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Abstract—The physical memory layout of a tree-based index
structure deteriorates over time as it sustains more updates;
such that sequential scans on the physical level become non-
sequential, and therefore slower. Packed Memory Arrays (PMAs)
prevent this by managing all data in a sequential sparse array.
PMAs have been studied mostly theoretically but suffer from
practical problems, as we show in this paper. We study and
fix these problems, resulting in an improved data structure: the
Rewired Memory Array (RMA). We compare RMA with the
main previous PMA implementations as well as state-of-the-art
tree index structures and show on a wide variety of data and
query distributions that RMA can reach competitive update and
point lookup performance, while always providing superior scan
performance – close to dense column scans.

I. INTRODUCTION

Columnar formats have become the staple storage for an-
alytical data processing systems, but increasingly analytically
strong systems are being expected to also deliver at least
decent throughput while this data is being updated and queried
with short-running queries. Such workloads are mixed and
sometimes also called Hybrid Transactional-Analytical Pro-
cessing (HTAP). The need to provide sub-linear update and
lookup performance can be fulfilled by some variant of the
B+ tree index. Following [24], we use the term B+ tree when
the node capacity is optimised for disk access, while using
(a, b)-tree for trees optimised for CPU cache-line access [4].

In columnar engines, (a, b)-trees do not quite fit naturally,
though. Column stores are optimised to crunch data through
sequential (range-)scans, whereas the “optimality” of (a, b)-
trees stems from the I/O model [2], [24]. If the node capacity
B is chosen to fit a cache-line, then (a, b)-trees have com-
plexity Θ(R/B) for a scan of R elements. However, these
are actually Θ(R/B) random jumps, which are much more
expensive than sequential jumps [13]. We find scans on (a, b)-
trees to be 3x slower than dense column scans. Our goal is a
data structure that provides much faster column scans.

Specifically, as tree data structures sustain continuous up-
date (insert/delete/modify) operations, the logical order that
they maintain on their data, cannot be maintained on the
physical level (disk block, or cache line), since new tree nodes
(typically allocated at the physical end) are inserted in the
logical middle, and/or blocks are deleted and merged, creating
physical holes.1 To mitigate this, columnar engines store sorted
data in a hybrid manner [16], [21]. A large part of the data is

1A fast-forward to Figure 13a shows this significantly affects performance
already after 1-2% of tuples are updated.

statically stored in dense columns, sorted by the search key.
Instead, updates are performed in a secondary data structure,
the “delta”, which can even be modeled as an (a, b)-tree. To
retrieve the actual tuples, an operator needs to scan both the
static section and the delta, merging in the updates from the
latter. Due to this merge effort that slows down each read
query, this solution only works well if the delta is small.

In this paper we investigate an alternative design, based
on packed memory arrays (PMA) 2. The columns become
“sparse” rather than “dense”. Among the stored elements there
are empty gaps, to accommodate potential future updates.
Therefore, updates can be directly performed in place. Scans
are now truly sequential, and updates can come at logarithmic
data complexity, but are slower than on (a, b)-trees.

Despite their theoretical properties, straight implementations
of sparse arrays do not match properly tuned (a, b)-trees in
practice. First, in Figure 1a we point out that our starting
baseline implementation is faster than the implementations
published so far3. In this experiment we insert, following a
uniform distribution, 1G of 8 byte integer key/value pairs in an
empty container, and then perform random contiguous scans of
1% of the final data structure. Then, we compare the same data
structure over a custom implementation of (a, b)-trees, similar
to STX-Tree [11]. In (a, b)-trees, we can vary the maximum
capacity B of the leaves, to improve either scans or updates
and point look-ups. However, already in this experiment, we
note that both insertions and scans perform better on a (a, b)-
tree with well-chosen node size (B = 256 elements = 4kB).
One contribution of this paper is hence to point out that PMAs
so far provide no practical value, something not asserted in
publications describing them.

There are several factors that hinder the performance
of sparse arrays. For scans, a substantial CPU branch-
misprediction penalty is paid by checking whether each slot of
the array is filled or not. For updates, the data structure needs
to be occasionally rebalanced, increasing the average cost of
these operations. Moreover, during a rebalancing, elements
in the array may be moved, also causing an update to the
separator keys of the index that PMAs keep on the side in order

2In this paper we consider the terms sparse array and packed memory array
(PMA) as synonyms.

3The source code of PM14 [25], KLS17 [20] and SLH17 [30] is publicly
available online, released by their respective authors. The source code of
DRF12 [14] has been provided by its authors upon request. We briefly discuss
these applications in Section VI, Related work.
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c) Final contributions

Fig. 1. a) Our PMA baseline is competitive with state of the art PMAs. b) (a, b)-trees are superior to state of the art PMAs. c) Our final data structure RMA
is a practical alternative to optimised (a, b)-trees for HTAP applications where scan performance is the primary concern: RMA scans are 2x faster while
update performance is much closer to (a, b)-trees than state of the art PMAs.

to avoid pure binary search. In presence of skew, sparse arrays
hit their worst-case scenario and more internal reorganisations
are carried over during updates, while update skew for (a, b)-
trees is their best case, as it creates most locality.

Summary of contributions. We propose the Rewired Memory
Array (RMA), an improved version of sparse arrays that
fixes its major flaws and adds the new technique of memory
rewiring [29] into its rebalancing mechanism. The RMA can
be tuned by an extra parameter, the segment size B, similar
to the leaf capacity of (a, b)-trees. The RMA provides scan
performance closer to dense arrays, and an update performance
competitive to (a, b)-trees, at corresponding segment/leaf ca-
pacity. Figure 1c depicts our experimental results of RMA,
compared to our initial PMA baseline. Our contributions are:
• Through the introduction or adoption of a number of

novel techniques, which are clustering, fixed size seg-
ments, static index [12] and memory rewiring [29], we
overcome the base hindrance of range scans while reduc-
ing the latency of internal rebalances.

• We refine a feature, adaptive rebalancing, first proposed
in the Adaptive PMA (APMA) [10]. Adaptive rebalancing
reduces the number of rebalances occurring in presence
of update skew. Still, we uncover that the adaptive rebal-
ancing strategy of APMA can be detrimental, and propose
a new algorithm, resolving its limitations.

• We present a new bulk loading algorithm. It is particularly
suitable for the streaming scenario [30], [31], where the
cardinality of the array is kept constant, and updates,
featuring the same amount of insertions and deletions,
are executed in batches at regular intervals.

This paper is organised as follows: In Section II, we sum-
marise PMAs and their properties. In Section III, we describe
our contributions: clustering, fixed segment sizes, the static
index structure, the usage of memory rewiring for rebalances,
while leaving the treatment of adaptive rebalancing to Section
IV. In Section V, we evaluate our RMA and compare it to
(a, b)-trees, ART [22] and static arrays. We review related
work in Section VI, and conclude in Section VII.

II. PRELIMINARIES

Traditional PMA. A packed memory array is an array where
elements are stored according to a sorted order, interleaved
with empty slots or gaps. The gaps serve the purpose of
providing extra room to insert new elements in arbitrary
positions of the array, without the need to shift long sequences
of existing elements to maintain the sorted order.

The insert, delete, search and range-scan operations are
implemented as follows. Searching an element in the array can
be realised by exploiting the sorted order with a binary search.
A range scan involves sequentially iterating over the array
between the two endpoints of the range. Here, empty slots are
simply ignored. To insert a new element, the algorithm first
searches its target slot in the array. However, if the position
is already occupied by another element e, the algorithm will
first shift e and all adjacent elements of e towards the nearest
gap in the array. Finally, to delete an element in the array, the
algorithm simply marks its slot as empty.

The key to efficiently support these operations is to re-
adjust locally the data structure once portions become too
sparse or too dense. The underlying array, of capacity C,
is logically split in O(C/log2C) segments of size O(log2C).
When inserting (resp. deleting) an element, the algorithm also
checks the number of gaps g present in the related segment. If
g is too small (resp. too big) w.r.t. a given predefined threshold,
the algorithm starts to inspect the adjacent segments until it
detects an amount of gaps within a range of certain specified
thresholds. At this point a rebalancing operation takes place:
all elements in the window W , i.e. the considered sequence of
adjacent segments, are evenly spread in W . As consequence,
all segments s ∈ W feature the same number of gaps and
the same density. However, if the whole underlying array
cannot satisfy the required thresholds, then the data structure
is resized, altering the capacity of the array.

Both the predefined thresholds and the order in which the
segments are visited play a fundamental role in the complexity
of rebalancing. A binary tree, named calibrator tree [17], is
logically built bottom-up starting from the segments, which act
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Fig. 2. a) The calibrator tree of a sparse array of capacity 24, with 4 segments
of size s = 6, and height of the tree h = 3. The arrows above the array
represent the nodes of the calibrator tree, together with their associated lower
ρl and higher τl thresholds. b) The outcome of even rebalancing the elements
in the whole array. c) The outcome of adaptive rebalancing, when the whole
array is considered and the algorithm detects elements are inserted only at
the start of the array.

as the leaves of the tree (see Figure 2a). Grouping the adjacent
leaves two by two, we form the inner nodes at the second
level of the tree. We recursively repeat the above process up
to the root. Furthermore, for each level l in the calibrator
tree, a lower ρl and a higher τl density threshold are defined,
following an arithmetic series. The leaf-to-root path identifies
the segments to inspect at each step of rebalancing, while
the thresholds bind the amount of gaps that each window
can contain, or, equivalently, their minimum and maximum
densities. Formally, the density δ(W ) of a window W is the
ratio between the number of stored elements card(W ) and the
capacity cap(W ).

Complexity. The tightest bounds for the data structure are
based on amortised analysis. In the RAM model, given C the
capacity of the underlying array, updates feature O(log2

2C)
in worst case amortised analysis per update operation [4],
[18], and, if the keys follow a uniform distribution, O(log2C)
in average amortised analysis [7], [18]. In fact, because the
number of elements N stored at any time is proportional to the
capacity C of the array, i.e. N ∝ C, the actual complexity is
bounded by O(log2

2N) in the amortised worst case, per update
operation. In the I/O model, the complexity straightforwardly
turns to O(log2

2N)/B amortised worst case per update [3],
[4]. Lookups cost O(log2N) due to binary search, but it can
be enhanced to O(logBN) in the I/O model with the use of
an external index [3], [4], [10]. Range scans are bounded by
O(R/B) sequential accesses in worst case complexity, where
R is the number of elements in the range.

Adaptive PMA. The Adaptive PMA (APMA) refines the
rebalancing strategy of the Traditional PMA (TPMA), improv-
ing its behaviour for sequential and, more generally, hammer
insertions. Hammering [10] refers to continuous and frequent
insertions occurring in the same regions of the array. It triggers
the worst case scenario in TPMA. The intuition of the adaptive
strategy is that, during a rebalancing, if an interval is subject
to hammering, the elements contained are not spread evenly.

Rather, as many gaps as allowed by the thresholds of the
calibrator tree are displaced in the area where hammering
occurred, while most elements are moved to the rest of the
window being rebalanced.

If the same segments continue to be hammered, then the
complexity in the RAM model (resp. I/O model) becomes
O(log2N) (resp. O(log2N/B)) in amortised worst case, per
insertion. However, if the prediction turns out to be wrong,
and insertions occur in different sections of the array, this
strategy still guarantees an upper bound of O(log2

2N) (resp.
O(log2

2(N)/B)) per insertion in amortised worst case com-
plexity. Figures 2b and 2c depict the outcome of traditional
and adaptive rebalancing, assuming that the APMA algorithm
detects insertions only occurring at the start of the array.

While APMA improves theoretically the behaviour of
TPMA, it also carries some drawbacks in practice. First, it
does not support deletions. Second, its rebalancing algorithm
employs a complicate scoring heuristics to assert the amount
of “hammering” of each segment. Third, and foremost, the
algorithm can cause a ping-pong effect, where the adaptive
strategy can, in practical scenarios, even become detrimental
compared to traditional rebalancing.

For instance, consider the scenario where the latest inser-
tions in the sample array of Figure 2a were the elements 14, 15
and 16. On a rebalance, if APMA detects this pattern, it tries to
place as many gaps as possible in the first segment, expecting
future insertions to continue in the same area of the array.
Again, this could lead to the same outcome depicted in Figure
2c. However, if the same pattern continues, the next elements
to be inserted are 17 and 18, now placed in an area even denser
than what achieved with the traditional rebalancing.

Density thresholds. The density thresholds are an input pa-
rameter, set by the designer of the implementation. Typically,
only the four extremes ρ1, ρh, τh and τ1 are explicitly set,
while the rest of the thresholds are properly adjusted, based
on the current height h of the calibrator tree. There is an order
to respect in their choice: 0 ≤ ρ1 < ρh ≤ τh < τ1 ≤ 1. The
value of ρ1 determines the minimum potential fill factor N/C
of the data structure.

There are two main strategies to set the thresholds, de-
pending on the approach used to handle resizes. In the first
approach, the capacity of the array is doubled (or halved)
when a resize is executed. For consistency [10], this approach
imposes a further constraint: 2 · ρh ≤ τh. For this strategy,
common thresholds in existing applications [10], [14], [30]
are ρ1 ∼ 0.1, ρh ∼ 0.3, τh ∼ 0.75 and τ1 ≥ 0.9. In the
second approach, the capacity of the array is set to 2·N

τh+ρh
on

resize. Notably, for this strategy, [17] proposes a choice of
ρh = τh = 0.75 and ρ1 ≥ 0.5. Therefore, the density of the
array is kept close to 75%, while the minimum fill factor is at
least 50%.

The choice of the thresholds involves a trade-off. The first
approach favours updates. The greater the difference |τl− ρl|,
the looser are the density constraints to respect, and the fewer
resizes and rebalances will occur. On the other hand, the
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second strategy favours scans. The greater the values of ρl
and τl, the greater is the average fill factor of the array, and
the smaller the memory footprint of the sparse array. For
these reasons, hereafter, we name the former strategy update
oriented, and the latter scan oriented.

III. OVERVIEW

The RMA evolves from the PMA in several features. In
this section, we detail its layout, its static index, the usage
of memory rewiring for rebalancing, bulk loading and a
few optimisations. Whereas, we will finally describe adaptive
rebalancing in the next section.

Segments. Compared to the PMA, there are two major de-
partures in our treatment of segments. First, in the RMA,
segments characterise the layout of the elements inside the
sparse array. Instead, in the PMA, segments only play a role
in rebalances, to define the smallest interval where to validate
the density thresholds ρ1 and τ1. The second distinction is that
we bind the segment size to the block size O(B) of the I/O
model, rather than to O(log2N)4. Hence, the segment size
is fixed and does not depend on the current cardinality or
capacity of the data structure.

Our RMA clusters together long sequences of elements
alternated with long sequences of gaps. In contrast, the classic
PMA layout is a sequence of elements intermixed with gaps.
This organisation turns out to be detrimental for scans, due
to branch mispredictions: at every slot, a scan needs to check
whether it is empty and should be ignored. To overcome this,
we keep track of the current cardinality of each segment in
a side array, named cards. We pack all elements in one end
of the segment, and the gaps to the other end. As we want to
maximise the sequence of consecutive elements, we alternate
to which extreme to pack the elements, storing them towards
the right end for odd indexed segments, and towards the left
end for even numbered segments5. As we know the cardinality

4Note that, as described in Section II, it holds O(log2N) = O(log2C),
due to N ∝ C.

5The first segment starts with index 1.

of each segment and it is dense, testing for gaps is not required.
Rather, a scan performs one tight loop over a dense sequence
of values for each two segments.

Our choice of the segment size is driven by tailoring the
data structure to the I/O model. For any practical value of N ,
it turns out that O(log2N) is less than O(B). In the PMA,
any insertion or deletion involves a rebalance of a window of
at least O(log2N). Theoretically, as an update already must
touch a portion of the array large O(B), rebalances on the first
O(log2( B

log2N
)) levels of the calibrator tree yield no effects,

they are merely overhead. Our solution is to fix the segment
size to O(B). For insertions, we fill a segment until it is full,
and only then, we trigger a rebalance. Consequently, the upper
threshold τ1 is 1.

In theory, this change does not alter the underlying com-
plexity. It only reduces the height of the calibrator tree by
an additive constant O(log2

N
B ) = O(log2N). In practice, it

hints that the segment size needs to be tuned according to the
ideal block size B of the underlying architecture, analogously
to the node size of (a, b)-trees. This is significant as, in our
approach, elements are clustered inside a segment. The con-
ventional choice of log2C, employed by most existing PMA
implementations examined, would instead generate segments
too small and far from ideal for both scans and updates.

Comparison with (a,b)-trees. RMAs deeply resemble (a, b)-
trees. Indeed, the segments that compose the array are anal-
ogous to the leaves of an (a, b)-tree. Roughly, the same
leaf layout and size employed in an (a, b)-tree, can be
adopted for the segments in the RMA. Figure 3 compares
the layout of both an RMA and an (a, b)-tree with the same
elements and equal node/segment size. Conceptually, the major
functional difference is how they are reorganised when the
segments/leaves become either overfilled or underfilled. (a, b)-
trees employ node splits and merges, operations local to a
leaf and one of its neighbours. RMAs, and sparse arrays in
general, require rebalances, a global operation, they may affect
multiple, potentially all, segments of the array.

Figure 4 summarises the complexity of the operations of
(a, b)-trees and sparse arrays. RMAs match the same com-
plexity of APMA. In general, (a, b)-trees have an edge in
updates, while sparse arrays in scans. The reason the cost per
update, in skewed scenarios, is constant in (a, b)-trees is both
because node splits/merges actually exhibit a penalty of O(1)
in amortised sense [24], and because the root-the-leaf path
is consistently cached. In this scenario, even with adaptive
rebalancing, the tightest upper bound for RMAs can only be
O(log2N/B).

(a,b)-tree TPMA APMA / RMA

Updates, uniform

Updates, sequential

Point lookups

Range scans, O(R) elts

Fig. 4. Summary of the theoretical complexity of (a, b)-trees and sparse
arrays, in the I/O model.
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i is the i-th child of the root, a full subtree of height
4. The third child of the root is a partial subtree of height 2. The content of
the slots are the separator keys for the related segments, e.g. the value 257 in
the root is the separator key for segment 257 of the underlying RMA.

Point lookups have the same cost. Indeed, the same index
used for the leaves of (a, b)-trees can be adopted for the
segments of sparse arrays. Notwithstanding, rebalances in
PMAs can shift the keys over large spans of the array, causing
an additional maintenance burden to the index. To ease this
overhead, our design is based on a different kind of index.

Index. RMAs maintain a static index to improve point look-
ups and updates. It is static because, once built at a RMA
resizing, it contains a fixed a number of entries. Still, the single
entries can be altered, which happens during RMA rebalances.
The index does not contain explicit pointers to traverse the
nodes. Only the separator keys are stored, packed together in a
contiguous array. Node traversals are performed by computing
the offset of nodes from the current position in the array.

Figure 5 depicts the logical and physical representation of
the index. As the inner nodes of B+-trees, nodes in the index
have a fixed capacity and a maximum fanout f . The root of
the index forms a partial subtree Ph of height h. The root
node contains r separator keys, with 1 ≤ r ≤ f −1, and r+1
children. The leftmost r children are full subtrees Fh−1 of
height h − 1, while the rightmost child is a, possibly empty,
partial subtree P h̄ of some height h̄ : 0 ≤ h̄ < h. A full
subtree Fh is a subtree of height h, where all nodes are filled
with f − 1 separator keys. Thus, it stores exactly fh − 1
separator keys in total. The order of the separator keys and
the logic for the node traversal is analogous to B+-trees.

The indexed elements are implicitly the segments in the
underlying RMA. Similarly to B+-trees, the separator keys
are the minimums in each segment. When the underlying
RMA is resized, the index is recreated with the new number
of segments. Compared to (a, b)-trees, node traversals are
cheaper, as the memory footprint of the index is smaller, and
the memory distances between parents and children shorter.

Rebalancing. Our design makes use of memory rewiring
to reduce the execution time of rebalances. The common
approach to rebalance elements inside an interval operates
in two passes. In the first pass, proceeding backwards, all
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Fig. 6. The rebalancing procedure with the use of memory rewiring. The
pictures depict the pages of both the RMA and the buffer area, together
with their virtual vn and physical fm addresses. a) The input window to
rebalance, it occupies exactly one page. b) The elements of the input window
are redistributed in a spare page of the buffer space (ignoring clustering
for simplicity). c) The virtual addresses of the buffer page and of the page
rebalanced are swapped.

elements are moved and compacted either towards the right
end of the interval or in auxiliary additional storage. In the
second pass, proceeding forwards, the elements are copied to
their final positions in the array. Our solution still follows this
scheme if the interval to rebalance is smaller than a virtual
page. Otherwise, we directly move and directly spread the
elements from the pages of the array to rebalance parray into a
set of unused physical pages pbuffer. Eventually, we swap one
by one the virtual addresses between parray and pbuffer. The
advantage of this technique is that it only performs a single
copy per element, rather than two.

Specifically, memory rewiring is a technique to explicitly
control the mapping between virtual (logic) addresses and their
associated physical pages [29]. Besides the space used by the
RMA, we maintain a set of spare buffers, allocated on demand.
On rebalance, the elements are redistributed into the buffer
space (see Figure 6b). Then, using memory rewiring, the pages
from the buffer become part of the array, while the old physical
pages of the array become spare buffers to be reused in a
future rebalance (see Figure 6c). Actually, the single pages of
the array can be rewired as soon as their elements have been
redistributed, making them immediately available for reuse.

In most cases, we treat resizes as a special case of a
rebalance. Conceptually, a resize is a rebalance where the
elements are redistributed from an interval having the current
capacity of the array to an interval of the new capacity.
The idea is to reserve a large virtual memory area, say 237

bytes, for the RMA when it is firstly created. We arrange
the physical pages for the spare buffers immediately after
the storage currently used by the RMA (as in Figure 6a).
When the RMA needs to be expanded, we absorb the existing
spare buffers in the RMA and only request additional physical
memory to reach the final capacity. If the RMA needs to be
shrunk, we absorb the freed pages at the end of the RMA
to the buffer area. To limit the amount of physical memory
dedicated to the buffer space, we employ this scheme only



when expanding the RMA or when the number of physical
pages in the spare buffers is not greater than the number of
physical pages used by the RMA. Otherwise, we perform a
resize in standard manner, by creating a new RMA of the
needed capacity and copying the elements from the old array
to the new one. Note that, in both approaches, only one copy
per element is performed. The benefit of memory rewiring for
resizes is to alleviate the overhead in acquiring new zeroed
physical pages from the operating system [29].

Bulk loading. As in B+ trees, there are no algorithms gener-
ally improving the theoretical complexity of batch updates. In
practice, the only savings that can be achieved are thanks to
avoid rebalancing multiple times the same segments in a single
batch. To this purpose, a top down scheme has been previously
presented in [14]. Assuming the elements in a batch have been
sorted beforehand, the key idea is to traverse the calibrator
tree, starting from the root, and recursively propagate the input
sequence to the children. However, if the thresholds of a given
node cannot be satisfied, the algorithm will trigger a rebalance,
merging the input sequence with the existing elements in the
current window. Nevertheless, this scheme has a drawback:
by starting from the top of the tree, where the densities are
tighter, the algorithm may also cause unnecessary rebalances
that would not have been issued if this procedure was not
utilised in the first place.

We propose a bottom up strategy. First, the input sequence
S of insertions is sorted. Then, the algorithm operates in
three passes. In the first pass, it scans S and only alters
the final cardinality of each segment, where the elements are
going to be inserted. In the second pass, it scans the touched
segments, checking whether the thresholds are respected. If
not, it identifies the intervals that need to be rebalanced.
Finally, it performs a third pass on the touched segments. If a
segment has not been marked for rebalancing, it simply inserts
the related elements from S. Otherwise, it rebalances the
window identified in the second step, and similarly to the top
down scheme, merges the existing elements with the related
run from the sorted sequence S. Analogously to [14], the
method can be extended to batches containing both insertions
and deletions, by performing an initial pass where all deletions
are performed, but rebalances are disabled.

Key-value split. We store the keys and their associated values
in two separate arrays. This causes no harm to the hardware
prefetcher in scans, while it improves point lookups, and, by
extension, updates, as less memory space needs to be traversed
to find a specific key.

Scan-oriented thresholds. We refine this strategy with the
thresholds ρ1 = 0, ρh = τh = 0.75, τ1 = 1. We also add a
special rule, forcing a resize if, after a deletion, the fill factor
of the sparse array becomes less than 50%. The aim is to
still achieve a minimum potential fill factor of 50%, while
allowing the adaptive rebalancing to underfill specific regions
of the array where deemed appropriate.

a) Adaptive algorithm

b) Outcome of rebalancing 

x

10 1411 16 19 20 21 22 25 29 30 31 40 44 4915

10 11 14 15 16 19 20 21 22 25 29 30 31 40 44 49Rec. 1

10 11 14 15 16 19 20 21 22 25 29 30 31 40 44 49Rec. 2

10 11 14 15 16 19 20 21 22 25 29 30 31 40 44 49Rec. 3

Fig. 7. a) Sample execution of the adaptive algorithm for the array of Figure
2a. b) Final layout of the sparse array after rebalancing.

IV. ADAPTIVE REBALANCING

RMAs employ adaptive rebalancing to alleviate the number
of future rebalances in presence of hammering. The adaptive
strategy is split in two distinct parts. In the first part, upon
each insertion, some additional metadata is collected in a
custom data structure named Detector. The second part is the
actual rebalancing mechanism, where the collected metadata
is examined to influence how to redistribute the elements in
the array. The core algorithm, named adaptive algorithm, is
recursive. It starts from the top of the current calibrator sub-
tree and, at each step, it determines the number of elements
to distribute on its children.

This section is organised as follows. To aid the intuition,
next we show an example of how the adaptive algorithm
operates. We then describe the first part of the adaptive
strategy: what data is collected upon insertions and how the
Detector is implemented. The next paragraphs delve into the
second phase: the actual rebalancing and its steps. So far, the
description assumes that only insertions can be executed, at the
end we present the extensions required to support deletions.

Example. Figure 7a depicts a sample execution of the adaptive
algorithm for the same array of Figure 2a. Again assuming
that the last insertions in the array were 14, 15 and 16,
the rebalancing procedure predicts that the new insertions
will continue this sequence. It creates a marked interval I ,
highlighted in gray in Figure 7a, with the pair [16, 19]. A
marked interval states that new insertions are expected in the
represented range, in this case between 16 and its successor,
19. The goal of the adaptive algorithm is to push I towards
the least dense region of the array.

At the first recursion level, the run consists of all elements in
the topmost node of the calibrator tree. The algorithm transfers
the elements before I to its left child, and all elements after
I to its right child. Then, it transfers I to the child with less
elements, the left child in this case. In the end, the left child
receives the first 6 elements of the run and the right child
the remaining 10. At the second recursion level, the process
is repeated for the nodes at height 2. In the first node, it
transfers the first 4 elements before I to its left child, and
0 to its right child. Then, it moves I to its right child. In the
second node of height 2, there are no marked intervals, and the
elements are equally distributed between its children. At the
third recursion level, the algorithm reaches the leaves/segments
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Fig. 8. Sample metadata associated to a segment, as stored in the Detector.

of the calibrator tree and the recursion stops. The output of
the algorithm are the target cardinalities of the segments: [4,
2, 5, 5].

Eventually, the elements are rearranged in the RMA ac-
cording to these cardinalities, producing the array of Figure
7b. Note that, the layout used to arrange the elements inside a
segment is orthogonal to the adaptive algorithm. In our RMA
design, elements are actually clustered towards the boundaries
of the segments, as described in Section III.

Detector. The Detector contains metadata to identify the inter-
vals subject to recent updates. In our design, the granularity of
a marked interval can either be the whole content of a single
segment or, as showed in the example of Figure 7, a pair of
two consecutive elements. For each segment of the array, we
associate a supplementary data structure, sketched in Figure
8, consisting of a fixed length queue Q and two keys, kbwd
and kfwd, together with an associated counter per key.

Algorithm 1 sketches the code to update the segment’s
metadata, invoked after each insertion. It first records in Q
the timestamp of the current operation. The timestamp can be
obtained by either some discrete global counter or the CPU
timestamp counter. Moreover, it checks whether the successor
succk or the predecessor predk of the key k being inserted
matches kbwd or kfwd, respectively. In case one of the two
keys match, the associated counter is incremented by 1, up
to a maximum threshold SC. Otherwise, both counters are
decremented by 1. When a counter reaches 0, the associated
values of kbwd and kfwd are replaced with succk and predk.

The purpose of the queue is to record the times of the
last insertions in a segment. Intuitively, by comparing the
timestamps of all segments in a window to rebalance, the
algorithm infers if recent insertions have occurred only in a
limited set of segments. The additional counters allow, instead,
to identify sequential insertion patterns. For instance, in Figure
8, the value 3 associated to kbwd implies that, at least 3 times in
the last insertions, the successor of the key just inserted was
19. Therefore, the algorithm may guess that, in future, new
insertions might likely be in the range [predecessor(19), 19].

Rebalancing procedure. The adaptive algorithm integrates
and augments the traditional rebalancing procedure of TPMA.
As in TPMA, the first step of the the whole procedure is to find
the window W to rebalance. This operation is accomplished
by traversing and validating the density thresholds of the
calibrator tree. The second step, named preprocessing phase,
consists of producing a set of marked intervals, exploiting
the information in the Detector. If no marked intervals are
created, the rebalancing procedure proceeds as in TPMA, by

Algorithm 1 Update segment metadata
Input:

k . The key just inserted
predk . The predecessor of k in the array
succk . The successor of k in the array

1: Q.APPEND(Read CPU TimeStamp)
2:
3: if succk = kbwd.value then
4: kbwd.counter← MIN(kbwd.counter + 1, SC)
5: else if predk = kfwd.value then
6: kfwd.counter← MIN(kfwd.counter + 1, SC)
7: else
8: kbwd.counter← MAX(kbwd.counter− 1, 0)
9: kfwd.counter← MAX(kfwd.counter− 1, 0)

10: if kbwd.counter = 0 then
11: kbwd.value← succk
12: if kfwd.counter = 0 then
13: kfwd.value← predk

even spreading all the elements in W . Otherwise, the third step
is the actual adaptive algorithm. Traversing the calibrator tree
top-down, the algorithm determines the amount of elements to
place on each child, transferring the marked intervals in the
nodes with the least cardinality. The output of this step are the
target cardinalities of all segments in W .

No elements of the array are physically copied during the
execution of the adaptive algorithm. Only at its end, when the
target cardinalities of all segments in W have been determined,
the elements are redistributed in the array. We define by pos(k)
the position of the key k in the sorted sequence of all keys
present in W . At all stages, the algorithm represents an interval
I as a pair 〈s, l〉, where s = pos(kfirst) and kfirst is the first
key that belongs to I , and l = |I| is the size of the interval.
To transfer elements between nodes in the calibrator tree, the
algorithm actually assigns their representing intervals.

Preprocessing phase. It works as follows. First, it computes
the 99.9 percentile p of all timestamps in the metadata for
the segments in the window W being rebalanced. Second,
it marks all segments such that 75% of their timestamps are
greater than p. Third, for any marked segment, it either emits a
marked interval of size 2 with kbwd or kfwd if their associated
counter is greater than a given threshold θSC , or, otherwise, a
marked interval representing all elements in the segment. The
final output of this phase is a sequence of marked intervals.

Adaptive algorithm. The adaptive algorithm is a top-down
traversal of the calibrator subtree, rooted at W . For each
node u, it keeps track of the current interval R of elements
assigned, and of the marked intervals ν inside R. In the first
iteration, u = W , R = 〈1, card(W )〉, and ν is the sequence
of marked intervals computed in the preprocessing phase. In
the last iteration, the base case, u is a segment and its target
cardinality is |R|. Algorithm 2 sketches the pseudo code.

The core of the algorithm starts at line 7. The objective
function attempts to redistribute the same amount of marked
intervals to each child. If this cannot be achieved, e.g. with
|ν| = 1, the remaining marked intervals are moved to the
child with the least cardinality. Figure 9 shows the outcome
of redistribution with different sets of ν. In the pseudo-code



Algorithm 2 Adaptive algorithm
Input:

u . The current window/node in the calibrator tree
R . The sequence of elements allocated to u
ν . The list of marked intervals present in R

Output:
T . The target cardinalities of all segments s ∈ u

1: if |u| = 1 then . Base case, the node consists of only one segment
2: T [1]← |R|
3: else if |u| = 2 ∧ ν is “too big” then . Split the marked interval
4: T [1]← |R|/2
5: T [2]← |R|/2
6: else . Determine the amount of elements to transfer to the left child
7: Rleft ← OBJECTIVE FUNCTION(R, ν)
8: Let C̄, ρ̄, τ̄ the capacity and the density thresholds of u’s childrens
9: min = MAX(|R| − τ̄ · C̄, ρ̄ · C̄) . Minimum cardinality allowed

10: max = MIN(|R| − ρ̄ · C̄, τ̄ · C̄) . Maximum cardinality allowed
11: if |Rleft| < min then
12: Add to Rleft at least min− |Rleft| elements
13: else if |Rleft| > max then
14: Remove from Rleft at least |Rleft| −max elements
15: Rright ← R \ Rleft
16: T ← ADAPTIVE ALGORITHM(left child of u, Rleft, ν ∩ Rleft) ‖

ADAPTIVE ALGORITHM(right child of u, Rright, ν ∩ Rright)

10 11 14 15 16 19 20 21 22 25 29 30 31 40 44 49

a) |ν| = 0 (no marked intervals)

10 11 14 15 16 19 20 21 22 25 29 30 31 40 44 49

x

Node u

Le� child of u Right child of u

10 11 14 15 16 19 20 21 22 25 29 30 31 40 44 49

b) |ν| = 1

10 11 14 15 16 19 20 21 22 25 29 30 31 40 44 49

10 11 14 15 16 19 20 21 22 25 29 30 31 40 44 49

c) |ν| = 2

10 11 14 15 16 19 20 21 22 25 29 30 31 40 44 49

10 11 14 15 16 19 20 21 22 25 29 30 31 40 44 49

d) |ν| = 3

20 21 22 25 29 30 31 40 44 4910 11 14 15 16 19

Fig. 9. Sample redistribution of the elements from a node u to its children,
with different number of marked intervals |ν|. The marked intervals ν are
highlighted in gray.

(line 7), the function only determines the interval Rleft for the
left child, the interval for the right child can be simply derived
as Rright = R \Rleft.

Before proceeding to the next recursion level, the target car-
dinalities of the nodes might need to be sanitised. Intuitively,
if the density δ(v) of a child v becomes less than its lower
threshold ρv , it borrows as many elements as necessary from
its sibling, so that δ(v) ≥ ρv . Similarly, if δv > τv , elements
are transferred to its sibling so that the upper density threshold
is respected. The lines at 9 - 14 express the above logic, but
in terms of the minimum and the maximum cardinality of the
left child, rather than the densities of both children. It is this
sanity check that guarantees the data structure matches the
worst case amortised complexity O(

log22N
B ) per insertion.

Deletions. To support deletions, we introduce a few extensions
to the components described so far. Intuitively, in presence of

skew for deletions, we want to push the elements where new
deletions are predicted to follow, into denser areas of the array.
We deal with the conflicting aims of insertions and deletions
through a simple scoring system. The idea is to assign a score
(or weight) of +1 to each marked interval if it is due to
frequent insertions, and −1 if it is due to frequent deletions.
The objective function of the adaptive algorithm becomes to
find a partitioning of the marked intervals ν, so that both
children receive the same cumulative score and, roughly, the
same amount of marked intervals |ν|/2. Furthermore, in the
Detector, we associate a third counter sc to each segment,
incremented upon each insertion and decremented upon each
deletion, up to a given maximum |sc| < SC. Finally, in the
preprocessing phase, a segment can be marked only if also
|sc| ≥ θSC , assigning a score of +1 to the marked interval if
sc is positive, and -1 otherwise.

V. EVALUATION

We evaluate our design and the effects of the segment size,
the adaptive rebalancing, the density thresholds and batch
updates. We conclude with a summary of the cumulative
contributions of the main features described in the paper. As
competitors, we consider both a standard, with separator keys,
and a trie-indexed (a, b)-tree. We refer to the latter as ART: it is
still actually an (a, b)-tree, but the leaves are this time indexed
by ART [22]6, a form of trie. In both implementations, in the
scans, we issue memory prefetch instructions to the accesses
of each next leaf.

In all experiments, the elements loaded consists of 8 byte
key/value integer pairs. The maximum capacity of the internal
nodes, both for the static index of the RMA and for the
standard (a, b)-trees, is fixed to 64 separator keys, an optimum
determined by a series of micro-benchmarks. The leaf and
segment capacities, except for the first experiment, are fixed
to B = 128 elements. Therefore, each leaf of an (a, b)-tree
takes roughly 2kB of memory (plus some metadata). Both
keys and values are stored sorted inside the segments/leaves.

The experiments have been conducted on dual socket cpus
Intel Xeon E5-2650 @ 2GHz, with 256 GB of memory in
total. The code has been written in C++ and compiled with
Clang v6.0. The code is sequential, both the CPU and the
memory node are pinned at the start of an execution. Memory
rewiring is performed on huge pages of 2MB. Each experiment
has been repeated 15 times. The reported results refer to the
median, unless stated otherwise.

Node and segment size. Figure 10 mimics the same experi-
ment showed in the introduction. This time ART is compared
with our version of the RMA. The experiment starts by insert-
ing 1G = 230 elements according to a uniform distribution.
Figure 10a depicts the average throughput, per insertion, while
the cardinality of the data structure increases. Figure 10b
shows the average throughput to perform 1M random point
look-ups of existing keys. Figure 10c reports the average

6Our implementation is based on the publicly available sequential source
code of ART [1].
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c) Scans Data structure:

ART
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Node / segment size:

B = 32

B = 128
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B = 2048

Fig. 10. Average throughput for a) insertions, b) point look ups and c) scans at varying node sizes B for the leaves of an (a,b)-tree, indexed through ART,
and the segment sizes B of the RMA.

throughput, per element, to sum the values in a contiguous
region, from an interval of 0.1%, up to all elements, when the
data structures contain 1G elements.

At corresponding node and segment sizes B, while the
throughput of point look-ups is comparable, ART leads in
the insertion throughput for smaller values of B, but scans
are always significantly slower. For instance, with B = 128,
ART is 20% faster for insertions, whereas with B = 512, the
difference disappears. On the other hand, for a fixed segment
size of the RMA, ART can achieve the same throughput for
scans, by increasing its leaf size. For instance, ART with
B = 512 matches the same throughput in scans of the RMA
with B = 128. However, due to the larger leaf size, insertions
are now also 25% slower. In general, by both increasing the
node and the segment size, the difference in scans becomes
less prominent, from 4x with B = 32, up to 40% with
B = 2048. At the same time, by increasing B, also the
throughput for insertions decreases in absolute terms. Finally,
note that with B = 2048, the RMA almost matches the scan
throughput of static dense arrays.

We believe that our choice of ART represents a strong
competitor. Compared to our custom implementation of a
standard (a, b)-tree, employing separator keys, at equal leaf
capacity, ART is always faster or alike in terms of insertions
and look-ups, while obtaining the same performance for scans.
Indeed, the leaves of both ART and the standard (a, b)-tree
feature the same layout. The actual relative difference in
performance depends on the leaf size. For B = 128, in this
experiment, ART is 20% faster in insertions and roughly 12%
in point look-ups. However, with B = 2048, there is no
practical difference anymore. For reference, in comparison
to the STX-Tree [11], again at the equal leaf capacity of
B = 128, our tuned ART implementation, in this experiment,
is roughly 25% ∼ 30% faster in insertions, about 12% faster
in point look-ups and 30% faster in scans.

Adaptive rebalancing. Figure 11 compares the average update
throughput of RMA with and without adaptive rebalancing
(AR) enabled, in presence of skew. In the experiments, we
insert and delete the elements according to both the uniform
and the Zipfian distribution of range β = 227, while varying
the amount of skew through the Zipf factor α. Figure 11a
refers to the scenario of only inserting 1G elements in an
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b) Mixed

Fig. 11. Average throughput, per element, at different Zipf factors α, when
a) inserting 1G elements in an empty data structure, b) fixing the cardinality
of the data structure to 1G, repeatably executing 210 insertions followed by
an equal number of deletions.

empty data structure. Figure 11b represents a mixed workload
where, starting with 1G elements, sequences of γ = 1024 con-
tiguous insertions are interleaved by γ contiguous deletions.
The distributions are initialised with different seeds for in-
sertions and deletions. Consequently, insertions and deletions
“hammer” different portions of the array. We also include the
results of ART for completeness.

The difference in performance emerges as the skew in up-
dates increases. With moderate skew, AR exhibits an overhead
of about 20% w.r.t. the traditional policy of even rebalancing.
This is due to the cost of updating the metadata in the Detector,
noticeable in our set up of fine grained elements of 16 bytes.
At α ≥ 1.5, with rebalances notably more frequent, adaptive
rebalancing allows to achieve a 3x - 4x throughput in the insert
only scenario, and 1.2x - 1.5x in the mixed workload.

In absolute terms, the mixed workload is where the RMA
shines. The deletions performed compensate for the space
filled by the carried insertions. In comparison, in the insert
only scenario, ART can still be up to 4x faster than RMA with
adaptive rebalancing in presence of significant skew, whereas
it generally yields similar performance in the mixed workload.
Nevertheless, although not shown here due to lack of space, we
note that, for the mixed workload, by increasing the window γ,
in the RMA the average throughput of updates proportionally
decreases, eventually reaching the same performance of the
“insert only” workload. However, bulk loading can become a
better alternative in this context.

We also re-implemented the rebalancing algorithm of [10],
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Fig. 12. Average throughput for a) insertions and b) scans with the Update Thresholds (UT) and Scan Thresholds (ST), at equal segment sizes. Elements are
inserted following to a uniform distribution and the sequential pattern. Plot c) shows the memory footprint, in GB, used by the whole data structure.

marked in the graph as APMA7. In Figure 11a, there are
only marginal differences w.r.t. even rebalancing. The cause is
mainly the ping-pong effect, which hinders the benefits of its
rebalancing algorithm. Note that, we can generally reproduce
the experiment results of [10]. For instance, in the sequential
pattern, where elements are only appended at the end of the
array, APMA is 3.8x faster than even rebalancing. Still, their
experiments only exhibit insertions at predetermined positions
of the array, without taking into account a sorted order, and
the above effect does not appear. Furthermore, even in the
sequential pattern, our adaptive rebalancing algorithm is still
25% faster than APMA. Finally, as [10] does not support
deletions, it has not been evaluated for the mixed workload.

Density thresholds. Figure 12 compares the Update-oriented
Thresholds (UT) and the Scan-oriented Thresholds (ST). In
this experiment, starting from an empty data structure, we
insert 1G elements, using the uniform distribution and the
sequential pattern. Moreover, at different stages, we measure
the respective throughput of full scans and the memory foot-
print of the whole data structure. Although not reported, we
similarly evaluated the Zipfian distribution, obtaining inter-
mediate results with respect to Figure 12. The ST are those
determined in Section III. The UT are derived with ρ1 = 0.08,
ρh = 0.3, τh = 0.75 and τ1 = 1, mimicking the configuration
of previous work [10], [14], [30]. These are also the density
thresholds employed in the rest of the experiments.

In general, compared to the ST, the UT provide 10% ∼ 40%
speed up in insertions, but are, on average, 20% slower in
scans. For updates, the difference becomes smaller for the
uniform distribution, and more marked for the sequential sce-
nario. For scans, the UT achieve the same peak performance of
the ST, registered in proximity of a resize. Just after a resize,
the performance immediately drops by 40%, as consequence
of the array being sparser and, ultimately, producing a zig-zag
pattern in the graphs. The memory footprint of the RMA, with
the ST, is about 1.4x bigger than static dense arrays. With the
UT, the difference varies, up to 2x the optimal space of dense

7The original source code of APMA was never openly released by [10].

arrays.
(a, b)-trees favour the sequential scenario. Nevertheless,

while the peak throughput for insertions is expected, the
outcome of scans being 60% faster in the sequential scenario
than with the uniform distribution, represents an artifact of
our benchmarks. In this scenario, sibling nodes are allocated
closely in the memory space, significantly reducing the dis-
tance of memory jumps in scans. In reality, this characteristic
rapidly vanishes once updates start to alter the leaves in
the middle of the (a, b)-tree. Figure 13a shows the average
throughput of scans, where, after loading an empty (a, b)-
tree with a sorted batch of 1G elements, sequences of 1M
random insertions are repeatably followed by the same amount
of deletions. Already after altering 5% of the element in
the (a, b)-tree the throughput of scans decreases by 25%. In
general, the performance of (a, b)-trees deteriorate with their
usage, resembling a form of “aging”.

Lastly, for reasons of space, we only summarise the actual
costs of rebalances of the RMA. In our experiments, the
maximum latency we measured for an insertion was within
10 seconds, occurring only once per experiment, when the
RMA doubled its capacity from 16Gb to 32Gb. Still, the
99th percentile for the latency of insertions in all our experi-
ments was under 3µs. Rebalances are responsible between 2%
(uniform) and 50% (highest skew) of the cost of insertions.
The execution of the adaptive algorithm, together with its
preprocessing phase, accounts, on average, for about 10% of
the overall cost of all rebalances.

Bulk loading. Figure 13b reports the insertion throughput
for batch loads. In the experiment, we compare the bottom-
up approach, described in Section III, with the top-down
implementation of [14]. The experiment first fills the data
structure inserting 512M elements following a uniform dis-
tribution. Then, it further loads 512M elements in batches of
1M, corresponding to 1% - 2% of the whole data structure.
For a fair comparison with [14], we considered both the case
with memory rewiring enabled (+RWR) and disabled (-RWR).

The insertion rate for bulk loads adequately copes with
skew. Both schemes, bottom-up and top-down, have a robust
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Fig. 13. a) Average throughput, per element, to scan the elements of an
(a, b)-tree of cardinality 1G, in relation to the amount of updates sustained.
b) Average throughput, per element, to load 512M elements in batches of 1M,
starting from the data structure containing 512M elements.

average latency. Still, even without memory rewiring, the
bottom-up approach is about 50% faster for moderate skew
and 30% for high skew than the top-down scheme. With
memory rewiring enabled, instead, bulk loading is, on average,
40% faster compared to single insertions. In general, because
each batch is sorted before being loaded, bulk loading takes
advantage of a certain degree of locality when performing
the insertions, while providing an alternative mechanism to
adaptive rebalancing to deal with skew.

Contributions. Figure 14 inspects the cumulative impact of
our contributed features in the same experiment described in
the introduction. The first two features, clustering and fixed
size segments, improve the performance of scans, achieving
a 2x speed-up w.r.t. our baseline. The rightmost features,
instead, deal with the cost of point-lookups and updates, finally
reaching a 9x speed-up in the sequential pattern.

In clustering, elements are split in two separate arrays for
the keys/values and packed towards the boundaries of the
segments. It improves the cost of scans, by avoiding the checks
on empty gaps. It also hampers the cost of rebalances, as the
separator keys on the index needs to be altered to match to
the minimum of each segment/cluster.

Fixed-size segments replace the variable-length segments
from O(log2N), a remnant of the RAM model, to a fixed ca-
pacity O(B), set according to the I/O model. Although it also
transforms the data structure from cache oblivious to cache
aware, fixed-length segments create even larger contiguous
chunks, favouring scans, while avoiding the rebalances on the
lowest levels of the original calibrator tree.

The static index improves both look-ups and updates. The
main advantage is that altering the value of a given entry
in the index is O(1). The benefit is particularly noticeable
in presence of skew, as more rebalances are performed, and
more updates to the index are carried. Memory rewiring further
improves the cost of updates by about 20%. It saves the cost
of multiple copies per element in rebalances, and exhibits a
lower overhead in acquiring the memory from the O.S. in
resizes. Finally, while adaptive rebalancing brings a certain
amount of overhead, about 20% in the uniform distribution,
it makes the data structure much more robust in presence of
skew, transforming the worst-case of TPMA in a best-case.

Insertion pattern: Uniform Zipf α=1
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Fig. 14. Contributions of the design features of RMA’s performance. The
values on the bars represent the cumulative speed-up of each feature relative
to the TPMA baseline.

VI. RELATED WORK

The Traditional PMA8 has been originally proposed and
characterised for the RAM model by [18]. The data structure
has been further simplified, refined and extended to the I/O
model by [3], [4]. The Adaptive PMA has been invented by
[10] to cope with hammer insertions. Reference [17] remarks
that the calibrator tree for rebalancing is actually unnecessary,
leading to a form of circular array. The recent paper [8] deals
with the problem of dearmortisation, i.e. reducing the (non
amortised) worst case complexity of updates, and surveys
some of the earlier schemes proposed.

PMAs have found some traction in cache-oblivious data
structures, in particular Cache-Oblivious (CO) B-Trees [3]–
[6], [9], [12]. It is theoretically possible to create a B-Tree
achieving the lower bound O(logBN), in amortised sense, for
look-ups and updates, and O(max{ R

log2N
, RB }) for scans of R

consecutive elements, without explicitly tuning for a particular
block size B. Although there exist many variants, the main
scheme is similar and relies on three layers. The first layer
is an index, in the form of a binary tree in the van Embde
Boas layout [3], [27]. This index references a second layer, a
sorted PMA of size O(N/log2N). The items in the PMA are
pointers to memory chunks, which compose the third layer of
the tree. These chunks resemble the leaves of a traditional B+

tree. A chunk has a capacity O(log2N) and is the place where
elements, keys and payload are stored. CO B-Trees have been
studied mainly theoretically. Some results for simpler designs
that do not match these bounds are [6], [12], [19].

The index employed in the RMA relies on the technique
of pointer elimination, firstly presented for B+-trees in CSS-
trees [28]. A similar procedure, referred as static and implicit
index, was independently proposed by [5], [12] for PMAs.
In particular, the index employed in the RMA was strongly
influenced by [12]. Nevertheless, in [12], the index embeds
the whole PMA, following a binary tree in the van Emde
Boas layout. In our design, the PMA and the index are
different components, conceptually resembling the structure

8Originally named as hierarchical sparse table.



of a B+ tree. Furthermore, the index is a dense array, where
the intermediate nodes have a large fan-out.

There have been only few practical published applications
that rely on sparse arrays. In [14], a sparse array is employed
to maintain the elements sorted according to the Z-order for
the problem of neighbour search. The overall size of the array
remains constant. Rather, the elements can be moved in batch
of updates. A similar approach has been considered in the
recent paper [31], where sparse arrays are considered to store
and process temporal streams of tweets. In [30], the PMA is
utilised to store a graph on GPU following the compressed
storage row (CSR) representation. The paper discusses and
evaluates a few alternative protocols for concurrent batched
updates. In [20], single attributes of relational tables are
materialised and maintained sorted into sparse arrays, for
the computation of inequality joins. In [23], sparse arrays
are evaluated to compute shortest paths of dynamic road
networks. All the above applications are based on Traditional
PMAs, while updates in their evaluation use a uniform key
distribution.

VII. CONCLUSIONS

The purpose of the RMA is to provide fast column-oriented
scans, while being close to (a, b)-trees in terms of updates.
PMAs are interesting in that they maintain data in physical
sequential order under updates, but we observed that all
existing PMAs do not reach the performance of properly tuned
(a, b)-trees in either update or scans. We then proposed, refined
and evaluated several features to overcome the underlying
penalties: fixed size segments, clustering, the static index,
memory rewiring and adaptive rebalancing. In our experi-
ments, at equal node/segment capacities, our RMA always
has a strong lead over (a, b)-trees in terms of scans, and even
matches their performance for updates in uniform or low skew
distributions. For higher skew, due to adaptive rebalancing, the
RMA still retains robust behaviour.

While we focused on the in-memory scenario, we note that
RMAs can be adapted to out-of-memory scenarios. This can
be achieved either by a variation of memory rewiring (the R
in RMA), or memory-mapped files.

Currently, we recognise two constraints in the adoption of
sparse arrays: concurrency and the amortised bounds in their
performance, rather than absolute bounds. To deal with the
occasional peaks in the latency of single updates (a feature
common to LSM designs [26]), caused by resizes or rebal-
ances, we envision two possible complementary solutions. A
first possibility is the usage of system transactions [15], where
parts of the data structure are asynchronously rearranged. A
second possibility is to combine multiple RMAs, with a fixed
maximum capacity, as the leaves of a large B+-tree. General
concurrency, instead, has not been thoroughly evaluated yet in
sparse arrays. The global nature of rebalances, the contiguous
allocation of elements, the shift towards scan performance,
rather than updates, are peculiar characteristics of sparse arrays
that provide an interesting agenda of future research, now
justified by our good scan and update performance.

Our code for the RMA will be released in open source at
https://github.com/cwida/rma/.
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