the
domain is large enough to admit arbitrary transitions: for any prefix behavior
with precondition P as a set of states and ultimate goal postcondition Q as a set
of states, the relation P ×Q is non-empty as long as both P and Q are non-empty.
So applying our technique to domains like these notions of extensional correctness
would require refining the set of transition functions or relations considered, in
order to make the residual undefined when no action contained in the actual
program could lead to a desired execution. This is less problematic for intensional
specifications such as the language-theoretic approaches, because as soon as some
execution path commits to a behavior prefix not in the target specification, the
residual is undefined.

4 Algorithms

To turn our insights into a tool, we require a type-checking algorithm. Figure
3 shows the core pieces of a type-checking algorithm that accepts exactly the
programs well-typed under the extended typing judgment of Figure 2.4 We assume
that earlycheck accepts the contextual and goal effects, type environment, and
expression as inputs, and returns a result (a supertype of successful typing results,
unbound variable errors, type errors, and effect errors).

The key insight of the residual checking is apparent in the case for applications.
This case first type-checks the function position. If that subterm is already
problematic then the underlying error is returned. Otherwise, the algorithm
continues to ensure the function subterm has a function type, then type-checks
the argument position with a modified progress effect reflecting that it reduces
after the function position (following T-App). If both subterms typecheck (in
appropriate contexts), and the argument position is of an appropriate type for the

4 The figure uses Java 17’s extended switch statements, plus a few notational liberties
for operations on effect quantale elements.
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Result earlycheck(Q χ0, Q χm, env Γ, expr e) {

switch (e) {

case Var x:

Type t = lookup(Γ, x);

return (t != null) ? new Result(t, I) : new Unbound(x);

case Const c:

return new Success(constType(c), I);

case Lambda lam:

Result r =

earlycheck(I, lam.declEffect(), Γ.with(lam.var(), lam.argty()), lam.body());

if (!r.isSuccess()) return r;

Success s = (Success) r;

return new Success(new FunType(lam.argty(), lam.declEffect(), s.type), I);

case App app:

Result resa = earlycheck(χ0, χm, Γ, app.fun);

if (!resa.isSuccess()) return resa;

Success sa = (Success) resa;

/* We know sa.effect\(χ0\χm) is defined */

if (!sa.type.isFun()) return new BadType(app.fun);

Result resb = earlycheck(χ0�sa.effect, χm, Γ, app.arg);

if (!resb.isSuccess()) return resb;

Success sb = (Success) resb;

/* sb.effect\(sa.effect\(χ0\χm)) defined */

if (!sa.type.arg.equals(sb.type)) return new BadType(app.arg);

boolean goodEffect = hasResidual(sa.type.asFunc().latentEffect(),

(sb.effect \ (sa.effect \ (χ0 \ χm)));

if (goodEffect) {

return new Success(sa.type.result,

sa.effect � sb.effect � sa.type.asFunc().latentEffect());

} else {

return new BadEffect(app);

}

case If i: ...

case While w: ...

}

}

Fig. 3: Algorithm for early effect errors.

function, then the algorithm checks that the residual corresponding to the final
check in T-App is defined, returning success in that case. Note that while there
is only one residual check in the application case here, errors are still reported as
early as possible in program order. In particular:

– If the function subterm’s effect could not be sequenced after χ0, or the result
would not leave the appropriate residual defined, then type-checking of that
subterm would fail.
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public abstract class EffectQuantale<Q> {

public abstract Q LUB(Q l, Q r);

public abstract Q seq(Q l, Q r);

public abstract Q unit();

public abstract Q iter(Q x);

public abstract Q residual(Q sofar, Q target);

public boolean LE(Q left, Q right) {

return LUB(left, right).equals(right);

}

public boolean isCommutative() { return false; }

public abstract ArrayList<Class<? extends Annotation>> getValidEffects();

}

Fig. 4: Framework interface to effect quantales with effects represented by type Q.

– Similarly, if the argument subterm’s effect could not be sequenced after χ0

and the function subterm’s effect, type-checking of the argument would fail
(note that the function’s effect is passed into type-checking for the argument).

– The only residual not guaranteed to be defined is the final step of the residual
checking, involving the function’s latent effect, whose interaction with the
evaluation context is not implied by the function and argument subterm
effects.

The cases for conditionals and loops are similar, checking subexpressions in
program order, with only one new explicit residual check in each case.

5 Implementation

We have implemented this approach in a prototype extension of the Checker
Framework [55,14] to support sequential effect systems. Currently we support
the fragment of Java corresponding to a core object-oriented language: classes,
methods (including checking a method override’s effect is less than the original’s),
conditionals, while loops, calls, and switch statements. Exceptions are supported
through a variant of Gordon’s work on tagged delimited continuations [28],
described in more detail in Appendix B.

The framework extension is parameterized by a choice of effect quantale,
represented by the abstract class in Figure 4, which is parameterized by the
representation type Q for a given system’s effects. It contains operations for ⊔
(LUB), � (seq), unit, −∗ (iter), and residual checks (residual). Partiality is
modeled by returning null. A default implementation of ⊑ (LE) is provided
but can be overridden with more efficient implementations. getValidEffects()
produces a list of Java annotation types the framework should recognize as being
part of this effect quantale.

isCommutative indicates whether the effect quantale is commutative, which
the framework uses to recover exhaustive error checking for such systems. In
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general, when the effect of an expression is α� β � γ and the residual (α� β) \ δ
is undefined, the framework stops issuing errors about the rest of execution on
the same path through the current method, because all residuals with more
complete body effects (e.g., (α � β � γ) \ δ) will also be undefined, but not
necessarily because of problems with the extensions (i.e., γ may be fine if the
problem is β, in which case further errors would be redundant). However, in
the case of a commutative �, the framework can exploit commutativity to give
additional error messages. For example, if (α� β) \ δ is undefined as before, then
(α�β�γ)\ δ will also be undefined, but α�β�γ = α�γ�β, and it is possible
that (α�γ)\δ may be defined or undefined, independent of the residual involving
β. This is precisely why the standard approach for join-semilattice effect systems
of checking individual subexpressions’ effects against a bound works and gives all
appropriate errors: in our setting, the residual is defined as the bound itself as
long as the effect so far is less than the bound, which via commutativity extends
to the join of any non-empty subset of body effects being less than the bound.
Note however that our approach is general to any commutative effect quantale,
including systems like must-effect analysis [48], not just join semilattices.

General checking logic in the Checker Framework (as in the rest of the Java
compiler) uses a visitor to traverse ASTs, rather than recursive traversals in
Figure 3. The Java compiler provides the type environment as ambient state in
this setting, and the implementation also maintains the current χm and χ0 as
visitor state — χ0 is maintained as a stack of subexpression effects which can be
rewound to consider alternate paths (e.g., different branches of a conditional).
But the core algorithm is as demonstrated in the application case of Figure 3,
with a single explicit residual check in each case.

We do make two kinds of extensions to the logic. First, in addition to other
varieties of loops (which are straightforward adaptations of T-While), we
handle additional language constructs present in Java: our handling of exceptions,
breaks, and early returns follows an extension of Gordon’s work on effect systems
for tagged delimited continuations [28]. Gordon defines a transformation of
an arbitrary effect quantale that is ignorant of non-local control flow to one
that works with tagged delimited continuations. From this, typing rules for
checked exceptions, break statements, and early returns can be derived, which we
implement. We also extend this construction with residuals, and it is this extension
which requires our shift to weak residuals: intuitively, Gordon’s construction
tracks sets of possible effects for each execution path (normal execution, for
each thrown exception, etc.). In general, the greatest possible residual for this
construction may require modeling an infinite set, while our implementation
relies on finite sets. Further details of our handling and residual are given in
Appendix B.

Second, when a type error is encountered, the algorithm does not immediately
stop. It will immediately report the error, but then sets a flag indicating an error
has been found on the current path, suppressing further error reporting. Then
traversal continues in order to visit subexpressions that correspond to checking
different method bodies (i.e., lambda expressions and anonymous inner classes)
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and report errors there, which are independent of errors in the surrounding
code. When checking conditionals, if an error is encountered in one branch the
algorithm resets the flag for an error on the current path and checks the other
branch as if it were the only branch (including visiting code later in program
order than the whole conditional construct). This permits the implementation to
report additional independent errors, rather than allowing errors in one branch
to shadow errors in the other.

Our extension inherits the Checker Framework’s existing robust support for
subtyping, and type generics. While not used in any of our evaluations, the base
implementation of the effect visitor extends the base implementation used for
the Checker Framework’s focus on type qualifiers [24], so effect systems can in
principle make use of type qualifiers to determine effects.

Effects are declared as Java annotations targeting method nodes. This unfor-
tunately requires a bit of boilerplate: each effect requires 10 lines of code, but 8
are identical across all declarations (import statements and meta-annotations
for the Java compiler to allow them on method declarations and persist them in
bytecode), with the remaining lines being the package declaration and one line
for naming the actual annotation.

Performance The execution time of these checkers is dependent primarily on two
factors. The first is the underlying effect quantale: if computing sequencing, joins,
iteration, and residuals for the underlying effect quantale is particularly slow, this
will slow the whole framework. The atomicity and reentrancy effect systems we
have implemented (Section 6) both have very fast basic effect quantale operations.
The second is the cost of working with the control effect transformation of the
underlying effect system to handle exceptions, breaks, and non-local returns
without individual effect systems needing to address them (Appendix B). In the
common case (no non-local control flow) an effect represented as an object with
an underlying effect representation, and two null pointers, so the operations have
very little additional cost over ignoring non-local control entirely. In code that
contains non-local control flow or calls methods with checked exceptions, a prefix
effect characterizing behavior up to each break, non-local return, throw, and
checked exception mentioned in the signatures of called methods. Composing such
effects may trigger at most n additional calls to the underlying effect quantale
when each effect is tracking at most n non-local behaviors, so the costs do not
grow significantly with code complexity.

Critically, since we analyze a single method at a time, even when those sets
become large their performance impact is confined to the current method being
checked. The only way for complexity of one method to influence the cost of
checking another is via method annotations that expose latent effects for a variety
of different thrown exceptions in addition to the non-exceptional method body
effect. In general the number of such annotations that must appear is dependent
not only on the program being analyzed, but also on the specific effect system in
use.
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In practice, the performance of our implementation, for the inexpensive effect
quantales described in the next section, is on par with other existing pluggable
type systems in the Checker Framework.

6 Evaluation

The hypothesis underlying this work is that residuals offer a clear-cut way
to localize sequential effect system errors to the earliest program location in
program order where a mistake can be recognized, and that this useful precision
for developers.

We have implemented two sequential effect systems in this framework to
evaluate whether the error locations reported are accurate, which we approach
from two angles. First, we reproduce part of Flanagan and Qadeer’s evaluation
of their atomicity effect system [21], where they found atomicity errors in the
then-current JDK (which have since been fixed). The original evaluation simply
described the errors as being found as a result of their analysis, with the impli-
cation that their tool used global reporting and thus all location of the error
was manually driven. Second, we evaluate the accuracy of error reporting for the
reentrancy effect system applied to non-reentrant database transactions. This is
a common situation across Spring Hibernate, JDBC, and other database systems,
and is a situation with non-trivial interactions with exceptions. We find that the
residual-based error locations are both predictable and accurate. We evaluate
these two systems because they cover both total and partial effect quantales,
and because they are simple enough (both are finite with 5 effects each) that we
believe we can evaluate the residual-based locations of errors without becoming
entangled in deeper questions of how error messages are presented, which we
believe is important future work for systems like trace effects via regular languages
(Section 3.2) where the effects themselves, and consequently the relationship
between the residual’s existence and the effects a programmer specifies, are more
complex.

6.1 Reproducing Atomicity Errors

We have implemented the earlier of Flanagan and Qadeer’s systems for static
checking of atomicity via effects [22] (introduced in Section 3.3), in 201LOC,
50 of which were for the 5 effect declarations. A full reimplementation would
require integration with a data race freedom system [29] (since data races are
non-atomic, while well-synchronized memory accesses are both-movers); this
version assumes data race freedom. We have run our atomicity checker with
residual-based error reporting on several of the JDK1.4 Java classes reported in
Flanagan and Qadeer’s evaluation to have errors, to check how accurate or useful
the reported location is.

The most prominent example in their evaluation was an atomicity violation
in the StringBuffer code in Figure 5. The bug in the code is that while the
code synchronizes on (locks) the receiver this, it performs two atomic actions in
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@Atomic

@ThrownEffect(exception = StringIndexOutOfBoundsException.class, behavior = Atomic.class)

public synchronized StringBuffer append(StringBuffer sb) {

if (sb == null) {

sb = NULL;

}

int len = sb.length();

int newcount = count + len;

if (newcount > value.length)

expandCapacity(newcount);

sb.getChars(0, len, value, count); // <-- Error reported here

count = newcount;

return this;

}

Fig. 5: Excerpt from JDK1.4 StringBuffer implementation.

the body (calls two atomic methods on the argument, which is not locked), even
though it is supposed to be atomic. Our prototype reports the second atomic
operation, which is the first subexpression in the body that makes it impossible
for the remainder of the method to have an overall atomic effect.

Flanagan and Qadeer report a similar bug in java.lang.String (of JDK
1.4), shown in Figure 6. There the same StringBuffer methods are involved.
Again our technique indicates the exact point in the method beyond which an
overall method body effect consistent with the annotation is impossible. In this
case, it saves the developer the trouble of looking at most of the method code.

Flanagan and Qadeer also analyzed other parts of the JDK 1.4, but we have
had difficulty getting other classes from their evaluation to be accepted with only
minor modifications by the modern Java compiler the Checker Framework is a
plugin to.

6.2 Reentrancy

We have also implemented Tate’s system for reentrancy checking [68] (introduced
in Section 3.4). In this system, the critical effect describes code which is safe to
use inside a critical section, but which may not begin another (nested) critical
section or end the current (presumed) critical section. For our evaluation, rather
than focusing on non-reentrant locks (which are little-used in Java), we have
focused instead on database transactions, as some database systems (notably
Hibernate) do not support nested transactions at all, while general-purpose
database interfaces like JDBC leave the behavior of nested transactions up to the
particular backend chosen (making the use of nested transactions clearly wrong
for some backends, and more generally undefined behavior).
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@Atomic

public boolean contentEquals(StringBuffer sb) {

if (count != sb.length())

return false;

char v1[] = value;

char v2[] = sb.getValue(); // <-- Error reported here

int i = offset;

int j = 0;

int n = count;

while (n-- != 0) {

if (v1[i++] != v2[j++])

return false;

}

return true;

}

Fig. 6: Excerpt from JDK1.4 String implementation.

For our case study we focus on a variant of JBoss Hibernate’s transaction
API.5

Consider the example code in Figure 7 from Hibernate’s documentation.6

Despite its small size, the main method docExample (correctly) handles several
significant subtleties. The main transaction itself is in a try-catch block, as the
session and transaction methods may throw an exception. The doWork() method,
a factored out transaction body, is marked @Critical. The commit method is
annotated as

@Unlocking

@ThrownEffect(exception=TxException.class, behavior=Basic.class)

public void commit();

indicating that if it succeeds it behaves as if unlocking (i.e., finishing the trans-
action), while if it throws a SQLException the transaction remains open. This
ensures that if the body throws an exception, the catch block is checked assuming
the code has not yet finished the transaction, requiring the rollback attempt.
Because rollback is typically a last-resort fallback, it is annotated as

5 This is a variant of the current API with checked exceptions. We must currently use a
variant because the Checker Framework’s support for stub files (a means to externally
annotate compiled JAR files) does not propagate our @ThrownEffect annotation to
the checker because it does not satisfy some in-built assumptions about which checker
“owns” the annotation. While this certainly affects the real-world applicability of our
checker as a tool, it does not impact our evaluation of error reporting accuracy against
an extracted copy of the API, and our focus is evaluation of the residual-based error
reporting.

6 https://docs.jboss.org/hibernate/orm/3.2/api/org/hibernate/Session.

html#beginTransaction()
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@Entrant

@ThrownEffect(exception = TxException.class, behavior=Entrant.class)

public void docExample(SessionFactory factory) throws TxException {

Session sess = factory.openSession();

Transaction tx = null;

try {

tx = sess.beginTransaction();

} catch (TxException e) {

sess.close();

throw e;

}

try {

doWork(tx);

tx.commit();

} catch (TxException e) {

tx.rollback();

throw e;

} finally {

sess.close();

}

}

Fig. 7: Slight refactoring of example from Hibernate documentation.

@Unlocking

@ThrownEffect(exception=TxException.class, behavior=Unlocking.class)

public void rollback();

since if it fails, the connection is almost certainly broken, and the database will
automatically rollback the transaction after a timeout.

Unlike the atomicity system, some sequential compositions in the reentrancy
effect system are already undefined (recall Figure 1b), and would be immediately
and locally rejected even without residual-based error detection, which is focused
on cases where composition is defined but has already committed the program
being analyzed to a course already known to be incompatible with its top-level
effect specification. So, for example, attempting to start an additional nested
transaction would have effect @Locking�@Locking, which is undefined and would
be rejected without our extensions. The additional cases which are rejected earlier
due to residual-based error checking are related to the rows of Figure 1b’s � table
lacking certain operations: notice that each non-unit row of the table has either
locking and entrant results, or unlocking and critical results. The former rows (for
locking � − and entrant � −) correspond to cases where the code has already
committed to being code that must start running not inside a transaction, so have
no residual with respect to a method-level annotation that the method’s code
should be able to start inside a transaction (i.e., have the critical or unlocking)
effect.
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The additional errors thus manifest in refactoring of the example code’s
actual work into doWork. In large projects, it is easy to lose track of the intended
execution context of a method [30], sometimes resulting in developers incorrectly
assuming they may need to construct some of that context themselves. While
directly starting a nested transaction in the same syntactic scope as another
transaction start would be undefined and therefore reported precisely even without
our extension (one of the original, informal arguments in favor of effect quantales
being partial [29]), factoring the body of the transaction out into this helper
method requires annotating the transaction body method with an effect. If it
were annotated with @Entrant, the call site (specifically) would be rejected as
undefined (since @Locking�@Entrant is undefined). Annotating it as @Critical
(as we do) the call site is accepted, but the factored-out method would be rejected,
raising the question of where the error would be reported. Our technique reports
the start of the nested transaction as the error location even if it is the first line
of code:

@Critical

@ThrownEffect(exception=TxException.class, behavior=Critical.class)

public void doWork(Transaction tx) throws TxException {

...

tx.begin(); // <-- error reported

...

}

Thus also with an effect quantale with partially-defined compositions, residual-
based error checking yields additional precise error locations.

7 Related Work

The most closely-related work to ours is that on implementations of sequen-
tial effect systems. The implementations we know of for concrete sequential
effect systems [65,21] do not have error handling described in the corresponding
publications, but are formalized in the standard way which corresponds to the
all-at-once method behavior check. It is possible that these systems implemented
some kind of eager error reporting in the tools themselves, but the sources are no
longer available and in any case these would be optimizations for specific effect
systems. Our results establish a profitable eager error reporting strategy for many
sequential effect systems expressible as effect quantales (it is not necessarily the
case that all effect quantales have a residual operator as we propose, but all those
described as effect quantales in the literature [29] have residual operators).

There have also been a number of generalized implementations of sequential
effect system frameworks. Hicks et al. [34] implement a general elaboration to
polymonadic effects, which are equivalent to Tate’s productors [68]. They use a
constraint-based approach to determine which specific monad each expression
should be in (and therefore the effect of each expression). Orchard and Pet-
ricek [53] and Bracker and Nilsson [8] implement an embedding of graded monads
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into Haskell, using typeclass constraints to define the composition and lifting
operations. Because this is constraint-based, effect errors will be issued at an
arbitrary program point corresponding to a failed constraint, which as in general
type inference may be not directly related to the actual mistake in the program.
Bracker and Nilsson [9,10] later defined supermonads, which generalize many
monadic computation types by generalizing to an arbitrary number of parameters
to a monadic type (vs. 1 for indexed monads [72], 2 for parameterized monads [3]),
and can be used to express polymonads. They also added specialized support
for supermonad constraints to Haskell’s type inference. Ultimately, because the
constraints are still solved in an arbitrary solver-selected order, this suffers from
the same problems with unpredictable error locations that exist in the normal
Haskell implementations, where errors may be issued in unproblematic program
locations, and program changes unrelated to the error may change where an error
is reported by affecting constraint solving order. Our approach yields predictable
error locations with some guaranteed relevance to actual program errors.

More broadly, there is a wealth of work on better localizing type errors in
constraint-based type inference. Many techniques have been applied with a wide
variety of trade-offs. Most of this involves searching for a minimal program or
type repair that results in inference succeeding [74,57,56,45,12], and reports the
location whose term or type was assumed to change or whose type constraint was
removed as the most likely error location (in general a program with a general
type error may have many incompatible constraints, so the smallest number of
changes or removals that fixes the most incompatibilities is likely a source). These
approaches are all quite sensible, though both their approaches and setting differs
significantly from ours. None of this work on localizing type inference errors
treats effects (notably, none of it targets a language in which monads are used to
encode effects, though in principle these techniques could be applied to Haskell
and thus the Haskell embeddings of effects above). The assumptions available to
us for our work are also much stronger in some ways than what is available to
the general type inference localization problem. Because sequential effects are so
closely coupled with evaluation order, there is a semantically-meaningful notion
of best error location, while in general type inference the earliest inconsistency
in program order may not be meaningfully related to the actual error location
(hence the common practice there of exploring formalizations of the intuitive
notions of “minimum changes to fix”). In addition, our effects have far more
structure than typical type inference problems, because compared to general bags
of constraints as in HM(X) [52] or extensions thereof for object-orientation [58,71],
effect quantales afford a convenient algebraic characterization of an operation
useful for error location: the residual. As a result, our work is the first which
takes an algebraic approach to localizing effect errors.

8 Conclusions

We have proposed the first algebraic approach to localizing errors in sequential
(flow-sensitive) effect systems, by exploiting the notion of a partial residual. This
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approach is guaranteed to give more precise error locations than the method-global
(and therefore highly imprecise) or constraint-based (and therefore unpredictable)
techniques used in all prior sequential effect system implementations, locations
which are moreover guaranteed to have relevance to the actual program mistake.
We have implemented our technique for Java in a fork of the open source Checker
Framework, and shown that our technique gives specific meaningful error messages
for previously studied bugs.

References

1. Abadi, M., Flanagan, C., Freund, S.N.: Types for safe locking: Static race detection
for java. ACM Trans. Program. Lang. Syst. 28(2) (2006)

2. Amtoft, T., Nielson, F., Nielson, H.R.: Type and Effect Systems: Behaviours for
Concurrency. Imperial College Press, London, UK (1999)

3. Atkey, R.: Parameterised Notions of Computation. Journal of Functional Program-
ming 19, 335–376 (July 2009)
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A Further Residuated Effect Quantales

A.1 Parameterized Monads

Parameterized monads [3] are monads indexed by models of state before and after
execution of an expression, which Atkey showed can be used to capture session
types [35], answer type modification for delimited continuations [13], and other
examples; more broadly, they capture program logics as effects [54]. Parameterized
monads always have all residuals of effects with matching preconditions:

(x, y) \ (x, z) = (y, z)

Interpreting the effects a pre- and post-state pairs as originally intended,
there is of course no guarantee that any program exists with the residual as
an effect (taking the parameterized monad capturing Hoare logic, there should
be no program with effect (true, false)). In practice this is can in the worst case
push error reports to the full method level, as alluded to in the earlier discussion
that residuals only assist with error localization when residuals are sometimes
undefined. Notably, if a program fragment (roughly, prefix of a method’s code)
leaves effect (x, z) “left” to execute, it can always be followed by any program
fragment with precondition x, and the residual will still be defined. In general,
this means errors in a parameterized monad (as an effect quantale) will always
appear either (1) when one computation fails to establish the precondition of the
next in program order (including cases where no program fragment with that
precondition exists), or (2) when effect completion is checked at the end of an
execution path. These are the same points of effect-checking failure present in
any implementation of parameterized monads, but because our type-checking
uses deterministic computation simulating program order, rather than using
possibly-non-deterministic constraint solving that ignores program order, we will
always observe the earliest error in program order.

A.2 2-operation Commutative Effects

Mycroft et al. [48] offer a 2-operation commutative effect system for must-do
analysis: where an effect describes a set of operations code is guaranteed to do
(modulo termination). Gordon [29] models this as an effect quantale:

Definition 6 (Must Effects). For a set Υ of events of interest:
E = P(Υ ) X � Y = X ∪ Y X ⊔ Y = X ∩ Y I = ∅
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Note that the ordering on these effects is the opposite of the typical inclusion
ordering for powersets: for two branches with effects (definite actions) X and Y ,
the set of definite actions for a conditional uses the intersection of their definite
actions (those definitely occurring on both branches). In this case, the residual is:

X \ Y = {y ∈ Y | y ̸∈ X}

The right hand side above could be written simply as set difference, but we have
reserved the standard notaton for set difference in this paper for residuals, in
keeping with the literature on ordered semigroups rather than combinatorics.

B Extensions for Nonlocal Control Flow

There are two primary extensions to the formal system of Figure 2 necessary for
Java.

Exceptions Exceptions are implemented conceptually as a restriction of Gordon’s
work on sequential effects for tagged delimited continuations [28]. The core idea
is that each expression has not just one effect, but instead a combination of:

– One effect bounding behaviors on all normal return paths (e.g., via a return

statement or finishing execution of a void method), which may be absent for
expressions which always throw (or later, break). We call this the underlying
effect.

– Effects for each checked exception the method may throw, capturing the
behavior up to the time the exception was thrown. We call this behavior up
to the throw the prefix effect of the throw.

Gordon [28] describes a construction C(−) which transforms an effect quantale
with no treatment of special behaviors into one with support for tagged delimited
continuations with abort (as in Racket [23]), and uses typing rules for those
constructs to derive typing rules for other constructs such as exceptions and
generators. We give here a variant of a subset of this construction based on the
ideas above, sufficient for treating Java’s checked exceptions.

Definition 7 (Exception Effect Quantale). Given an effect quantale Q, and
poset of set of checked exceptions X define the exception effect quantale EX(Q)
to be the effect quantale with carrier (option Q)× set (E ×Q) (a pair of optional
underlying effect and a set of control effects):

– I = (IQ, ∅)

– (χ,X)� (χ′, X ′) =

 (None, X) when χ = None
(None, X ∪ (χ�X ′)) when χ′ = None
(χ�Q χ′, X ∪ (χ�X ′)) otherwise


– (χ,X) ⊔ (χ′, X ′) = (χ ⊔Q χ′, X ∪X ′)
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Above, the notation χ� x for χ an element of the (underlying) effect quantale Q
and x a set of control effects as above is defined as:

χ� x = map (λ(χ′, x). (χ�Q χ, x))

That is, it extends the prefix effect on the left with the non-throwing behaviors
that preceeded. If any resulting use of the underlying effect quantale’s operators is
undefined, so is the corresponding operator on the exception effect quantale.

Intuitively, the rule for try blocks matches the prefix effect of an exception
with the behavior of the corresponding catch block, and non-exceptional runs of
the catch block, following that prefix, are joined (via ⊔) with the normal effect
of non-exceptional executions of a try block.

, but first we describe the residual operator on this construction, Assuming
a residual operator on the underlying effect quantale, we can describe a weak
residual operator on EX(Q):

(Some(χ), X) \ (Some(χ′), X ′) = (Some(χ \ χ′), excResiduals(χ,X ′))

when the underlying residual is defined and

∀(χx, x) ∈ X.∃χx′ , x′. χx ⊑ χx′ ∧ x ≤ x′

where

excResiduals(χ,X) = map (λ(χx, x). (χ\χx, x)) (filter (λ(χx, x). defined(χ\χx))X)

i.e., excResiduals filters exception behaviors which have a residual with the
behavior so far (i.e., those for which the underlying behavior so far is a prefix
of the permitted exception prefix), and then replaces those behaviors with that
underlying residual (since the overall residual wants behaviors that can be
sequenced after the behavior so far and still be less than the target behaviors).
This construction is the reason we must work with weak residuals: depending
on the underlying effect quantale transformed in this way, the greatest possible
quotient result may be an infinite set which we cannot represent programmatically;
our implementation works only with finite sets.

Visitor state includes not only the aforementioned markable stack of effects,
but also a map from exception types to effects. When a throw is visited, the
thrown expression is first recursively visited, then the exception map is updated
with the current base effect (χ0) and the regular return effect is marked impossible
to indicate no non-exceptional return paths exist for the throws clause. (The
impossible mark can be removed by visitors higher up the tree, such as when the
throw is in one branch of a conditional.)

Method calls with checked exceptions are handled similarly, but instead state
is updated for each checked exception that may be thrown, and the base effect is
extended by the normal latent effect to accommodate standard return paths.

The description thus far corresponds precisely to a subset of Gordon’s sys-
tem [28]. One complication of Java exceptions not treated by Gordon’s system
is the subtyping relationship between exceptions. At the cost of some precision,
exception subtyping is handled as follows:
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– If a possible throw of an exception type not already in the exception map is
encountered, it is handled as above

– For a possible throw of an exception that is a supertype of one or more
exceptions already in the exception map, the supertype is added to the map
with an effect that is the least upper bound of the current path and the
effects for all known subtypes of it that may be thrown.

– For a possible throw of an exception that is a subtype of one or more exceptions
already in the exception map, the subtype’s own path is handled as above,
but all known supertypes’ exceptional effects are updated to the least upper
bound of the known effect and the new prefix effect.

This maintains the invariant that if the exceptional effect map has entries for
both Sub and Sup where Sub extends Sup, the effect for Sup is always greater
than or equal to the effect tracked for Sub. If the mentioned least-upper-bounds
do not exist, an error is issued.

Try-catch blocks are given effects in line with Gordon’s work [28], as the least
upper bound of the try block’s normal effect and any valid pairing of a tracked
exceptional effect and a corresponding catch block (i.e., the least-upper-bound
of the effects of every path through the try-catch). After the try-catch, any
caught exceptions are removed from the map. At the method level, any remaining
exceptions are compared against exceptional return effects, e.g.,

@ExceptionEffect(IOException.class, Atomic.class)

indicates that executions of the annotated method that finish by throwing an
IOException have effect @Atomic.

One final shift is that residual checks are now performed not only with regards
to the base (normal-return) effect, but also with regard to annotated exceptional
behaviors. So errors are only issued if the current execution effect has no residual
with (is not an effect prefix of) the method’s base effect or any of the annotated
exception effects (i.e., it is possible that χ \ χm for effects tracking exceptions
contains only exception-throwing paths).

Early Returns and Breaks Early returns and breaks are handled similarly to
exceptions, as an additional set of prefix-before-nonlocal-control effects. At each
source construct which may be the target of a break (loop boundaries, switch
statements), break behaviours are flattened into the underlying behavior. Likewise,
early-return effects are flattened at method boundaries. Both of these accumulate
extended prefixes when they occur in loops, just as Gordon [28] treats abort
effects; the identity of the AST node a break or early return would target is
essentially used as a unique tag for those non-local control transfers in Gordon’s
work.


