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Abstract. Algebraic effects & handlers have become a standard approach for side-effects
in functional programming. Their modular composition with other effects and clean sepa-
ration of syntax and semantics make them attractive to a wide audience. However, not all
effects can be classified as algebraic; some need a more sophisticated handling. In partic-
ular, effects that have or create a delimited scope need special care, as their continuation
consists of two parts—in and out of the scope—and their modular composition introduces
additional complexity. These effects are called scoped and have gained attention by their
growing applicability and adoption in popular libraries. While calculi have been designed
with algebraic effects & handlers built in to facilitate their use, a calculus that supports
scoped effects & handlers in a similar manner does not yet exist. This work fills this gap:
we present λsc , a calculus with native support for both algebraic and scoped effects & han-
dlers. It addresses the need for polymorphic handlers and explicit clauses for forwarding
unknown scoped operations to other handlers. Our calculus is based on Eff, an existing
calculus for algebraic effects, extended with Koka-style row polymorphism, and consists of
a formal grammar, operational semantics, a (type-safe) type-and-effect system and type
inference. We demonstrate λsc on a range of examples.

1. Introduction

While monads [Mog89, Mog91, Wad95] have long been the go-to approach for modelling
effects, algebraic effects & handlers [PP03, PP09] are gaining steadily more traction. They
offer a more structured and modular approach to composing effects, based on an algebraic
model. The approach consists of two parts: effects denote the syntax of operations, and
handlers interpret them by means of structural recursion. By composing handlers that
each interpret only a part of the syntax in the desired order, one can modularly build an
interpretation for the entire program. Algebraic effects & handlers have been adopted in
several libraries such as (e.g., fused-effects [RTWS18], extensible-effects [KSSF19], Eff in
OCaml [KS18]) and languages (e.g., Links [HL16], Koka [Lei17], Effekt [BSO20]).

Key words and phrases: algebraic effects, scoped effects, calculus, operational semantics, type- and effect
system.
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Although the modular approach of algebraic effects & handlers is desirable for every
effectful program, it is not always applicable. In particular, those effects that have or intro-
duce a delimited scope (e.g., exceptions, concurrency, local state) are not algebraic. Essen-
tially, these so-called scoped effects [WSH14] split the program in two: a scoped computation
where the effect is in scope, and a continuation where it is out of scope. This separation
breaks algebraicity, which states operations commute with sequencing. Modeling scoped
effects as handlers [PP03] has been proposed as a way of encoding scoped effects in an
algebraic framework. However, this comes at the cost of modularity [YPW+22]. Instead, a
calculus that provides scoped effects & handlers as native features is required. The growing
interest in scoped effects & handlers, evidenced by their adoption at GitHub [TRWS22] and
in Haskell libraries (e.g., eff [Kin19], polysemy [Mag19], fused-effects [RTWS18]), motivates
the need for such a calculus.

This paper aims to fill this gap in the literature: we present λsc , a calculus that
puts scoped effects & handlers on formal footing. Our main source of inspiration is Eff
[BP13, BP15, Pre15], a calculus for algebraic effects & handlers, effectively easing program-
ming with those features. Although Eff is an appropriate starting point, the extension to
support scoped effects & handlers is non-trivial, for two reasons. First, scoped effects re-
quire polymorphic handlers, which we support by adding let-polymorphism and Fω-style
type operators. Second, we need to be able to forward unknown operations in order to keep
the desired modularity. Whereas algebraic effects & handlers have a generic (and implicit)
forwarding mechanism, scoped effects & handlers need an explicit forwarding clause in order
to allow sufficient freedom in their implementation.

In what follows, we formalize λsc, after introducing the appropriate background (Sec-
tion 2) and informally motivating the challenges and design choices of our calculus (Sec-
tion 3). We make the following contributions:

• We design a formal syntax for λsc terms, types and contexts (Section 4).
• We provide an operational semantics (Section 5).
• We define the type-and-effect system of λsc (Section 6).
• We formulate and prove λsc’s metatheoretical properties (Section 6).
• We show the usability of our calculus on a range of examples (Section 7).
• We give a type inference algorithm and show it sound and complete with respect to the
declarative type-and-effect system (Appendix F).
• We provide an interpreter of our calculus with type inference in which we implement all
our examples (supplementary material).

2. Background & Motivation

This section provides the necessary background and motivates our goal. We review algebraic
effects & handlers as a modular approach to composing side-effects in effectful programs.
Next, we present scoped effects & handlers: effects that have or create a delimited scope
(such as once for nondeterminism [PSWJ18, WSH14]), and motivate the need for a calculus
with built-in support for these scoped effects.

2.1. Algebraic effects & handlers. Algebraic effects & handlers consist of operations,
denoting their syntax, and handlers, denoting their semantics. This separation gives us
modular composition, which has intrinsic value and allows controlling effect interaction.
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2.1.1. Algebraic Operations. Effects are denoted by a name (or label) and characterized by
a signature A _ B , taking a value of type A and producing a value of type B . For example,
choose : () _ Bool takes a unit value and produces a boolean (e.g., nondeterministically).
Operations invoke effects, combining the op keyword, an effect to invoke, a parameter passed
to the effect, and a continuation, containing the rest of the program.

cND = op choose () (b . if b then return 1 else return 2)

In accordance with its signature, choose is passed (), and in the supplied contination b has
type Bool. As a result, cND is a computation that returns either 1 or 2.

Some operations commute with sequencing. For example:

do x ← op choose () (b . if b then return 1 else return 2) ; return x 2

≡ op choose () (b .do x ← if b then return 1 else return 2 ; return x 2)

This equivalence is an instance of the algebraicity property, and operations are algebraic
if they satisfy this property. Algebraicity states that the sequencing of a computation c2
after an operation op ℓ v (y . c1) is equivalent to sequencing the same computation after
the continuation of this operation:

do x ← op ℓ v (y . c1) ; c2 ≡ op ℓ v (y .do x ← c1 ; c2)

2.1.2. Handlers. Handlers give meaning to operations. For example, handler hND interprets
choose nondeterministically:

hND = handler {return x 7→ return [x ]

, op choose k 7→ do xs ← k true ;do ys ← k false ; xs ++ys }

This handler has two clauses. The first clause returns a singleton list in case a value x is
returned. The second clause, which interprets choose, executes both branches by applying
the continuation k to both true and false, and concatenates their resulting lists with the
(++)-operator. We apply hND to cND with the ⋆-operator to obtain both of its results:

hND ⋆ cND  
∗ [1, 2]

Algebraic effects & handlers bring several interesting advantages. Most interestingly, their
separation of syntax and semantics allows a modular composition of different effects, which
in turn allows for altering the meaning of a program by different effect interactions.

2.1.3. Modular Composition. Effects can be composed by combining different primitive op-
erations. For example, computation cc,g below uses get : () _ String in addition to choose.

cc,g = op choose () (b . if b then return 1 else op get () (x . return x ))

Instead of having to write a handler for each combinations of effects, algebraic effects &
handlers allow us to write a handler specific for the effect get, and to compose it with the
existing handler hND.

hget = handler {return x 7→ return x , op get k 7→ k 2}

When composing handlers hND ⋆ (hget ⋆ cc,g), hget is applied first, and handles get. Since
hget does not contain a clause for choose, it leaves (we say “forwards”) the choose operation
to be handled by another handler. This forwarding behavior is key to the modular reuse
and composition of handlers. Handler hND then takes care of the remaining effects.
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hND ⋆ (hget ⋆ cc,g) 
∗ hND ⋆ cND  

∗ [1, 2]

2.1.4. Effect Interaction. One of the valuable features of the modular composition of alge-
braic effects & handlers is that effects can interact differently by applying their handlers
in a different order. Consider the effect inc : () _ Int, which produces an (incremented)
integer. The handler hinc turns computations into state-passing functions.

hinc = handler {return x 7→ return (λs . return (x , s))

, op inc k 7→ return (λs .do s ′ ← s + 1 ;do k ′ ← k s ′ ; k ′ s ′)}

The state s represents the current counter value. On every occurrence of inc, the incre-
mented value is passed to the continuation twice: (1) for updating the counter value and (2)
for returning the result of the operation. The latter is for the continuation and the former
for serving the next inc operation. We use syntactic sugar to apply the initial counter value
to the result of hinc.

runinc s c ≡ do c′ ← hinc ⋆ c ; c′ s

Computation cinc combines choose and inc:

cinc = op choose () (b . if b then op inc () (x . x + 5)

else op inc () (y . y + 2))

When handling inc first, each choose branch gets the same initial counter value.

hND ⋆ runinc 0 cinc
 ∗ hND ⋆ op choose () (b .do p′ ← hinc ⋆ (if b then op inc () (x . x + 5)

else op inc () (y . y + 2)) ; p′ 0)

 ∗ return [(6, 1), (3, 1)]

In contrast, when handling choose first, the counter value is threaded through the successive
branches.

runinc 0 (hND ⋆ cinc)

 ∗ runinc 0 (do xs ← hND ⋆ op inc () (x . x + 5)

do ys ← hND ⋆ op inc () (y . y + 2))

return xs ++ys)

 ∗ ([6, 4], 2)

2.2. Scoped effects. Not all effects are algebraic. For example, some have a delimited
scope. Consider the once : () _ () operation, which takes a computation that contains
choose calls and returns only its first result [PSWJ18]. Subscripting ✗ to indicate an
erroneous example, we could attempt to syntactically write this as the algebraic operation
op once✗ () (y . c) and try to limit the first of two choose operations. We extend hND with
a clause for once.

conce✗ = do p ← op once✗ () ( .op choose () (b . return b))

do q ← op choose () (b . return b)

return (p, q)

honce✗ = handler { . . . , op once✗ k 7→ do ts ← k () ; head ts }
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We intend for honce✗ ⋆ conce✗ to return [(true, true), (true, false)] as the first choose is limited
by once✗ to only return the first alternative. The second choose is out of scope of once✗,
so should still return both results. However, algebraicity pulls the the second choose inside
the scope of once✗:

honce✗ ⋆ (do p ← op once✗ () ( .op choose () (b . return b))

do q ← op choose () (b . return b)

return (p, q))

 honce✗ ⋆ op once✗ () ( .do p ← op choose () (b . return b)

do q ← op choose () (b . return b)

return (p, q))

 ∗ [(true, true)]

There are many more examples of operations that have a scope; we present them in Section 7:

• catch for catching exceptions that are raised during program execution;
• local for creating local variables (local state);
• call for creating a scope in a nondeterministic program, where branches can be cut using
the algebraic cut operation;
• depth for bounding the depth in the depth-bounded search strategy;

Following Wu et al. [WSH14], we call them scoped operations. Plotkin and Power [PP03]
have already realised that algebraic effects are unable to represent so-called generic effects
(e.g., scoped) and propose to model them as handlers. Although used [TRWS22], their
solution it is problematic in terms of modularity [WSH14, YPW+22]: it merges syntax and
semantics, as they define some effects as handlers. In Section 7 we revisit this issue, showing
attempts at encoding scoped effects as handlers, their problems, and how λsc remedies the
situation.

The goal of this work is to implement scoped effects while maintaining a separation be-
tween syntax and semantics, and thus preserve modular composition and control over effect
interaction. It follows a line of research [PSWJ18, WSH14, YPW+22] that has developed
denotational semantic domains, backed by categorical models. What is lacking from the
literature is a calculus that allows programming with both algebraic and scoped operations
and their handlers.

3. Design Decisions & Challenges

This section informally discusses the design of λsc , a novel calculus with support for scoped
effects & handlers as built-in features. We present our main challenges and design choices.

3.1. Eff with Koka-based Row Typing. Our calculus is based on Eff [Pre15, BP13,
BP15], an existing calculus for algebraic effects & handlers. It supports row-based typing in
the style of Koka [Lei17]. Computations have types of shape A ! 〈E 〉, where A is the type of
the value returned by the computation, and E is a collection effects that can occur during
its evaluation. For example, Bool,Bool !〈choose, once〉 is a type of conce.

Handlers turn one computation into another. Their type reflects that: handlers of type
A ! 〈E 〉 ⇒ B ! 〈F 〉 take a computation of type A ! 〈E 〉 and return a computation of type
B ! 〈F 〉. For example, honce handles choose and once.
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honce : (Bool,Bool) ! 〈choose, once〉 ⇒ List (Bool,Bool) ! 〈〉

3.2. Scoped Effects as Built-in Operations. As we argued in Section 2.2, modeling
scoped effects like once as handlers comes at the cost of modularity. To retain this modu-
larity, we add scoped effects as built-in operations with a new notation, signalled by the sc

keyword.

sc once () (y . c1) (z . c2)

Similar to algebraic operations, scoped operations feature a label once to identify the effect,
a parameter—in this case ()—, and a continuation (z . c2). However, scoped operations
differ from algebraic operations by their additional scoped computation (y . c1). For once,
the scoped computation entails the computation to be restricted to the first result (i.e. the
computation in scope). The dataflow allows for a value y to be passed from the operation
to c1 and a value z from c1 to c2.

Adding scoped operations gives rise to a variant of the algebraicity property, which mod-
els the desired behavior of sequencing for scoped operations: scoped operations commute
with sequencing in the continuation, but leave the scoped computation intact.

do x ← sc ℓsc v (y . c1) (z . c2) ; c3 ≡ sc ℓsc v (y . c1) (z .do x ← c2 ; c3)

Using once as a scoped operation correctly restrict only the first choose:

conce = sc once () ( . op choose (b . return b))

(p .do q ← op choose (b . return b) ; return (p, q))

honce = handler { . . . , sc once p k 7→ do ts ← p () ;do t ← head ts ; k t }
honce ⋆ conce  

∗ [(true, true), (true, false)]

This novel representation for scoped effects & handlers also brings in additional complexity.
Whereas algebraic operations contain a single subcomputation, scoped operations contain
two of them: the scoped computation and the continuation. The result of the scoped
computation is the argument of the continuation: they must agree on a type of this re-
sult, which we name the scoped result type. For example, consider conce, with overall type
(Bool,Bool)!〈once ; choose〉. Its scoped result type is (a singular) Bool: it is the type that
is produced by the scoped computation, and consumed by the continuation.

sc once () ( .op choose () (b . return b)
︸ ︷︷ ︸

()→ Bool !〈once ;choose〉

) (p .do q ← op . . . return (p, q)
︸ ︷︷ ︸

Bool →(Bool,Bool)!〈once ;choose〉

)

Dealing with the presence of this scoped computation type is tricky, and introduces two
complications. First, since the type does not occur in the computation’s overall type, poly-
morphic handlers are required to handle scoped effects. Second, the scoped result type
describes a dependency between the scoped computation and continuation: if one changes
its type, the other must match this. This makes generic forwarding impossible: it alters
the type of the scoped computation, but does not make up for it in the continuation.
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3.3. Polymorphic Handlers. Applying a handler to a computation involves recursively
applying the handler to the computation’s subcomputations as well. In the case of alge-
braic effects, these subcomputations always have the same type as the operation itself, as
witnessed by the algebraicity property. This means that calculi that only support algebraic
effects & handlers, such as Eff, can (and do) type handlers monomorphically, without severe
limitations.

However, typing scoped effect handlers monomorphically does limit their implementa-
tion freedom: it only allows scoped operations of which the scoped result type matches the
operation’s overall type. For example, consider the type (Bool,Bool)!〈choose ; once〉 ⇒
List (Bool,Bool)!〈〉 we previously assigned to honce. This monomorphic type requires the
scoped result type to be (Bool,Bool) as well, as it is the only type of computation monomor-
phic honce can handle. This is not the case for conce: as established, its scoped result type
is Bool (see above). Therefore, scoped computations such as conce, cannot be handled by
monomorphic handlers. The solution is to let handlers abstract over the value type of com-
putations, allowing for the handling of scoped operations with any scoped result type. This
way, honce can be typed as follows:

honce : ∀ α .α !〈choose ; once〉 ⇒ List α !〈〉

With this polymorphic typing in place, honce ⋆ conce can now be evaluated by polymorphic
recursion. To support this, λsc features let-polymorphism, Fω-style type operators, and
requires all handlers for scoped effects to be polymorphic.

3.4. Forwarding Unknown Operations. In order to retain the modularity of composing
different effects, as discussed in Section 2.1.3, we write dedicated handlers that interpret
only their part of the syntax, and forward all remaining operations to other handlers. For
algebraic effects forwarding happens generically. For example, consider the forwarding of
honce applied to an algebraic operation with inc.

honce ⋆ op inc () (y . return y) op inc () (y . honce ⋆ return y)

One might hope to forward scoped effects in a similar way. For example, consider applying
honce to scoped operation catch : String _ Bool for catching exceptions.

ccatch = sc catch "err" (b . if b then return 1 else return 2) (x . return x )

honce ⋆ ccatch
 ✗ sc catch "err" (b . honce ⋆ if b then return 1 . . .) (x . honce ⋆ return x )

Unfortunately, this does not work. Again, the hurdle is in the scoped result type. In
particular, honce introduces a type operator List when handling a computation. The scoped
computation now has type Bool → List Int !〈catch〉, whereas the continuation has type
Int→ List Int !〈catch〉.

sc catch "err" (b . honce ⋆ if b then return 1 else . . .
︸ ︷︷ ︸

Bool→ List Int ! 〈catch〉

) (x . honce ⋆ return x
︸ ︷︷ ︸
Int →List Int ! 〈catch〉

)

Indeed, applying a handler to a computation changes its type: not only does it remove
labels from the effect row, it also may apply a type operator —in this case List—to the type.
For scoped operations this is problematic, as the return type of the scoped computation
has changed (List Int), whereas the continuation still expects the original type (Int). Thus,
scoped effects cannot be forwarded generically. Therefore, we require that every handler
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is equipped with an explicit forwarding clause for unknown scoped operations. When a
handler is defined it is clear what type operator the handler applies. With this information
it is possible to define a way of bridging the type discrepancy. For example, honce mitigates
the discrepancy between List Int and Int by settling the scoped result type on List Int: in
the forwarding clause of honce, concatMap ensures that the transformed continuation now
takes a value of type List Int as argument.

honce = handler { . . . , fwd f p k 7→ f (p, (λz . concatMap z k))}

We implement forwarding by means of a function f , which is a partial application of sc ℓ v :
it takes the pair of a (possibly transformed) scoped computation p′ and continuation k ′ and
re-introduces the to-be-forwarded scoped operation with these parameters.

f = λ(p′, k ′) . sc ℓ v (y . p′ y) (z . k ′ z )

The concatMap is standardly defined as follows.

concatMap : ∀ α β µ . List β →µ (β →µ List α)→µ List α

concatMap [ ] f = return [ ]

concatMap (b : bs) f = do as ← f b ; as ′ ← concatMap bs f ; as ++as ′

In what follows, we put our calculus on formal footing, discussing its syntax, operational
semantics and type-and-effect system.

4. Syntax

As stated, λsc is based on Eff [BP13, BP15]. Before adding support for scoped effects, we
have altered Eff from its presentation in [BP13, BP15] in two ways. Firstly, we have made a
number of cosmetic changes that arguably improve the readability of the calculus. Secondly,
we adopt row-based typing in the style of Koka [Lei17].

Figure 1 displays the syntax of λsc . The extensions to (our version of) Eff made to
support scoped effects are highlighted throughout our presentation of λsc . The extensions
can be summarized by two new handler clauses, a new operation call and the inclusion of
let-polymorphism in the terms, and type variables in the types.

4.1. Terms. Like Eff we implement fine-grained call-by-value semantics [LPT03]. There-
fore, terms are split into inert values and computations that can be reduced.

Computations. For computations, return can be used to return values. Handlers can be
applied to values by usage of the ⋆-operator. As seen before, computations may be sequenced
by means of do-statements (do x ← c1 ; c2). Applications reduce, so are computations. As
discussed in Section 3.3, to support polymorphic handlers we support let-polymorphism
and thus let-bindings. Finally, a computation may be the invocation of an effect by means
of an operation.

To be able to differentiate between algebraic and scoped effects, we add the effect
keyword sc to model scoped effects. Consequently, op now ranges over algebraic effects only.
Furthermore, we annotate labels with either op or sc to indicate if they are the label of an
algebraic or scoped effect, respectively. We implicitly assume any label ℓ occurs either as an
algebraic or scoped effect label. Like their algebraic counterparts, scoped effect operations
feature a label ℓop or ℓsc, argument v and continuation (y . c) or (z . c2). In addition, scoped
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values v ::= () | (v1, v2) | x | λx . c | h

handlers h ::= handler {return x 7→ cr return clause
, oprs effect clauses

, fwd f p k 7→ cf } forwarding clause

operation clauses oprs ::= ·
| op ℓop x k 7→ c, oprs algebraic effect clauses

| sc ℓsc x p k 7→ c , oprs scoped effect clauses

computations c ::= return v return value
| op ℓop v (y . c) algebraic operation

| sc ℓsc v (y . c1) (z . c2) scoped operation

| v ⋆ c handle
| do x ← c1 ; c2 do-statement
| v1 v2 application

| let x = v in c let

value types A, B , M ::= () | (A,B) | A→ C | C ⇒ D
| α type variable

| λ α .A type operator abstraction

| M A type application

type schemes σ ::= A | ∀ µ . σ | ∀ α . σ
computation types C, D ::= A !〈E 〉

effect rows E , F ::= · | µ | ℓ ;E

signature contexts Σ ::= · | Σ, ℓop : A _ B | Σ, ℓsc :A _ B

type contexts Γ ::= · | Γ, x : σ | Γ, µ | Γ, α

Figure 1: Syntax λsc.

effect operations feature a scoped computation (y . c1). This way, the scope of effect ℓsc is
delimited: (scoped) computation (y . c1) is in scope, continuation (z . c2) is not.

Values. Values consist of the unit value (), value pairs (v1, v2), variables x , functions λx . c
and handlers h. Handlers h have three kinds of clauses: one return clause, zero or more
operation clauses, and a forwarding clause.

The return clause return x 7→ c denotes that the result x of a computation is processed
by computation c.

Algebraic operation clauses op ℓop x k 7→ c specify that handling an effect with label
ℓop, parameter x and continuation k is processed by computation c (e.g., hND, hget, hinc). In
this rule, k is an object-level variable just like x . For scoped effect clauses the extension is
analogous to the operation case: we take the algebraic clause and add support for a scoped
computation, which in the case for the clause has the form of parameter p.

Finally, as motivated in Section 3.4, we have forwarding clauses of shape fwd f p k 7→
cf , that deal with forwarding unknown scoped operation with some label ℓsc. Computations
cf have access to the scoped computation p and continuation k of the unknown effect they
are forwarding. Furthermore, cf should be able to call ℓsc. Instead of bringing ℓsc into scope,
we pass it f which in turn invokes ℓsc. This achieves a simpler type system at no cost to
the expressivity of forwarding clauses.
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4.2. Types. Like terms, types are split: values have value types A,B , computations have
computation types C,D. Value types consist of the unit type (), pair types (A,B), function
types A→ C, handler types C ⇒ D, type variables α and abstraction over them λα .A, and
type application M A. Following convention and to allow for meaningful examples, we may
add base value types to the calculus, such as String, Int and Bool. Functions take a value
of type A as argument and return a computation of type C; handlers take a computation
of type C as argument and return a computation of type D.

A computation type A !〈E 〉 consists of a value type A, representing the type of the
value the computation evaluates to, and an effect type E , representing the effects that
may be called during this evaluation. Different from Eff, we implement effect types as
effect rows using row polymorphism [Lei05] in the style of Koka [Lei17]. Therefore, rows
E are represented as collections of the previously discussed atomic labels ℓop, optionally
terminated by a row variable µ. Finally, we can abstract over both type and row variables,
giving rise to type schemes σ.

5. Operational Semantics

Figure 2 displays the small-step operational semantics of λsc . Here, relation c  c′ denotes
that computation c steps to computation c′, with  ∗ its reflexive, transitive closure. The
highlighted rules deal with the extensions that support scoped effects. The following dis-
cussion of the semantics is exemplified by snippets of derivations of computations1used in
Section 2. We refer to Appendix A for the full version of these derivations.

Rules E-AppAbs and E-Let deal with function application and let-binding, respec-
tively, and are standard. The rest of the rules consist of two parts: sequencing and handling.

Sequencing. For sequencing computations do x ← c1 ; c2, we distinguish between the
situation where c1 can take a step (E-Do), and where c1 is in normal form (return, op, or
sc). First, if c1 returns a value v , we substitute v for x in c2 (E-DoRet). Second, if c1 is an
algebraic operation, we rewrite the computation using the algebraicity property (E-DoOp),
bubbling up the algebraic operation to the front of the computation. Third, the new case,
where c1 is a scoped operation, is analogous: the generalization of the algebraicity property
(Section 3.2) is used to rewrite the computation (E-DoSc).

Handling. For handling computations with a handler of the form h ⋆ c, we distinguish six
situations. First, if possible, c takes a step (E-Hand); in the other cases, c is in normal
form. If c returns a value v , we use the handler’s return clause return x 7→ cr , switching
evaluation to cr with x replaced by v (E-HandRet).

If computation c is an algebraic operation op ℓop v (y . c1), its label is looked up
in the handler h. If the handler contains an algebraic clause with this label, evaluation
switches to the clause’s computation c (E-HandOp), with v substituted for parameter x
and continuation k replaced by a function that, given the original argument y , contains the
already-handled continuation. For example, hND ⋆ cND (p. 3) reduces as follows.

hND ⋆ cND

 do xs ← (λb . hND ⋆ if b then return 1 else return 2) true

do ys ← (λb . hND ⋆ if b then return 1 else return 2) false

1Following convention, these examples may contain elements not present in our calculus, such as integers
and if-then-else statements. These may be viewed as syntactic sugar for their Church encodings.
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c  c′ Computation reduction

(λx . c) v  c [v / x ]
E-AppAbs

let x = v in c  c [v / x ]
E-Let

c1  c′1
do x ← c1 ; c2  do x ← c′1 ; c2

E-Do
do x ← return v ; c2  c2 [v / x ]

E-DoRet

do x ← op ℓop v (y . c1) ; c2  op ℓop v (y .do x ← c1 ; c2)
E-DoOp

do x ← sc ℓsc v (y . c1) (z . c2) ; c3  sc ℓsc v (y . c1) (z .do x ← c2 ; c3)
E-DoSc

c  c′

h ⋆ c  h ⋆ c′
E-Hand

(return x 7→ cr ) ∈ h

h ⋆ return v  cr [v / x ]
E-HandRet

(op ℓop x k 7→ c) ∈ h

h ⋆ op ℓop v (y . c1) c [v / x , (λy . h ⋆ c1) / k ]
E-HandOp

(op ℓop ) /∈ h

h ⋆ op ℓop v (y . c1) op ℓop v (y . h ⋆ c1)
E-FwdOp

(sc ℓsc x p k 7→ c) ∈ h

h ⋆ sc ℓsc v (y . c1) (z . c2) c [v / x , (λy . h ⋆ c1) / p, (λz . h ⋆ c2) / k ]
E-HandSc

(sc ℓsc ) /∈ h (fwd f p k 7→ cf ) ∈ h
g = λ(p′, k ′) . sc ℓsc v (y . p′ y) (z . k ′ z )

h ⋆ sc ℓsc v (y . c1) (z . c2) cf [(λy . h ⋆ c1) / p, (λz . h ⋆ c2) / k , g / f ]
E-FwdSc

Figure 2: Operational semantics of λsc.

xs ++ys

 ∗ return [1, 2]

In case h does not contain a clause for label ℓop, the effect is forwarded (E-FwdOp). Al-
gebraic effects can be forwarded generically: we re-invoke the operation and recursively
apply the handler to continuation c1. For example, during the application of runinc in
hND ⋆ runinc 0 cinc (p. 4), choose is forwarded:

hND ⋆ runinc 0 cinc
 hND ⋆ do p′ ← op choose () (b . hinc ⋆ if b then op inc () (x . x + 5)

else op inc () (y . y + 2)) ; p′ 0

 ∗ return [(6, 1), (3, 1)]

If computation c is a scoped operation sc ℓsc v (y . c1) (z . c2), we again distinguish two
situations: the case where h contains a clause for ℓsc, and where it does not. If h contains
a clause for label ℓsc, evaluation switches to the clause’s computation c (E-HandSc), with
v substituted for parameter x . Both the scoped computation and the continuation are
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replaced by a function that contains the already-handled computations c1 and c2. For
example, this happens for the scoped operation once in honce ⋆ conce (p. 6).

honce ⋆ conce
 do ts ← (λ . honce ⋆ op choose (b . return b)) ()

do t ← head ts

(λp . honce ⋆ (do q ← op choose (b . return b) ; return (p, q))) t

 ∗ return [(true, true), (true, false)]

When h does not contain a clause for label ℓsc, we must forward the effect. As we argued
in Section 3.4, forwarding scoped effects cannot happen generically, but rather proceeds via
the handler’s forwarding clause fwd f p k 7→ cf . From there, evaluation switches to com-
putation cf , in which the usages of scoped computation p and continuation k are replaced
by their already-handled equivalents. Computation cf may reinvoke the unkown scoped
operation ℓsc by means of the parameter f which, when called with a scoped computation
p′ and continuation k ′ invokes the unkown scoped operation using the passed computations
sc ℓsc v (y . p′ y) (z . k ′ z ).

For a computation, consider again the example described in Section 3.4. Even though
we have not given any semantics to catch yet (we will do so in Section 7.1), we know honce
does not contain a clause for catch. As described, catch must be forwarded, addressing
the type mismatch between the handled scoped computation and handled continuation with
concatMap.

honce ⋆ ccatch
 (λ(p′, k ′) . sc catch "err" (b . p′ b) (x . k ′ x ))

((λb . honce ⋆ if b then return 1 else return 2)

, (λz . concatMap z (λx . honce ⋆ return x )))

 sc catch "err" (b . (λb . honce ⋆ if b then return 1 else return 2) b)

(x . (λz . concatMap z (λx . honce ⋆ return x )) x )

6. Type-and-Effect System

This section presents the type-and-effect system of λsc . As before, we distinguish between
values, computations and handlers.

6.1. Value typing. Figure 3 displays the typing rules for values. Rules T-Var, T-Unit,
T-Pair and T-Abs type variables, units, pairs and term abstractions, respectively, and are
standard.

Rule T-EqV expresses that typing holds up to equivalence of types. The full type
equivalence relation (A ≡ B), which also uses the equivalence of rows (E ≡〈〉 F ),
is included in Appendix B. However, these relations can be described as the congruence
closure of the following two rules.

(λ α .A) B ≡ A [B / α ]
Q-AppAbs

ℓ1 6= ℓ2

ℓ1 ; ℓ2 ;E ≡〈〉 ℓ2 ; ℓ1 ;E
R-Swap

RuleQ-AppAbs captures type application, following Fω, and R-Swap captures the insignif-
icance of the order in effect rows, following Koka’s row typing approach.
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Γ ⊢ v : σ Value Typing

(x : σ) ∈ Γ

Γ ⊢ x : σ
T-Var

Γ ⊢ () : ()
T-Unit

Γ ⊢ v1 :A Γ ⊢ v2 : B

Γ ⊢ (v1, v2) : (A,B)
T-Pair

Γ, x : A ⊢ c : C

Γ ⊢ λx . c : A→ C
T-Abs

Γ ⊢ v : A A ≡ B

Γ ⊢ v : B
T-EqV

Γ ⊢ v : ∀ α . σ Γ ⊢ A

Γ ⊢ v : [A / α ] σ
T-Inst

Γ, α ⊢ v : σ α /∈ Γ

Γ ⊢ v : ∀ α . σ
T-Gen

Γ ⊢ v : ∀ µ . σ Γ ⊢ E

Γ ⊢ v : [E / µ ] σ
T-InstEff

Γ, µ ⊢ v : σ µ /∈ Γ

Γ ⊢ v : ∀ µ . σ
T-GenEff

Figure 3: Value typing.

Γ ⊢ c : C Computation Typing

Γ ⊢ v1 : A→ C Γ ⊢ v2 : A

Γ ⊢ v1 v2 : C
T-App

Γ ⊢ c1 :A !〈E 〉 Γ, x :A ⊢ c2 : B !〈E 〉

Γ ⊢ do x ← c1 ; c2 : B !〈E 〉
T-Do

Γ ⊢ c : C C ≡ D

Γ ⊢ c :D
T-EqC

Γ ⊢ v : σ Γ, x : σ ⊢ c : C

Γ ⊢ let x = v in c : C
T-Let

Γ ⊢ v :A Γ ⊢ E

Γ ⊢ return v :A !〈E 〉
T-Ret

Γ ⊢ v : C ⇒ D Γ ⊢ c : C

Γ ⊢ v ⋆ c :D
T-Hand

(ℓop :Aop _ Bop) ∈ Σ Γ ⊢ v :Aop Γ, y :Bop ⊢ c : A !〈E 〉 ℓop ∈ E

Γ ⊢ op ℓop v (y . c) :A !〈E 〉
T-Op

(ℓsc :Asc _ Bsc) ∈ Σ
Γ ⊢ v : Asc Γ, y :Bsc ⊢ c1 : B !〈E 〉 Γ, z : B ⊢ c2 :A !〈E 〉 ℓsc ∈ E

Γ ⊢ sc ℓsc v (y . c1) (z . c2) :A !〈E 〉
T-Sc

Figure 4: Computation typing.

The final four value typing rules deal with generalization and instantiation of type
variables and row variables. Rule T-Inst instantiates the type variables α in a type scheme
with a value type A. Rule T-Gen is its dual, abstracting over a type variable. The rules
for row variables are similar: T-InstEff instantiates row variable with an effect row E ;
T-GenEff abstracts over a row variable. The definition of well-scopedness for types Γ ⊢ σ
and effect rows Γ ⊢ E is straightforward (Appendix C).

6.2. Computation typing. Figure 4 shows the rules for computation typing. Rules T-

App and T-Do capture application and sequencing, and are standard. Like value typing,
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typing of computations holds up to equivalence of types (T-EqC). Rule T-Let is part of
our extension of Eff, as scoped effects require introducing let-polymorphism.

Rule T-Ret assigns a computation type to a return statement. This type consists of
the value v in the return, together with a effect row E . Notice that, as in Koka, this row
can be freely chosen.

Rule T-Hand types handler application. The typing rules for handlers and their clauses
are discussed in Section 6.3. A handler of type C ⇒ D denotes a handler that transforms
computations of type C to a computation of type D .

Rule T-Op types algebraic effects. Looking up label ℓop in Σ yields a signature Aop _

Bop, where Aop is the type of the operation’s parameter v , and Bop is the type of argument y
of the continuation. The resulting effect row includes ℓop. Indeed, ℓ ∈ E means that there
is some E ′ such that E ≡〈〉 ℓ ;E ′. Finally, the operation’s type equals that of continuation
c.

Similarly, rule T-Sc types scoped effects. Again, looking up label ℓsc in Σ yields signa-
ture Asc _ Bsc where Asc corresponds to the type of the operation’s parameter v . However,
where Bop in the algebraic case refers to the continuation’s argument, Bsc now describes
the scoped computation’s argument. This leaves the the scoped result type undescribed by
the signature, but as discussed in Section 3.3, this freedom is exactly what we want. As for
the effect rows, T-Sc requires the rows of the scoped computation to match.

6.3. Handler typing. The typing rules for handlers and handler clauses are shown in
Figure 5. It consists of four judgments. Judgment Γ ⊢ return x 7→ cr : M A !〈E 〉 types
return clauses, Γ ⊢ oprs : M A !〈E 〉 types operation clauses, and Γ ⊢ fwd f p k 7→
c : M A !〈E 〉 types forwarding clauses. Finally, Γ ⊢ h : ∀ a . α !〈F 〉 ⇒ M α !〈E 〉 types
handlers, using the first three judgments.

Return Clauses. Rule T-Return types return clauses of the form return x 7→ cr . It
binds variable x to type A, adds it to the context, and returns the type M A !〈E 〉 of cr as
the type of the return clause.

Operation Clauses. The judgment Γ ⊢ oprs :M A !〈E 〉 denotes that all operations in the
sequence of operations oprs have type M A !〈E 〉. The base case T-Empty types the empty
sequence. The other two cases require the head of the sequence (either op or sc) to have
the same type as the tail.

Rule T-OprOp types algebraic operation clauses op ℓop x k 7→ c. Looking up label
ℓop in Σ yields signature Aop _ Bop, where Aop describes the type of parameter x , and
Bop the type of the argument of continuation k . In order for an operation op to have type
M A !〈E 〉, c should have the same type.

Once again, the case for typing a scoped clause sc ℓsc x p k 7→ c (T-OprSc) is
similar to its algebraic equivalent, extended to include the scoped computation. Notice the
type of p and k when typing c. First, as λsc allows freedom in the scoped result type,
the type variable β is used for this type. Second, as shown in the operational semantics
(rule E-HandSc), for a clause sc ℓsc x p k 7→ c, computation c uses the already-handled
subcomputations p and k . Therefore, type operator M occurs in the scoped result type as
well as in the continuation’s result type:

p : Bsc → M β !〈E 〉 k : β → M A !〈E 〉
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Γ ⊢ return x 7→ cr :M A !〈E 〉 Γ ⊢ oprs :M A !〈E 〉

Γ ⊢ fwd f p k 7→ cf :M A !〈E 〉 Return-, operation-, and forwarding-clause typing

Γ, x :A 7→ cr :M A !〈E 〉

Γ ⊢ return x 7→ cr :M A !〈E 〉
T-Return

Γ ⊢ · :M A !〈E 〉
T-Empty

Γ ⊢ oprs :M A !〈E 〉 (ℓop :Aop _ Bop) ∈ Σ
Γ, x :Aop, k : Bop → M A !〈E 〉 ⊢ c :M A !〈E 〉

Γ ⊢ op ℓop x k 7→ c, oprs :M A !〈E 〉
T-OprOp

Γ ⊢ oprs :M A !〈E 〉 (ℓsc :Asc _ Bsc) ∈ Σ
Γ, β, x : Asc, p : Bsc → M β !〈E 〉, k : β → M A !〈E 〉 ⊢ c :M A !〈E 〉

Γ ⊢ sc ℓsc x p k 7→ c, oprs :M A !〈E 〉
T-OprSc

Ap = α→ M β !〈E 〉 A′
p = α→ γ !〈E 〉

Ak = β → M A !〈E 〉 A′
k = γ → δ !〈E 〉

Γ, α, β, p : Ap , k : Ak , f : ∀ γ δ . (A′
p ,A

′
k )→ δ !〈E 〉 ⊢ cf :M A !〈E 〉

Γ ⊢ fwd f p k 7→ cf :M A !〈E 〉
T-Fwd

Γ ⊢ h : ∀ α .α !〈E 〉 ⇒ M α !〈F 〉 Handler typing

T-Handler
〈F 〉 ≡〈〉 〈labels (oprs) ;E 〉 Γ, α ⊢ return x 7→ cr :M α !〈E 〉

Γ, α ⊢ oprs :M α !〈E 〉 Γ, α ⊢ fwd f p k 7→ cf :M α !〈E 〉

Γ ⊢ handler {return x 7→ cr , oprs , fwd f p k 7→ cf } : ∀ α .α !〈F 〉 ⇒ M α !〈E 〉

Figure 5: Handler typing.

This means that, even though our focus on mitigating the type mismatch between
scoped computation and continuation so far has been on forwarding unknown scoped effects,
the same applies when handling known scoped effects, where computation c accounts for
this discrepancy.

Forwarding Clause. Rule T-Fwd types forwarding clauses of the form fwd f p k 7→ cf .
As the forwarding clause needs to be able to forward any scoped effect in E , it cannot
make any assumptions about the specific operation ℓsc : Asc _ Bsc to expect. Instead, it
abstracts over the operation and treats all possibilities uniformly. This abstraction comes in
two parts. Firstly, the function f abstracts over the possible scoped operation calls sc ℓsc v .
Secondly, the type variable α abstracts over the possible argument types Bsc of the scoped
computation, and type variable β over the scoped result type.

p : α→ M β !〈E 〉 k : β → M A !〈E 〉

Notice the difference between the type of p and k and the arguments of function f : it expects
as argument (p′, k ′) a transformed version of the scoped computation and continuation so
that they agree on the intermediate type. An intuitive solution would be to transform the
scoped computation and continuation as follows to agree on type M β.
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p′ : α→ M β !〈E 〉 k ′ :M β → M A !〈E 〉

However, in some situation we require a more general type γ. For example, when our type
constructor M deals with a state, we require uncurrying of the result type to apply k (e.g.,
hinc, hstate, hdepth). A similar reasoning goes for the result type of k ′ and f . Consequently,
the type of p′ and k ′ are as follows:

p′ : α→ γ !〈E 〉 k ′ : γ → δ !〈E 〉

Transforming the original scoped computation and continuation to agree on this type is the
exact purpose of our explicit forwarding clauses.

Handler. Rule T-Handler types handlers with a polymorphic type of the form ∀ α .α !
〈F 〉 ⇒ M α ! 〈E 〉. A handler consists of a return-clause (T-Return), zero or more
operation clauses (T-Empty, T-OprOp and T-OprSc), and a forwarding clause (T-Fwd).
All clauses should agree on their result type M α ! 〈E 〉. Notice that E denotes a collection
with at least the labels of the present algebraic and scoped operation clauses in the handler
(computed by the labels-function).

6.4. Syntax-directed version of λsc. Appendix C contains a syntax-directed version of
λsc , which we prove type safe, and serves as the specification of our type inference algorithm.
The syntax-directed version was obtained by the following three transformations.

First we removed rule T-EqV, which re-types expressions to some equivalent type.
This rule is used to make types line up exactly at the site of applications, for example by
changing the order of the labels in effect rows. As a consequence, in the syntax directe
version we essentially inline T-EqV wherever it is needed.

Secondly, we removed the rules dealing with generalisation and instantiation (T-Inst,
T-InstEff, T-Gen and T-GenEff). Instead, whenever rules insist on some kind of
polymorphism on some subderivation, we extend the environment with fresh type variables,
and generlize over them locally, instead of via axillary rules.

Finally, as dealing with higher-kinded polymorphism is orthogonal to our work (and
real programming languages like Haskell and OCaml already have their solutions for higher-
kinded polymorphism [YW14]), we avoid higher-order unification by annotating handlers
with the type operator they apply (e.g. handlerM {. . .} instead of handler {. . .}, avoiding
higher-order unification, which is undecidable).

6.5. Metatheory. The type-and-effect system of λsc is type safe. In this section we briefly
state the theorems to show this; the proofs and used lemmas can be found in Appendix E.
We prove type safety by proving Subject Reduction and Progress. As values are inert
, these theorems range over computations only. The formulation of Subject Reduction

is standard:

Theorem 6.1 (Subject Reduction). If Γ ⊢ c : C and c  c′, then there exists a C ′ such
that C ≡ C ′ and Γ ⊢ c′ : C ′.

Apart from an additional normal form sc ℓsc v (y . c1) (z . c2), progress is standard as well:

Theorem 6.2 (Progress). If · ⊢ c : C, then either:

• there exists a computation c′ such that c  c′, or
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• c is in a normal form, which means it is in one of the following forms: (1) c = return v,
(2) c = op ℓop v (y . c′), or (3) c = sc ℓsc v (y . c1) (z . c2).

6.6. Type Inference. Appendix F contains an inference algorithm for λsc, based on the
approach of Hindley-Milner [Mil78] and Koka [Lei14]. Here, we extend the various typing
judgments with a derived substitution θ. For rules with multiple recursive clauses, unifi-
cations made during later branches of the inference algorithm are reflected in the result
of earlier branches by applying the resulting substitutions to any type derived before. We
prove it sound and complete w.r.t. the syntax-directed version as described in Section 6.4.

7. Examples

Now that we have formalized the calculus we can cover some examples. This serves two
purposes. First, we will highlight how scoped effects as handlers, the solution proposed
by Plotkin and Power [PP03] is problematic, even though it is applied in the real world
[TRWS22]. We have postponed doing so, because now that we have formally introduced a
calculus, we can immediately show how λsc addresses these issues. The first two examples in
this section (exceptions with catch and reader with local) therefore contain both an attempt
at encoding them as an handler, as well as a proper encoding as a sc in λsc. Secondly, the
examples exemplify the expressivity of λsc.

To enhance readability, we write the examples in a higher-level syntax following Eff’s
conventions: we use top-level definitions, coalesce values and computations, implicitly se-
quence steps and insert return where needed. Furthermore, we drop trivial return contin-
uations of operations:

op ℓop x ≡ op ℓop x (y . return y)
sc ℓsc x (y . c1) ≡ sc ℓsc x (y . c1) (z . return z )

7.1. Exceptions. Wu et al. [WSH14] have shown how to catch exceptions with a scoped
operation. Raising an exception is an algebraic operation raise : String _ Empty, and
catching an exception is a scoped operation catch : String _ Bool. For example, consider
that we are dealing with a counter with a maximum value of 10. The following computation
increases the counter by 1 and raises an exception when the counter exceeds 10:

incr = do x ← op inc () ;

if x > 10 then op raise "Overflow" (y . absurd y) else return x

Clearly, if we start with a state of 8 and call inc thrice, we end up with an exception.
We want to define a catch operation that executes an alternative computation should an
exception be thrown.



18 R. BOSMAN, B. VAN DEN BERG, W. TANG, AND T. SCHRIJVERS

7.1.1. Catch as handler. One might attempt to write catch as a handler. However, as we
will see, this method does not have the same modularity and expressivity as our calculus
because it cannot achieve the local update semantics [WSH14].

hexcept✗ = handler {return x 7→ right x ,op raise e 7→ left e }

catch✗ c1 c2 = handler {return x 7→ return x

, op raise 7→ c2 } ⋆ c1
ccatch✗ = do incr ; catch✗ (do incr ;do incr ; return "success")

(return "fail")

By handling exceptions before state we obtain global update semantics:

(runinc 8 (hexcept✗
⋆ ccatch✗) 

∗ (right (), 11)

However, when handling exceptions after state, we would expect local update semantics,
i.e. right ("fail", 9). However, we again get the global update semantics:

hexcept✗ ⋆ (runinc 8 ccatch✗) 
∗ (right (), 11)

How can this be? By implementing catch✗ as a handler, we have lost the separation between
syntax and semantics: catch✗ is supposed to denote syntax, but it contains semantics in
the form of a handler. Since we apply catch✗ to a computation (ccatch✗), any containing
raise will have already been handled by catch✗ before hinc is applied. In other words, we
have lost modular composition, and therefore control over the interactions of effects.

7.1.2. Catch as scoped effect. Let us define ccatch that defines catch as an sc:

ccatch = do incr ; sc catch "Overflow" (b .

if b then (do incr ;do incr ; return "success") else return "fail")

The scoped computation’s true branch is the program that may raise exceptions, while the
false branch deals with the exception. Our handler interprets exceptions in terms of a sum
type data α+ β = left α | right β, where left v denotes an exception and right v a result.

hexcept : ∀ α µ .α ! 〈raise ; catch ;µ〉 ⇒ String+ α !〈µ〉

hexcept = handler

{return x 7→ right x

, op raise e 7→ left e

, sc catch e p k 7→ do x ← p true ;

case x of left e ′ | e ′ = e → exceptMap (p false) k

→ exceptMap x k

, fwd f p k 7→ f (p,λz . exceptMap z k)}

The return clause and algebraic operation clause for raise construct a return value and
raise an exception e by calling the right and left constructors, respectively. The scoped op-
eration clause for catch catches an exception e. If the scoped computation in p true raises
an exception e, it is caught by catch and replaced by the scoped computation (p false).
Otherwise, it continues with p true and its results are passed to the continuation k . For for-
warding we essentially return the exception if z fails (left e), and we apply the continuation
k to z if z succeeds (right x ).
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exceptMap : ∀ α β µ .String+ β →µ (β →µ String+ α)→µ String+ α

exceptMap z k = case z of left e → left e

right x → k x

Given an intial counter value 8, we can handle the program ccatch with hexcept and hinc.
Different orders of the application of handlers give us different semantics of the interaction
of effects [WSH14]. Handling exceptions before increments yields us global updates:

runinc 8 (hexcept ⋆ ccatch) 
∗ (right (), 11)

Although an exception is raised and caught, the final value is still updated to 11 by the two
inc operations and exceeds the maximum value of our counter. When handling exceptions
after increments, we obtain the local update semantics:

hexcept ⋆ (runinc 9 ccatch) 
∗ right ((), 9)

7.2. Reader with Local. Reader entails an ask operation that lets one read the (integer)
state that is passed around. The scoped effect local takes a function f which alters the
state, and a computation for which the state should be altered, after which the state should
be returned to its original state. For example, in local (λi . i ∗ 2) (op ask ()) (op ask ()),
the first ask receives a state that is doubled, whereas the second ask receives the original
state. To exemplify the problems that arise when implementing local as a handler, our
example uses effect foo, which is simply mapped to ask by hfoo:

hfoo = handler {return x 7→ return x

,op foo 7→ ask}

7.2.1. Local as a handler. Whereas the lack of effect interaction control in example of catch
as a handler could be described as unfortunate, in the case for ask there is arguably only
one correct interaction, which is not the one that arises from scoped effects as handlers.
Consider clocal below, which includes foo, which is mapped to ask by hfoo.

local✗ f c = handler {return x 7→ return x

, op ask 7→ x ← ask ; return f x }
hread✗ = handler {return x 7→ λm . (x ,m),op ask k 7→ λm . k m m }

runread✗ s c ≡ do c′ ← hread✗ ⋆ c ; c′ s

clocal✗ = x ← ask ; y ← foo

local✗ (λa → 2 ∗ a) (z ← ask ; u ← foo ; return (x , y , z , u))

Since hfoo introduces ask, we must (re)apply hread after applying hfoo. Since foo is mapped
to ask, in clocal✗ we expect x to be equal to y , and z equal to u. Starting with the reader
state set to 1, we expect the result (1, 1, 2, 2). Instead, we get:

runread 1 ⋆ (hfoo ⋆ clocal✗) 
∗ (1, 1, 2, 1) .

Again, how can this be? The cause is the same as the example with catch: since we
encode the semantics of local✗ in its definition, we are forced to perform the handling at
the moment of application. Notice that foo is not caught by local✗! Therefore, f is only
applied to the ask. When foo is mapped to ask by hfoo, local✗’s effect will already have
triggered, which is why f is not applied to it.
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7.2.2. Local as scoped effect. Using a scoped effect we can properly encode local:

hread : ∀ α µ .α ! 〈ask ; local ;µ〉 ⇒ (Int→µ (α, Int))!〈µ〉
hread = handler {return x 7→ λm . (x ,m)

, op ask k 7→ λm . k m m

, sc local f p k 7→ λm .do (x , )← p () (f m) ; k x m

, fwd f p k 7→ λm . f (λy . p y m,λ(z ,m ′) . k z m ′)}
runread s c ≡ do c′ ← hread ⋆ c ; c′ s

clocal = x ← ask ; y ← foo

local (λa → 2 ∗ a) (z ← ask ; u ← foo ; return (x , y , z , u))

Note that the forwarding clause of hstate is the same as the forwarding clause of hinc in
Section 5. Since local is now purely syntax, we can apply hfoo before hread, and have hread
handle the ask that hfoo outputs:

runread 1 (hfoo ⋆ clocal)

 runread 1 (x ← ask ; y ←

local (λa → 2 ∗ a) (z ← ask ; u ← ; return (x , y , z , u))

7.3. Nondeterminism with Cut. The algebraic operation cut : () _ () provides a dif-
ferent flavor of pruning nondeterminism that has its origin as a Prolog primitive. The idea
is that cut prunes all remaining branches and only allows the current branch to continue.
Typically, we want to keep the effect of cut local. This is achieved with the scoped opera-
tion call : () _ (), as proposed by Wu et al. [WSH14]. To handle cut and call, we use
the CutList datatype [PS17].

data CutList α = opened (List α) | closed (List α)

We can think of opened v as a list that may be extended and closed v as a list that may not
be extended with further elements. This intention is captured in the appendCutList function,
which discards the second list if the constructor of the first list is closed.

appendCutList : ∀ α µ .CutList α→µ CutList α→µ CutList α

appendCutList (opened xs) (opened ys) = opened (xs ++ys)

appendCutList (opened xs) (closed ys) = closed (xs ++ys)

appendCutList (closed xs) = closed xs

The handler for nondeterminism with cut is defined as follows:

hcut : ∀ α µ .α ! 〈choose ; fail ; cut ; call ;µ〉 ⇒ CutList α !〈µ〉
hcut = handler {return x 7→ opened [x ]

, op fail 7→ opened [ ]

, op choose x k 7→ appendCutList (k true) (k false)

, op cut k 7→ close (k ())

, sc call p k 7→ concatMapCutList (open (p ())) k

, fwd f p k 7→ f (p,λz . concatMapCutList z k)}
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The operation clause for cut closes the cutlist and the clause for call (re-)opens it when
coming out of the scope.

close : ∀ α µ .CutList α→µ CutList α

close (closed as) = closed as

close (opened as) = closed as

open : ∀ α µ .CutList α→µ CutList α

open (closed as) = opened as

open (opened as) = opened as

The function concatMapCutList is the cutlist counterpart of concatMap which takes the
extensibility of CutList (signalled by opened and closed) into account when concatenating.

concatMapCutList : ∀ α β µ .CutList β →µ (β →µ CutList α)→µ CutList α

concatMapCutList (opened [ ]) f = return (opened [ ])

concatMapCutList (closed [ ]) f = return (closed [ ])

concatMapCutList (opened (b : bs)) f = do as ← f b ;

as ′ ← concatMapCutList (opened bs) f ;

appendCutList as as ′

concatMapCutList (closed (b : bs)) f = do as ← f b ;

as ′ ← concatMapCutList (closed bs) f ;

appendCutList as as ′

In Section 7.5, we give an example usage of cut to improve parsers.

7.4. Depth-Bounded Search. The handlers for nondeterminism shown in Section 7 im-
plement the depth-first search (DFS) strategy. However, with scoped effects and handlers
we can implement other search strategies, such as depth-bounded search (DBS) [YPW+22],
which uses the scoped operation depth : Int _ () to bound the depth of the branches in
the scoped computation. The handler uses return type Int →µ List (α, Int). Here, the Int

parameter is the current depth bound, and the result is a list of (α, Int) pairs, where α
denotes the result and Int reflects the remaining global depth bound.2

hdepth : ∀ α µ .α ! 〈choose ; fail ; depth ;µ〉 ⇒ (Int→µ List (α, Int))!〈µ〉
hdepth = handler

{return x 7→ λd . [(x , d)]

, op fail 7→ λ . [ ]

, op choose x k 7→ λd . if d ≡ 0 then [ ] else k true (d − 1) ++k false (d − 1)

, sc depth d ′ p k 7→ λd . concatMap (p () d ′) (λ(v , ) . k v d)

, fwd f p k 7→ λd . f (λy . p y d ,λvs . concatMap vs (λ(v , d) . k v d))}

For the depth operation, we locally use the given depth bound d ′ for the scoped computation
p and go back to using the global depth bound d for the continuation k . In case of an
unknown scoped operation, the forwarding clause just threads the depth bound through,
first into the scoped computation and from there into the continuation. For example, the
following program (Figure 6) has a local depth bound of 1 and a global depth bound of 2.
It discards the results 2 and 3 in the scoped computation as they appear after the second
choose operation, and similarly, the results 5 and 6 in the continuation are ignored.

cdepth = sc depth 1

( .do b1 ← op choose () ; if b1 then return 1 else

2These pairs (α, Int) differ from Yang et al.’s [YPW+22]’s α in order to make the forwarding clause work.
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sc depth 1 ( .op choose ())

return 1 op choose ()

return 2 return 3

depth 1

depth 2

(x .op choose ())

return x op choose ()

return 4 op choose ()

return 5 return 6

depth 1

depth 2

depth 3

Figure 6: Visual representation of cdepth.

do b2 ← op choose () ; if b2 then return 2 else return 3)

(x .do b1 ← op choose () ; if b1 then return x else

do b2 ← op choose () ; if b2 then return 4 else

do b3 ← op choose () ; if b3 then return 5 else return 6)

>>> (hdepth ⋆ cdepth) 2

[(1, 1), (4, 0)]

The result is [(1, 1), (4, 0)], where the tuple’s second parameter represents the global depth
bound. Notice that choose operations in the scoped computation depth do not consume
the global depth bound in the handler. For a different implementation, we refer to the
Supplementary Material.

7.5. Parsers. A parser effect can be achieved by combining the nondeterminism-with-cut
effect and a token-consuming effect [WSH14]. The latter features the algebraic operation
token : Char _ Char where op token t consumes a single character from the implicit input
string; if it is t , it is passed on to the continuation; otherwise the operation fails. The token
handler has result type String →〈fail ;µ〉 (α,String): it threads through the remaining part
of the input string. Observe that the function type signals it may fail, in case the token
does not match.

htoken : ∀ α µ .α ! 〈token ; fail ;µ〉 ⇒ (String→〈fail ;µ〉 (α,String))!〈fail ;µ〉

htoken = handler

{return x 7→ λs . (x , s)

, op token x k 7→ λs . case s of [ ] → failure ()

(x ′ : xs)→ if x ≡ x ′ then k x xs else failure ()

, fwd f p k 7→ λs . f (λy . p y s,λ(t , s) . k t s)}

We give an example parser for a small expression language, in the typical parser com-
binator style, built on top of the token-consumer and nondeterminism. For convenience, it
uses the syntactic sugar x ⋄ y ≡ op choose (b . if b then x else y).

digit : ∀ µ . ()→ Char ! 〈token ; choose ;µ〉
digit = op token ’0’ ⋄ op token ’1’ ⋄ . . . ⋄ op token ’9’

many1 : ∀ α µ . (()→µ α)→µ List α

many1 p = do a ← p () ;do as ← many1 p ⋄ return [ ] ; return (a : as)

expr′ : ∀ µ . ()→ Int ! 〈token ; choose ;µ〉

expr′ = do i ← term () ;do op token ’+’ ;do j ← expr′ () ;

return (i + j ) ⋄ do i ← term () ; return i
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term : ∀ µ . ()→ Int ! 〈token ; choose ;µ〉
term = do i ← factor () ;do op token ’*’ ;do j ← term () ;

return (i ∗ j ) ⋄ do i ← factor () ; return i

factor : ∀ µ . ()→ Int ! 〈token ; choose ;µ〉
factor = do ds ← many1 digit ; return (read ds)

⋄ do op token ’(’ ;do i ← expr′ () ;do op token ’)’ ; return i

The expr′ parser is naive and can be improved by two types of refactoring: (1) factoring out
the common prefix in the two branches, and (2) pruning the second branch when the first
branch successfully consumes a +.

expr : ∀ µ . ()→ Int ! 〈token ; choose ; cut ;µ〉

expr = do i ← term () ;

sc call () ( . (do op token ’+’ ;op cut () ;

j ← expr () ; return (i + j )) ⋄ i)

Here is how we invoke the parser on an example input.

>>> hcut ⋆ (htoken ⋆ expr ()) "(2+5)*8"

opened [(56, ""), (7, "*8")]

There are two results in the cutlist. Usually we are only interested in the full parsers, i.e.,
those that have consumed the entire input string.

8. Related Work

In this section, we discuss related work on algebraic effects, scoped effects, and effect sys-
tems.

8.1. Algebraic Effects & Handlers. Many research languages for algebraic effects have
been proposed, including Eff [BP13, Pre15], Frank [LMM17], Effekt [BSO20], or have
been extended to include them, such as Links [HL16], Koka [Lei17], and Multicore OCaml
[SDW+21].

There are also many packages for writing effect handlers in general purpose languages
[KSSF19, KS18, RTWS18, Mag19, Kin19]. Yet, as far as we know, λsc is the first calculus
that supports scoped effects & handlers.

In contrast with this line of work on algebraic effects, Nanevski [Nan05] provides an
alternative view of exceptions based on comonads that characterizes monadic effects as
“persistent”.

8.2. Effect Systems. Most languages with support for algebraic effects are equipped with
an effect system to keep track of the effects that are used in the programs. There is already
much work on different approaches to effect systems for algebraic effects.

Eff [BP13, Pre15] uses an effect system based on subtyping relations. Each type of
computation is decorated with an effect type ∆ to represent the set of operations that
might be invoked. The subtyping relations are used to extend the effect type ∆ with other
effects, which makes it possible to compose programs in a modular way. We did not choose
to use the subtyping-based effect types in λsc as that would require complex subtyping for
type operators.



24 R. BOSMAN, B. VAN DEN BERG, W. TANG, AND T. SCHRIJVERS

Row polymorphism is another mainstream approach to effect systems. Links [HL16]
uses the Rémy style row polymorphism [Rém94], where the row types are able to represent
the absence of labels and each label is restricted to appear at most once. Koka [Lei17] uses
row polymorphism based on scoped labels [Lei05], which allows duplicated labels and as a
result is easier to implement. We can use row polymorphism to write handlers that handle
particular effects and forward other effects represented by a row variable. In λsc , we opted
for an effect system similar to Koka’s, mainly because of its brevity. We believe that the
Links-style effect system should also work well with scoped effects.

8.3. Scoped Effects & Handlers. Wu et al. [WSH14] first introduced the idea of scoped
effects & handlers to solve the problem of separating syntax from semantics in programming
with effects that delimit the scope. They proposed a higher-order syntax, an approach to
scoped effects & handlers that has already been implemented in several Haskell packages
[RTWS18, Mag19, Kin19]. They use higher-order signatures, which impose less restrictions
on the shape of the signatures of scoped operations and allow programmers to delimit the
scopes in a freer way than λsc . The cost of this freedom is the need for programmers to write
more functions to distribute handlers for each signature. The higher-order signatures are
also not suitable for use in a calculus as the signatures of operations are usually characterised
by a pair of types in a calculus.

Pirog et al. [PSWJ18] and Yang et al. [YPW+22] have developed denotational semantic
domains of scoped effects, backed by category theorical models. The key idea is to generalize
the denotational approach of algebraic effects & handlers that is based on free monads and
their unique homomorphisms. Indeed, the underlying category can be seen as a parameter.
Then, by shifting from the base category of types and functions to a different (indexed or
functor) category, scoped operations and their handlers turn out to be “just” an instance
of the generalized notion of algebraic operations and handlers with the same structure and
properties. We focus on a calculus for scoped effects instead of the denotational semantics
of scoped effects. We make a simplification with respect to Yang et al. [YPW+22] where
we avoid duplication of the base algebra and endoalgebra (for the outer and inner scoped
respectively), and thus duplication of the scoped effect clauses in our handlers. With re-
spect to Pirog et al. [PSWJ18], we specialize the generic endofunctor Γ with signatures
Aℓ _ Bℓ of endofunctors of the form A × (B → −). Our λsc calculus uses a similar idea
to the ‘explicit substitution’ monad of Pirog et al. [PSWJ18], a generalization of Ghani
and Uustalu’s [GU03] monad of explicit substitutions where each operation is associated
with two computations representing the computation in scope and out of the scope (con-
tinuation) respectively. While the composition of scoped effects has not been considered in
their categorical models, we introduced forwarding clauses for the composition, and further
restrict handlers to be polymorphic to simplify handling and composing scoped effects.

9. Conclusion and Future Work

In this work, we have presented λsc , a novel calculus in which scoped effects & handlers are
built-in. We have started from Eff, extended with row-typing in the style of Koka, and added
scoped effect clauses and operations, polymorphic handlers, and explicit forwarding clauses.
Finally, we have demonstrated the usability of λsc by implementing a range of examples.
Although we have given many useful and compelling examples, we acknowledge that, just
like algebraic effects, scoped effects are not encompassing (e.g. bracketing). We believe that
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the features to support scoped effect in λsc are orthogonal to other language features and
can be added to any programming language with algebraic effects, polymorphism and type
operators.

Scoped effects require every handler in λsc to be polymorphic and equipped with an
explicit forwarding clause. This breaks backwards compatibility: calculi that support only
algebraic effects, such as Eff, miss an explicit forwarding clause for scoped operations and
allow monomorphic handlers. Actually this problem can be easily solved by kinds and kind
polymorphism. The core idea is that we extend λsc with two kinds op and sc for effect
types, such that Γ ⊢ E : op means effect type E only contains algebraic operations, and
Γ ⊢ E : sc means effect type E may contain some scoped operations. Then, for handlers
of type A !〈E 〉 ⇒ M A !〈F 〉 which lack forwarding clauses, we can just add the condition
Γ ⊢ E : op to their typing rules. We have a prototype implementation of this idea, but we
leave the full specification and extension of it to future work.
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[BSO20] Jonathan Immanuel Brachthäuser, Philipp Schuster, and Klaus Ostermann. Effects as capabili-
ties: Effect handlers and lightweight effect polymorphism. Proc. ACM Program. Lang., 4(OOP-
SLA), November 2020. doi:10.1145/3428194.

[GU03] Neil Ghani and Tarmo Uustalu. Explicit substitutions and higher-order syntax. In Proceedings
of the 2003 ACM SIGPLAN Workshop on Mechanized Reasoning about Languages with Vari-
able Binding, MERLIN ’03, page 1–7, New York, NY, USA, 2003. Association for Computing
Machinery. doi:10.1145/976571.976580.

[HL16] Daniel Hillerström and Sam Lindley. Liberating effects with rows and handlers. In Proceedings
of the 1st International Workshop on Type-Driven Development, TyDe 2016, page 15–27, New
York, NY, USA, 2016. Association for Computing Machinery. doi:10.1145/2976022.2976033.

[Kin19] Alexis King. eff – screaming fast extensible effects for less, 2019.
https://github.com/hasura/eff.

[KS18] Oleg Kiselyov and KC Sivaramakrishnan. Eff directly in ocaml. Electronic Proceedings in Theoret-
ical Computer Science, 285:23–58, Dec 2018. URL: http://dx.doi.org/10.4204/EPTCS.285.2,
doi:10.4204/eptcs.285.2.

[KSSF19] Oleg Kiselyov, Amr Sabry, Cameron Swords, and Ben Foppa. extensible-effects: An alternative
to monad transformers, 2019. https://hackage.haskell.org/package/extensible-effects.

[Lei05] Daan Leijen. Extensible records with scoped labels. In Marko C. J. D. van Eekelen, editor,
Revised Selected Papers from the Sixth Symposium on Trends in Functional Programming, TFP
2005, Tallinn, Estonia, 23-24 September 2005, volume 6 of Trends in Functional Programming,
pages 179–194. Intellect, 2005.

[Lei14] Daan Leijen. Koka: Programming with row polymorphic effect types. Electronic Proceedings in
Theoretical Computer Science, 153, 06 2014. doi:10.4204/EPTCS.153.8.

[Lei17] Daan Leijen. Type directed compilation of row-typed algebraic effects. In Proceedings of
the 44th ACM SIGPLAN Symposium on Principles of Programming Languages, POPL



26 R. BOSMAN, B. VAN DEN BERG, W. TANG, AND T. SCHRIJVERS

2017, page 486–499, New York, NY, USA, 2017. Association for Computing Machinery.
doi:10.1145/3009837.3009872.

[LMM17] Sam Lindley, Conor McBride, and Craig McLaughlin. Do be do be do. In Proceedings
of the 44th ACM SIGPLAN Symposium on Principles of Programming Languages, POPL
2017, page 500–514, New York, NY, USA, 2017. Association for Computing Machinery.
doi:10.1145/3009837.3009897.

[LPT03] Paul Blain Levy, John Power, and Hayo Thielecke. Modelling environments
in call-by-value programming languages. Inf. Comput., 185(2):182–210, 2003.
doi:10.1016/S0890-5401(03)00088-9.

[Mag19] Sandy Maguire. polysemy: Higher-order, low-boilerplate free monads, 2019.
https://hackage.haskell.org/package/polysemy.

[Mil78] Robin Milner. A theory of type polymorphism in programming. J. Comput. Syst. Sci., 17(3):348–
375, 1978. doi:10.1016/0022-0000(78)90014-4 .

[Mog89] Eugenio Moggi. An abstract view of programming languages. Technical Report ECS-LFCS-90-
113, Edinburgh University, Department of Computer Science, June 1989.

[Mog91] Eugenio Moggi. Notions of computation and monads. Information and Computation, 93(1):55
– 92, 1991. Selections from 1989 IEEE Symposium on Logic in Computer Science.
doi:https://doi.org/10.1016/0890-5401(91)90052-4 .

[Nan05] Aleksandar Nanevski. A modal calculus for exception handling. 01 2005.
[PP03] Gordon D. Plotkin and John Power. Algebraic operations and generic effects. Appl. Categorical

Struct., 11(1):69–94, 2003. doi:10.1023/A:1023064908962.
[PP09] Gordon Plotkin and Matija Pretnar. Handlers of algebraic effects. In Giuseppe Castagna, editor,

Programming Languages and Systems, pages 80–94, Berlin, Heidelberg, 2009. Springer Berlin
Heidelberg. doi:10.1007/978-3-642-00590-9\_7.

[Pre15] Matija Pretnar. An introduction to algebraic effects and handlers. invited tuto-
rial paper. Electronic Notes in Theoretical Computer Science, 319:19–35, 2015. The
31st Conference on the Mathematical Foundations of Programming Semantics (MFPS
XXXI). URL: https://www.sciencedirect.com/science/article/pii/S1571066115000705,
doi:https://doi.org/10.1016/j.entcs.2015.12.003.

[PS17] Maciej Piróg and Sam Staton. Backtracking with cut via a distributive law and left-zero monoids.
J. Funct. Program., 27:e17, 2017. doi:10.1017/S0956796817000077.

[PSWJ18] Maciej Piróg, Tom Schrijvers, Nicolas Wu, and Mauro Jaskelioff. Syntax and semantics for
operations with scopes. In Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic
in Computer Science, LICS ’18, page 809–818, New York, NY, USA, 2018. Association for
Computing Machinery. doi:10.1145/3209108.3209166.
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Appendix A. Semantic Derivations

This Appendix contains semantic derivations of different handler applications that are used
in the examples throughout this paper.

A.1. Nondeterminism.

hND ⋆ cND ≡ hND ⋆ op choose () (b . if b then return 1 else return 2)

 {- E-HandOp -}
do xs ← (λy . hND ⋆ if b then return 1 else return 2) true

do ys ← (λy . hND ⋆ if b then return 1 else return 2) false

xs ++ys

 {- E-AppAbs -}
do xs ← hND ⋆ if true then return 1 else return 2

do ys ← (λy . hND ⋆ if b then return 1 else return 2) false

xs ++ys

 {- reducing if -}
do xs ← hND ⋆ return 1

do ys ← (λy . hND ⋆ if b then return 1 else return 2) false

xs ++ys

 {- E-HandRet -}
do ys ← (λy . hND ⋆ if b then return 1 else return 2) false

[1] ++ys

 ∗ {- similar to above (the first branch of if) -}
[1] ++[2]

 {- reducing ++ -}
return [1, 2]

A.2. Increment.

hND ⋆ runinc 0 cinc ≡ hND ⋆ (λc p .do p′ ← hinc ⋆ p ; p′ c) 0 cinc
 {- E-AppAbs -}

hND ⋆ do p′ ← hinc ⋆ cinc ; p
′ 0

≡ {- definition of cinc -}

hND ⋆ do p′ ← hinc ⋆ op choose () (b . if b then op inc () (x . x + 5)

else op inc () (y . y + 2)) ; p′ 0

 {- E-FwdOp -}
hND ⋆ do p′ ← op choose () (b . hinc ⋆ if b then op inc () (x . x + 5)

else op inc () (y . y + 2)) ; p′ 0

 {- E-Hand and E-DoOp -}
hND ⋆ op choose () (b .do p′ ← hinc ⋆ if b then op inc () (x . x + 5)

else op inc () (y . y + 2) ; p′ 0)

 {- E-HandOp -}

do xs ← (λb . hND ⋆ do p′ ← hinc ⋆ if b then op inc () (x . x + 5)

else op inc () (y . y + 2) ; p′ 0) true ;
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do ys ← (λb . hND ⋆ do p′ ← hinc ⋆ if b then op inc () (x . x + 5)

else op inc () (y . y + 2) ; p′ 0) false ;

xs ++ys

 {- E-AppAbs -}
do xs ← hND ⋆ do p′ ← hinc ⋆ if true then op inc () (x . x + 5)

else op inc () (y . y + 2) ; p′ 0

do ys ← (λb . hND ⋆ do p′ ← hinc ⋆ if b then op inc () (x . x + 5)

else op inc () (y . y + 2) ; p′ 0) false ;

xs ++ys

 {- reducing if -}
do xs ← hND ⋆ (do p′ ← hinc ⋆ op inc () (x . x + 5) ; p′ 0)

do ys ← (λb . hND ⋆ do p′ ← hinc ⋆ if b then op inc () (x . x + 5)

else op inc () (y . y + 2) ; p′ 0) false ;

xs ++ys

 {- E-HandOp -}
do xs ← hND ⋆ (do p′ ← return (λs .do s ′ ← s + 1 ;

do k ′ ← (λx . hinc ⋆ (x + 5)) s ′ ; k ′ s ′) ; p′ 0)

do ys ← (λb . hND ⋆ do p′ ← hinc ⋆ if b then op inc () (x . x + 5)

else op inc () (y . y + 2) ; p′ 0) false ;

xs ++ys

 {- E-DoRet -}
do xs ← hND ⋆ (λs .do s ′ ← s + 1 ; k ′ ← (λx . hinc ⋆ (x + 5)) s ′ ; k ′ s ′) 0

do ys ← (λb . hND ⋆ do p′ ← hinc ⋆ if b then op inc () (x . x + 5)

else op inc () (y . y + 2) ; p′ 0) false ;

xs ++ys

 ∗ {- E-AppAbs and reducing + -}

do xs ← hND ⋆ (hinc ⋆ (return 6)) 1

do ys ← (λb . hND ⋆ do p′ ← hinc ⋆ if b then op inc () (x . x + 5)

else op inc () (y . y + 2) ; p′ 0) false ;

xs ++ys

 {- E-HandRet -}

do xs ← (λs . return (6, s)) 1

do ys ← (λb . hND ⋆ do p′ ← hinc ⋆ if b then op inc () (x . x + 5)

else op inc () (y . y + 2) ; p′ 0) false ;

xs ++ys

 {- E-AppAbs -}
do xs ← hND ⋆ return (6, 1)

do ys ← (λb . hND ⋆ do p′ ← hinc ⋆ if b then op inc () (x . x + 5)

else op inc () (y . y + 2) ; p′ 0) false ;

xs ++ys

 {- E-HandOp -}
do xs ← return [(6, 1)]

do ys ← (λb . hND ⋆ do p′ ← hinc ⋆ if b then op inc () (x . x + 5)

else op inc () (y . y + 2) ; p′ 0) false ;
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xs ++ys

 {- E-DoRet -}
do ys ← (λb . hND ⋆ do p′ ← if b then hinc ⋆ op inc () (x . x + 5)

else hinc ⋆ op inc () (y . y + 2) ; p′ 0) false ;

[(6, 1)] ++ys

 ∗ {- similar to above (the first branch of if) -}
do ys ← return [(3, 1)]

[(6, 1)] ++ys

 ∗ {- E-DoRet -}

[(6, 1)] ++[(3, 1)]

 ∗ {- reducing ++ -}
return [(6, 1), (3, 1)]

A.3. Once.

honce ⋆ conce
 {- E-HandSc -}

do ts ← (λy . honce ⋆ op choose () (x . return x )) () ;

do t ← head ts ;

(λp . honce ⋆ (do q ← op choose (b . return b) ; return (p, q))) t

 {- E-Do and E-AppAbs -}
do ts ← honce ⋆ op choose () (x . return x ) ;

do t ← head ts ;

(λp . honce ⋆ (do q ← op choose (b . return b) ; return (p, q))) t

 {- E-Do and E-HandOp -}
do ts ← do xs ← (λx . honce ⋆ return x ) true ;do ys ← (λx . honce ⋆ return x ) false ;

xs ++ys ;

do t ← head ts ;

(λp . honce ⋆ (do q ← op choose (b . return b) ; return (p, q))) t

 {- E-Do and E-AppAbs -}
do ts ← do xs ← honce ⋆ return true ;do ys ← honce ⋆ return false ; xs ++ys ;

do t ← head ts ;

(λp . honce ⋆ (do q ← op choose (b . return b) ; return (p, q))) t

 {- E-Do and E-HandRet -}
do ts ← do xs ← return [true ] ;do ys ← return [false] ; xs ++ys ;

do t ← head ts ;

(λp . honce ⋆ (do q ← op choose (b . return b) ; return (p, q))) t

 ∗ {- E-DoRet -}
do ts ← [true, false ] ;

do t ← head ts ;

(λp . honce ⋆ (do q ← op choose (b . return b) ; return (p, q))) t

 ∗ {- E-DoRet -}

(λp . honce ⋆ (do q ← op choose (b . return b) ; return (p, q))) true

 {- E-AppAbs -}
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honce ⋆ (do q ← op choose (b . return b) ; return (true, q))

 ∗ {- similar to A.1 (handling of choose) -}
return [(true, true), (true, false)]
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Appendix B. Type Equivalence Rules

This appendix shows the type equivalence rules of λsc . Figures 7 and 8 contains the rules.
Rules Q-AppAbs and Q-Swap deserve special attention. The other rules are straightfor-
ward.

σ1 ≡ σ2 Type equivalence

σ ≡ σ
Q-Refl

σ1 ≡ σ2

σ2 ≡ σ1
Q-Symm

σ1 ≡ σ2 σ2 ≡ σ3

σ1 ≡ σ3
Q-Trans

A1 ≡ A2 B1 ≡ B2

(A1,B1) ≡ (A2,B2)
Q-Pair

A ≡ B C ≡ D

A→ C ≡ B → D
Q-Fun

C1 ≡ D1 C2 ≡ D2

C1 ⇒ C2 ≡ D1 ⇒ D2
Q-Hand

σ1 ≡ σ2

∀ α . σ1 ≡ ∀ α . σ2
Q-AllTy

σ1 ≡ σ2

∀ µ . σ1 ≡ ∀ µ . σ2
Q-AllRow

A ≡ B

λ α .A ≡ λ α .B
Q-Abs

M1 ≡ M2 A ≡ B

M1 A ≡ M2 B
Q-App

(λ α .A) B ≡ A [B / α ]
Q-AppAbs

A ≡ B E ≡〈〉 F

A ! 〈E 〉 ≡ B ! 〈F 〉
Q-Comp

Figure 7: Type equivalence of λsc .

E ≡〈〉 F Row equivalence

E ≡〈〉 E
R-Refl

E ≡〈〉 F

F ≡〈〉 E
R-Symm

E1 ≡〈〉 E2 E2 ≡〈〉 E3

E1 ≡〈〉 E3
R-Trans

E ≡〈〉 F

ℓ ;E ≡〈〉 ℓ ;F
R-Head

ℓ1 6= ℓ2

ℓ1 ; ℓ2 ;E ≡〈〉 ℓ2 ; ℓ1 ;E
R-Swap

Figure 8: Row equivalence of λsc.
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Appendix C. Well-scopedness Rules

This appendix shows the well-scopedness rules of λsc . Figure 9 contains the rules.

Γ ⊢ σ Γ ⊢ M Γ ⊢ E Γ ⊢ C Type well-scopedness

Γ ⊢ ()
W-Unit

Γ ⊢ A Γ ⊢ B

Γ ⊢ (A,B)
W-Pair

α ∈ Γ

Γ ⊢ α
W-Var

Γ, α ⊢ A

Γ ⊢ ∀ α .A
W-All

Γ ⊢ A Γ ⊢ E

Γ ⊢ A ! 〈E 〉
W-Comp

Γ, α ⊢ A

Γ ⊢ λ α .A
W-Abs

Γ ⊢ M Γ ⊢ A

Γ ⊢ M A
W-App

Γ ⊢ A Γ ⊢ C

Γ ⊢ A→ C
W-Fun

Γ ⊢ C Γ ⊢ D

Γ ⊢ C ⇒ D
W-Hand

µ ∈ Γ

Γ ⊢ µ
W-RowVar

Γ ⊢ ·
W-EmptyRow

Γ ⊢ E

Γ ⊢ ℓ ;E
W-Extension

Figure 9: Well-scopedness rules of λsc.
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Appendix D. Syntax-directed version of λsc

This section describes the syntax-direction version of λsc . It is this version we prove type safe
in Appendix E. Furthermore, it serves as the specification of our type inference algorithm
as described in Appendix F.

The syntax-directed rules can be found in Figure 10 for value typing, Figure 11 for
computation and Figure 12 for handler typing.

Γ ⊢ v :A Value Typing

(x : σ) ∈ Γ σ 6 A Γ ⊢ A

Γ ⊢ x : A
SD-Var

Γ ⊢ () : ()
SD-Unit

Γ ⊢ v1 :A Γ ⊢ v2 : B

Γ ⊢ (v1, v2) : (A,B)
SD-Pair

Γ, x : A ⊢ c : C

Γ ⊢ λx . c :A→ C
SD-Abs

SD-Handler
F ≡〈〉 labels (oprs) ;E α /∈ Γ Γ, α ⊢M return x 7→ cr :M α !〈E 〉
Γ, α ⊢M oprs :M α !〈E 〉 Γ, α ⊢M fwd f p k 7→ cf :M α !〈E 〉 Γ ⊢ A

Γ ⊢ handlerM {return x 7→ cr , oprs , fwd f p k 7→ cf } : A !〈F 〉 ⇒ M A !〈E 〉

Figure 10: Syntax-directed value typing.

The syntax-directed system is obtained by incorporating the non-syntax-directed rules
into the syntax-directed-ones where needed. In particular, we inline the non-syntax-directed
rules for equivalence (T-EqV and T-EqC) into the syntax-directed rules that mention the
same type or row twice in their assumptions (e.g., SD-App, SD-Do). Similarly, we inline
the rules T-Inst, T-InstEff, T-Gen and T-GenEff for instantiating and generalizing
type and row variables. The generalization is incorporated into the rule for let-bindings
(T-Let). Instantiation is incorporated into the variable rule (T-Var) using σ 6 A defined
in Figure 13.

Instantiation is also incorporated into the handler rule: we implicitly instantiate α with
an arbitrary type A, which results in a monomorphically typed handler. However, since
SD-Handler insists on sufficiency polymorphic handler clauses, we can still handle scoped
effects by polymorphic recursion.

Figure 14 displays declarative and syntax-directed typing derivations for both inline
handler application (h ⋆ c) as well as let-bound handlers. As can be seen in the first
derivation, in the case of inline handler application, the declarative system derives a poly-
morphically typed handler, which is instantiated. The syntax-directed system essentially
combines these steps, as can be seen in the second derivation. In the case of a let-bound
handler, the declarative system keeps the polymorphic handler type as-is (third derivation).
The syntax-directed system however instantiates and then immediately generalizes handlers,
as can be seen in the fourth derivation.

The other rules of the declarative system are syntax-directed and remain unchanged.
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Γ ⊢ c : C Computation Typing

Γ ⊢ v1 : A1 → C Γ ⊢ v2 :A2 A1 ≡ A2

Γ ⊢ v1 v2 : C
SD-App

Γ ⊢ c1 : A !〈E1〉 Γ, x :A ⊢ c2 : B !〈E2〉 E1 ≡ E2

Γ ⊢ do x ← c1 ; c2 : B !〈E2〉
SD-Do

Γ, α, µ ⊢ v : A (α /∈ Γ) (µ /∈ Γ) Γ, x : ∀ α .∀ µ .A ⊢ c : C

Γ ⊢ let x = v in c : C
SD-Let

Γ ⊢ v :A

Γ ⊢ return v : A !〈E 〉
SD-Ret

Γ ⊢ v : C1 ⇒ D1 Γ ⊢ c : C2 C1 ≡ C2 D1 ≡ D2

Γ ⊢ v ⋆ c :D2

SD-Hand

(ℓop :Aop _ Bop) ∈ Σ
Γ ⊢ v : A1 Aop ≡ A1 Γ, y :Bop ⊢ c : A !〈E 〉 ℓop ∈ E

Γ ⊢ op ℓop v (y . c) :A !〈E 〉
SD-Op

(ℓsc :Asc _ Bsc) ∈ Σ Γ ⊢ v : A1 Asc ≡ A1

Γ, y :Bsc ⊢ c1 : B !〈E1〉 Γ, z : B ⊢ c2 : A !〈E2〉 E1 ≡ E2 ℓsc ∈ E2

Γ ⊢ sc ℓsc v (y . c1) (z . c2) : A !〈E2〉
SD-Sc

Figure 11: Syntax-directed computation typing.
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Γ ⊢M return x 7→ cr :M A !〈E 〉 Γ ⊢M oprs :M A !〈E 〉

Γ ⊢M fwd f p k 7→ cf :M A !〈E 〉

Return-, operation-, and forwarding-clause typing

Γ, x :A1 ⊢ cr :M A2 !〈E 〉 A1 ≡ A2

Γ ⊢M return x 7→ cr :M A !〈E2〉
SD-Return

Γ ⊢M · :M A !〈E 〉
SD-Empty

Γ ⊢M oprs :M A1 !〈E1〉 (ℓop : Aop _ Bop) ∈ Σ
Γ, x :Aop, k : Bop → M A1 !〈E1〉 ⊢ c :M A2 !〈E2〉

M A1 !〈E1〉 ≡ M A2 !〈E2〉

Γ ⊢M op ℓop x k 7→ c, oprs :M A2 !〈E2〉
SD-OprOp

Γ ⊢M oprs :M A1 !〈E1〉 (ℓsc : Asc _ Bsc) ∈ Σ β /∈ Γ
Γ, β, x :Asc, p :Bsc → M β !〈E1〉, k : β → M A1 !〈E1〉 ⊢ c :M A2 !〈E2〉

M A1 !〈E1〉 ≡ M A2 !〈E2〉

Γ ⊢M sc ℓsc x p k 7→ c, oprs :M A2 !〈E2〉
SD-OprSc

α, β, γ, δ /∈ Γ Ap = α→ M β !〈E1〉
A′

p = α→ γ !〈E1〉 Ak = β → M A1 !〈E1〉 A′
k = γ → δ !〈E1〉

Γ, α, β, p : Ap , k :Ak , f : ∀ γ δ . (A′
p ,A

′
k )→ δ !〈E1〉 ⊢ cf :M A2 !〈E2〉

M A1 !〈E1〉 ≡ M A2 !〈E2〉 Γ ⊢ A2

Γ ⊢M fwd f p k 7→ cf :M A2 !〈E2〉
SD-Fwd

Figure 12: Syntax-directed handler typing.

σ 6 A σ-instantiation

A 6 A
σ-Inst-Base

[B / α]σ 6 A

∀ α . σ 6 A
σ-Inst-α

[E / µ ] σ 6 A

∀ µ . σ 6 A
σ-Inst-µ

Figure 13: σ-instantiation.
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Γ, α ⊢ oprs :M α !〈E 〉

Γ ⊢ h : ∀ α .α !〈F 〉 ⇒ M α !〈E 〉
T-Handler

Γ ⊢ A

Γ ⊢ h : A !〈F 〉 ⇒ M A !〈E 〉
T-Inst

Γ ⊢ c : A !〈F 〉

Γ ⊢ h ⋆ c :M A !〈E 〉
T-Hand

Γ, α ⊢M oprs :M α !〈E 〉 Γ ⊢ A

Γ ⊢ hM : A !〈F 〉 ⇒ M A !〈E 〉
SD-Handler

Γ ⊢ c :A !〈F 〉

Γ ⊢ hM ⋆ c :M A !〈E 〉
SD-Hand

Γ, α ⊢ oprs :M α !〈E 〉

Γ ⊢ h : ∀ α .α !〈F 〉 ⇒ M α !〈E 〉
T-Handler

Γ, x : ∀ α .α !〈F 〉 ⇒ M α !〈E 〉 ⊢ c : C

Γ ⊢ let x = h in c : C
T-Let

Γ, α, β ⊢M oprs :M β !〈E 〉
Γ, α ⊢ α

Γ ⊢ hM : α !〈F 〉 ⇒ M α !〈E 〉
SD-Handler

Γ, x : ∀ α .α !〈F 〉 ⇒ M α !〈E 〉 ⊢ c : C

Γ ⊢ let x = hM in c : C
SD-Let

Figure 14: Handler generalisation and instantiation
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Appendix E. Metatheory

E.1. Lemmas.

Lemma E.1 (Canonical forms).
• If · ⊢ v :A→ C then v is of shape λx . c.
• If · ⊢ v : C ⇒ D then v is of shape h.

Lemma E.2 (Generalisation-equivalence). If σ1 6 A1 and σ1 ≡ σ2, then there exists a
A2 such that A1 ≡ A2 and σ2 6 A2.

Lemma E.3 (Generalisation-instantiation). If Γ, α, µ ⊢ v : A and ∀ α ∀ µ .A 6 B, then
Γ ⊢ v : B.

Lemma E.4 (Preservation of types under term substitution). Given Γ1, α, µ ⊢ v : A1 and
A1 ≡ A2 we have that:

• If Γ1, x : ∀ α ∀ µ .A2,Γ2 ⊢ c : C1, then there exists a C2 such that C1 ≡ C2 and
Γ1,Γ2 ⊢ [v / x ] c : C2.
• If Γ1, x : ∀ α ∀ µ .A2,Γ2 ⊢ v : B1, then there exists a B2 such that B1 ≡ B2 and
Γ1,Γ2 ⊢ [v / x ] v : B2.

Proof. By mutual induction on the typing derivations. The only interesting case, SD-Var,
requires us to show that, given Γ1, x : ∀ α ∀ µ .A2,Γ2 ⊢ y : B1, there exists a B2 such that
B1 ≡ B2 and Γ1,Γ2 ⊢ [v /x ] y :B2. If x 6= y , it is trivial. If x = y , then ∀ α ∀ µ .A2 6 B1,
which means by Lemma E.2 there exists a B2 such that B1 ≡ B2 and ∀ α ∀ µ .A1 6 B2,
which means the result follows from Lemma E.3.

Lemma E.5 (Preservation of types under type substitution). If Γ1, α,Γ2 ⊢ c :C and Γ1 ⊢ B,
then Γ1, [B / α ] Γ2 ⊢ c : [B / α ] C.

Lemma E.6 (Unused binding insertion). If Γ1,Γ2 ⊢ c :C and x /∈ c then Γ1, x :A,Γ2 ⊢ c :C.

Lemma E.7 (Handlers are polymorphic). If Γ ⊢ h : A !〈F 〉 ⇒ M A !〈E 〉 and Γ ⊢ B, then
Γ ⊢ h : B !〈F 〉 ⇒ M B !〈E 〉.

Lemma E.8 (Op membership). If Γ ⊢ oprs : C and op ℓop x k 7→ c ∈ oprs, then there
exists oprs1 and oprs2 such that oprs = oprs1,op ℓop k ⊢ c, oprs2 and Γ ⊢ op ℓop x k 7→
c, oprs2 : C.

Lemma E.9 (Sc membership). If Γ ⊢ oprs :C and (sc ℓsc x p k 7→ c) ∈ h, then there exists
oprs1 and oprs2 such that oprs = oprs1, sc ℓsc x p k 7→ c, oprs2 and Γ ⊢ sc ℓsc x p k 7→
c, oprs2 : C.

E.2. Subject reduction.

Theorem 6.1 (Subject Reduction). If Γ ⊢ c : C and c  c′, then there exists a C ′ such
that C ≡ C ′ and Γ ⊢ c′ : C ′.

Proof. Assume, without loss of generality, that C = B !〈F 〉 for some B , F . Proceed by
induction on the derivation c  c′.

• E-AppAbs: Inversion on Γ ⊢ (λx . c) v :B !〈F 〉 (SD-App) gives Γ ⊢ λx . c :A1 → B !〈F 〉
(1), Γ ⊢ v : A2 (2), and A1 ≡ A2 (3). Inversion on fact 1 (SD-Abs) gives Γ, x : A1 ⊢
c : B !〈F 〉 (4), which means the goal follows from facts 2 and 4 and Lemma E.4.
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• E-Let: Inversion on Γ ⊢ let x = v in c : B !〈F 〉 (SD-Let) gives Γ ⊢ v : A (1), σ =
gen (A,Γ) (2), and Γ, x :σ ⊢ c :B !〈F 〉 (3), which means the goal follows from facts 1 and
3 and Lemma E.4.
• E-Do: Follows from the IH.
• E-DoRet: Inversion on Γ ⊢ do x ← return v in c : B !〈F2〉 (SD-Do) gives Γ ⊢
return v : A !〈F1〉 (1) and Γ, x : A ⊢ c : B !〈F2〉 (2). Inversion on (1) (SD-Ret) gives
Γ ⊢ v :A (3). The case follows from facts 2 and 4 and Lemma E.4.
• E-DoOp: Similar to E-DoSc. By inversion on Γ ⊢ do x ← op ℓop v (y . c1) in c2 :B !〈F2〉
(SD-Do) we have that Γ ⊢ op ℓop v (y . c1) : A !〈F1〉 (1), Γ, x : A ⊢ c2 : B !〈F2〉 (2), and
F1 ≡ F2 (3). From inversion on fact 1 (SD-Op) it follows that ℓop :Aop _ Bop ∈ Σ (4),
Γ ⊢ v :A1 (5), Aop ≡ A1 (6), Γ, y :Bop ⊢ c1 :A !〈F1〉 (7), and ℓop ∈ F1 (8). Lemma E.6
on (2) gives us Γ, y : Bop, x : A ⊢ c2 : B !〈F2〉 (9). Facts 3, 7 and 9 and rule SD-Do give
us Γ, y : Bop ⊢ do x ← c1 in c2 : B !〈F2〉 (10). Our goal then follows from facts 4, 5, 6, 8,
and 10 and rule SD-Op.
• E-DoSc: Similar to E-DoOp. By inversion on Γ ⊢ do x ← sc ℓsc v (y . c1) (z . c2) in c3 :
B !〈F3 〉 (SD-Do) we have that Γ ⊢ sc ℓsc v (y . c1) (z . c2) : A !〈F2〉 (1), Γ, x : A ⊢
c3 : B !〈F3 〉 (2), and F2 ≡ F3 (2.1). From inversion on fact 1 (SD-Sc) it follows that
ℓsc : Asc _ Bsc ∈ Σ (3), Γ ⊢ v : A1 (4), Asc ≡ A1 (5), Γ, y : Bsc ⊢ c1 : B

′ !〈F1〉 (6),
Γ, z : B ′ ⊢ c2 : A !〈F2〉 (7), F1 ≡ F2 (8), and ℓsc ∈ F2 (9). Lemma E.6 on (2) gives us
Γ, z : B ′, x : A ⊢ c3 : B !〈F3 〉 (10), which means facts 2.1, 7 and 10 and rule SD-Do give
us Γ, z : B ′ ⊢ do x ← c2 in c3 : B !〈F3 〉 (11). Our goal then follows from facts 3, 4, 5, 6,
8 9, and 11 and rule SD-Sc.
• E-Hand: Follows from the IH.
• E-HandRet: By inversion on Γ ⊢ h ⋆ return v : B !〈F2〉 (SD-Hand) we have that
Γ ⊢ h : C1 ⇒ B !〈F2〉 (1), Γ ⊢ return v : C2 (2), and C1 ≡ C2 (3). Inversion on fact 1
(SD-Handler) gives B = M A2, C1 = A2 !〈E 〉, and Γ, α ⊢M return x 7→ cr :M α !〈F2〉
(4). Based on fact (3) we get that C2 = A2 ′ !〈E ′〉, A2 ≡ A2 ′ (4), and E ≡ E ′ (5).
Inversion on fact 4 (SD-Return) gives Γ, α, x :A1 ⊢ cr :M α !〈F2〉 (5) and A1 ≡ A2 (6).
Inversion on fact 2 (SD-Ret) gives Γ ⊢ v : A2 ′ (7). From facts 4-8 and Lemma E.4, we
get that Γ, α ⊢ [vλx ] cr :M α !〈F2〉 (8). We obtain our goal from fact 8 and Lemma E.5.
• E-HandOp: By inversion on Γ ⊢ h ⋆ op ℓop v (y . c1) : B !〈F2〉 (SD-Hand) we have that
Γ ⊢ h : C1 ⇒ B !〈F2〉 (1), Γ ⊢ op ℓop v (y . c1) : C2 (2), and C1 ≡ C2 (3). Inversion on
fact 1 (SD-Handler) gives B = M A2, C1 = A2 !〈E 〉, and Γ, α ⊢M oprs : M α !〈F2〉
(4). Based on fact (3) we get that C2 = A2 ′ !〈E ′〉, A2 ≡ A2 ′ (4), and E ≡ E ′ (5).
Inversion on fact 2 (SD-Op) gives us ℓop :Aop _ Bop ∈ Σ (6), Γ ⊢ v :A1 (7), Aop ≡ A1

(8), Γ, y : Bop ⊢ c1 : A2 ′ !〈E ′〉 (9), and ℓop ∈ E ′ (10). By Lemma E.8 we get that
Γ, α ⊢M op ℓop x k 7→ c, oprs2 :M α !〈F2〉 (11). Inversion on fact 11 (SD-OprOp) gives
that Γ, α ⊢M oprs :M α !〈F1〉 (12), (ℓ

op : Aop _ Bop) ∈ Σ (13), Γ, α, x : Aop, k : Bop →
M α !〈F1〉 ⊢ c :M α !〈F2〉 (14), and F1 ≡ F2 (15). Facts 1, 4 and 9 in combination with
constructors SD-Abs and ST-Hand gives us that Γ ⊢ λy . h ⋆ c1 : Bop → M A2 !〈F2〉
(16). The goal follows from facts 7, 8, 14 and 16 and lemmas Lemmas E.4 and E.5.
• E-FwdOp By inversion on Γ ⊢ h ⋆ op ℓop v (y . c1) : B !〈F2〉 (SD-Hand) we have that
Γ ⊢ h : C1 ⇒ B !〈F2〉 (1), Γ ⊢ op ℓop v (y . c1) : C2 (2), and C1 ≡ C2 (3). Inversion on
fact 1 (SD-Handler) gives B = M A2, and C1 = A2 !〈E 〉. Based on fact (3) we get that
C2 = A2 ′ !〈E ′〉, A2 ≡ A2 ′ (4), and E ≡ E ′ (5). Inversion on fact 2 (SD-Op) gives us
ℓop :Aop _ Bop ∈ Σ (6), Γ ⊢ v :A1 (7), Aop ≡ A1 (8), Γ, y :Bop ⊢ c1 :A2

′ !〈E ′〉 (9), and
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ℓop ∈ E ′ (10). The goal follows from facts 1, 4, 5, 6, 7, 8, 10, constructors SD-Hand

and SD-Op, and Lemma E.6.
• E-HandSc: By inversion on Γ ⊢ h ⋆ op ℓop v (y . c1) : B !〈F2〉 (SD-Hand) we have that
Γ ⊢ h : C1 ⇒ B !〈F2〉 (1), Γ ⊢ ℓsc v (y . c1) (z . c2) : C2 (2), and C1 ≡ C2 (3). Inversion
on fact 1 (SD-Handler) gives B = M A2, C1 = A2 !〈E1〉, and Γ, α ⊢M oprs :M α !〈F2〉
(4). Based on fact (3) we get that C2 = A2 ′ !〈E2〉, A2 ≡ A2 ′ (5), and E1 ≡ E2 (6).
Inversion on fact 2 (SD-Sc) gives us ℓsc :Asc _ Bsc ∈ Σ (7), Γ ⊢ v :A1 (8), Asc ≡ A1 (9),
Γ, y :Bsc ⊢ c1 : A3 !〈E3〉 (10), Γ, z : A3 ⊢ c2 : A2

′ !〈E2〉 (11), E3 ≡ E2 (12), and ℓsc ∈ E2

(13). Lemma E.8 we get that Γ, α ⊢M op ℓop x k 7→ c, oprs2 :M α !〈F2〉 (13.1). Inversion
on fact 13.1 (SD-OprSc gives ℓsc ∈ Σ (14), β fresh (15), Γ, α, β, x : Asc, p : Bsc →
M β !〈F3 〉, k : β → M α !〈F3 〉 ⊢ c : M α !〈F2〉 (16), and F2 ≡ F3 (17). Facts 1, 5, 6,
10 and 12, constructors SD-Abs and SD-Hand and Lemmas E.6 and E.7 give us that
Γ, β ⊢ λy . h ⋆ c1 :p :Bsc → M β !〈F2〉 (18). Facts 1, 5, 6 and 11 and constructors SD-Abs

and SD-Hand and Lemma E.6 give us that Γ, β ⊢ λz . h ⋆ c2 :β → M A2 !〈F2〉 (19). The
goal now follows from facts 8, 9, 16, 17 and 18 and Lemma E.4.
• E-FwdSc By inversion on Γ ⊢ h ⋆ op ℓop v (y . c1) : B !〈F2〉 (SD-Hand) we have that
Γ ⊢ h : C1 ⇒ B !〈F2〉 (1), Γ ⊢ ℓsc v (y . c1) (z . c2) : C2 (2), and C1 ≡ C2 (3). Inversion
on fact 1 (SD-Handler) gives B = M A2, C1 = A2 !〈E1〉, and Γ, α ⊢M fwd f p k 7→
cf : M α !〈F2〉 (4). Based on fact (3) we get that C2 = A2 ′ !〈E2〉, A2 ≡ A2 ′ (5), and
E1 ≡ E2 (6). Inversion on fact 2 (SD-Sc) gives us ℓsc : Asc _ Bsc ∈ Σ (7), Γ ⊢ v : A1

(8), Asc ≡ A1 (9), Γ, y : Bsc ⊢ c1 : A3 !〈E3〉 (10), Γ, z : A3 ⊢ c2 :A2
′ !〈E2〉 (11), E3 ≡ E2

(12), and ℓsc ∈ E2 (13). Inversion on fact 4 (SD-Fwd) gives Ap = α′ → M β !〈F1〉,
A′

p = α′ → γ !〈F1〉, Ak = β → M A4 !〈F1〉, A
′
k = γ → δ !〈F1〉, Γ, α, α

′, β, p : Ap , k : Ak , f :

∀ γ δ . (A′
p ,A

′
k )→ δ !〈F1〉 ⊢ cf :M α !〈F2〉 (14) and M A1 !〈F1〉 ≡ M α !〈F2〉 (15). Facts

1, 6, 10 and 12, constructors SD-Abs and SD-Hand and Lemmas E.6 and E.7 give us
that Γ, α, y : Bsc ⊢ h ⋆ c1 :M A3 !〈F2〉 (16) Facts 1, 6, 10 and 12, constructors SD-Abs

and SD-Hand and Lemma E.6 give us that Γ, α ⊢ λz . h ⋆ c2 : A3 → M A4 !〈F2〉 (17)
Facts 7, 8, 9, 13, the fact that ℓsc /∈ labels (oprs), constructors SD-Abs, SD-App and
SD-Var and Lemma E.6 give us that Γ, α, (p′, k ′) : ∀ γ δ . (Bsc → γ !〈F1〉, γ → δ !〈F1〉) ⊢
sc ℓsc v (y . p′ y) (z . k ′ z ) : δ !〈F1〉 (18). Our goal then follows from facts 14, 15, 16, 17,
18 and Lemma E.4.

E.3. Progress.

Theorem 6.2 (Progress). If · ⊢ c : C, then either:

• there exists a computation c′ such that c  c′, or
• c is in a normal form, which means it is in one of the following forms: (1) c = return v,
(2) c = op ℓop v (y . c′), or (3) c = sc ℓsc v (y . c1) (z . c2).

Proof. By induction on the typing derivation · ⊢ c : C.

• SD-App: Here, · ⊢ v1 v2. Since v1 has type A → B !〈F 〉, by Lemma E.1 it must be of
shape λx . c, which means we can step by rule E-AppAbs.
• SD-Do: Here, · ⊢ do x ← c1 in c2 : C. By the induction hypothesis, c1 can either
step (in which case we can step by E-Do), or it is a computation result. Every possible
form has a corresponding reduction: if c1 = return v we can step by E-DoRet, if
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c1 = op ℓop v (y . c) we can step by E-DoOp, and if sc ℓop v (y . c′1) (z . c
′
2) we can step

by E-DoSc.
• SD-Let: Here, · ⊢ let x = v in c : C, which means we can step by E-Let.
• SD-Ret, SD-Op, and SD-Sc: all of these are computation results (forms 1, 2, and 3,
resp.).
• SD-Hand: Here · ⊢ v ⋆ c :M A !〈F 〉. By Lemma E.1, v is of shape h. By the induction
hypothesis, c can either step (in which case we can step by E-Hand), or it is in a normal
form. Proceed by case split on the three forms.
(1) Case c = return v . Since · ⊢ h : C ⇒ D, there must be some (return x 7→ cr ) ∈ h

which means we can step by rule E-HandRet.
(2) Case c = op ℓop v (y . c′). Depending on (op ℓop x k 7→ c) ∈ h we can step by

E-HandOp or E-FwdOp.
(3) Case c = sc ℓsc v (y . c1) (z . c2). If (sc ℓsc x p k 7→ c) ∈ h, we can step by

E-HandSc. If not, since · ⊢ h : C ⇒ D, there must be some (fwd f p k 7→ cf ) ∈ h
which means we can step by rule E-FwdSc.
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value types Â, B̂ ::= () | (Â, B̂) | Â→ Ĉ | Ĉ ⇒ D̂

| α | α̂ | λ α . Â | M Â

type schemes σ̂ ::= Â | ∀ µ . σ̂ | ∀ α . σ̂ | ∀ µ̂ . σ̂ | ∀ α̂ . σ̂

computation types Ĉ, D̂ ::= Â !〈Ê〉

effect rows Ê ::= · | µ | µ̂ | ℓ ; Ê

signature contexts Σ ::= · | Σ, ℓop : Aop _ Bop | ℓsc :Asc _ Bsc

type contexts Γ̂ ::= · | Γ̂, x : Â | Γ̂, µ | Γ̂, α

unification worklists U ::= · | Â ∼ B̂,U | Ê ∼ F̂ ,U | Ĉ ∼ D̂,U

Figure 15: Types for algorithmic system.

Appendix F. Type Inference

F.1. Algorithmic Syntax. For type inference, we follow the approach of Koka [Lei14].
The syntax for types in our algorithmic system can be found in Figure 15. We add unification

variables α̂ for types and µ̂ for rows to our syntax. The hat on types Â, Ĉ, rows Ê and

contexts Γ̂ indicate that they may contain unification variables. Furthermore, we add
unification worklists U to represent the collection of types or rows that need to be unified.

The type equivalence for algorithmic types is a trivial extension of type equivalence for
the declarative system (Figure 7). The well-scopedness rules are also a trivial extension of
Figure 9. Notice that we do not record unification variables in the contexts, so they are not
checked in the well-scopedness rules. Finally, notice that we do not allow free type variables
in the annotation of type operators M .

F.2. Algorithmic Rules. Our type inference algorithm consists of algorithmic typing rules

that output a type Â and a substitution θ. The judgment Γ̂ ⊢ v : Â ⊣ θ states that under

Γ̂, a value v has algorithmic type Â, giving a substitution θ. This algorithm is based
on Hindley-Milner’s algorithm W [Mil78], assigning types or unification variables to each
(sub)term and generating substitutions by solving unification constraints, originating from
algorithmic rules.

The algorithmic type inference rules can be found in Figure 16 for values, Figure 17

for computations, and Figure 18 for handlers. In these rules, we use unification Â ∼ B̂ : θ

which states that two types Â and B̂ can be unified, giving rise to a substitution θ. The

same holds for the unification of rows Ê ∼ F̂ : θ and the unification of computation types

Ĉ ∼ D̂ : θ. We discuss the unification algorithm in more detail in Appendix F.3.
The most interesting case is the algorithmic handler rule. Here, we derive (unification)

types for each of the subterms and require them to be a computation type with a type

variable (e.g., Â1 = α̂1). Furthermore, all derived types of the subterms should be equivalent.

We express this by unifying them (e.g., θ2α̂1 !〈Ê1〉 ∼ α̂2 !〈Ê2〉 : θ3). Then, we implicitly
instantiate the resulting type using some fresh unification variable α̂4.

In these inference rules, we use uv (Â) to represent the set of unification variables in Â.
Furthermore, we use rng (θ) to indicate the range of the substitution θ.



44 R. BOSMAN, B. VAN DEN BERG, W. TANG, AND T. SCHRIJVERS

Γ̂ ⊢ v : Â ⊣ θ Value typing

(x : σ̂) ∈ Γ̂ σ̂ 6 Â Γ̂ ⊢ Â

Γ̂ ⊢ x : Â ⊣ ∅
A-Var

Γ̂ ⊢ () : () ⊣ ∅
A-Unit

Γ̂ ⊢ v1 : Â ⊣ θ1 θ1Γ̂ ⊢ v2 : B̂ ⊣ θ2

Γ̂ ⊢ (v1, v2) : (θ2Â, B̂) ⊣ θ2..1
A-Pair

α̂ fresh Γ̂, x : α̂ ⊢ c : Ĉ ⊣ θ

Γ̂ ⊢ λx . c : θα̂→ Ĉ ⊣ θ
A-Abs

Γ̂ ⊢M return x 7→ cr :M Â1 !〈Ê1〉 ⊣ θ1
Â1 = α̂1 θ1Γ̂ ⊢M oprs :M Â2 !〈Ê2〉 ⊣ θ2 Â2 = α̂2

θ2(α̂1 !〈Ê1〉) ∼ α̂2 !〈Ê2〉 : θ3 θ3..1Γ̂ ⊢M fwd f p k 7→ cf :M Â3 !〈Ê3〉 ⊣ θ4
Â3 = α̂3 θ4..3(α̂2 !〈Ê2〉) ∼ α̂3 !〈Ê3〉 : θ5

α̂4 = θ5α̂3 α̂4 /∈ fv (θ5..1Γ̂) 〈F̂ 〉 = 〈labels (oprs) ; θ5 Ê3〉

Γ̂ ⊢ handlerM {return x 7→ cr , oprs , fwd f p k 7→ cf }:

α̂4 !〈F̂ 〉 ⇒ M α̂4 !〈θ5Ê3〉 ⊣ θ5..1

A-Handler

Figure 16: Type inference rules for values.
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Γ̂ ⊢ c : Ĉ ⊣ θ Computation typing

Γ̂ ⊢ v1 : Â1 ⊣ θ1 θ1Γ̂ ⊢ v2 : Â2 ⊣ θ2 α̂, µ̂ fresh θ2Â1 ∼ (Â2 → α̂ !〈µ̂〉) : θ3

Γ̂ ⊢ v1 v2 : θ3(α̂ !〈µ̂〉) ⊣ θ3..1
A-App

Γ̂ ⊢ c1 : Â !〈Ê〉 ⊣ θ1 θ1Γ̂, x : Â ⊢ c2 : B̂ !〈F̂ 〉 ⊣ θ2 θ2Ê ∼ F̂ : θ3

Γ̂ ⊢ do x ← c1 ; c2 : θ3(B̂ !〈F̂ 〉) ⊣ θ3..1
A-Do

Γ̂, α, µ ⊢ v : Â ⊣ θ1 α, µ /∈ Γ̂ α̂ µ̂ = uv (Â)− uv (Γ̂)

θ1Γ̂, x : ∀ α .∀ µ .∀ α̂ .∀ µ̂ . Â ⊢ c : Ĉ ⊣ θ2

Γ̂ ⊢ let x = v in c : Ĉ ⊣ θ2..1
A-Let

Γ̂ ⊢ v : Â ⊣ θ µ̂ fresh

Γ̂ ⊢ return v : Â !〈µ̂〉 ⊣ θ
A-Ret

Γ̂ ⊢ v : Â ⊣ θ1 θ1Γ̂ ⊢ c : Ĉ ⊣ θ2 α̂, µ̂ fresh θ2Â ∼ Ĉ ⇒ α̂ !〈µ̂〉 : θ3

Γ̂ ⊢ v ⋆ c : θ3α̂ !〈µ̂〉 ⊣ θ3..1
A-Hand

(ℓop :Aop _ Bop) ∈ Σ Γ̂ ⊢ v : Â ⊣ θ1
Aop ∼ Â ⊣ θ2 θ2..1Γ̂, y :Bop ⊢ c : Â′ !〈Ê〉 ⊣ θ3 µ̂ fresh Ê ∼ 〈ℓop ; µ̂〉 : θ4

Γ̂ ⊢ op ℓop v (y . c) : θ4(Â
′ !〈Ê〉) ⊣ θ4..1

A-Op

(ℓsc :Asc _ Bsc) ∈ Σ

Γ̂ ⊢ v : Â ⊣ θ1 Asc ∼ Â : θ2 θ2..1Γ̂, y :Bsc ⊢ c1 : B̂ !〈Ê〉 ⊣ θ3
µ̂ fresh Ê ∼ 〈ℓsc ; µ̂〉 : θ4 θ4..1Γ̂, z : θ4B̂ ⊢ c2 : Â

′ !〈F̂ 〉 ⊣ θ5 F̂ ∼ θ5..4Ê : θ6

Γ̂ ⊢ sc ℓsc v (y . c1) (z . c2) : θ6Â
′ !〈F̂ 〉 ⊣ θ6..1

A-Sc

Figure 17: Type inference rules for computations.



46 R. BOSMAN, B. VAN DEN BERG, W. TANG, AND T. SCHRIJVERS

Γ̂ ⊢M return x 7→ cr :M Â !〈Ê〉 ⊣ θ Γ̂ ⊢M oprs :M Â !〈Ê〉 ⊣ θ

Γ̂ ⊢M fwd f p k 7→ c :M Â !〈Ê〉 ⊣ θ

Return, operation, and forwarding typing

α̂, µ̂ fresh Γ̂, x : α̂ ⊢ cr : Ĉ ⊣ θ1 C ∼ θ1(M α̂ !〈µ̂〉) : θ2

Γ̂ ⊢M return x 7→ cr : θ2..1 (M α̂ !〈µ̂〉) ⊣ θ2..1
A-Return

α̂, µ̂ fresh

Γ̂ ⊢M · :M α̂ !〈µ̂〉 ⊣ ∅
A-Empty

(ℓop : Aop _ Bop) ∈ Σ Γ̂ ⊢M oprs :M Â !〈Ê〉 ⊣ θ1
θ1Γ̂, x :Aop, k :Bop → M Â !〈Ê〉 ⊢ c : Ĉ ⊣ θ2 θ2(M Â !〈Ê〉) ∼ Ĉ : θ3

Γ̂ ⊢M op ℓop x k 7→ c, oprs : θ3..2(M Â !〈Ê〉) ⊣ θ3..1
A-OprOp

(ℓsc : Asc _ Bsc) ∈ Σ Γ̂ ⊢M oprs :M Â !〈Ê〉 ⊣ θ1
β fresh θ1Γ̂, β, x : Asc, p : Bsc → M β !〈Ê〉, k : β → M Â !〈Ê〉 ⊢ c : Ĉ ⊣ θ2

θ2(M Â !〈Ê〉) ∼ Ĉ : θ3 β /∈ rng (θ3..1)

Γ̂ ⊢M sc ℓsc x p k 7→ c, oprs : θ3..2(M Â !〈Ê〉) ⊣ θ3..1
A-OprSc

α, β, γ, δ, α̂, µ̂ fresh

Âp = α→ M β !〈µ̂〉 Â′
p = α→ γ !〈µ̂〉 Âk = β → M α̂ !〈µ̂〉

Â′
k = γ → δ !〈µ̂〉 Γ̂, α, β, p : Âp , k : Âk , f : ∀ γ δ . (Â′

p , Â
′
k )→ δ !〈µ̂〉 ⊢ cf : Ĉ ⊣ θ1

θ1(M α̂ !〈µ̂〉) ∼ Ĉ : θ2 α, β, γ, δ /∈ rng (θ2..1)

Γ̂ ⊢M fwd f p k 7→ cf : θ2..1(M α̂ !〈µ̂〉) ⊣ θ2..1
A-Fwd

Figure 18: Type inference rules for handlers.

σ̂ 6 Â σ̂-instantiation

Â 6 Â
σ̂-Inst-Base

α̂ fresh [α̂ / α ] σ̂ 6 Â

∀ α . σ̂ 6 Â
σ̂-Inst-α̂

µ̂ fresh [µ̂ / µ ] σ̂ 6 Â

∀ µ . σ̂ 6 Â
σ̂-Inst-µ̂

α̂′ fresh [α̂′ / α̂ ] σ̂ 6 Â

∀ α̂ . σ̂ 6 Â
σ̂-Inst-α̂′

µ̂′ fresh [µ̂′ / µ̂] σ̂ 6 Â

∀ µ̂ . σ̂ 6 Â
σ̂-Inst-µ̂′

Figure 19: σ̂-instantiation.
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F.3. Unification Algorithm. Our unification algorithm works in two steps, as shown in
Figure 20.

First, we β-reduce the value types and computation types (Figure 21). Then, we
unify types or rows that occur in the unification worklist step by step (Figure 22). The
unification algorithm _ transforms a unification worklist U1 and an initial substitution θ1
into a new unification worklist U2 and substitution θ2. It can be split in three parts. The
first part deals with computation types. The unification of two computation types boils
down to separately unifying their value types and row types. The second part concerns the
unification of value types. We first pattern match on unit types, handler types, function
types and tuples. Two (unification) type variables with the same name are considered equal.

Unifying a unification variable with a type Â means substituting this unification variable

by Â in the given substitution as well as in all occurrences in the remaining unification
worklist.

The reasoning for unifying two rows is similar. The function findℓ Ê extracts the label

ℓ from Ê and returns the remaining part:

findℓ 〈〉 = error

findℓ µ = (µ′, [〈ℓ ;µ′〉 / µ ]) where µ′ is a fresh variable

findℓ 〈ℓ
′ ; Ê〉 = (Ê, ∅) where ℓ = ℓ′

findℓ 〈ℓ
′ ; Ê〉 = (〈ℓ′ ; Ê′〉, θ) where ℓ 6= ℓ′ and (Ê′, θ) = findℓ Ê

The function tail Ê returns the last row variable if Ê is open, and returns 〈〉 if Ê is closed.
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Â ∼ B̂ : θ Ê ∼ F̂ : θ Ĉ ∼ D̂ : θ Unification

∅ ⊢ reduce(Â) ∼ reduce(B̂), · −→∗ θ ⊢ ·

Â ∼ B̂ : θ
U-Val

∅ ⊢ Ê ∼ F̂ , · −→∗ θ ⊢ ·

Ê ∼ F̂ : θ
U-Row

∅ ⊢ reduce(Ĉ) ∼ reduce(D̂), · −→∗ θ ⊢ ·

Ĉ ∼ D̂ : θ
U-Comp

Figure 20: Main unification judgments.

reduce(Â) = B̂ reduce(Ĉ) = D̂ Type reduction

reduce(()) = ()

reduce((Â, B̂)) = (reduce(Â), reduce(B̂))

reduce(Â→ Ĉ) = reduce(Â)→ reduce(Ĉ)

reduce(Ĉ ⇒ D̂) = reduce(Ĉ)⇒ reduce(D̂)
reduce(α) = α
reduce(α̂) = α̂

reduce((λ α . Â) B̂) = reduce([B̂ / α ] Â)

reduce(Â !〈Ê〉) = reduce(Â)!〈Ê〉

Figure 21: Reduction rules.



A CALCULUS FOR SCOPED EFFECTS & HANDLERS 49

θ1 ⊢ U1 −→ θ2 ⊢ U2 Unification

θ ⊢ Â1 !〈Ê1〉 ∼ Â2 !〈Ê2〉,U −→ θ ⊢ Â1 ∼ Â2, Ê1 ∼ Ê2,U

θ ⊢ () ∼ (),U −→ θ ⊢ U

θ ⊢ Ĉ1 ⇒ D̂1 ∼ Ĉ2 ⇒ D̂2,U −→ θ ⊢ Ĉ1 ∼ Ĉ2, D̂1 ∼ D̂2,U

θ ⊢ (Â1 → Ĉ1) ∼ (Â2 → Ĉ2),U −→ θ ⊢ Â1 ∼ Â2, Ĉ1 ∼ Ĉ2,U

θ ⊢ (Â1, Â2) ∼ (Â3, Â4),U −→ θ ⊢ Â1 ∼ Â3, Â2 ∼ Â4,U
θ ⊢ α ∼ α,U −→ θ ⊢ U
θ ⊢ α̂ ∼ α̂,U −→ θ ⊢ U

θ ⊢ α̂ ∼ Â,U −→ [Â / α̂ ]θ ⊢ [Â / α̂ ] U

with α̂ /∈ Â

θ ⊢ Â ∼ α̂,U −→ [Â / α̂ ]θ ⊢ [Â / α̂ ] U

with α̂ /∈ Â

θ ⊢ 〈〉 ∼ 〈〉,U −→ θ ⊢ U

θ ⊢ 〈ℓ ; Ê〉 ∼ F̂ ,U −→ θ′θ ⊢ θ′U

with ( , θ′) = findℓ F̂ and tail Ê /∈ θ′

θ ⊢ F̂ ∼ 〈ℓ ; Ê〉,U −→ θ′θ ⊢ θ′U

with ( , θ′) = findℓ F̂ and tail Ê /∈ θ′

θ ⊢ µ ∼ µ,U −→ θ ⊢ U
θ ⊢ µ̂ ∼ µ̂,U −→ θ ⊢ U

θ ⊢ µ̂ ∼ Ê,U −→ [Ê / µ̂]θ ⊢ [Ê / µ̂] U with µ̂ /∈ Ê

θ ⊢ Ê ∼ µ̂,U −→ [Ê / µ̂]θ ⊢ [Ê / µ̂] U with µ̂ /∈ Ê

Figure 22: Unification rules.
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F.4. Lemmas for Proof. In order to prove the soundness and completeness of our type
inference algorithm with respect to the declarative type system, we require the following
helper lemmas. Figure 23 displays instantiation of contexts. The following lemmas hold for
this instantiation.

Lemma F.1 (Instantiation instantiates bindings).

If Γ̂ Γ ; θ and x : σ̂ ∈ Γ̂ then there exists some σ = θσ̂ such that x : σ ∈ Γ.

Lemma F.2 (Inverse of Instantiation instantiates bindings). If Γ̂  Γ ; θ and x : σ ∈ Γ

then there exists x : σ̂ ∈ Γ̂ such that σ = θσ̂.

The following lemma states that we can move substitutions from being instantiated to
be applied to the context, and back.

Lemma F.3 (Moving subtitutions to instantiation).

One can move instantiations θ1 from being applied to Γ̂ to being generated by environment

instantiation and back. That is, θ1Γ̂ Γ ; θ2 ⇐⇒ Γ̂ Γ ; θ2θ1.

The following lemma states that inferred substitutions are domain-restricted, i.e. they
only substitute the unification variables in the context the and inferred type.

Lemma F.4 (Inferred substitutions are domain-restricted).

• For all Γ̂ ⊢ v : Â ⊣ θ, θ = θ|Γ̂θ|Â.

• For all Γ̂ ⊢ c : Ĉ ⊣ θ, θ = θ|Γ̂θ|Ĉ .

The notation θ|Γ̂ represents the substitution generated by removing all substitution of

unification variables that are not in Γ̂ from θ. Similarly, the notation θ|
Â
(θ|

Ĉ
) represents

the substitution generated by removing all substitution of unification variables that are not

in Â (Ĉ) from θ.
The following lemma states that we can split a substitution with respect to its domain

restriction.

Lemma F.5 (Substitution split w.r.t domain restriction). If θ1 = θ2|Γ̂, then there exists θ
such that θ2 = θθ1.

The following lemma states that the unification algorithm is sound.

Lemma F.6 (Unification unifies).
After unification, subtituted terms are equivalent. That is:

• Â ∼ B̂ : θ =⇒ θÂ ≡ θB̂
• Ĉ ∼ D̂ : θ =⇒ θĈ ≡ θD̂

• Ê ∼ F̂ : θ =⇒ θÊ ≡ θF̂

Dually, the following lemma states that unification gives a principal unifier.

Lemma F.7 (Unification gives a principal unifier). The unification algorithm gives a prin-
cipal unifier. That is:

• θÂ ≡ θB̂ implies there exists θ1, θ2 such that Â ∼ B̂ : θ1, θ = θ2θ1.

• θÊ ≡ θF̂ implies there exists θ1, θ2 such that Ê ∼ F̂ : θ1, θ = θ2θ1.

• θĈ ≡ θD̂ implies there exists θ1, θ2 such that Ĉ ∼ D̂ : θ1, θ = θ2θ1.
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Γ̂ Γ ; θ Γ̂-instantiation

Γ Γ ; ∅
Γ-Inst-Base

Γ, α ⊢ A : ∗ α̂ ∈ fv (Γ̂) Γ, α, [A / α̂ ] Γ̂ Γout ; θ

Γ, Γ̂ Γout ; [A / α̂ ]θ
Γ-Inst-Tyvar

Figure 23: Reduction rules.

The same holds for the instantiation algorithm. The following lemma states that it is
sound and uses two helper lemmas to prove it.

Lemma F.8 (Algorithmic to declarative instantiation).

For all σ̂ 6 Â there exists a θ such that θσ̂ 6 θ Â.

Proof. By induction on σ̂ 6 Â, using Lemmas F.9 and F.10.

Lemma F.9 (Substitution/instantiation inlining).
If α /∈ θ then θ[α̂ / α ] σ̂ = [θα̂ / α ] θσ̂.

Lemma F.10 (Substitution/instantiation inlining – Effects).
If µ /∈ θ then θ[µ̂ / µ ] σ̂ = [θµ̂ / µ ] θσ̂.

The following lemma is essentially the dual of Lemma F.8.

Theorem F.11 (Declarative to algorithmic instantiation). For all σ 6 A and θσ̂ = σ,

there exists Â and θ′ such that σ̂ 6 Â and θ′θÂ = A

Proof. Mutual induction on σ 6 A and σ̂ 6 Â.

F.5. Soundness. In words, soundness states that all algorithmic typing judgments have a
declarative counterpart. For proving this property, we ignore the differences in the domain
of substitutions, which implies that the notion of equality is implicitly restricted to the
substitution domain.

Theorem F.12 (Soundness). All algorithmic typing judgments have a declarative counter-
part:

• ∀ Γ̂, v , Â, θinf : if Γ̂ ⊢ v : Â ⊣ θinf
then ∀ Γ, θinst: if θinfΓ̂ Γ ; θinst and ∀ θ : Γ ⊢ θ and θθinstÂ = A

then Γ ⊢ v :A.
• ∀ Γ̂, c, Ĉ, θinf : if Γ̂ ⊢ c : Ĉ ⊣ θinf

then ∀ Γ, θinst: if θinfΓ̂ Γ ; θinst and ∀ θ : Γ ⊢ θ and θθinstĈ = C
then Γ ⊢ c : C.

• ∀ Γ̂,M , x , cr , Â, Ê, θinf : if Γ̂ ⊢M return x 7→ cr :M Â !〈Ê〉 ⊣ θinf
then ∀ Γ, θinst: if θinfΓ̂ Γ ; θinst
and ∀ θ : Γ ⊢ θ and θθinst(M Â !〈Ê〉) = M A !〈E 〉

then Γ ⊢ return x 7→ cr :M A !〈E 〉.
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• ∀ Γ̂,M , oprs , Â, Ê, θinf : if Γ̂ ⊢M oprs :M Â !〈Ê〉 ⊣ θinf
then ∀ Γ, θinst: if θinfΓ̂ Γ ; θinst
and ∀ θ : Γ ⊢ θ and θθinst(M Â !〈Ê〉) = M A !〈E 〉

then Γ ⊢ oprs :M A !〈E 〉.

• ∀ Γ̂,M , f , p, k , c, Â, Ê, θinf : if Γ̂ ⊢M fwd f p k 7→ c :M Â !〈Ê〉 ⊣ θinf
then ∀ Γ, θinst: if θinf Γ̂ Γ ; θinst
and ∀ θ : Γ ⊢ θ and θθinst(M Â !〈Ê〉) = M A !〈E 〉

then Γ ⊢ fwd f p k 7→ c :M A !〈E 〉.

Proof. We prove the statement by mutual induction on these judgments. In what follows
we ignore the differences in the domain of substitutions, implicitly restricting the notion of
equality to the substitution domain.

Value typing.

A-Var We know that Γ̂ ⊢ x : Â ⊣ ∅ so we can choose Γ, θinst such that

Γ̂ Γ ; θinst (1) and ∀ θ .Γ ⊢ θ and θθinstÂ = A for some A (2).

From Lemma F.1, (1) and (x : σ̂) ∈ Γ̂ (A-Var), we have that (x : θinstσ̂) ∈ Γ.

From Lemma F.8, σ̂ 6 Â (A-Var) and (2), we have that θθinstσ̂ 6 θθinstÂ.

As θ is applied after instantiation with θinst, it has no influence on σ̂. Thus θθinstσ̂ ≡
θinstσ̂ ≡ σ (4).

Thus, we have that (x : σ) ∈ Γ and σ 6 A (2) (4) so that Γ ⊢ x :A (SD-Var).
A-Unit Trivial case.
A-Pair We know that Γ̂ ⊢ (v1, v2) : (θ2Â, B̂) ⊣ θ2..1 so we can choose Γ, θinst such that

θ2..1Γ̂ Γ ; θinst (1) and ∀ θ .Γ ⊢ θ and θθinst(θ2Â, B̂) = (A,B) for some A,B (2).

From the induction hypothesis for v1 we have the following:

if Γ̂ ⊢ v1 : Â ⊣ θ1 (A-Pair)

then θ1Γ̂ Γ ; θinstθ2 (Lemma F.3, (1)) and ∀ θ .Γ ⊢ θ and θθinstθ2Â = A (2)
then Γ ⊢ v1 : A.

From the induction hypothesis for v2 we have the following:

if θ1Γ̂ ⊢ v2 : B̂ ⊣ θ2 (A-Pair)

then θ2..1Γ̂ Γ ; θinst (Lemma F.3, (1)) and ∀ θ .Γ ⊢ θ and θθinstB̂ = B (2)
then Γ ⊢ v2 : B .

From (SD-Pair) we conclude that Γ ⊢ (v1, v2) : (A,B).

A-Abs We know that Γ̂ ⊢ λx . c : θinf α̂→ Ĉ ⊣ θinf so we can choose Γ, θinst such that

θinf Γ̂ Γ ; θinst (1) and ∀ θ .Γ ⊢ θ and θθinst(θinf α̂→ Ĉ) = A→ C for some A, C (2).

From the induction hypothesis for c we have the following:

if Γ̂, x : α̂ ⊢ c : Ĉ ⊣ θinf (A-Abs)

then θinf Γ̂, x : α̂ Γ1 ; θinst (Lemma F.3, (1)) and ∀ θ .Γ1 ⊢ θ and θθinstĈ = C (2)
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then Γ1 ⊢ c : C.

From (Lemma F.3), (1) and (2), we know that Γ1 = Γ, x : θinstα̂ = Γ, x : A, where
θinstα̂ = θθinstθinf α̂ = A because only θinst influences the instantiation of α̂.

From (SD-Abs) we conclude that Γ, x :A ⊢ λx . c : A→ C.

A-Handler We know that Γ̂ ⊢ handlerM {return x 7→ cr , oprs , fwd f p k 7→ cf } :

α̂4 !〈F̂ 〉 ⇒ M α̂4 !〈θ5Ê3〉 ⊣ θ5..1 so we can choose Γ, θinst such that

θ5..1Γ̂  Γ ; θinst (1) and ∀ θ .Γ ⊢ θ and θθinst(α̂4 !〈F̂ 〉 ⇒ M α̂4 !〈θ5Ê3〉) = α !〈F 〉 ⇒
M α !〈E 〉 for some M , α,E ,F (2).

From the induction hypothesis for fwd f p k 7→ cf we have the following:

if θ3..1Γ̂ ⊢M fwd f p k 7→ cf :M α̂3 !〈Ê3〉 ⊣ θ4 (A-Handler)

then θ4θ3..1Γ̂  Γ ; θinstθ5 (Lemma F.3, (1)) and ∀ θ .Γ ⊢ θ and θθinstθ5(M α̂3 !〈Ê3〉) =
M α !〈E 〉 since (2) and α̂4 = θ5α̂3 (A-Hanlder)
then Γ ⊢ fwd f p k 7→ cf :M α !〈E 〉.

From the induction hypothesis for oprs we have the following:

if θ1Γ̂ ⊢M oprs :M α̂2 !〈Ê2〉 ⊣ θ2 (A-Handler)

then θ2..1Γ̂  Γ ; θinstθ5..3 (Lemma F.3, (1)) and ∀ θ .Γ ⊢ θ and θθinstθ5..3(M α̂2 !〈Ê2〉) =
M α !〈E 〉 (3)
then Γ ⊢ oprs :M α !〈E 〉.

where (3): θθinstθ5..3(M α̂2 !〈Ê2〉)
(Lemma F.6, A-Handler)

= θθinstθ5(M α̂3 !〈Ê3〉)
(2), (A-Handler)
= M α !〈E 〉

From the induction hypothesis for return x 7→ cr we have the following:

if Γ̂ ⊢M return x 7→ cr :M α̂1 !〈Ê1〉 ⊣ θ1 (A-Handler)

then θ1Γ̂  Γ ; θinstθ5..2 (Lemma F.3, (1)) and ∀ θ .Γ ⊢ θ and θθinstθ5..2(M α̂1 !〈Ê1〉) =
M α !〈E 〉 (4)
then Γ ⊢ return x 7→ cr :M α !〈E 〉.

where (4): θθinstθ5..2(M α̂1 !〈Ê1〉)
(Lemma F.6, A-Handler)

= θθinstθ5..3(M α̂2 !〈Ê2〉)
(3)
= M α !〈E 〉

Furthermore, we have that 〈F̂ 〉 = 〈labels (oprs) ; θ5Ê3〉 and since substitutions preserve

equivalence also F = θθinstF̂ ≡〈〉 labels (oprs) ; θθinstθ5Ê3 = labels (oprs) ;E .
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From (SD-Handler) we conclude that Γ ⊢ handlerM {return x 7→ cr , oprs , fwd f p k
7→ cf } : A !〈F 〉 ⇒ M A !〈E 〉.

Computation typing.

A-App We know that Γ̂ ⊢ v1 v2 : θ3(α̂ !〈µ̂〉) ⊣ θ3..1 so we can choose Γ, θinst such that

θ3..1Γ̂ Γ ; θinst (1) and ∀ θ .Γ ⊢ θ and θθinstθ3(α̂ !〈µ̂〉) = C for some C (2).

From the induction hypothesis for v2 we have the following:

if θ1Γ̂ ⊢ v2 : Â2 ⊣ θ2 (A-App)

then θ2θ1Γ̂  Γ ; θinstθ3 (Lemma F.3, (1)) and ∀ θ .Γ ⊢ θ and θθinstθ3Â2 = A for some A
(3)
then Γ ⊢ v2 : A.

From the induction hypothesis for v1 we have the following:

if Γ̂ ⊢ v1 : Â1 ⊣ θ1 (A-App)

then θ1Γ̂ Γ ; θinstθ3..2 (Lemma F.3, (1)) and ∀ θ .Γ ⊢ θ and θθinstθ3..2Â1 = A→ C (4)
then Γ ⊢ v1 : A→ C.

where (4): θθinstθ3..2Â1

(Lemma F.6, A-App)

= θθinstθ3(Â2 → α̂ !〈µ̂〉)

= θθinstθ3(Â2)→ θθinstθ3α̂ !〈µ̂〉
(2), (3)
= A→ C

From (SD-App) we conclude that Γ ⊢ v1 v2 : C.

A-Let We know that Γ̂ ⊢ let x = v in c : Ĉ ⊣ θ2..1 so we can choose Γ, θinst such that

θ2..1Γ̂ Γ ; θinst (1) and ∀ θ .Γ ⊢ θ and θθinstĈ = C for some C (2).

From the induction hypothesis for v we have the following:

if Γ̂, α, µ ⊢ v : Â ⊣ θ1 with α, µ /∈ Γ̂ (A-Let)

then θ1Γ̂, α, µ Γ1 ; θinst (Lemma F.3, (1)) where Γ1 = Γ, θinstθ2..1α, θinstθ2..1µ = Γ, α, µ,

because α, µ /∈ θ2..1 and ∀ θ .Γ1 ⊢ θ and θθinstθ2Â = A for some A (3)
then Γ1 ⊢ v : A.

From the induction hypothesis for c we have the following:

if θ1Γ̂, x : σ̂ ⊢ c : Ĉ ⊣ θ2 with σ̂ = ∀ α .∀ µ .∀ α̂ .∀ µ̂ . Â (A-Let)

then θ2(θ1Γ̂, x : σ̂) Γ2 ; θinst) (Lemma F.3, (1)) and ∀ θ .Γ2 ⊢ θ and θθinstĈ = C (2)
then Γ ⊢ c : C.

From (Lemma F.3), (1) and (3), we know that Γ2 = Γ, x : θinstθ2(∀ α .∀ µ .∀ α̂ .∀ µ̂ . Â) =

Γ, x : ∀ α .∀ µ .A, where dom (θinstθ2) ∩ (uv (Â) \ uv (θ1Γ̂)) = ∅.

From (SD-Let) we conclude that Γ ⊢ let x = v in c : C.
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A-Ret We know that Γ̂ ⊢ return v : Â !〈µ̂〉 ⊣ θinf so we can choose Γ, θinst such that

θinf Γ̂ Γ ; θinst (1) and ∀ θ .Γ ⊢ θ and θθinst(Â !〈µ̂〉) = A !〈E 〉 for some A,E (2).

From the induction hypothesis for v we have the following:

if Γ̂ ⊢ v : Â ⊣ θinf (A-Ret)

then θinf Γ̂ Γ ; θinst (1) and ∀ θ .Γ ⊢ θ and θθinstÂ = A (2)
then Γ ⊢ v :A.

From (SD-Ret) we conclude that Γ ⊢ return v :A !〈E 〉.

A-Do We know that Γ̂ ⊢ do x ← c1 ; c2 : θ3(B̂ !〈F̂ 〉) ⊣ θ3..1 so we can choose Γ, θinst such
that
θ3..1Γ̂ Γ ; θinst (1) and ∀ θ .Γ ⊢ θ and θθinstθ3(B̂ !〈F̂ 〉) = B !〈E 〉 for some B ,E (2).

From the induction hypothesis for c1 we have the following:

if Γ̂ ⊢ c1 : Â !〈Ê〉 ⊣ θ1 (A-Do)

then θ1Γ̂  Γ ; θinstθ3..2 (Lemma F.3, (1)) and ∀ θ .Γ ⊢ θ and θθinstθ3..2(Â !〈Ê〉) = A !〈E 〉
(3)
then Γ ⊢ c1 : A !〈E 〉.

where (3): θθinstθ3..2(Â !〈Ê〉)

= θθinstθ3..2Â !〈θθinstθ3..2Ê〉

= A !〈θθinstθ3..2Ê〉 for some A (4)
(Lemma F.6, A-Do)

= A !〈θθinstθ3F̂ 〉
(2)
= A !〈E 〉

From the induction hypothesis for c2 we have the following:

if θ1Γ̂, x : Â ⊢ c2 : B̂ !〈F̂ 〉 ⊣ θ2 (A-Do)

then θ2(θ1Γ̂, x : Â) Γ2 ; θinstθ3 (Lemma F.3, (1)) and ∀ θ .Γ2 ⊢ θ and θθinstθ3(B̂ !〈F̂ 〉) =
B !〈E 〉 (2)
then Γ2 ⊢ c2 : B !〈E 〉.

From (Lemma F.3), (1) and (4), we know that Γ2 = Γ, x : θinstθ3..2Â = Γ, x : A.

From (SD-Do) we conclude that Γ ⊢ do x ← c1 ; c2 : B !〈E 〉.

A-Op We know that Γ̂ ⊢ op ℓop v (y . c) : θ4(Â
′ !〈Ê〉) ⊣ θ4..1 so we can choose Γ, θinst such

that
θ4..1Γ̂ Γ ; θinst (1) and ∀ θ .Γ ⊢ θ and θθinstθ4(Â

′ !〈Ê〉) = A !〈E 〉 for some A,E (2).

From the induction hypothesis for v we have the following:

if Γ̂ ⊢ v : Â ⊣ θ1 (A-Op)

then θ1Γ̂ Γ ; θinstθ4..2 (Lemma F.3, (1)) and ∀ θ .Γ ⊢ θ and θθinstθ4..2Â = Aop (3)
then Γ ⊢ v :Aop.
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where (3): θθinstθ4..2Â
(Lemma F.6, A-Op)
= θθinstθ4..2(Aop)
= Aop

From the induction hypothesis for c we have the following:

if θ2Γ̂, y :Bop ⊢ c : Â′ !〈Ê〉 ⊣ θ3 (A-Op)

then θ3(θ2..1Γ̂, y : Bop)  Γ, y : Bop ; θinstθ4 (Lemma F.3, (1)) and ∀ θ .Γ, y : Bop ⊢

θ and θθinstθ4(Â
′ !〈Ê〉) = A !〈E 〉 (2)

then Γ, y :Bop ⊢ c : A !〈E 〉.

Furthermore, from (A-Op) follows that (ℓop : Aop _ Bop) ∈ Σ. Following (A-Op)

and Lemma F.6, we have that θ4〈Ê〉 ≡ θ4〈ℓ
op ; µ̂〉. Since substitutions preserve equiva-

lence, we also have that E = θθinstθ4Ê ≡〈〉 θθinstθ4(ℓ
op ; µ̂) = ℓop,E ′ for some E ′ so that

ℓop ∈ E .

From (SD-Op) we conclude that Γ ⊢ op ℓop v (y . c) : A !〈E 〉.

A-Sc We know that Γ̂ ⊢ sc ℓsc v (y . c1) (z . c2) : θ6(Â
′ !〈F̂ 〉) ⊣ θ6..1 so we can choose Γ, θinst

such that
θ6..1Γ̂ Γ ; θinst (1) and ∀ θ .Γ ⊢ θ and θθinstθ6(Â

′ !〈F̂ 〉) = A !〈E 〉 for some A,E (2).

From the induction hypothesis for v we have the following:

if Γ̂ ⊢ v : Â ⊣ θ1 (A-Sc)

then θ1Γ̂ Γ ; θinstθ6..2 (Lemma F.3, (1)) and ∀ θ .Γ ⊢ θ and θθinstθ6..2Â = Asc (3)
then Γ ⊢ v :Asc.

where (3): θθinstθ6..2Â
(Lemma F.6, A-Sc)
= θθinstθ6..2(Asc)
= Asc

From the induction hypothesis for c1 we have the following:

if θ2..1Γ̂, y : Bsc ⊢ c1 : B̂ !〈Ê〉 ⊣ θ3 (A-Sc)

then θ3(θ2..1Γ̂, y : Bsc)  Γ, y : Bsc ; θinstθ6..4 (Lemma F.3, (1)) and ∀ θ .Γ, y : Bsc ⊢

θ and θθinstθ6..4(B̂ !〈Ê〉) = B !〈E 〉 (4)
then Γ, y :Bsc ⊢ c1 : B !〈E 〉.

where (4): θθinstθ6..4(B̂ !〈Ê〉)

= θθinstθ6..4B̂ !〈θθinstθ6..4Ê〉

= B !〈θθinstθ6..4Ê〉 for some B (5)
(Lemma F.6, A-Sc)

= B !〈θθinstθ6F̂ 〉
(2)
= B !〈E 〉
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From the induction hypothesis for c2 we have the following:

if θ4..1Γ̂, z : θ4B̂ ⊢ c2 : Â
′ !〈F̂ 〉 ⊣ θ5 (A-Sc)

then θ5(θ4..1Γ̂, z :θ4B̂) Γ3 ; θinstθ6 (Lemma F.3, (1)) and ∀ θ .Γ3 ⊢ θ and θθinstθ6(Â
′ !〈F̂ 〉)

= A !〈E 〉 (2)
then Γ3 ⊢ c2 :A !〈E 〉.

From (Lemma F.3), (1) and (5), we know that Γ3 = Γ, z : θinstθ6..4B̂ = Γ, z : B .

Furthermore, from (A-Sc) follows that (ℓsc : Asc _ Bsc) ∈ Σ. Following (A-Sc) and

Lemma F.6, we have that θ4〈Ê〉 ≡ θ4〈ℓ
sc ; µ̂〉. Since substitutions preserve equivalence,

we also have that E = θθinstθ6..4Ê ≡〈〉 θθinstθ6..4(ℓ
sc ; µ̂) = ℓsc,E ′ for some E ′ so that

ℓsc ∈ E .

From (SD-Sc) we conclude that Γ ⊢ sc ℓsc v (y . c1) (z . c2) : A !〈E 〉.

A-Hand We know that Γ̂ ⊢ v ⋆ c : θ3(α̂ !〈µ̂〉) ⊣ θ3..1 so we can choose Γ, θinst such that

θ3..1Γ̂ Γ ; θinst (1) and ∀ θ .Γ ⊢ θ and θθinstθ3(α̂ !〈µ̂〉) = D for some D (2).

From the induction hypothesis for c we have the following:

if θ1Γ̂ ⊢ c : Ĉ ⊣ θ2 (A-Hand)

then θ2..1Γ̂  Γ ; θinstθ3 (Lemma F.3, (1)) and ∀ θ .Γ ⊢ θ and θθinstθ3Ĉ = C for some C
(3)
then Γ ⊢ c : C.

From the induction hypothesis for v we have the following:

if Γ̂ ⊢ v : Â ⊣ θ1 (A-Hand)

then θ1Γ̂ Γ ; θinstθ3..2 (Lemma F.3, (1)) and ∀ θ .Γ ⊢ θ and θθinstθ3..2Â = C ⇒ D (4)
then Γ ⊢ v : C ⇒ D.

where (4): θθinstθ3..2Â
(Lemma F.6, A-App)

= θθinstθ3(Ĉ ⇒ α̂ !〈µ̂〉)

= θθinstθ3(Ĉ)⇒ θθinstθ3α̂ !〈µ̂〉
(2), (3)
= C ⇒ D

From (SD-Hand) we conclude that Γ ⊢ v ⋆ c :D.

Return clause.

A-Return We know that Γ̂ ⊢M return x 7→ cr : θ2..1(M α̂ !〈µ̂〉) ⊣ θ2..1 so we can choose
Γ, θinst such that

θ2..1Γ̂ Γ ; θinst (1) and ∀ θ .Γ ⊢ θ and θθinstθ2..1(M α̂ !〈µ̂〉) = M A !〈E 〉 for some M ,A,E
(2).

From the induction hypothesis for cr we have the following:

if Γ̂, x : α̂ ⊢ cr : Ĉ ⊣ θ1 (A-Abs)
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then θ1(Γ̂, x :α̂) Γ1 ; θinstθ2 (Lemma F.3, (1)) and ∀ θ .Γ1 ⊢ θ and θθinstθ2Ĉ = M A !〈E 〉
(3)
then Γ1 ⊢ cr :M A !〈E 〉.

where (3): θθinstθ2Ĉ
(Lemma F.6, A-Return)
= θθinstθ2..1(M α̂ !〈µ̂〉)
(2)
= M A !〈E 〉

From (Lemma F.3), (1) and (2), we know that Γ1 = Γ, x : θinstθ2..1α̂ = Γ, x : A, where
θinstθ2..1α̂ = θθinstθ2..1α̂ = A because θ does not influence the instantiation of α̂.

From (SD-Return) we conclude that Γ ⊢ return x 7→ cr :M A !〈E 〉.

Operation clauses.

A-Empty Trivial case:
We know that Γ̂ ⊢M · :M α̂ !〈µ̂〉 ⊣ ∅ so we can choose Γ, θinst such that

Γ̂ Γ ; θinst and ∀ θ .Γ ⊢ θ and θθinst(M α̂ !〈µ̂〉) = M A !〈E 〉 for some M ,A,E .

From (SD-Empty) we conclude that Γ ⊢ · :M A !〈E 〉.

A-OprOp We know that Γ̂ ⊢M op ℓop x k 7→ c, oprs : θ3..2(M Â !〈Ê〉) ⊣ θ3..1 so we can
choose Γ, θinst such that

θ3..1Γ̂  Γ ; θinst (1) and ∀ θ .Γ ⊢ θ and θθinstθ3..2(M Â !〈Ê〉) = M A !〈E 〉 for some
M ,A,E (2).

From the induction hypothesis for oprs we have the following:

if Γ̂ ⊢M oprs :M Â !〈Ê〉 ⊣ θ1 (A-OprOp)

then θ1Γ̂  Γ ; θinstθ3..2 (Lemma F.3, (1)) and ∀ θ .Γ ⊢ θ and θθinstθ3..2M Â !〈Ê〉 =
M A !〈E 〉 (2)
then Γ ⊢ oprs :M A !〈E 〉.

From the induction hypothesis for c we have the following:

if θ1Γ̂, x :Aop, k : Bop → M Â !〈Ê〉 ⊢ c : C ⊣ θ2 (A-OprOp)

then θ2(θ1Γ̂, x : Aop, k : Bop → M Â !〈Ê〉)  Γ2 ; θinstθ3 (Lemma F.3, (1)) and ∀ θ .Γ2 ⊢
θ and θθinstθ3C = M A !〈E 〉 (3)
then Γ2 ⊢ c :M A !〈E 〉.

where (3): θθinstθ3Ĉ
(Lemma F.6, A-OprOp)

= θθinstθ3..2(M Â !〈Ê〉)
(2)
= M A !〈E 〉

From (Lemma F.3), (1) and (2), we know that Γ2 = Γ, x :Aop, k :Bop → θinstθ3..2(M Â !〈Ê〉)
= Γ, x : Aop, k : Bop → M A !〈E 〉.
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From (SD-OprOp) we conclude that Γ ⊢ op ℓop x k 7→ c, oprs :M A !〈E 〉.

A-OprSc We know that Γ̂ ⊢M sc ℓsc x p k 7→ c, oprs : θ3..2(M Â !〈Ê〉) ⊣ θ3..1 so we can
choose Γ, θinst such that

θ3..1Γ̂  Γ ; θinst (1) and ∀ θ .Γ ⊢ θ and θθinstθ3..2(M Â !〈Ê〉) = M A !〈E 〉 for some
M ,A,E (2).

From the induction hypothesis for oprs we have the following:

if Γ̂ ⊢M oprs :M Â !〈Ê〉 ⊣ θ1 (A-OprOp)

then θ1Γ̂  Γ ; θinstθ3..2 (Lemma F.3, (1)) and ∀ θ .Γ ⊢ θ and θθinstθ3..2M Â !〈Ê〉 =
M A !〈E 〉 (2)
then Γ ⊢ oprs :M A !〈E 〉.

From the induction hypothesis for c we have the following:

if θ1Γ̂, β, x : Asc, p : Bsc → M β !〈E 〉, k : β → M Â !〈Ê〉 ⊢ c : C ⊣ θ2 (A-OprOp)

then θ2(θ1Γ̂, β, x : Asc, p : Bsc → M β !〈E 〉, k : β → M Â !〈Ê〉)  Γ2 ; θinstθ3 (Lemma F.3,
(1)) and ∀ θ .Γ2 ⊢ θ and θθinstθ3C = M A !〈E 〉 (3)
then Γ2 ⊢ c :M A !〈E 〉.

where (3): θθinstθ3Ĉ
(Lemma F.6, A-OprSc)

= θθinstθ3..2(M Â !〈Ê〉)
(2)
= M A !〈E 〉

From (Lemma F.3), (1) and (2), we know that Γ2 = Γ, β, x :Asc, p :Bsc → M β !〈Ê〉, k :β →

θinstθ3..2(M Â !〈Ê〉) = Γ, x :Asc, p :Bsc → M β !〈E 〉, k : β → M A !〈E 〉 because β /∈ θ3..2.

From (SD-OprSc) we conclude that Γ ⊢ sc ℓsc x p k 7→ c, oprs :M A !〈E 〉.

Forwarding clause.

A-Fwd We know that Γ̂ ⊢M fwd f p k 7→ cf : θ2..1(M α̂ !〈µ̂〉) ⊣ θ2..1 so we can choose
Γ, θinst such that

θ2..1Γ̂ Γ ; θinst (1) and ∀ θ .Γ ⊢ θ and θθinstθ2..1(M α̂ !〈µ̂〉) = M A !〈E 〉 for some M ,A,E
(2).

From the induction hypothesis for cf we have the following:

if Γ̂, α, β, p : Âp , k : Âk , f : ∀ γ δ . (Â′
p , Â

′
k )→ δ !〈µ̂〉) ⊢ cf : C ⊣ θ1 (A-OprOp)

then θ1(Γ̂, α, β, p : Âp , k : Âk , f : ∀ γ δ . (Â′
p , Â

′
k )→ δ !〈µ̂〉) Γ1 ; θinstθ2 (Lemma F.3, (1))

and ∀ θ .Γ1 ⊢ θ and θθinstθ2C = M A !〈E 〉 (3)
then Γ1 ⊢ cf :M A !〈E 〉.

where (3): θθinstθ2Ĉ
(Lemma F.6, A-Fwd)
= θθinstθ2..1(M α̂ !〈µ̂〉)
(2)
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= M A !〈E 〉

From (Lemma F.3), (1) and (2), we know that Γ1 = Γ, θinstθ2..1α, θinstθ2..1β p:θinstθ2..1Âp , k :

θinstθ2..1Âk , f :∀ γ δ . (θinstθ2..1Â
′
p , θinstθ2..1Â

′
k )→ θinstθ2..1(δ !〈µ̂〉) = Γ, α, β, p :Ap , k :Ak , f :

∀ γ δ . (A′
p ,A

′
k )→ M A !〈E 〉.

From (SD-Fwd) we conclude that Γ ⊢ fwd f p k 7→ cf :M A !〈E 〉.

F.6. Completeness. Completeness states that all declarative typing judgments have a
algorithmic counterpart.

Theorem F.13 (Completeness). All declarative typing judgments have an algorithmic coun-
terpart:

• If Γ ⊢ v :A then for all Γ̂ and θa , if Γ̂ Γ ; θa then there exists Â, θinf , θinst, θd such that

θa = (θinstθinf)|Γ̂, Γ̂ ⊢ v : Â ⊣ θinf , and θdθinstÂ = A.

• If Γ ⊢ c : C then for all Γ̂ and θa , if Γ̂ Γ ; θa then there exists Â, θinf , θinst, θd such that

θa = (θinstθinf)|Γ̂, Γ̂ ⊢ c : Ĉ ⊣ θinf , and θdθinstĈ = C.

• If Γ ⊢ return x 7→ cr : M A !〈E 〉 then for all Γ̂ and θa , if Γ̂  Γ ; θa then there exists

Â, θinf , θinst, θd such that θa = (θinstθinf)|Γ̂, Γ̂ ⊢M return x 7→ cr : M Â !〈Ê〉 ⊣ θinf , and

θdθinstM Â !〈Ê〉 = M A !〈E 〉.

• If Γ ⊢ oprs :M A !〈E 〉 then for all Γ̂ and θa , if Γ̂ Γ ; θa then there exists Â, θinf , θinst, θd
such that θa = (θinstθinf)|Γ̂, Γ̂ ⊢M oprs :M Â !〈Ê〉 ⊣ θinf , and θdθinstM Â !〈Ê〉 = M A !〈E 〉.

• If Γ ⊢ fwd f p k 7→ cf :M A !〈E 〉 then for all Γ̂ and θa , if Γ̂  Γ ; θa then there exists

Â, θinf , θinst, θd such that θa = (θinstθinf)|Γ̂, Γ̂ ⊢M fwd f p k 7→ cf :M Â !〈Ê〉 ⊣ θinf , and

θdθinstM Â !〈Ê〉 = M A !〈E 〉.

Proof. Note that by Lemma F.3, Γ̂  Γ ; θa , and θa = (θinstθinf)|Γ̂, we can derive that

θinf Γ̂ Γ ; θinst. In the following proof, we treat it as part of the conclusion of the theorem
for simplicity. Also, we do not deal with the equivalence relations of types explicitly. All
comparisons between types are considered to use equivalence relations implicitly.

Prove by mutual induction on these judgments.

Value typing.

SD-Var For any Γ̂ Γ ; θa , let θinst = θa and θinf = ∅. By Lemma F.2 and (x : σ) ∈ Γ we

get that there exists (x : σ̂) ∈ Γ̂ such that θa σ̂ = σ. By Theorem F.11 and Γ ⊢ θa σ̂ 6 A,

there exists θd and Â such that θdθaÂ = A = θdθinstÂ and σ̂ 6 Â. Then, Γ ⊢ A gives

us Γ̂ ⊢ Â. Thus, by A-Var, we have Γ̂ ⊢ x : Â ⊣ θinf . We also have θa = θinstθinf and

θinf Γ̂ Γ ; θinst. It is easy to check the conclusion is satisfied given θa , θinf , θinst, θd defined
as above.

SD-Unit Let θinst = θa and θd = θinf = ∅. The conclusion follows from the assumptions.

SD-Pair By the IH on v1, for any Γ̂ Γ ; θ1, there exists θ2, θ3, θ4 such that θ1 = θ3θ2|Γ̂ (Γ̂),

Γ̂ ⊢ v1 : Â ⊣ θ2, θ2Γ̂ Γ ; θ3 (1), and θ4θ3Â = A.
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Then we apply the IH on v2 to (1), there exists θ6, θ7, θ8 such that θ3 = θ7θ6|θ2Γ̂,

θ2Γ̂ ⊢ v2 : B̂ ⊣ θ6, θ6θ2Γ̂ Γ ; θ7, θ8θ7B̂ = B .

By A-Pair, we have Γ̂ ⊢ (v1, v2) : (θ6Â, B̂) ⊣ θ6θ2. Setting θa = θ1, θinf = θ6θ2,
θinst = θ7, and θd = θ4θ8, the conclusion is satisfied:
– θ1 = θ7θ6θ2|Γ̂
– θ6θ2Γ̂ Γ ; θ7
– θ4θ8θ7(θ6Â, B̂) = (A,B) (the new unification variables in Â and B̂ does not overlap)

SD-Abs By IH on the function body c, for any Γ̂, x : Â Γ, x :A ; θ1, there exists θ2, θ3, θ4
such that θ1 = θ3θ2|Γ̂ (Γ̂), Γ̂, x : Â ⊢ c : Ĉ ⊣ θ2, θ2(Γ̂, x : Â) Γ, x :A ; θ3, and θ4θ3Ĉ = C.

Let the arbitrary type Â be an fresh unification variable α̂, we have Γ̂, x : α̂ ⊢ c : Ĉ ⊣ θ2.

By A-Abs, we have Γ̂ ⊢ λx . c : θ2α̂→ Ĉ ⊣ θ2.
Setting θa = θ1, θinf = θ2, θinst = θ3|θ2Γ̂, and θd = θ4, the conclusion is satisfied.

SD-Handler By the IH on the return clause, for any Γ̂  Γ ; θ1, taking a fresh type

variable a that is not in Γ̂ and Γ. there exists θ2, θ3, θ4 such that θ1 = (θ3θ2)|Γ̂, Γ̂ ⊢

return x 7→ cr : M Â1 !〈Ê1〉 ⊣ θ2, θ2Γ̂  Γ ; θ3, θ4θ3(M Â1 !〈Ê1〉) = M a !〈E 〉 (1).

Because α is a fresh type variable, Â1 must be an unification variable α̂1.

Then we apply the IH on the operation clauses oprs to θ2Γ̂  Γ ; θ3, there exists

θ6, θ7, θ8 such that θ3 = (θ7θ6)|θ2Γ̂ (2), θ2Γ̂ ⊢ oprs : M Â2 !〈Ê2〉 ⊣ θ6, θ6θ2Γ̂  Γ ; θ7 (3),

θ8θ7(M Â2 !〈Ê2〉) = M a !〈E 〉 (4). Similarly, Â2 must be an unification variable α̂2.

By (1), (2), and (4), we have θ4(θ7θ6)|θ2Γ̂(M α̂1 !〈Ê1〉) = θ8θ7(M α̂2 !〈Ê2〉). Because

the new unification variables in M α̂1 !〈Ê1〉 and M α̂2 !〈Ê2〉 do not overlap, we have

θ8θ4θ7θ6(M α̂1 !〈Ê1〉) = θ8θ4θ7(M α̂2 !〈Ê2〉). By Lemma F.7, there exists θy , θx such that

θ8θ4θ7 = θyθx and θ6(M α̂1 !〈Ê1〉) ∼ M α̂2 !〈Ê2〉 : θx . By restricting the domain to be

θ6θ2Γ̂, we have θ7|θ6θ2Γ̂ = (θyθx )|θ6θ2Γ̂ (5).

By (3) and (5), we have θxθ6θ2Γ̂ Γ ; θ9, where θ9 = θy |θx θ6θ2Γ̂. By the IH on the fwd

clause, there exists θ10, θ11, θ12 such that θ9 = (θ11θ10)|θx θ6θ2Γ̂ (6), θxθ6θ2Γ̂ ⊢ fwd f p k 7→

cf :M Â3 !〈Ê3〉 ⊣ θ10, θ10θxθ6θ2Γ̂  Γ ; θ11, θ12θ11(M Â3 !〈Ê3〉) = M α !〈E 〉 (6). Similar

to the above, Â3 must be an unification variable α̂3.

By (4) and (7), we have θ8θ7(M Â2 !〈Ê2〉) = θ12θ11(M Â3 !〈Ê3〉). By (6) and the fact

that new unification variables in M α̂2 !〈Ê2〉 and M α̂3 !〈Ê3〉 do not overlap, we have

θ12θyθ11θ10θx (M Â2 !〈Ê2〉) = θ12θyθ11(M Â3 !〈Ê3〉). By Lemma F.7, there exists θ′y , θ
′
x

such that θ12θyθ11 = θ′yθ
′
x and θ10θx (M Â2 !〈Ê2〉) ∼ M Â3 !〈Ê3〉 : θ

′
x . By restricting the

domain to be θ10θxθ6θ2Γ̂, we have θ11 = (θ′yθ
′
x )|θ10θx θ6θ2Γ̂. Because θ′yθ

′
x (M α̂3 !〈Ê3〉) =

θ12θyθ11(M α̂3 !〈Ê3〉) = M α !〈E 〉 and α is fresh, we have that θ′x α̂3 must be an unification
variable α̂4.

Because θ′y α̂4 = θ12θyθ11α̂3 = θ12θ11α̂3 = α, θ′yθ
′
xθ10θxθ6θ2Γ̂ = θ11θ10θxθ6θ2Γ̂ = Γ, and

α /∈ Γ, we have θ′y α̂4 /∈ θ′yθ
′
xθ10θxθ6θ2Γ̂, which leads to α̂4 /∈ θ′xθ10θxθ6θ2Γ̂

3.

Let 〈F̂ 〉 = 〈labels (oprs) ; θ′x Ê3〉, by A-Handler, we have Γ̂ ⊢ handler {. . .} :

α̂4 !〈F̂ 〉 ⇒ M α̂4 !〈θ
′
x Ê3〉 ⊣ θ′xθ10θxθ6θ2. Setting θa = θ1, θinf = θ′xθ10θxθ6θ2, θinst =

θ′y |θ′x θ10θx θ6θ2Γ̂
, and θd = θ′y , the conclusion is satisfied.

3here α̂ /∈ Γ̂ actually means α̂ /∈ fv (Γ̂)
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Computation typing.

SD-Ret By the IH on the return value v , for any Γ̂  Γ ; θa , there exists θ2, θ3, θ4 such

that θa = θ3θ2|Γ̂, Γ̂ ⊢ return v : Â ! µ̂ ⊣ θ2, θ2 Γ̂  Γ ; θ3, and θ4θ3Â = A. Take a fresh

unification variable µ̂, by A-Ret we have Γ̂ ⊢ return v : Â ! µ̂ ⊣ θ2.
Setting θinf = θ2, θinst = θ3, and θd = [E / µ̂ ]θ4, it is easy to check the conclusion is

satisfied.
SD-App By the IH on v1, for any Γ̂ Γ ; θ1, there exists θ2, θ3, θ4 such that θ1 = θ3θ2|Γ̂ (Γ̂),

Γ̂ ⊢ v1 : Â1 ⊣ θ2, θ2Γ̂ Γ ; θ3, and θ4θ3Â1 = A→ C. Then we apply the IH on v2 to the

judgement θ2Γ̂ Γ ; θ3, which gives us that there exists θ6, θ7, θ8 such that θ3 = θ7θ6|θ2Γ̂,

θ2Γ̂ ⊢ v2 : Â2 ⊣ θ6, θ6θ2Γ̂  Γ : θ7, and θ8θ7Â2 = A. Let C = B !〈E 〉, and take fresh

unification variables α̂, µ̂, we have [B / α̂,E / µ̂ ]θ8θ7(Â2 → α̂ !〈µ̂〉) = A→ C = θ4θ3Â1 =

θ4θ7θ6Â1.
Note that θ4 only substitutes new unification variables in θ3Â1 = θ7θ6Â1, and [B/α̂,E /

µ̂]θ8 only substitutes new unification variables in θ7(Â2 → α̂ !〈µ̂〉), we have the equation

[B /α̂,E /µ̂]θ8θ4θ7(θ6Â1) = [B /α̂,E /µ̂ ]θ8θ4θ7(Â2 → α̂ !〈µ̂〉). By Lemma F.7, there exists

θ10, θ9 such that θ6Â1 ∼ (Â2 → α̂ !〈µ̂〉) : θ9 and [B / α̂,E / µ̂]θ8θ4θ7 = θ10θ9. Restricting

the domain to be Γ̂, we have θ7 = (θ10θ9)|Γ̂. By Lemma F.3, we have θ9θ6θ2Γ̂ Γ : θ10|Γ̂.

By A-App, we have Γ̂ ⊢ v1 v2 : θ9α̂ !〈µ̂〉 ⊣ θ9θ6θ2.
Setting θa = θ1, θinf = θ9θ6θ2, θinst = θ10|Γ̂, and θd = [B / α̂,E / µ̂], it is easy to check

the conclusion of the theorem is satisfied.
SD-Do By the IH on c1, for any Γ̂  Γ ; θ1, there exists θ2, θ3, θ4 such that θ1 = θ3θ2|Γ̂,

Γ̂ ⊢ c1 : Â !〈Ê〉 ⊣ θ2, θ2Γ̂  Γ ; θ3, and θ4θ3(Â !〈Ê〉) = A !〈E 〉. By θ2Γ̂  Γ ; θ3 and the

fact that θ4 only substitutes unification variables in Â, we have θ2Γ̂, x : Â Γ, x :A ; θ4θ3
(1).

Then we apply the IH on c2 to (1), which gives that there exists θ6, θ7, θ8 such that

θ4θ3 = θ7θ6|θ2Γ̂,x :Â, θ2Γ̂, x :Â ⊢ c2:B̂!F̂ ⊣ θ6, θ6(θ2Γ̂, x :Â) Γ, x :A:θ7, and θ8θ7(B̂ !〈F̂ 〉) =

B !〈E 〉. We have θ8θ7F̂ = E and θ4θ3Ê = E = θ7θ6Ê. Note that θ8 only substitutes

new unification variables in θ7F̂ , we have θ8θ7F̂ = θ8θ7θ6Ê. Thus, by Lemma F.7, there

exists θ9 and θ10 such that θ6Ê ∼ F̂ : θ9, θ8θ7 = θ10θ9. Restricting the domain to be Γ̂,

we have θ7 = (θ10θ9)|Γ̂. Thus, by Lemma F.3, we have θ9|Γ̂θ6(θ2Γ̂, x : Â) Γ, x :A : θ10|Γ̂.

By A-Do, we also have Γ̂ ⊢ do x ← c1 ; c2 : θ9(B̂ !〈F̂ 〉) ⊣ θ9θ6θ2.
Setting θa = θ1, θinf = θ9θ6θ2, θinst = θ10|Γ̂, and θd = θ8, it is easy to check the

conclusion is satisfied:
– θa = θ1 = θ3θ2|Γ̂ = θ4θ3θ2|Γ̂ = θ7θ6θ2|Γ̂ = (θ10θ9θ6θ2)|Γ̂ = (θinstθinf)|Γ̂
– Γ̂ ⊢ do x ← c1 ; c2 : θ9(B̂ !〈F̂ 〉) ⊣ θinf
– θinf Γ̂ Γ ; θinst
– θdθinst(B̂ !〈F̂ 〉) = θ8θ10|Γ̂θ9(B̂ !〈F̂ 〉) = θ8θ10θ9(B̂ !〈F̂ 〉) = θ8θ7(B̂ !〈F̂ 〉) = B !〈E 〉

SD-Let By the IH on v , for all Γ̂, α, µ  Γ, α, µ ; θ1, there exists θ2, θ3, θ4 such that θ1 =

θ3θ2|Γ̂, Γ̂, α, µ ⊢ v : Â ⊣ θ2, θ2Γ̂ Γ ; θ3, and θ4θ3Â = A.
We define θx as the set of all substitutions in (θ4θ3)|Â which do not substitute any

unification variable in fv (θ2Γ̂). Let σ = ∀ α .∀ µ .A and σ̂ = ∀ α .∀ µ . θx Â. By

θ4θ3Â = A, we have θ2Γ̂, x : σ̂  Γ, x : σ ; θ3 (1).
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Then we apply the IH on c to (1), which gives us that there exists θ6, θ7, θ8 such that

θ3 = θ7θ6|θ2Γ̂, θ2Γ̂, x : σ̂ ⊢ c : Ĉ ⊣ θ6 (2), θ6(θ2Γ̂, x : σ̂) Γ, x : σ ; θ7, and θ8θ7Ĉ = C.

Let α̂ µ̂ = uv (Â) − uv (θ2Γ̂) and σ̂′ = ∀ α .∀ µ .∀ α̂ .∀ µ̂ . Â. If we replace the σ̂ in

(2) with σ̂′, by the fact that the substitution θx does not substitutes anything in θ2Γ̂, the

computation c is still well-typed, and there exists θy such that θ2Γ̂, x : σ̂
′ ⊢ c : Ĉ

′
⊣ θ6 and

θyĈ
′
= Ĉ and θy also does not substitutes anything in θ6θ2Γ̂. Thus, θ2Γ̂, x :σ̂

′ ⊢ c:Ĉ ⊣ θyθ6.

By A-Let, we have Γ̂ ⊢ let x = v in c : Ĉ ⊣ θyθ6θ2.
Setting θa = θ1, θinf = θyθ6θ2, θinst = θ7, and θd = θ8, the conclusion is satisfied.

SD-Op By the IH on v , for all Γ̂  Γ ; θ1, there exists θ2, θ3, θ4 such that θ1 = θ3θ2|Γ̂,

Γ̂ ⊢ v : Â′ ⊣ θ2, θ2Γ̂ Γ ; θ3, and θ4θ3Â
′ = Aop. By Lemma F.7 and θ4θ3Â

′ = Aop, there

exists θx , θy such that θ4θ3 = θyθx and Â′ ∼ Aop : θx . By θ2Γ̂  Γ ; θ3 and the fact that

θ4 only substitutes new unification variables in Â′, we have θ2Γ̂ Γ ; θ4θ3. By restricting

the domain to be θ2Γ̂ and the fact that θ4 only substitutes new unification variables in

Â′, we have (θyθx )|θ2Γ̂ = (θ4θ3)|θ2Γ̂ = θ3|θ2Γ̂ = θ3. By θ2Γ̂  Γ ; θ3 and Lemma F.3, we

have θxθ2Γ̂ Γ ; θz , where θz = θy |θ2Γ̂.

Then, we apply the IH on c to the juedgement θxθ2Γ̂, y : Bop  Γ, y : Bop ; θz , there

exists θ6, θ7, θ8 such that θz = θ7θ6, θxθ2Γ̂, y : Bop ⊢ c : Â !〈Ê〉 ⊣ θ6, θ6(θxθ2Γ̂, y : Bop)  

Γ, y :Bop ; θ7, and θ8θ7(Â !〈Ê〉) = A !〈E 〉. By Lemma F.7 and θ8θ7Ê = E = θ8θ7E , there

exists θ′x , θ
′
y such that θ8θ7 = θ′yθ

′
x and Ê ∼ E : θ′x (1). Note that since ℓop ∈ E and the

row type 〈ℓop ; µ̂〉 is the most general type that explicitly contains label ℓop, the unification

of Ê and 〈ℓop ; µ̂〉 must succeed. Suppose Ê ∼ 〈ℓop ; µ̂〉 : θ9 (2) and E ≡〈〉 ℓop ;E ′, by

A-Op we have Γ̂ ⊢ op ℓop v (y . c) : θ9(Â !〈Ê〉) ⊣ θ9θ6θxθ2. Now we do a case analysis to
prove that there exists θ10 such that θ7 = (θ10θ9)|θ6θx θ2Γ̂:

µ̂ /∈ dom (θ9) : We have [E ′ / µ̂]θ9Ê = E . Thus, [E ′ / µ̂]θ9 = (θ8θ7)|Ê. By Lemma F.5,
there exists θ10 such that θ8θ7 = θ10[E

′ / µ̂ ]θ9. By restircting the domains of the

substitutions on both side of the equation to θ6θxθ2Γ̂ and simplifying the equation, we
have θ7 = (θ10θ9)|θ6θx θ2Γ̂.

µ̂ ∈ dom (θ9) : Let θ′9 be the substitution that generated from removing the substitution

of µ̂ from θ9. Suppose 〈E 〉 = 〈ℓ
op ;E ′〉, by (1), we have θ′x [E

′ / µ̂]Ê = θ′x [E
′ / µ̂]〈ℓop ; µ̂〉.

By Lemma F.7 and (2), there exists θ11 such that θ′x [E
′ / µ̂] = θ11θ9. Removing

the substitution of µ̂ from both sides of the equation, we have θ′x = θ11θ
′
9, where θ′9

is the substitution generated by removing the substitution of µ̂ from θ9. Thus, by

θ8θ7 = θ′yθ
′
x , we have θ8θ7 = θ′yθ11θ

′
9. By restricting the domain to be θ6θxθ2Γ̂, we have

θ7 = (θ′yθ11θ
′
9)|θ6θx θ2Γ̂ = (θ′yθ11θ9)|θ6θx θ2Γ̂

Finally, setting θa = θ1, θinf = θ9θ6θxθ2, θinst = θ10|θ9θ6θx θ2Γ̂ and θd = θ8, it is easy to

check the conclusion is satisfied.
SD-Sc By the IH on v , for any Γ̂  Γ ; θ1, there exists θ2, θ3, θ4, such that θ1 = θ3θ2|Γ̂,

Γ̂ ⊢ v : Â ⊣ θ2, θ2Γ̂  Γ ; θ3, and θ4θ3Â = Asc. By Lemma F.7, there exists θy , θx
such that θ4θ3 = θyθx and Â ∼ (Asc) : θx . By restricting the domain to be Γ̂, we have

θ3 = (θ4θ3)|θ2Γ̂ = (θyθx )|θ2Γ̂. By Lemma F.3, we have θx |Γ̂θ2Γ̂  Γ ; θ5 (1), where

θ5 = θy |θx Γ̂.
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Then we apply the IH on c1 to (1), which gives us that there exists θ6, θ7, θ8 such

that θ5 = θ7θ6, θxθ2Γ̂, y : Bsc ⊢ c1 : B̂ !〈Ê〉 ⊣ θ6, θ6(θxθ2Γ̂, y : Bsc)  Γ, y : Bsc ; θ7,

and θ8θ7B̂ !〈Ê〉 = B !〈E 〉. By Lemma F.7, there exists θ′y , θ
′
x such that θ8θ7 = θ′yθ

′
x and

Ê ∼ E :θ′x . Because ℓ
sc ∈ E and 〈ℓsc ; µ̂〉 is the most general row type containing label ℓsc,

there exists θ9 such that Ê ∼ 〈ℓsc ; µ̂〉:θ9. By a similar case analysis to the SD-Sc case, we

get that there exists θ10 such that θ7 = θ10θ9|θ6θx θ2Γ̂. By Lemma F.3 and θ6θxθ2Γ̂ Γ ; θ7,

we have that θ9θ6θxθ2Γ̂ Γ ; θ10, which implies θ9θ6θxθ2Γ̂, z :θ9B̂  Γ, z :B ; θ11 (2) where
θ11 = θ8θ10.

Then we apply the IH on c2 to (2), which gives us that there exists θ12, θ13, θ14 such that

θ11 = θ13θ12, θ9θ6θxθ2Γ̂, z : θ9B̂ ⊢ c2 : Â
′ !〈F̂ 〉 ⊣ θ12, θ12(θ9θ6θxθ2Γ̂, z : θ9B̂) Γ, z :B ; θ13,

and θ14θ13(Â
′ !〈F̂ 〉) = A !〈E 〉. By Lemma F.7, there exists θz , θw such that θ14θ13 = θz θw

and F̂ ∼ E : θw . By restricting the domain to be Γ̂′ = θ12θ9θ6θxθ2Γ̂, we have θ13 =
(θ14θ13)|Γ̂′

= (θz θw )|Γ̂′
.

By A-Sc, we have Γ̂ ⊢ sc ℓsc v (y . c1) (z . c2) : θw (Â
′ !〈F̂ 〉) ⊣ θwθ12θ9θ6θxθ2. Setting

θa = θ1, θinf = θwθ12θ9θ6θxθ2, θinst = θz |θw Γ̂′
, and θd = θ14, the conclusion is satisfied.

SD-Hand By the IH on v , there exists θ2, θ3, θ4 such that θ1 = θ3θ2|Γ̂, Γ̂ ⊢ v : Â ⊣ θ2,

θ2Γ̂  Γ ; θ3 (1), and θ4θ3Â = C ⇒ D. By θ3 = θ7θ6|θ2Γ̂, we have θ4θ7(θ6Â) = C ⇒ D

(1).
Then we apply the IH on c to (1), which gives us that there exists θ6, θ7, θ8 such that

θ3 = θ7θ6|θ2Γ̂, θ2Γ̂ ⊢ c : Ĉ ⊣ θ6, θ6θ2Γ̂  Γ ; θ7 (3), and θ8θ7Ĉ = C. Taking two fresh

unification variables α̂, µ̂ and supposing D = A !〈E 〉, we have [A / α̂,E / µ̂ ]θ8θ7(Ĉ ⇒
α !〈µ〉) = C ⇒ D (2).

Notice that θ4 only substitutes new unification variables in Â, and [A/ α̂,E / µ̂ ]θ8 only

substitutes new unification variables in (Ĉ ⇒ α !〈µ〉), we can combine (1) and (2) to get

the equation [A/α̂,E /µ̂]θ8θ4θ7(θ6Â) = [A/α̂,E /µ̂]θ8θ4θ7(Ĉ ⇒ α !〈µ〉). By Lemma F.7,

there exists θx , θy such that [A / α̂,E / µ̂ ]θ8θ4θ7 = θyθx and θ6Â ∼ Ĉ ⇒ α̂ !〈µ̂〉 : θx . By

restricting the domain to be θ6θ2Γ̂, we have θ7 = (θyθx )|θ6θ2Γ̂.

By A-Hand, we have Γ̂ ⊢ v ⋆ c : θx (α̂ !〈µ̂〉) ⊣ θxθ6θ2. By Lemma F.3 and (3), we

have θxθ6θ2Γ̂  Γ ; θy |θx θ6θ2Γ̂. Setting θa = θ1, θinf = θx theta 6θ2, θinst = θy |θx θ6θ2Γ̂, and
θd = θ4, it is easy to check the conclusion is satisfied.

Return clause.

SD-Return Taking a fresh unification variable α̂, for any Γ̂, x : α̂  Γ, x : A ; θ1, there

exists θ2, θ3, θ4 such that θ1 = θ3θ2|Γ̂, Γ̂, x : α̂ ⊢ cr : Ĉ ⊣ θ2, θ2(Γ̂, x : α̂) Γ, x : A ; θ3 (1),

and θ4θ3Ĉ = M A !〈E 〉. By (1), we have θ2Γ̂ Γ ; θ3|θ2Γ̂ (2).

Because θ1 = θ3θ2|Γ̂ and θ1α̂ = A, we have M A ! E = [E / µ̂ ]θ3θ2(M α̂ !〈µ̂〉) =

θ4θ3Ĉ. Note that θ4 only substitutes new unification variables in Ĉ, we have θ4[E /

µ̂]θ3θ2(M α̂ !〈µ̂〉) = θ4[E / µ̂]θ3Ĉ. By Lemma F.7, there exists θx , θy such that θ4[E /

µ̂]θ3 = θyθx and Ĉ ∼ α̂ !〈µ̂〉 : θx . By restricting the domain to be θ2Γ̂, we have θ3|θ2Γ̂ =

(θyθx )|θ2Γ̂.
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By A-Return, we have Γ̂ ⊢ return x 7→ cr : θxθ2(M α̂ !〈µ̂〉) ⊣ θxθ2. By (2) and

Lemma F.3, we have θxθ2Γ̂  Γ ; θy |θx θ2Γ̂. Setting θa = θ1, θinf = θxθ2, θinst = θy |θx θ2Γ̂,

and θd = [E / µ̂], it is easy to check the conclusion is satisfied.

Operation clauses.

SD-Empty Our goal is for any Γ̂  Γ ; θa and fresh unification variables α̂, µ̂, there

exists θinf , θinst, θd such that θa = θinstθinf , Γ̂ ⊢ · : M α̂ !〈µ̂〉 ⊣ θinf , θinfΓ̂  Γ ; θinst,
θdθinst(M α̂ !〈µ̂〉) = M A !〈E 〉. It is easy to check that setting θinf = ∅, θinst = θa , and
θd = [A / α̂,E / µ̂] satisfies our goal.

SD-OprOp By the IH on oprs , for any Γ̂  Γ ; θ1, there exists θ2, θ3, θ4, Â, Ê such that

θ1 = θ3θ2|Γ̂, Γ̂ ⊢ oprs :M Â !〈Ê〉 ⊣ θ2, θ2Γ̂ Γ ; θ3 (1), and θ4θ3(M Â !〈Ê〉) = M A !〈E 〉
(2). Note that here we want θ4 to be minimal, i.e. θ4 = θ4|θ3(M Â ! 〈Ê〉).

By (1) and (2), we have θ2Γ̂, x : Aop, k : Bop → M Â !〈Ê〉  Γ, x : Aop, k : Bop →

M A !〈E 〉 ; θ4θ3 (3). Let Γ̂′ = θ2Γ̂, x : Aop, k : Bop → M Â !〈Ê〉 and Γ′ = Γ, x : Aop, k :
Bop → M A !〈E 〉. Applying the IH on c to (3), there exists θ6, θ7, θ8 such that θ4θ3 =

θ7θ6|θ2Γ̂,x :Aop,k :Bop→M Â ! 〈Ê〉
, Γ̂′ ⊢ c : Ĉ ⊣ θ6, θ6Γ̂

′  Γ′ ; θ7, and θ8θ7Ĉ = M A !〈E 〉 (4).

By (2), (4), θ4θ3 = θ7θ6, and the fact that θ8 only substitutes new unification variables

in Ĉ, we have θ8θ7θ6(M Â !〈Ê〉) = θ8θ7Ĉ. By Lemma F.7, there exists θy , θx such that

θ8θ7 = θyθx and θ6(M Â !〈Ê〉) ∼ Ĉ : θx . By restricting the domain to be θ2Γ̂, we have
θ7|θ2Γ̂ = (θyθx )|θ2Γ̂ (5).

By A-OprOp, we have Γ̂ ⊢M op ℓop x k 7→ c, oprs : M Â !〈Ê〉 ⊣ θxθ6θ2. By

θ6Γ̂
′  Γ′ ; θ7 and (5), we have θxθ6θ2Γ̂  Γ ; θy |θx θ2Γ̂. Setting θa = θ1, θinf = θxθ6θ2,

θinst = θy |θx θ2Γ̂, and θd = θ4, the conclusion is satisfied.

SD-OprSc Similar to the case of SD-OprOp.
By the IH on oprs , for any Γ̂ Γ ; θ1, there exists θ2, θ3, θ4, Â, Ê such that θ1 = θ3θ2|Γ̂,

Γ̂ ⊢ oprs : M Â !〈Ê〉 ⊣ θ2, θ2Γ̂  Γ ; θ3 (1), and θ4θ3(M Â !〈Ê〉) = M A !〈E 〉 (2). Note
that here we want θ4 to be minimal, i.e. θ4 = θ4|θ3(M Â ! 〈Ê〉)

.

Take a fresh type variable β. By (1) and (2), we have θ2Γ̂, β, x :Asc, p:Bsc → M β !〈Ê〉, k :

β → M Â !〈Ê〉  Γ, β, x : Asc, p : Bsc → M β !〈E 〉, k : β → M A !〈E 〉 ; θ4θ3 (3). Let

Γ̂′ = θ2Γ̂, β, x :Asc, p :Bsc → M β !〈Ê〉, k : β → M Â !〈Ê〉 and Γ′ = Γ, β, x :Asc, p :Bsc →
M β !〈E 〉, k : β → M A !〈E 〉. Applying the IH on c to (3), there exists θ6, θ7, θ8 such

that θ4θ3 = θ7θ6|θ2Γ̂,x :Asc,p:Bsc→M β ! 〈Ê〉,k :β→M Â ! 〈Ê〉
, Γ̂′ ⊢ c : Ĉ ⊣ θ6, θ6Γ̂

′  Γ′ ; θ7, and

θ8θ7Ĉ = M A !〈E 〉 (4).
By (2), (4), θ4θ3 = θ7θ6, and the fact that θ8 only substitutes new unification variables

in Ĉ, we have θ8θ7θ6(M Â !〈Ê〉) = θ8θ7Ĉ. By Lemma F.7, there exists θy , θx such that

θ8θ7 = θyθx and θ6(M Â !〈Ê〉) ∼ Ĉ : θx . By restricting the domain to be θ2Γ̂, we have
θ7|θ2Γ̂ = (θyθx )|θ2Γ̂ (5).

Since β is fresh, we have β /∈ rng (θ2). By θ6Γ̂
′  Γ′ ; θ7, we have β /∈ rng (θ6|Γ̂′

).

Because θ7θ6(M Â !〈Ê〉) = M A !〈E 〉, we have β /∈ θ6(M Â !〈Ê〉). Thus, β /∈ θx
and β /∈ θ6|Ĉ . Thus, by Lemma F.4, we have β /∈ rng (θ6). Finally, we have

β /∈ rng (θxθ6θ2).
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By A-OprSc, we have Γ̂ ⊢M sc ℓsc x p k 7→ c, oprs : M Â !〈Ê〉 ⊣ θxθ6θ2. By

θ6Γ̂
′  Γ′ ; θ7 and (5), we have θxθ6θ2Γ̂  Γ ; θy |θx θ2Γ̂. Setting θa = θ1, θinf = θxθ6θ2,

θinst = θy |θx θ2Γ̂, and θd = θ4, the conclusion is satisfied.

Forwarding clause.

SD-Fwd Take fresh unification variables α̂, µ̂, fresh type variables α, β, and fresh type

variable names γ, δ. For any Γ̂ Γ ; θa , we have Γ̂, α, β, p : Âp , k : Âk , f :∀ γ δ . (Â′
p , Â

′
k )→

δ !〈µ̂〉  Γ, α, β, p : Ap , k : Ak , f : ∀ γ δ . (A′
p ,A

′
k ) → δ !〈E 〉 ; [A / α̂,E / µ̂]θa (1). All

Ap ,Ak ,A
′
p ,A

′
k , Âp , Âk , Â

′
p , Â

′
k are defined the same as what are defined in rules SD-Fwd

and A-Fwd. Let Γ̂′ = Γ̂, α, β, p : Âp , k : Âk , f : ∀ γ δ . (Â′
p , Â

′
k ) → δ !〈µ̂〉 and Γ′ =

Γ, α, β, p : Ap , k :Ak , f : ∀ γ δ . (A′
p ,A

′
k )→ δ !〈E 〉.

Applying the IH on cf to (1), there exists θ2, θ3, θ4 such that

θ3θ2|Γ̂,p:Âp ,k :Âk ,f :∀ γ δ . (Â′

p ,Â
′

k
)→δ ! 〈µ̂〉 = [A / α̂,E / µ̂ ]θa , Γ̂

′ ⊢ cf : Ĉ ⊣ θ2, θ2Γ̂
′  Γ′ ; θ3 (2),

and θ4θ3Ĉ = M A !〈E 〉.
Because α̂ and µ̂ are fresh, we have θ4[A / α̂,E / µ̂]θa(m α̂ !〈µ̂〉) = M A !〈E 〉, which

leads to θ4θ3θ2(m α̂ !〈µ̂〉) = M A !〈E 〉 = θ4θ3Ĉ. By Lemma F.7, there exists θx , θy such

that θ4θ3 = θyθx and Ĉ ∼ θ2(M α̂ !〈µ̂〉) : θx . By restricting the domain to be θ2Γ̂, we
have θ3|θ2Γ̂ = (θy , θx )|θ2Γ̂.

It is obvious that γ, δ /∈ rng (θxθ2) because they are bounded by universal quantifiers.

By θ6Γ̂
′  Γ′ ; θ7, we have α, β /∈ rng (θ6|Γ̂′

). Because θ7θ6(M Â !〈Ê〉) = M A !〈E 〉, we

have α, β /∈ θ6(M Â !〈Ê〉). Thus, α, β /∈ θx and α, β /∈ θ6|Ĉ . Thus, by Lemma F.4, we

have α, β /∈ rng (θ6). Finally, we have α, β, γ, δ /∈ rng (θxθ6θ2).

By A-Fwd, we have Γ̂ ⊢M fwd f p k 7→ cf : θxθ2(M α̂ !〈µ̂〉) ⊣ θxθ2. By (1) and

Lemma F.3, we have θxθ2Γ̂  Γ ; θy |θx θ2Γ̂. Setting θinf = θxθ2, θinst = θy |θx θ2Γ̂, and

θd = [A / α̂,E / µ̂], the conclusion is satisfied.

F.7. Discussion. Our type inference algorithm works as is for most of the examples in
Section 7. The type operators M used by a few handlers have additional type variables,
which go beyond the basic type inference algorithm we have presented.

For example, the type of the handler of the reader with local handler in Section 7.2.2 is

hread : ∀ α µ .α ! 〈ask ; local ;µ〉 ⇒ (Int→µ (α, Int))!〈µ〉

Thus, for type inference, hread has the type annotation λα . Int →µ (α, Int) which contains
type variable µ that is bounded by ∀ µ in the type of hread. Our basic algorithm does not
allow free type variables in the annotation.

We see several ways to generalize our algorithm to accommodate these examples. The
first approach is to allow free type variables to occur in the type annotation and add the
condition that the free variables in the annotation are not in the range of the inferred
substitution of the handler typing judgment. This condition ensures that the free type
variables in the annotation will not escape the lexical scope of the handler type. The new
handler typing rule is shown in Figure 24.

Another approach is to extend the type annotation of handlers from λα .A to λα .λµ .A
to bind the extra type variable µ. In this way, we also need to adjust the typing rules of the
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Γ̂ ⊢M return x 7→ cr :M Â1 !〈Ê1〉 ⊣ θ1
Â1 = α̂1 θ1Γ̂ ⊢M oprs :M Â2 !〈Ê2〉 ⊣ θ2 Â2 = α̂2

θ2(α̂1 !〈Ê1〉) ∼ α̂2 !〈Ê2〉 : θ3 θ3..1Γ̂ ⊢M fwd f p k 7→ cf :M Â3 !〈Ê3〉 ⊣ θ4
Â3 = α̂3 θ4..3(α̂2 !〈Ê2〉) ∼ α̂3 !〈Ê3〉 : θ5 α̂4 = θ5α̂3 α̂4 /∈ fv (θ5..1Γ̂)

〈F̂ 〉 = 〈labels (oprs) ; θ5 Ê3〉 fv (M ) ∩ fv (θ5..1Γ̂) = ∅

Γ̂ ⊢ handlerM {return x 7→ cr , oprs , fwd f p k 7→ cf }:

α̂4 !〈F̂ 〉 ⇒ M α̂4 !〈θ5Ê3〉 ⊣ θ5..1

A-Handler’

Figure 24: The new type inference rule for handlers.

handler and handler clauses to pass extra parameters to the type operatorM . This approach
is less general than the first one, so we have used the first approach in our implementation.
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