
The Functional Machine Calculus II: Semantics
Chris Barrett
Department of Computer Science, University of Bath, United Kingdom

Willem Heijltjes
Department of Computer Science, University of Bath, United Kingdom

Guy McCusker
Department of Computer Science, University of Bath, United Kingdom

Abstract
The Functional Machine Calculus (FMC), recently introduced by the authors, is a generalization of
the lambda-calculus which may faithfully encode the effects of higher-order mutable store, I/O and
probabilistic/non-deterministic input. Significantly, it remains confluent and can be simply typed in
the presence of these effects.

In this paper, we explore the denotational semantics of the FMC. We have three main contri-
butions: first, we argue that its syntax – in which both effects and lambda-calculus are realised
using the same syntactic constructs – is semantically natural, corresponding closely to the structure
of a Scott-style domain theoretic semantics. Second, we show that simple types confer strong
normalization by extending Gandy’s proof for the lambda-calculus, including a small simplification
of the technique. Finally, we show that the typed FMC (without considering the specifics of encoded
effects), modulo an appropriate equational theory, is a complete language for Cartesian closed
categories.

2012 ACM Subject Classification Theory of computation

Keywords and phrases lambda-calculus, computational effects, denotational semantics, strong
normalization

Digital Object Identifier 10.4230/LIPIcs.CSL.2023.39

Funding Willem Heijltjes: EPSRC Grant EP/R029121/1 Typed lambda-calculi with sharing and
unsharing

1 Introduction

Almost without exception, modern programming languages support a combination of com-
putational effects and higher-order mechanisms. Programmers and programming language
theorists recognise that the effects and higher-order mechanisms are fundamentally different
constructs, with radically different syntax and semantics: compare assignment and dereferen-
cing operations with function definition and invocation, for example. In both operational and
denotational accounts, the higher-order mechanism — typically expressed in some variant of
λ-calculus — and the effects mechanisms are treated using distinct approaches, and indeed
the combination of the two, not to mention the combination of multiple kinds of effects,
requires careful handling.

In a previous paper [2] we introduced the Functional Machine Calculus (FMC), a compact
programming language which eliminates these distinctions and supports higher-order effectful
programming with a streamlined yet natural syntax and operational semantics. In this paper,
we reprise the definition of the FMC and attempt to explain and explore its construction and
behaviour from a denotational perspective. Beginning with a domain-theoretic analysis of
computation with stacks, we discover that the λ-calculus and effectful aspects of programming
can be viewed as being of exactly the same kind, in fact entirely interchangeable. The syntax
and operational semantics of the FMC embodies the operations naturally supported by the

© Christopher Barrett, Willem Heijltjes, Guy McCusker;
licensed under Creative Commons License CC-BY 4.0

31st EACSL Annual Conference on Computer Science Logic (CSL 2023).
Editors: Bartek Klin and Elaine Pimentel; Article No. 39; pp. 39:1–39:40

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

ar
X

iv
:2

21
1.

13
14

0v
1

 [
cs

.L
O

]
 2

3
N

ov
 2

02
2

39:2 The Functional Machine Calculus II: Semantics

denotational semantics, while remaining programmer-friendly: in [2] we demonstrate by
example the wide range of effectful programs that can straightforwardly be expressed in this
syntax.

The connection we exploit between domain-theoretic semantics of λ-calculus and an
operational semantics based on stacks is not new. In [19], Streicher and Reus show that
Scott’s well-known D∞ models motivate and explain the definition of Krivine’s abstract
machine for evaluating λ-terms. Scott’s construction takes a domain D and builds a model
of the λ-calculus as an appropriate limit of a sequence of domains, shown on the left below.
Streicher and Reus observed that this construction may alternatively be regarded as taking
the limit of the sequence on the right, where each Dn is recovered as Cn → D, and D∞ is
C∞ → D.

D0 = D

Dn+1 = Dn → Dn

C0 = 1
Cn+1 = Cn × (Cn → D)

With this view, the limit C∞ is a stream or (potentially infinite) stack of elements of D∞,
i.e. denotations of λ-terms; and such terms consume a stack. The equations defining the
interpretations of terms in this model show that the operations of application and abstraction
correspond directly to pushing and popping from the stack. The return domain D plays a
very minor role in the semantics of λ-terms: in Streicher and Reus’s view, it is the result type
of continuations, and ordinary λ-terms never return. Our development in this paper adapts
this in two ways. First, we choose the return domain D to be the domain of stacks. Thus
a term can be regarded as a stack transformer, which immediately supports an operation
of sequencing between terms, leading to a sublanguage of the FMC called the sequential
λ-calculus. Second, we enrich the domain equation with the familiar monad for global state,
and observe that — if states are also stacks — the resulting domain equation is one of
multiple-stack transformers, with no special status afforded to the stack that implements
λ-abstraction and application. Thus we arrive at the promised semantic explanation of the
FMC, treating reader–writer style effects and higher-order mechanisms identically, and giving
a denotational motivation for the stack-machine semantics.

We go on to study this calculus from a type-theoretic and category-theoretic perspective.
The domain-theoretic model is untyped but, generalising the usual development for λ-calculus,
a simple type system can be imposed which describes the shapes of the stacks being operated
upon. Adapting Gandy’s proof technique for λ-calculus, we show that the well-typed terms
of the FMC are strongly normalizing. Further, we study the categorical properties of the
calculus, viewing terms as morphisms between types, and discover that, up to a notion of
contextual equivalence, well-typed programs form a Cartesian closed category. An equational
theory is presented which refines this equivalence, and well-typed terms modulo this theory
are shown to be a sound and complete language for CCCs.

The properties identified above — strong normalization, Cartesian closure, and the
operational property of confluence established in [2] — are entirely expected of languages
which are variants of typed λ-calculus, but perhaps surprising, or even shocking, in the
setting of the effectful FMC. How can the combination of higher-order programming and
effects, including state, input/output, nondeterminism and probability, retain properties of
confluence and referential transparency?

We offer the following explanation. These properties are of the FMC as a general calculus,
which remains close to the λ-calculus, independent of the encoding of effects. As explored
in [2], the FMC is confluent, and for encoded reader/writer effects this manifests as reduction
following the algebraic laws of Plotkin and Power [13]. The CCC semantics presented in this

C. Barrett, W. Heijltjes, G. McCusker 39:3

paper pertains to the FMC itself, and, we emphasize, is not a semantics of effects: when
particular properties of the encoded effects are taken into account, the semantics will no
longer be a CCC. We explore this in more detail in Section 6.

2 The Functional Machine Calculus

The Functional Machine Calculus (FMC) arises from an operational perspective on the
λ-calculus, taking a simple call–by–name stack machine in the style of Krivine [7] as primary.
The machine evaluates a term in the context of a stack, where application is a push (of the
argument) and abstraction is a pop, binding the popped value to the abstracted variable.
Since the stack machine is intended as an operational semantics, and not for implementation,
for simplicity we use substitution rather than an environment. The FMC then introduces
two natural generalizations.
Locations The machine is generalized from one to multiple stacks or streams, indexed by a

global set of locations A. In the calculus, abstraction and application are parameterized
in A as pop- and push-actions on the associated stack. Stacks are homogeneous, but
may be used to encode different reader/writer effects: an input stream (which may be
non-deterministic or probabilistic), an output stream, or a global mutable variable.

Sequencing The calculus is extended with sequential composition of terms, which gives their
consecutive execution on the machine, and an identity term as the unit to composition,
which is the empty instruction sequence on the machine, analogous to imperative skip.
This generalizes the calculus from one of stack consumers to stack transformers, where
a term may return multiple outputs to the stack, and gives control over execution, as
demonstrated by the encoding of various reduction strategies including call–by–value and
call–by–push–value (see [2]).

Locations are an innovation of the FMC [2], while sequencing is familiar from Hasegawa’s
κ-calculus [6, 16] and higher-order stack programming (see e.g. [10]). In the latter case,
there are also certain similarities with Milner’s action calculi [9]. These two innovations
are implemented technically as follows. To emphasize the operational intuition as push and
pop, application M N will be written as [N].M , and abstraction λx.M as 〈x〉.M . These are
subsequently parameterized in locations a, b, c ∈ A. Sequencing introduces a nil or skip term
? and makes the variable construct a prefix x.M ; sequential composition M ;N will be a
defined operation.

I Definition 1. The Functional Machine Calculus (FMC) is given by the grammar

M, N, P ::= ? | x.M | [N]a.M | a〈x〉.M

where from left to right the term constructors are nil, a (sequential) variable, an application
or push action on the location a, and an abstraction or pop action on the location a which
binds x in M . Terms are considered modulo α-equivalence.

We may omit the trailing . ? from terms for readability. We will use a main location λ,
omitted from the term notation, as the computation stack (as opposed to the stacks to
interpret effects), on which (call–by–name) λ-terms embed. We will use constants as free
variables; constant operators such as addition + and conditionals if will operate on λ as well.

I Example 2. Consider the following example terms.

rnd〈x〉. [x]. c〈y〉. [y]. + . 〈z〉. [z]c [〈x〉. [x]out. [x]. [1].+]. 〈f〉. [0]. f. f. f

CSL 2023

39:4 The Functional Machine Calculus II: Semantics

The first term increments a memory cell c with a random number. It pops x from the random
generator stream rnd and pushes it to the main stack; pops y from the cell c and pushes
that to the main stack as well; then + adds the top two elements of the main stack x and y
pushing back the result x+ y; and this is popped as z and pushed back onto the cell c.

The second term counts up from zero to three, outputting 0, 1, 2 and leaving 3 on the
main stack. The subterm 〈x〉. [x]out. [x]. [1].+ pops x from the main stack and sends it to
the output location out, and then [x]. [1].+ leaves x+ 1 on the main stack. In the example,
this term is pushed, popped as f , and called three times on zero.

I Definition 3. Composition N ;M and substitution {N/x}M are given by

? ;M = M [P]a.N ;M = [P]a. (N ;M)
x.N ;M = x. (N ;M) a〈x〉. N ;M = a〈x〉. (N ;M) (x /∈ fv(M))

{P/x}? = ? {P/x}[N]a.M = [{P/x}N]a. {P/x}M
{P/x}x.M = P ; {P/x}M {P/x}a〈x〉.M = a〈x〉.M
{P/x}y.M = y. {P/x}M {P/x}a〈y〉.M = a〈y〉. {P/x}M (y /∈ fv(P))

where, in the last two cases, x 6= y; both are capture-avoiding by the conditions x /∈ fv(M)
and y /∈ fv(P), which can be satisfied by α-conversion.

I Lemma 4. Composition is associative and has unit ?.

I Definition 5. The functional abstract machine is given by the following data. A stack of
terms S is defined below left, and written with the top element to the right. A memory SA is
a family of stacks or streams in A, defined below right.

S ::= ε | S·M SA ::= {Sa | a ∈ A}

The notation SA;Sa identifies the stack Sa within SA. A state is a pair (SA,M) of a memory
and a term. The transitions or steps of the machine are given below left as top–to–bottom
rules. A run of the machine is a sequence of steps, written as (SA,M)⇓(TA, N) or with a
double line as below right.

(SA ; Sa , [N]a.M)
(SA ; Sa·N , M)

(SA ; Sa·N , a〈x〉.M)
(SA ; Sa , {N/x}M)

(SA , M)
(TA , N)

Constant operations such as addition + and conditional if pop the required number of
items from the main stack and reinstate their result, as per the rule given below left. The
FMC then operates as a standard stack calculus: e.g. an arithmetic expression 1+((2+3)×4)
is given as a term [4]. [3]. [2]. + . × . [1].+ which indeed returns 21. Formally, a constant
operator cn,m of arity n,m is defined by a (partial) function cn,m from n input terms to m
output terms, which generates the machine rule schema below right, where the output terms
are put on the stack.

(SA;Sλ · 2 · 3 , + .M)
(SA;Sλ · 5 , M)

(SA;Sλ ·Nn · · ·N1 , cn,m.M)
(SA;Sλ · cn,m(N1, . . . , Nn) , M)

I Example 6. The first term of Example 2 has the following run of the machine, where the

C. Barrett, W. Heijltjes, G. McCusker 39:5

rnd location is initialized with a stream with 3 at the head, and c with the value 5.

(Srnd · 3 ; εc · 5 ; ελ , rnd〈x〉. [x]. c〈y〉. [y]. + . 〈z〉. [z]c)
(Srnd ; εc · 5 ; ελ , [3]. c〈y〉. [y]. + . 〈z〉. [z]c)
(Srnd ; εc · 5 ; ελ · 3 , c〈y〉. [y]. + . 〈z〉. [z]c)
(Srnd ; εc ; ελ · 3 , [5]. + . 〈z〉. [z]c)
(Srnd ; εc ; ελ · 3 · 5 , + . 〈z〉. [z]c)
(Srnd ; εc ; ελ · 8 , 〈z〉. [z]c)
(Srnd ; εc ; ελ , [8]c)
(Srnd ; εc · 8 ; ελ , ?)

Beta-reduction in the λ-calculus, from the perspective of the machine, lets consecutive
push and pop actions interact directly. With multiple stacks, these must be actions on the
same location, while other locations may be accessed in-between. Informally, the reduction
step will then be as follows, where the argument [N]a and abstraction a〈x〉 may be separated
by actions [P]b and b〈y〉 with a 6= b: [N]a . . . a〈x〉.M β . . . {N/x}M . In addition, it
must be avoided that any intervening b〈y〉 captures y in N .

I Definition 7. A head context H is a sequence of applications and abstractions terminating
in a hole:

H ::= {} | [M]a.H | a〈x〉. H

The term denoted H.M is given by replacing the hole {} in H with M , where a binder a〈x〉
in H captures in M . The binding variables bv(H) of H are those variables x where H is
constructed over a〈x〉. The set of locations used in a term or context is denoted loc(M)
respectively loc(H). Then beta-reduction and eta-reduction are defined respectively by the
rewrite rule schemas below, where a /∈ loc(H) for both reduction rules, bv(H) ∩ fv(N) = ∅
for the β-rule, and x /∈ bv(H) for the η-rule. Both reductions are closed under all contexts.

[N]a.H. a〈x〉.M β H. {N/x}M a〈x〉. H. [x]a.M η H.M (x /∈ fv(M))

We now clarify the relationship between beta reduction and the machine. Evaluation of a
term M on the machine, given sufficient inputs in the form of a stack of terms N1 · · ·Nn,
begins in the state (N1 · · ·Nn,M). The machine then implements a particular (weak)
reduction strategy, with each pop transition corresponding to a beta-reduction of the term
[N1] . . . [Nn].M corresponding to the machine state under evaluation.

In Section 6, we further introduce a notion of observational equivalence based on the
machine, dubbed machine equivalence, where terms are considered equivalent if they send
equivalent inputs to equivalent outputs. This is shown to validate the beta and eta equations
in general.

The two generalizations locations and sequencing are independent, and the two calculi
that have one but not the other are of independent interest.

The poly λ-calculus has only locations, and is given by the fragment below.

M, N ::= x. ? | [N]a.M | a〈x〉.M

The sequential λ-calculus has only sequencing, and is given by the fragment below.

M, N ::= ? | x.M | [N].M | 〈x〉.M

CSL 2023

39:6 The Functional Machine Calculus II: Semantics

I Example 8. To demonstrate how the FMC encodes both effects and evaluation strategies,
we consider the following (standard) call–by–value λ-calculus with reader/writer effects. (We
assume familiarity with the operational semantics of effects and call–by–value λ-calculus; for
an introduction see Winskel [20].)

M,N,P ::= x | M N | λx.M λ-calculus
| read | write N ;M input/output
| c := N ;M | !c state update and lookup
| N ⊕M | N +M probabilistic and non-deterministic sum

The full calculus is encoded into the FMC as follows. We let A comprise the main location λ, a
location in for input, out for output, rnd and nd for probabilistically and non-deterministically
generated streams of boolean values (>,⊥), and one location for each global memory cell. A
term M encodes as Mv below, where N +M encodes like N ⊕M but with the stream nd.

xv = [x]
(λx.M)v = [〈x〉.Mv]
(M N)v = Nv ;Mv ; 〈x〉. x

readv = in〈x〉. [x]
!cv = c〈x〉. [x]c. [c]

(write N ;M)v = Nv. 〈x〉. [x]out.Mv

(c :=N ;M)v = Nv. 〈x〉. c〈_〉. [x]c.Mv

(N ⊕M)v = rnd〈x〉. [N]. [M]. [x]. if

We leave it to the reader to confirm that the interpretation generates the correct evaluation
behaviour, and conclude the example with the encoding and reduction of the following term.

((λf.f(f 0)) (λx.write x; !c))v = [〈x〉. [x]. 〈v〉. [v]out. c〈y〉. [y]c. [y]]. 〈f〉. [0]. [f]. 〈z〉. z. [f]. 〈w〉. w

[〈x〉. [x]out. c〈y〉. [y]c. [y]]. 〈f〉. [0]. [f]. 〈z〉. z. [f]. 〈w〉. w

[〈x〉. [x]out. c〈y〉. [y]c. [y]]. 〈f〉. [0]. [f]. 〈z〉. z. f

[〈x〉. [x]out. c〈y〉. [y]c. [y]]. 〈f〉. [0]. f. f

[0]. 〈x〉. [x]out. c〈y〉. [y]c. [y]. 〈z〉. [z]out. c〈w〉. [w]c. [w]

[0]. 〈x〉. [x]out. c〈y〉. [y]. 〈z〉. [z]out. [y]c. [y]

[0]. 〈x〉. [x]out. c〈y〉. [y]out. [y]c. [y]

[0]out. c〈y〉. [y]out. [y]c. [y]

3 Domain-theoretic semantics

Our aim in this section is to show that the syntax and stack-machine semantics of the FMC
may be further justified by consideration of a simple domain-theoretic semantics. We work in
the category Cppo of complete partial orders (with least-element) and continuous functions.
We show that a domain equation for stack-transformers directly supports the operations of
the sequential λ-calculus, directly extending a Scott-style semantics of λ-calculus. The step
from sequential lambda-calculus to FMC is then nothing more than the incorporation of
the state monad in the original domain equation. Our development has much in common
with Streicher and Reus’s work [19]; the key step in the move to the FMC is to allow
computations to return a result — a new stack — which may be further operated upon by
later computations, yielding the sequencing operation of the FMC.

We begin by constructing a domain D to interpret terms. A stack can be seen as an
element of DN. A term takes a stack and, after computation, returns a new stack as its
result. We suppose that computations are modelled using an (unspecified) strong monad
T on Cppo; for now think of T as the lifting monad. Then a term would be an element
of a domain satisfying D ∼= DN → TDN. This domain equation can be solved by standard

C. Barrett, W. Heijltjes, G. McCusker 39:7

techniques. Kleisli function composition gives rise to a sequencing operation D ×D → D

which is associative, and forms a monoid with unit element given by the unit of the monad.
We will write (d1.d2) for the composition of two elements of D using this operation.

Observe that D is a reflexive object in Cppo and hence provides a model of the λ-calculus:

D ∼= DN → TDN ∼= (DN ×D)→ TDN ∼= D → (DN → TDN) ∼= D → D.

We briefly spell out the semantics of λ-calculus induced by this model. Let ρ range
over environments: functions from the set of variables to D. We use s to range over DN;
(s · d) denotes the stack resulting from pushing d onto s. We shall elide the isomorphism
D ∼= DN → TDN. For any term M and environment ρ we define JMKρ ∈ D (equivalently, a
function DN → TDN) as follows.

Jx. ?Kρ = ρx J[N].MKρ s = JMKρ (s · JNKρ) J〈x〉.MKρ (s · d) = JMKρ′ s

where ρ′(x) = d and ρ′(y) = ρ(y) for y 6= x.
These definitions show immediately that application is interpreted by pushing the argu-

ment onto the stack, and abstraction by popping a term from the stack. Thus this standard
λ-calculus model directly justifies the machine semantics. It extends to the sequential
λ-calculus by defining

J?Kρ = η Jx.MKρ = (ρ(x) . JMKρ),

where η is the unit of the monad (and of the monoid).
Thanks to the compositionality of the semantics we can readily prove:

I Lemma 9. JMKρ = JMKρ′ if ∀x ∈ fv(M) ρ(x) = ρ′(x).

As a consequence of this Lemma, we may speak of JMK, independent of ρ, when M is closed.
We extend the semantics to stacks of closed terms. Suppose the monad T is lifting. A

stack S denotes an element of DN:

JεK = ⊥ JS ·MK = 〈JSK, JMK〉

where we elide the isomorphism DN ∼= DN ×D.
Thanks to the direct correspondence between the semantic equations and the machine

transitions, we have:

I Lemma 10 (Soundness). Whenever (S,M)⇓(T,N) (with all terms closed), JMK(JSK) =
JNK(JT K).

I Theorem 11 (Adequacy). If JMK(JSK) 6= ⊥ then there exists a T such that (S,M)⇓(T, ?).

Proof. The proof of this statement follows readily from the existence of three relations: a
relation between elements of D and closed terms; a relation between semantic streams in DN

and streams S; and a relation between computations in TD and machine states (S,M). We
write C for each of these relations, relying on the types to disambiguate. The relations are
required to satisfy the following conditions:

dCM iff ∀σ ∈ DN, σ C S ⇒ d(σ) C (S,M)
σ C S iff ∀i.σi C Si

k C (S,M) iff k = lift(σ)⇒ (S,M)⇓(T, ?) and σ C T.

CSL 2023

39:8 The Functional Machine Calculus II: Semantics

Γ ` ? : ↼
τA⇒

⇀
τA

?
Γ, x : α ` x : α

base
Γ, x : ρ ` M : ↼

σA⇒
⇀
τA

Γ ` a〈x〉.M : a(ρ) ↼
σA⇒

⇀
τA

abs

Γ ` N : ρ Γ ` M : a(ρ) ↼
σA⇒

⇀
τA

Γ ` [N]a.M : ↼
σA⇒

⇀
τA

app
Γ, x : ↼

ρA⇒
⇀
σA ` M : ↼

σA
↼
τA⇒

⇀
υA

Γ, x : ↼
ρA⇒

⇀
σA ` x.M : ↼

ρA
↼
τA⇒

⇀
υA

var

Figure 1 Typing rules for the Functional Machine Calculus

These conditions cannot be used as a definition of the relations C, for example as a fixed
point of an operator on such relations, because the first clause contains a negatively-occurring
usage of C. Nevertheless the existence of such relations can be established using standard
techniques of denotational semantics. Pitts’s work [11] gives an elegant general theory which
enables the construction of such relations.

Once C has been shown to exist, a straightforward induction on syntax establishes that
for any term M , and any finite stream S, we have

JMK CM JSK C S JMK(JSK) C (S,M)

from which computational adequacy immediately follows. J

Note that our soundness and adequacy results are expressed in terms of the stack-machine
evaluation mechanism. It is also the case that the denotational semantics validates the
beta- and eta-laws of Definition 7, but our point in this section is to emphasise that the
stack-machine semantics can be seen as an implementation of a natural denotational model.

Our denotational semantics so far gives an account of the sequential λ-calculus. To extend
to the FMC, we replace the lifting monad with the state monad TX = St → (St ×X)⊥,
where St is a domain of states. Our domain equation becomes

D ∼= DN → (St→ (St×DN)⊥) ∼= St×DN → (St×DN)⊥

If we let St = DN, so that the values in the state are stacks, this is a domain equation
for “two-stack transformers”. As above, this is a reflexive object, now in two distinct ways
depending on which stack is used to interpret the arguments. This is exactly the FMC with
two locations; extension to any finite set of locations is handled similarly, and the soundness
and adequacy results may be proved in the same way. As we emphasized in the introduction,
this semantics has the remarkable property that the stack used to interpret the operations of
the λ-calculus has exactly the same status as that used to interpret state, and it is merely
convention that distinguishes the two. This is precisely the point of view embodied by the
novel syntax and operational semantics of the FMC.

4 Simple types

Simple types for the FMC [2] describe the input/output behaviour of the stack machine.
The type system has three levels, mirroring the syntactic categories of the machine: types τ
for terms M , type vectors ⇀

τ (or stack types) for stacks S, and location-indexed families of
type vectors ⇀

τA (or memory types) for memories SA. A function type is then an implication
between an input memory type and an output memory type.

C. Barrett, W. Heijltjes, G. McCusker 39:9

I Definition 12. FMC-types ρ, σ, τ , υ over a set of base types Σ are given by:

τ ::= α ∈ Σ | ⇀
σA⇒

⇀
τA

⇀
τA ::= {⇀

τ a | a ∈ A}
⇀
τ ::= τ1 . . . τn

Equivalently, one may view a function type as an implication between two vectors of
location-indexed types, considered modulo the permutation of types on different locations.

a1(σ1) . . . an(σn) ⇒ b1(τ1) . . . bm(τm) a(σ) b(τ) ∼ b(τ) a(σ)

We introduce the following notation, which will enable us to write types also in the manner
above. The empty type vector is ε, and the empty memory type εA. A singleton memory
type a(⇀

τ) is empty at every location except a, where it has ⇀
τ : a(⇀

τ)a = ⇀
τ and a(⇀

τ)b = ε

for a 6= b. A singleton λ(⇀
τ) on the main location λ may be written as ⇀

τ . Concatenation of
type vectors is denoted by juxtaposition and the reverse of a type vector ⇀

τ = τ1 . . . τn is
written ↼

τ = τn . . . τ1. This extends point-wise to families, so ⇀
σA

⇀
τA = {⇀

σa
⇀
τ a | a ∈ A} and

↼
τA = {↼

τ a | a ∈ A}.

I Definition 13. A judgement Γ ` M : τ is a typed term in a context Γ = x1 : τ1, . . . , xn : τn,
a finite function from variables to types. The typing rules for the FMC are given in Figure 1.

I Example 14. The terms from Example 2 can be typed as follows, where Z is a base type
of integers. Recall that the first term adds a random number to the cell c, and the second
sends the numbers from zero to two to output, leaving the number three on the main stack.

rnd〈x〉. [x]. c〈y〉. [y]. + . 〈z〉. [z]c : rnd(Z) c(Z)⇒c(Z)
[〈x〉. [x]out. [x]. [1].+]. 〈f〉. [0]. f. f. f : ⇒out(ZZZ)Z

Note, there are two typing rules for variables: one for variables of base type, and one for
variables of higher type. The simply-typed FMC satisfies the subject reduction property [2],
which is implicitly used in the following section.

5 Strong normalization

We will show that reduction for the simply-typed FMC is strongly normalizing (SN). Our proof
is a variant of Gandy’s for the simply-typed λ-calculus [4]. Gandy’s proof interprets terms in
domains of strictly ordered, strict monotone functionals: the base domain is N< = (N, <N),
and if X = (|X|, <X) and Y = (|Y |, <Y) are domains then so is X → Y where

|X → Y | = {f ∈ Y X | ∀x, x′ ∈ X. x <X x′ =⇒ f(x) <Y f(x′)}
f <X→Y g ⇐⇒ ∀x ∈ X. f(x) < g(x) .

The interpretation takes types to domains and terms of a given type to elements of
that domain. The domains are well-founded and the interpretation of terms is such that
it decreases on reduction, giving SN. One may further collapse a functional to a natural
number to give an overestimate of the longest reduction sequence of a term. The literature
has several variants on this proof, including one by De Vrijer that calculates longest reduction
sequences exactly [3]; see also [18, 15, 14].

We introduce a (to the best of our knowledge) new variant, that avoids the domain of
strict functionals and instead interprets terms in the—more standard—domain of (non-strict)
monotone functionals, as above but with ≤, generated from N≤ = (N,≤N) with →. This
domain is not well-founded, but our interpretation of terms ensures that when functionals
are collapsed to a natural number, this strictly decreases upon reduction, giving SN.

CSL 2023

39:10 The Functional Machine Calculus II: Semantics

The technical difference is small and subtle. Gandy’s proof originates in ΛI, where
abstracted variables must occur, and hence the interpretation of an abstraction λx.M is
naturally strict: the argument to x always contributes to the overall interpretation. To
generalize to the λ-calculus, where x need not occur in λx.M , a construction is introduced
to nevertheless measure the argument to x, so that the functional for λx.M remains strictly
monotone. The literature has several further such constructions [5].

This solves the challenge of accounting for reduction in terms that will be discarded,
common in SN proofs. In our proof, instead we account for such terms when they are supplied
as arguments: for a term M N we increment the overall measure with that for N , measuring
potential reduction in N even if it will be discarded by M . An abstraction λx.M may then
be interpreted as a standard monotone functional, avoiding strictness.

To build our domains, we use the→ construction above, as well as the product of domains
X × Y and an indexed product Πa∈AXa, defined in the expected way, as follows. Note, we
will omit to work with base types in this section, so the base case is given by (⇒).

|X × Y | = |X| × |Y | (x, y) ≤X×Y (x′, y′) ⇐⇒ x ≤X x′ ∧ y ≤Y y′

|Πa∈AXa| = Πa∈A |Xa| x ≤Πa∈AXa
x′ ⇐⇒ ∀a ∈ A. xa ≤Xa

x′a

I Definition 15. The interpretation of an FMC-type τ is the domain JτK given by:

J↼
σA⇒

⇀
τAK = J⇀

σAK → N≤ × J⇀
τAK Jτ1 . . . τnK = Jτ1K× · · · × JτnK J⇀

τAK = Πa∈A J⇀
τ aK

It is worth observing that for the simple types of the λ-calculus, as embedded in the FMC,
these domains are the natural ones. Briefly (see [2] for details), a simple type τ1→ . . . →τn→o

embeds as the FMC-type τ1 . . . τn⇒ with the domain Jτ1K× · · · × JτnK→ N≤, which is the
expected one modulo Currying.

I Definition 16. The least element of a domain JτK is written 0τ . The collapse function
b−cτ : JτK→ N takes a functional to a natural number by providing a least element as input
and discarding all other output: bfc↼σA⇒

⇀
τA

= π1(f(0⇀
σA

)).

We will interpret terms such that if M : τ then JMK ∈ JτK, and if M N at type τ then
both JMK ≥JτK JNK and bJMKc >N bJNKc, to give SN. We introduce the following notation.
To interpret terms in a context Γ, let a valuation v on Γ be a function assigning to each
variable x : τ in Γ a value v(x) ∈ JτK. The valuation v{x← t} assigns t to x and otherwise
behaves as v. We write elements of product domains as vectors (t1, . . . , tn), and will elide the
isomorphisms for associativity and unitality so that concatenation of s and t may be written
(s, t). Concatenation lifts to indexed products pointwise: (s, t)a = (sa, ta). For t ∈ JτK we
have a singleton a(t) ∈ Ja(τ)K where a(t)a = t and a(t)b = () for b 6= a.

I Definition 17. For a term Γ ` M : τ and valuation v on Γ, we inductively define the
interpretation JΓ ` M : τKv ∈ JτK as follows, omitting Γ for compactness.

J? : ↼
τA⇒

⇀
τAKv(t) = (0, t)

Jx.M : ↼
ρA

↼
σA⇒

⇀
τAKv(s, r) = (n+m, t) where (n, u) = v(x : ↼

ρA⇒
⇀
υA)(r)

(m, t) = JM : ↼
υA

↼
σA⇒

⇀
τAKv(s, u)

Ja〈x〉.M : a(ρ) ↼
σA⇒

⇀
τAKv(s, a(r)) = (1+m, t) where (m, t) = JM : ↼

σA⇒
⇀
τAKv{x←r}(s)

J[N]a.M : ↼
σA⇒

⇀
τAKv(s) = (1+m+bfc, t) where f = JN : ρKv

(m, t) = JM : a(ρ) ↼
σA⇒

⇀
τAKv(s, a(f))

We write JΓ ` M : τK for JΓ ` M : τKv with v the least valuation v(x : τ) = 0τ , and may
abbreviate JΓ ` M : τKv to JM : τKv or JMKv.

C. Barrett, W. Heijltjes, G. McCusker 39:11

I Remark 18. In this definition, the application case J[N]a.MKv(s) = (1+m+bfc) adds
the value bfc to account for reduction inside the argument N . Further, both it and the
abstraction case Ja〈x〉.MKv(s, a(r)) = (1+m, t) add 1 to count redexes, so that a reduction
step reduces the overall measure by (at least) 2. It would suffice to count only abstractions
or only applications, but the choice to count both is so that we count steps of the stack
machine. We observe the following: for the alternative interpretation that omits to count bfc,
and instead has J[N]a.MKv(s) = (1+m), the collapsed interpretation bJMKc measures the
exact length of machine runs for M . This observation provides the proof with an operational
intuition: terms are strongly normalizing because a) types guarantee termination of the
machine [2, Theorem 3.12], and b) reduction shortens the length of machine runs.

For the remainder of the proof, we will give an overview by stating the main lemmata.
Each follows by a straightforward induction on typing derivations. First, for the interpretation
J−K to be well-defined, the construction for each term must be shown to preserve monotonicity.
We will do so in the following lemma. For valuations v and w over Γ, let v ≤ w denote that
v(x) ≤JτK w(x) for all x : τ in Γ.

I Lemma 19. For all terms Γ `M : τ and valuations v ≤ w over Γ, we have that:
1. JMKv ∈ JτK
2. JMKv ≤JτK JMKw.

For the next steps, we first need that the interpretation commutes with sequential
composition M ;N and substitution {N/x}M . Then, we show that reduction (non-strictly)
decreases the interpretation, and strictly decreases the collapsed interpretation.

I Lemma 20. For terms Γ ` M : ↼
σA

↼
τA⇒

⇀
υA and Γ ` N : ↼

ρA⇒
⇀
σA and valuation v on Γ,

JN ;MKv(t, r) = (i+ j, u) where JNKv(r) = (i, s) and JMKv(t, s) = (j, u) .

I Lemma 21. For terms Γ ` N : σ and Γ, x : σ ` M : τ and valuation v on Γ,

J{N/x}MKv = JMKv{x←JNKv} .

I Lemma 22. If Γ ` M N : τ then JMKv ≥JτK JNKv for every valuation v on Γ.

I Lemma 23. If Γ ` M N : ↼
σA⇒

⇀
τA then π1(JMKv(s)) >N π1(JNKv(s)) for every s ∈ J⇀

σAK
and valuation v on Γ.

The last lemma then immediately gives the strong normalization result.

I Theorem 24 (Strong Normalization). Simply-typed FMC-terms are strongly normalizing
with respect to beta-reduction.

Proof. By Lemma 23 if Γ ` M N : τ then bJMKc >N bJNKc, so that bJMKc gives a bound
for the length of any reduction path from M . J

Note that it is easy to extend this result to include eta-reduction: since eta-reduction
does not increase the measure, and is clearly strongly normalizing by itself (the size of the
term decreases), we can interleave each beta-reduction step with an arbitrary number of
eta-reduction steps without affecting strong normalization.

CSL 2023

39:12 The Functional Machine Calculus II: Semantics

6 Categorical semantics

We give the categorical view on the FMC in three layers:
terms with composition N ;M and unit ? form a category;
terms modulo βη-equivalence form a premonoidal category [17];
terms modulo an appropriate equational theory form a complete language for Cartesian
closed categories;

we then show that machine equivalence, where terms are equivalent if they display the same
input/output behaviour on the machine, validates the final equational theory.

The idea that a calculus with effects should semantically be a CCC may be surprising,
so we will first motivate what the semantics does and does not capture. Firstly, and most
importantly, the semantics we give here is one of the pure FMC, and emphatically not a
semantics of effects: it ignores that, for instance, input only has a pop operation but no push,
and that state locations would be restricted to a stack of depth one (at most). Imposing
these constraints will cause the CCC semantics to break down, as we will demonstrate later
in the section.

Secondly, the situation is analogous to the encoding of monadic effects in simply-typed
λ-calculus, where for instance state encodes as the monad S → (−× S). In that case, too,
the semantics remains a CCC, despite the possibility of encoding effects.

Thirdly, the two generalizations of the FMC, locations and sequencing, remain close
enough to the λ-calculus that simple types allow to collapse them back onto a CCC semantics.
Locations give multiple copies of the λ-calculus, but because the types give the entire memory,
the semantics may combine the different indexed stacks into one, projecting the multiple
copies onto a single λ-calculus. Sequencing gives control over evaluation and allows us to
encode various reduction strategies, but the point of the denotational perspective is precisely
to collapse any computational behaviour, and only consider the input/output behaviour of a
term.

The purpose of our CCC semantics is to demonstrate that the simply-typed FMC is an
operational refinement of the lambda-calculus, but not a denotational one. The FMC allows
to express how computation takes place: what reduction strategy is used, whether inputs are
passed as function arguments or via mutable store, when the random generator is consulted,
etc. The denotational perspective then collapses these distinctions, demonstrating that we
remain firmly in the domain of higher-order functional computation, despite the ability to
encode effects.

The plain category

For simplicity we will work in the sequential λ-calculus. The arguments generalize straight-
forwardly to the case of the FMC, and the details of this case are to be given in the first
author’s Ph.D. thesis. The objects are then type vectors ⇀

τ and morphisms in ⇀
σ −→ ⇀

τ will be
closed terms M : ↼

σ⇒
⇀
τ modulo the given equivalence.

A term M : ρ1 . . . ρm⇒σn . . . σ1 may be represented by a string diagram as below, left.
The wires represent the input and output stacks, with the first element at the top. Strict
composition of terms M : ↼

ρ⇒
⇀
σ and N : ↼

σ⇒
⇀
τ into M ;N : ↼

ρ⇒
⇀
τ , given below, right.

C. Barrett, W. Heijltjes, G. McCusker 39:13

Analogous to the notation for type vectors, we introduce the following notation. We use
vector notation for variables, ⇀

x = x1 . . . xn, and reverse a vector by a left-pointing arrow:
if ⇀
x is as before, then ↼

x = xn . . . x1. Concatenation of vectors is by juxtaposition. We
lift the notation to sequences of abstractions and applications, but only for variables: if
⇀
x is as above, then 〈↼x〉. N = 〈xn〉 . . . 〈x1〉. N and [⇀

x]. N = [x1] . . . [xn]. N . Vector notation
is extended to contexts as x1 : τ1, . . . , xn : τn = ⇀

x : ⇀
τ and simultaneous substitutions as

{S/⇀
x} = {M1/x1, . . . ,Mn/xn} , where S = ε ·M1 · · ·Mn.
The first, plain category is then given by Lemma 4.

The premonoidal category
A premonoidal category [17], like a monoidal category, describes string diagrams, but with
a sequential element: a premonoidal product ⊗ has no parallel composition f ⊗g, while
(f ⊗ id); (id⊗g) and (id⊗g); (f ⊗ id) are distinct.

f

g
6=

f

g

Formally, a premonoidal product is a binary operation on objects X⊗Y that is a functor in
each argument, −⊗X and X⊗−, but need not be a bifunctor −⊗−. In the FMC, the action
on objects is concatenation, ⇀

σ⊗
⇀
τ

∆= ⇀
σ

⇀
τ , with the first element at the top of the stack, and

the unit given by ε. Both actions on morphisms are given below for M : ↼
ρ⇒

⇀
σ, where ↼

x : ↼
τ .

M ⊗⇀
τ : ⇀

τ ⊗
⇀
ρ −→ ⇀

τ ⊗
⇀
σ

∆= M : ↼
ρ

↼
τ ⇒

⇀
τ

⇀
σ

↼
ρ

⇀
σ

↼
τ

⇀
τ

M

⇀
τ ⊗M : ⇀

ρ⊗
⇀
τ −→ ⇀

σ⊗
⇀
τ

∆= 〈↼x〉.M. [⇀
x] : ↼

τ
↼
ρ⇒

⇀
σ

⇀
τ

〈x1〉 [x1]
〈xn〉 [xn]

τ1 τ1
τn τn

↼
ρ

⇀
σM

The first is expansion (see Property 3.9 of the previous paper [2]). The second lifts the
arguments for ↼

τ from the stack as the variables ↼
x, to restore them after evaluating M . We

illustrate these above. A premonoidal product further has an associator and a unitor, and
is called strict if these are identities, which they are here. The category is then formed by
terms modulo βη-equivalence, where η-equivalence is generated by:

M : ρ↼
σ⇒

⇀
τ =η 〈x〉. [x].M : ρ↼

σ⇒
⇀
τ where x /∈ fv(M)

I Proposition 25. Terms modulo βη-equivalence form a strict premonoidal category.

We remark that terms modulo βη-equivalence do not form a symmetric pre-monoidal category,
due to the failure of naturality of symmetry. Of course, one can add further equations to
remedy this. In the sequel, we develop an extended equational theory which in fact makes
the category of terms Cartesian closed.

Premonoidal structure forces a notion of sequentiality, which has previously been employed
to capture that of effects, as in the closed Freyd categories of Power, Thielecke, and Levy [16, 8],
which are the premonoidal equivalent of Cartesian closed categories. However, this imposed
sequentiality is only necessary if interactions through effects (such as state) are hidden from
the type system. Because the FMC makes these explicit, they can instead be accounted for
in the semantics, which then reverts to a Cartesian closed category.

CSL 2023

39:14 The Functional Machine Calculus II: Semantics

The Cartesian closed category
We now give an example illustrating why we would expect the FMC to form a Cartesian
(closed) category, despite its ability to encode effects. For this example, but not for the rest
of the section, we will then consider terms with locations. Note, first, how the two following
terms are illustrated in string diagrams below.

〈↼x〉 : 〈x1〉
〈xn〉

τ1
τn

〈↼x〉. [⇀
x]. [⇀

x] :

〈x1〉
〈xn〉

[x1]
[xn]

[x1]
[xn]

τ1
τn

τ1
τn
τ1
τn

I Example 26. We introduce the following effectful operations as defined constructs (“sugar”)
into the FMC: reading from a stream of random integers (Z), rand, a memory cell c with
get and set operations, and writing to output, write. We give the definitions and types of
these operations and illustrate these as as (nominal) string diagrams below, using colours
and dashed lines to indicate non-main locations: red for rnd, blue for c and yellow for out.
We use the black dot here to depict a transition from one location to another1 (as in rnd, set
and write), as well as to depict the terminal ! (as in set) and diagonal ∆ (as in get), as is
standard.

rand set get write
rnd〈x〉. [x] 〈x〉. c〈_〉. [x]c c〈x〉. [x]c. [x] 〈x〉. [x]out
rnd(Z)⇒Z Zc(Z)⇒c(Z) c(Z)⇒c(Z)Z Z⇒out(Z)

rnd λ
λ

c
c c

λ

c
λ out

Note that, modulo renaming of wires, these effectful operations are encoded by the diagonal
and terminal operations of a Cartesian category.

Consider the following term (reprised from Examples 4.4 and 4.8 of the previous paper [2])
and its string diagrammatic representation. Note that we give the diagram modulo symmetry.2

rand ; set ; get ; rand ; set ; get ; + ; write

c

rnd

rnd

+

c

out

1 This corresponds to the renaming a wire in the formalism of nominal string diagrams, i.e., string
diagrams where wires additionally have an associated name.

2 Note that, because operations acting on different locations permute, we have, for example, no need
to lift (and restore) the arguments from the stacks at locations λ and c prior to (and subsequent to)
applying the second instances of rand, set or get — or, equivalently, doing so has the same result as not
doing so. Technically, the term corresponding to the diagram would lift the result of the first instance
of get off the main λ stack before applying the second instance of get, and then restore it afterwards;
however, since + is symmetric in its inputs, we omit this for simplicity.

C. Barrett, W. Heijltjes, G. McCusker 39:15

Due to the strong type system, we see all the dependencies between operations. For
example, the second call to rand may safely be made before the first calls to set and get.
This would be illustrated by ‘sliding’ the rand operation along the wire — something which
is forbidden in general in a pre-monoidal category, but is permissible in a monoidal setting.
We can also see that the second set is dependent on the first get. Indeed, their composition
forms a beta-redex, corresponding to the expected interaction of ! with ∆ in a Cartesian
category.

Note, one can see in the above example that applying the naturality of the diagonal
would result in a duplication on the location rnd. This relies on rnd being a location with
no special status, and in particular, having an associated push action, similar to the main
location λ. If we were to enforce that rnd was a read-only stream, then this duplication
would no longer be possible and the semantics can no longer be Cartesian. Similar issues
arise for memory cells, which ought to have depth (at most) one. We leave consideration of
the particular properties of encoded effects for future work.

The following data will make ⊗ a Cartesian product × , when considered modulo the
following equational theory. The exponent ⇀

σ→
⇀
τ

∆= ↼
σ⇒

⇀
τ will then give Cartesian closure.

! : ⇀
τ −→ 1 = 〈↼x〉 : ↼

τ ⇒

δ : ⇀
τ −→ ⇀

τ ×
⇀
τ = 〈↼x〉. [⇀

x]. [⇀
x] : ↼

τ ⇒
⇀
τ

⇀
τ

π1 : ⇀
υ×

⇀
τ −→ ⇀

τ = 〈↼x〉. 〈↼y〉. [⇀
x] : ↼

τ
↼
υ⇒

⇀
τ

π2 : ⇀
υ×

⇀
τ −→ ⇀

υ = 〈↼x〉. 〈↼y〉. [⇀
y] : ↼

τ
↼
υ⇒

⇀
υ

ε : ⇀
σ×(⇀

σ→
⇀
τ) −→ ⇀

τ = 〈z〉. z : (↼
σ⇒

⇀
τ)↼
σ⇒

⇀
τ

η : ⇀
τ −→ (⇀

σ→
⇀
σ×

⇀
τ) = 〈↼x〉. [[⇀

x]] : ↼
τ ⇒(↼

σ⇒
⇀
σ

⇀
τ)

M→N : (⇀
σ→

⇀
τ) −→ (⇀

ρ→
⇀
υ) = 〈z〉. [M. z.N] : (↼

σ⇒
⇀
τ)⇒(↼

ρ⇒
⇀
υ)

where ⇀
x : ⇀

τ , ⇀
y : ⇀
υ, z : ↼

σ⇒
⇀
τ

I Definition 27. We define the equational theory =eqn of the FMC to be the least equivalence
generated by the following laws, closed under all contexts.

Beta: [N]. 〈x〉.M =β M{N/x}
↼
σ⇒

⇀
τ

Interchange: 〈↼x〉. N. [⇀
x].M =ι M. 〈↼y〉. N. [⇀

y] ↼
σ

↼
ρ⇒

⇀
υ

⇀
τ

Diagonal: M〈↼y〉. [⇀
y]. [⇀

y] =∆ 〈
↼
x〉. [⇀

x].M. [⇀
x].M ↼

σ⇒
⇀
τ

⇀
τ

Terminal: M. 〈↼y〉 =! 〈
↼
x〉 ↼

σ⇒

Eta (First-order): ? =η 〈a〉. [a] α⇒α

Eta (Higher-order): P =ε 〈
↼
x〉. [[⇀

x]. P. 〈z〉. z] ↼
ρ⇒(↼

σ⇒
⇀
τ)

where a : α, ⇀
x : ⇀

σ,
⇀
y : ⇀
τ ,M : ↼

σ⇒
⇀
τ , N : ↼

ρ⇒
⇀
υ, z : ↼

σ⇒
⇀
τ and P : ↼

ρ⇒(↼
σ⇒

⇀
τ), and we do not

allow abstractions to capture in M,N , or P .

Note that this theory includes beta- and eta-reduction. To see it includes eta-reduction at
higher-type, consider the higher-order eta equation with P = ?.3

I Theorem 28. Terms modulo =eqn form a strict Cartesian closed category.

3 Following the definition of substitution, given a context {−}.M with hole {−}, the substitution of a
term N into the hole is given by N ;M , in particular with N not binding in M . This means the eta
equations together give 〈x〉. [x].M = M , where x 6∈ fv(M).

CSL 2023

39:16 The Functional Machine Calculus II: Semantics

The proof of the theorem above provides a canonical functor from the free Cartesian closed
category generated over a set of base types Σ, denoted CCC(Σ), to the category of FMC
terms generated over th same signature, denoted ΛS/eqn. We construct a left-inverse CCC-
functor interpreting FMC-terms into λ-terms (with products and patterns), thus proving
completeness. In general, all constructions also work with also with constants drawn from a
monoidal signature, as well as simply with a signature given by a set of base types.

The interpretation J−K : ΛS/eqn→ CCC(Σ) preserves types. The top-level arrow ⇒ of
FMC-types becomes sequent entailment `: the type of the input stack becomes the type of
the λ-context and the type of the output stack becomes the type of the λ-term.

A valuation v is a function assigning to each FMC-variable x : τ a λ-term v(x) ∈ JτK.
Given a valuation v, let v{x← t} denote the valuation which assigns t to x and otherwise
behaves as v. We write contexts and products as vectors and elide the isomorphisms for
associativity and unitality so that concatenation of s and t may be written as s · t.

I Definition 29. For each valuation v, define on the type derivation of Γ ` M : ↼
σ⇒

⇀
τ an

open λ-term JΓ ` M : ↼
σ⇒

⇀
τ Kv, given by its action on contexts:

JΓ ` ? : ↼
σ⇒

⇀
σKv(s) = s

JΓ ` x : αKv = v(x)
JΓ ` 〈x〉.M : ρ↼

σ⇒
⇀
τ Kv(s · r) = JΓ, x : ρ `M : ↼

σ⇒
⇀
τ Kv{x←r}(s)

JΓ ` [N].M : ↼
σ⇒

⇀
τ Kv(s) = JΓ `M : ρ↼

σ⇒
⇀
τ Kv(s · JΓ ` N : ρKv)

JΓ, x : ↼
ρ⇒

⇀
υ ` x.M : ↼

ρ
↼
σ⇒

⇀
τ Kv(s · r) = JΓ, x : ↼

ρ⇒
⇀
υ `M : ↼

υ
↼
σ⇒

⇀
τ Kv(s · v(x)(r))

I Theorem 30. Terms modulo =eqn form a complete language for Cartesian closed categories.

Machine Equivalence
A natural contextual equivalence on terms is given by machine equivalence, defined inductively
on types below. It resembles the logical relation for program equivalence of Pitts and Stark [12].
We write (S,M)⇓ for T if (S,M)⇓(T, ?) and take here the only constants to be of base type.

I Definition 31. Closed terms M : ↼
σ⇒

⇀
τ and M ′ : ↼

σ⇒
⇀
τ are machine equivalent at type

↼
σ⇒

⇀
τ if for equivalent inputs the machine gives equivalent outputs,

M ∼M ′ : ↼
σ⇒

⇀
τ

∆= ∀S∼S′ : ⇀
σ. (S,M)⇓ ∼ (S′,M ′)⇓ : ⇀

τ

where two terms of base type are equivalent if they are equal, and two stacks are equivalent
if their terms are pairwise equivalent. Equivalence extends to open terms Γ ` M : τ and
Γ ` M ′ : τ as follows: ⇀

w : ⇀
ω ` M ∼M ′ : τ if and only if

∀W∼W ′ : ⇀
ω. {W/⇀

w}M ∼ {W ′/⇀
w}M ′ : τ .

Machine equivalence validates the equational theory (and in particular the beta and eta
equations). Thus we have the following result.

I Theorem 32. Terms modulo machine equivalence form a Cartesian closed category.

In fact, the category given by terms modulo machine equivalence is just the extensional
collapse of the category of terms modulo the equational theory. Note that machine equivalence
is strictly coarser than the equational theory: a situation analogous to that of the simply-typed
λ-calculus with products, considered modulo an appropriate contextual equivalence.

C. Barrett, W. Heijltjes, G. McCusker 39:17

7 Further work

The current type system for the FMC is too strong for practical programming: it captures
such intensional (and unobservable) aspects of computation as the number of elements read
from a random stream. We aim to investigate more abstract type systems, including dealing
with the particular properties of effectful locations. The results in this paper concerning
the type system, which is essentially a presentation of intuitionistic logic, the operational
intuition and the close denotational relationship with the λ-calculus make a strong basis for
future refinements which account properly for effects. There are several ways in which we
already know how to weaken the type system: introducing a recursor, stream types τ∗, which
type a stream of terms of type τ , and ignoring types on non-main locations. A close link with
string diagrams is evident from the results presented, including with the recently introduced
higher-order string diagrams for CCCs [1]. This is another avenue for investigation.

References
1 Mario Alvarez-Picallo, Dan R. Ghica, David Sprunger, and Fabio Zanasi. Functorial string

diagrams for reverse-mode automatic differentiation. Computer Science Logic (CSL) 2023,
2023. URL: https://arxiv.org/abs/2107.13433, arXiv:2107.13433.

2 Chris Barrett, Willem Heijltjes, and Guy McCusker. The functional machine calculus. To
appear in Mathematical Foundations of Programming Semantics (MFPS 2022). Preprint
available at http://people.bath.ac.uk/wbh22/index.html#FMC2022, 2022.

3 Roel de Vrijer. Exactly estimating functionals and strong normalization. Indagationes
Mathematicae (Proceedings), 90(4):479–493, 1987.

4 Robin Gandy. Proofs of strong normalization. In Jonathan P. Seldin and J. Roger Hindley,
editors, To H.B. Curry: Essays on Combinatory Logic, Lambda Calculus and Formalism, pages
457–477. Academic Press, 1980.

5 Inge Gørtz, Signe Reuss, and Morten Sørensen. Strong normalization from weak normalization
by translation into the Lambda-I-calculus. Higher-Order and Symbolic Computation, 16:253–
285, 2003. doi:10.1023/A:1025693307470.

6 Masahito Hasegawa. Decomposing typed lambda-calculus into a couple of categorical pro-
gramming languages. In International Conference on Category Theory and Computer Science,
1995.

7 Jean-Louis Krivine. A call-by-name lambda-calculus machine. Higher-Order and Symbolic
Computation, 20:199–207, 2007. doi:10.1007/s10990-007-9018-9.

8 Paul Blain Levy, John Power, and Hayo Thielecke. Modelling environments in call–by–value
programming languages. Information and Computation, 185:182–210, 2003.

9 Robin Milner. Action calculi, or syntactic action structures. In Andrzej M. Borzyszkowski
and Stefan Sokolowski, editors, Mathematical Foundations of Computer Science 1993, 18th
International Symposium, MFCS’93, Gdansk, Poland, August 30 - September 3, 1993, Pro-
ceedings, volume 711 of Lecture Notes in Computer Science, pages 105–121. Springer, 1993.
doi:10.1007/3-540-57182-5_7.

10 Slava Pestov, Daniel Ehrenberg, and Joe Groff. Factor: A dynamic stack-based programming
language. ACM SIGPLAN Notices, 45(12):43–58, 2010.

11 Andrew Pitts. Relational properties of domains. Information and Computation, 127:66–90,
1996.

12 Andrew Pitts and Ian Stark. Operational reasoning for functions with local state. In
Higher order operational techniques in semantics, pages 227–273. Isaac Newton Institute for
Mathematical Sciences, 1998.

13 Gordon Plotkin and John Power. Notions of computation determine monads. In International
Conference on Foundations of Software Science and Computation Structures (FoSSaCS), pages
342–356. Springer, Berlin, Heidelberg, 2002.

CSL 2023

39:18 The Functional Machine Calculus II: Semantics

14 Jaco van de Pol. Two different strong normalization proofs? In Selected Papers from the
Second International Workshop on Higher Order Algebra, Logic, and Term Rewriting (HOA
’95), volume 1074 of LNCS, pages 201–220, 1995. doi:10.1007/3-540-61254-8_27.

15 Jaco van de Pol and Helmut Schwichtenberg. Strict functionals for termination proofs. In
Proceedings of the Second International Conference on Typed Lambda Calculi and Applications
(TLCA ’95), pages 350–364. Springer-Verlag, 1995.

16 A.J. Power and Hayo Thielecke. Closed Freyd- and κ-categories. In International Colloquium
on Automata, Languages, and Programming (ICALP), volume 1644 of LNCS, pages 625–634.
Springer, 1999.

17 John Power and Edmund Robinson. Premonoidal categories and notions of computation.
Mathematical Structures in Computer Science, 7:453–468, 1997.

18 Helmut Schwichtenberg. Complexity of normalization in the pure typed lambda-calculus. In
A.S. Troelstra and D. van Dalen, editors, The L.E.J. Brouwer Centenary Symposium, volume
110 of Studies in Logic and the Foundations of Mathematics, pages 453–457. Elsevier, 1982.

19 Thomas Streicher and Bernhard Reus. Classical logic, continuation semantics and abstract
machines. Journal of Functional Programming, 8(6):543–572, 1998.

20 Glynn Winskel. The formal semantics of programming languages: An introduction. MIT Press,
Cambridge, Massachusetts, 1993.

C. Barrett, W. Heijltjes, G. McCusker 39:19

A Details for Section 5: Strong Normalization

We re-state and prove the lemmata for the strong normalization proof in Section 5.

I Lemma 19 (restatement). For all terms Γ `M : τ and valuations v ≤ w over Γ, we have
that:
1. JMKv ∈ JτK
2. JMKv ≤JτK JMKw.

Proof. We prove both statements simultaneously by induction on the type derivation of
Γ ` M : τ . Recall that the first item is equivalent to claiming JMKv is monotonic. When we
write ‘increasing’ here, we mean non-strictly.

For the base case

Γ `M ≡ ? : ↼
τA⇒

⇀
τA,

1. Observe that J?Kv(t) = (0, t) and so is monotonic.
2. Observe that J?Kv = J?Kw for every v and w over Γ.
For the abstraction case, where x : ρ and

Γ `M ≡ a〈x〉.M ′ : a(ρ) ↼
σA⇒

⇀
τA,

1. We must show the function

Ja〈x〉.MKv(s, a(r)) = (1 + n, t) where (n, t) = JMKv{x←r}(s)

is monotonic. Indeed, we have that (s, a(r)) ≤J⇀
σA a(ρ)K (s′, a(r′)) implies, by inductive

hypothesis (ii) on M ′, that

JM ′Kv{x←r} ≤J↼
σA⇒

⇀
τAK JM ′Kv{x←r′} ,

and then by inductive hypothesis (i) on M ′, this implies

JM ′Kv{x←r}(s) ≤J↼
σA⇒

⇀
τAK JM ′Kv{x←r′}(s′) .

Thus, increasing the input of the function increases its output.
2. We wish to show, for arbitrary (s, a(r)) ∈ J⇀

σA a(ρ)K, that

v ≤ w implies Ja〈x〉.M ′Kv(s, a(r)) ≤N×J⇀
τAK Ja〈x〉.M ′Kw(s, a(r)) .

Unfolding definitions, we see we must show that v ≤ w implies

(1 + n, t) ≤N×J⇀
τAK (1 + n′, t′)

where (n, t) = JMKv{x←r}(s) ,
and (n,′ t′) = JMKw{x←r}(s)

By assumption, we have that, for all r ∈ JρK, v{x ← r} ≤ w{x ← r}. Applying
inductive hypothesis (ii) on M ′, we thus have that

JM ′Kv{x←r} ≤J↼
σA⇒

⇀
τAK JM ′Kw{x←r} .

and consequently (n, t) ≤N×J⇀
τAK (n′, t′). Indeed, the required result immediately

follows.

CSL 2023

39:20 The Functional Machine Calculus II: Semantics

For the application case, with Γ ` N : ρ and

Γ `M ≡ [N]a.M ′ : ↼
σA⇒

⇀
τA,

1. We have to show that

J[N]a.M ′Kv(s) = (1 + n+ bJNKvc, t)
where (n, t) = JM ′Kv(s, a(JNKv)) .

is monotonic. Applying inductive hypothesis (i) on M ′, we achieve that JM ′Kv is
monotonic. Thus, increasing the input s increases (n, t), which therefore increases the
output of the entire function.

2. We have to show, for arbitrary s ∈ J⇀
σAK, that

v ≤ w implies J[N]a.M ′Kv(s) ≤N×J⇀
τAK J[N]a.M ′Kw(s)

Unfolding definitions, we see we must show that v ≤ w implies

(1 + n+ bJNKvc, t) ≤N×J⇀
τAK (1 + n′ + bJNKwc, t′)

where (n, t) = JM ′Kw(s, a(JNKv)) .
and (n′, t′) = JM ′Kw(s, a(JNKw)) .

Applying inductive hypothesis (ii) on M ′ and N , we achieve

JM ′Kv ≤Ja(ρ) ↼
σA⇒

⇀
τAK JM ′Kw and JNKv ≤JρK JNKw.

The conjunction of both statements implies that (n, t) ≤N×J⇀
τ K (n′, t′) . We aditionaly

observe that bJNKvc ≤N bJNKwc, and the result follows.
For the variable case,

Γ, x : ↼
ρA⇒

⇀
υA `M ≡ x.M ′ : ↼

ρA
↼
σA⇒

⇀
τA,

1. We have to show that

Jx.M ′Kv(s, r) = (n+m, t)
where (m, t) = JM ′Kv(s, u)

and (n, u) = v(x)(r) .

is monotonic. Observe that v(x) ∈ J↼
ρA⇒

⇀
υAK and so is monotonic. Thus, increasing

the input (s, r) increases (n, u). We have from inductive hypothesis (i) on M ′ that
JM ′K is monotonic. Altogether, this results in an increase in (m, t) , which therefore
increases the output of the entire function.

2. We wish to show, for arbitrary (s, r) ∈ ⇀
σA

⇀
ρA, that

v ≤ w implies Jx.M ′Kv(s, r) ≤N×J⇀
τAK Jx.M ′Kw(s, r) .

Unfolding definitions, we see we must show that v ≤ w implies

(n+m, t) ≤N×J⇀
τAK (n′ +m′, t′)

where (m, t) = JM ′Kv(s, u)
and (n, u) = v(x)(r)
and (m,′ t′) = JM ′Kw(s, u′)
and (n,′ u′) = w(x)(r) .

C. Barrett, W. Heijltjes, G. McCusker 39:21

By assumption, we have v(x) ≤J↼
ρA⇒

⇀
υAK w(x), which implies that (n, u) ≤N×J⇀

υAK (n′, u′).
Applying inductive hypothesis (ii) on M ′, we have that

JM ′Kv ≤J↼
υA

↼
σA⇒

⇀
τAK JM ′Kw.

Altogether, this implies (m, t) ≤N×J⇀
τAK (m′, t′). Thus, we achieve the required result.

J

We add the following Weakening Lemma.

I Lemma 33 (Weakening). For all terms Γ ` M : τ , valuations v on Γ, and s ∈ JσK, we
have that

JΓ ` M : τKv = JΓ, x : σ ` M : τKv{x←s}

where x /∈ fv(M).

Proof. Induction on the type derivation of Γ ` M : τ . J

I Lemma 20 (restatement). For terms Γ ` M : ↼
σA

↼
τA⇒

⇀
υA and Γ ` N : ↼

ρA⇒
⇀
σA and valu-

ation v on Γ,

JN ;MKv(t, r) = (i+ j, u) where JNKv(r) = (i, s) and JMKv(t, s) = (j, u) .

Proof. We proceed by induction on the type derivation of Γ ` N : τ .
Case Γ ` ? : ↼

σA⇒
⇀
σA. Given s ∈ J⇀

σAK and t ∈ J⇀
τAK, let JMKv(t, s) = (m,u). Since

J?Kv(s) = (0, s), we need to show that J ? ;MKv(t, s) = (0 +m,u), but this is immediate
since ? ;M = M .
Case Γ, x : ↼

νA⇒
⇀
πA ` x.N : ↼

νA
↼
ρA⇒

⇀
σA where Γ, x : ↼

νA⇒
⇀
πA ` N : ↼

πA
↼
ρA⇒

⇀
σA. Given n ∈

J⇀
νAK, r ∈ J⇀

ρAK and t ∈ J⇀
τAK, let

v(x)(n) = (i, p) JNKv(r, p) = (j, s) JMKv(t, s) = (k, u)

so that Jx.NKv(r, n) = (i+ j, s). We need to show that Jx.N ;MKv(t, r, n) = (i+ j+k, u).
By definition, x.N ;M = x. (N ;M). The inductive hypothesis gives JN ;MKv(t, r, p) =
(j + k, u), so that Jx. (N ;M)Kv(t, r, n) = (i+ j + k, u) as required.
Case Γ ` [P]a.N : ↼

ρA⇒
⇀
σA where Γ ` P : π and Γ ` N : a(π) ↼

ρA⇒
⇀
σA. Given r ∈ J⇀

ρAK
and t ∈ J⇀

τAK, let

JP Kv = p JNKv(r, p) = (i, s) JMKv(t, s) = (j, u)

so that J[P]a.NKv(r) = (bpc + 1 + i, s). We need to show that J[P]a.N ;MKv(t, r) =
(bpc+ 1 + i+ j). By definition, [P]a.N ;M = [P]a. (N ;M). The inductive hypothesis
gives JN ;MKv(t, r, p) = (i + j, u), so that J[P]a. (N ;M)Kv(t, r) = (bpc + 1 + i + j), as
required.
Case Γ ` a〈x〉. N : a(π) ↼

ρA⇒
⇀
σA where Γ, x : π ` N : ↼

ρA⇒
⇀
σA. Given p ∈ JπK, r ∈ J⇀

ρAK
and t ∈ J⇀

τAK, let

JNKv{x←p}(r) = (i, s) JMKv(t, s) = (j, u)

so that Ja〈x〉. NKv(r, p) = (1+ i, s). We need to show that Ja〈x〉. N ;MKv(t, r, p) = (1+ i+
j, u). By definition, a〈x〉. N ;M = a〈x〉. (N ;M). We assume x is not free inM (otherwise,
α-rename it in a〈x〉. N); then by Lemma 33 also JMKv{x←p}(t, s) = (j, u). The inductive
hypothesis gives JN ;MKvx←p}(t, r) = (i+ j, u), so that Ja〈x〉. (N ;M)Kv(t, r, p) = (1 + i+
j, u), as required. J

CSL 2023

39:22 The Functional Machine Calculus II: Semantics

I Lemma 21 (restatement). For terms Γ ` N : σ and Γ, x : σ ` M : τ and valuation v on
Γ,

J{N/x}MKv = JMKv{x←JNKv} .

Proof. We proceed by induction on the type derivation of Γ, x : ω `M : τ .
For the base case,

Γ, x : ω `M ≡ ? : ↼
τA⇒

⇀
τA,

observe that J∆ ` ?Kv is independent of v and of ∆. Thus, we have

JΓ ` {N/x}?Kv(t) = JΓ ` ?Kv(t) = (0, t) = JΓ, x ` ?Kv{x←JNKv}(t) ,

as required.
For the abstraction case,

Γ, x : ω `M ≡ a〈y〉.M ′ : a(ρ)↼
σA⇒

⇀
τA,

we need to show that

J{N/x}a〈y〉.M ′Kv(s, a(r)) = Ja〈y〉.M ′Kv{x←JNKv}(s, a(r)) ,

where x 6= y. For the left-hand side, we have

J{N/x}a〈y〉.M ′Kv(s, a(r)) =
Ja〈y〉. {N/x}M ′Kv(s, a(r)) = (1 + n, t)

where (n, t) = J{N/x}M ′Kv{y←r}(s) ,

and, for the right-hand side, we have

Ja〈y〉.M ′Kv{x←JNKv}(s, a(r)) = (1 + n′, t′)
where (n′, t′) = JM ′Ku{x←JNKv}(s) .

Let u = v{y ← r}. Applying the inductive hypothesis on M ′ gives the first equality
below.

J{N/x}MKv{y←r} = JM ′Ku{x←JNKu} = JM ′Ku{x←JNKv}

By Lemma 33 (the Weakening Lemma), and since y 6∈ fv(N), we have JNKu = JNKv.
This gives the second equality. Thus, we have that (n, t) = (n′, t′) and the required result
follows.
For the application case, where Γ, x : c ` P : ρ and

Γ, x : ω `M ≡ [P]a.M ′ : ↼
σA⇒

⇀
τA,

we need to show that

J{N/x}[P]a.M ′Kv(s) = J[P]a.M ′Kv{x←JNKv}(s) .

For the left-hand side, we have

J{N/x}[P]a.M ′Kv(s) =
J[{N/x}P]a. {N/x}M ′Kv(s) = (1 + n+ bJP{N/x}Kvc, t)

where (n, t) = J{N/x}M ′Kv(s, a(J{N/x}P Kv)) ,

C. Barrett, W. Heijltjes, G. McCusker 39:23

and, for the right-hand side, we have

J[P]a.M ′Kv{x←JNKv}(s) = (1 + n′ + bJP Kv{x←JNKv}c, t
′)

where (n′, t′) = JM ′Kv{x←JNKv}(s, a(JP Kv{x←JNKv})) .

Applying the inductive hypothesis on M ′ and P achieves

J{N/x}MKv = JM ′Kv{x←JNKv}

J{N/x}P Kv = JP Kv{x←JNKv} .

Thus, we have that (n, t) = (n′, t′) and indeed 1 + n′ + bJ{N/x}P Kvc = 1 + n′ +
bJP Kv{x←JNKv}c as required.
For the variable case, where y 6= x,

Γ, x : ω, y : ↼
ρA⇒

⇀
υA `M ≡ y.M ′ : ↼

ρA
↼
σA⇒

⇀
τA,

we need to show that

J{N/x}y.MKv(s, r) = Jy.MKv{x←JNKv}(s, r) .

For the left-hand side,

J{N/x}y.M ′Kv(s, r) =
Jy. {N/x}M ′Kv(s, r) = (n+m, t)

where (m, t) = J{N/x}M ′Kv(s, u)
and (n, u) = v(y)(r) ,

and for the right-hand side,

Jy.M ′Kv{x←JNKv}(s, r) = (n′ +m′, t′)
where (m′, t′) = JM ′Kv{x←JNKv}(s, u

′)
and (n′, u′) = v{x← JNKv}(y)(r) .

Observe that v{x← JNKv}(y) = v(y), which implies (n, u) = (n′, u′). Application of the
inductive hypothesis on M ′ achieves

J{N/x}MKv = JM ′Kv{x←JNKv} .

Thus, we have (m, t) = (m′, t′) and the result follows.
For the variable case,

Γ, x : ↼
ρA⇒

⇀
υA `M ≡ x.M ′ : ↼

ρA
↼
σA⇒

⇀
τA,

we need to show that

J{N/x}x.MKv(s, r) = Jx.MKv{x←JNKv}(s, r) .

For the left-hand side, by application of the Sequencing Lemma 20, we have

J{N/x}x.M ′Kv(s, r) =
JN ; {N/x}M ′Kv(s, r) = (n+m, t)

where (m, t) = J{N/x}M ′Kv(s, u)
and (n, u) = JNKv(r) ,

CSL 2023

39:24 The Functional Machine Calculus II: Semantics

and, for the right-hand side,

Jx.M ′Kv{x←JNKv}(s, r) = (n′ +m′, t′)
where (m′, t′) = JM ′Kv{x←JNKv}(s, u

′)
and (n′, u′) = v{x← JNKv}(x)(r) .

Observe that v{x← JNKv}(x) = JNKv, which implies (n, u) = (n′, u′). Application of the
inductive hypothesis on M ′ achieves

J{N/x}MKv = JM ′Kv{x←JNKv} .

Thus, we have (m, t) = (m′, t′) and the result follows. J

We simplify the remaining proof by separating the β-rule

[N]a.H. a〈x〉.M H. {N/x}M

into a permutation part

[N]a.H. a〈x〉.M ∼p H. [N]a. a〈x〉.M

and a strict reduction part

[N]a. a〈x〉.M {N/x}M .

The permutation equivalence ∼ on terms is given by:

[P]a. [N]b.M ∼p [N]b. [P]a.M
a〈x〉. [N]b.M ∼p [N]b. a〈x〉.M if x /∈ fv(N)
a〈x〉. b〈y〉.M ∼p b〈y〉. a〈x〉.M

where in each case a 6= b. We first show that the interpretation of terms is preserved under
permutations (the Permutation Lemma).

I Lemma 34 (Permutation). For Γ ` M ∼p N : τ and any valuation v on Γ, JMKv = JNKv.

Proof. The most interesting case is

a〈x〉. [N]b.M ∼p [N]b. a〈x〉.M : a(ρ)↼
σA⇒

⇀
τA ,

where x 6∈ fv(N). To see this, observe the following are equivalent:

Ja〈x〉. [N]b.M : Kv(s, a(r)) = (n+ 2 + bJNKv{x←r}c, t),
where (n, t) = JMKv{x←r}(s, b(JNKv{x←r}),

J[N]b. a〈x〉.MKv(s, a(r)) = (n+ 2 + bJNKvc, t),
where (n, t) = JP Kv{x←r}(s, b(JNKv),

using Lemma 33, the Weakening Lemma (since x 6∈ fv(N)). The other cases follow immediately
from unfolding definitions. J

I Lemma 22 (restatement). If Γ ` M N : τ then JMKv ≥JτK JNKv for every valuation v
on Γ.

C. Barrett, W. Heijltjes, G. McCusker 39:25

Proof. We proceed by induction on the derivation of one-step reductions. Using the Per-
mutation Lemma 34, we need only consider the strict β-rule in the base case.

The base case,

[N]a. a〈x〉.M {N/x}M : ↼
σA⇒

⇀
τA,

where x, N : ρ requires showing, for arbitrary s ∈ J⇀
σAK, that

J[N]a. a〈x〉.MKv(s) ≥N×J⇀
τAK J{N/x}MKv(s) .

Unfolding definitions, we must show

(2 + n+ bJNKvc, t) ≥N×J⇀
τAK J{N/x}MKv(s)

where (n, t) = JMKv{x←JNKv}(s) .

Applying the Substitution Lemma 21,

JMKv{x←JNKv} = J{N/x}MKv,

we see (n, t) = J{N/x}MKv(s). Observing that (2 + n + bJNKvc, t) ≥N×J⇀
τAK (n, t), the

result follows.
The abstraction case,

a〈x〉.M a〈x〉.M ′ : a(ρ)↼
σA⇒

⇀
τA,

requires showing, for arbitrary (s, a(r)) ∈ J⇀
σAa(ρ)K, that

Ja〈x〉.MKv(s, a(r)) ≥N×J⇀
τAK Ja〈x〉.M ′Kv(s, a(r)) .

Unfolding definitions, we must show

(1 + n, t) ≥N×J⇀
τAK (1 + n′, t′)

where (n, t) = JMKv{x←r}(s)
and (n′, t′) = JM ′Kv{x←r}(s) .

Applying the inductive hypothesis on M M ′, we achieve

JMKw(s) ≥N×J⇀
τAK JM ′Kw(s) ,

for any valuation w. In particular, we can set w = {x ← r} and thus we have that
(n, t) ≥N×J⇀

τAK (n′, t′). The result follows.
The application, function case,

[N]a.M [N]a.M ′ : ↼
σA⇒

⇀
τA,

requires showing, for arbitrary s ∈ J⇀
σAK, that

J[N]a.MKv(s) ≥N×J⇀
τAK J[N]a.M ′Kv(s) .

Unfolding definitions, we must show

(1 + n+ bJNKvc, t) ≥N×J⇀
τAK (1 + n′ + bJNKvc, t′)

where (n, t) = JMKv(s, a(JNKv))
and (n,′ t′) = JM ′Kv(s, a(JNKv)) .

Applying the inductive hypothesis on M M ′, we achieve

JMKw(s, a(JNKv)) ≥N×J⇀
τAK JM ′Kw(s, a(JNKv)) ,

and thus that (n, t) ≥N×J⇀
τ K (n′, t′). The result follows.

CSL 2023

39:26 The Functional Machine Calculus II: Semantics

The application, argument case, where N : ρ,

[N].M [N ′].M : ↼
σA⇒

⇀
τA,

requires showing, for arbitrary s ∈ J⇀
σAK, that

J[N]a.MKv(s) ≥N×J⇀
τAK J[N ′]a.MKv(s) .

Unfolding definitions, we must show

(1 + n+ bJNKvc, t) ≥N×J⇀
τAK (1 + n′ + bJN ′Kvc, t′)

where (n, t) = JMKv(s, a(JNKv))
and (n,′ t′) = JMKv(s, a(JN ′Kv))

Applying the inductive hypothesis on N N ′, we achieve

JNKv ≥JρK JN ′Kv

which allows us to apply monotonicity of JMKv to see that (n, t) ≥N×J⇀
τAK (n′, t′). It then

follows that (1 + n+ bJNKvc, t) ≥N×J⇀
τAK (1 + n′ + bJN ′Kvc, t′), as required.

The variable case,

x.M x.M ′ : ↼
ρA

↼
σA⇒

⇀
τA,

with x : ↼
ρA⇒

⇀
υA requires showing, for arbitrary (s, r) ∈ J⇀

σA
⇀
ρAK, that

Jx.MKv(s, r) ≥N×J⇀
τAK Jx.M ′Kv(s, r) .

Unfolding definitions, we must show

(n+m, t) ≥N×J⇀
τAK (n+m′, t′)

where (m, t) = JMKv(s, u)
and (m,′ t′) = JM ′Kv(s, u)
and (n, u) = v(x)(r)

Applying the inductive hypothesis on M M ′, we achieve, for any u ∈ J⇀
υAK,

JMKw(s, u) ≥N×J⇀
τAK JM ′Kw(s, u) ,

and thus that (m, t) ≥N×J⇀
τAK (m′, t′) and consequently (n+m, t) ≥N×J⇀

τAK (n+m′, t′),
as required. J

I Lemma 23 (restatement). If Γ ` M N : ↼
σA⇒

⇀
τA then π1(JMKv(s)) >N π1(JNKv(s))

for every s ∈ J⇀
σAK and valuation v on Γ.

Proof. We proceed by induction on the derivation of one-step reductions. Using the Per-
mutation Lemma 34, we need only consider the strict β-rule in the base case.

The base case,

[N]a. a〈x〉.M {N/x}M : ↼
σA⇒

⇀
τA,

where x, N : ρ requires showing, for arbitrary s ∈ J⇀
σAK, that

π1(J[N]a. a〈x〉.MKv(s)) >N π1(J{N/x}MKv(s)) .

C. Barrett, W. Heijltjes, G. McCusker 39:27

Unfolding definitions, we must show

2 + n+ bJNKvc >N π1(J{N/x}MKv(s))
where (n, t) = JMKv{x←JNKv}(s) .

Applying the Substitution Lemma 21,

JMKv{x←JNKv} = J{N/x}MKv,

we see (n, t) = J{N/x}MKv(s). Indeed, the required result follows immediately from
observing that n = π1(J{N/x}MKv(s)).
The abstraction case,

a〈x〉.M a〈x〉.M ′ : a(ρ)↼
σA⇒

⇀
τA,

requires showing, for arbitrary (s, a(r)) ∈ J⇀
σAa(ρ)K, that

π1(Ja〈x〉.MKv(s, a(r))) >N π1(Ja〈x〉.M ′Kv(s, a(r))) .

Unfolding definitions, we must show

1 + n >N 1 + n′

where (n, t) = JMKv{x←r}(s)
and (n′, t′) = JM ′Kv{x←r}(s) .

Applying the inductive hypothesis on M M ′, we achieve

π1(JMKw(s)) >N π1(JM ′Kw(s)) ,

for any valuation w. In particular, we can set w = {x ← r} and thus we have that
n >N n

′, as required.
The application, function case,

[N]a.M [N]a.M ′ : ↼
σA⇒

⇀
τA,

requires showing, for arbitrary s ∈ J⇀
σAK, that

π1(J[N]a.MKv(s)) >N π1(J[N]a.M ′Kv(s)) .

Unfolding definitions, we must show

1 + n+ bJNKvc >N 1 + n′ + bJNKvc
where (n, t) = JMKv(s, a(JNKv))
and (n,′ t′) = JM ′Kv(s, a(JNKv)) .

Applying the inductive hypothesis on M M ′, we achieve

π1(JMKw(s, a(JNKv))) >N π1(JM ′Kw(s, a(JNKv))) ,

and thus that n >N n
′, as required.

CSL 2023

39:28 The Functional Machine Calculus II: Semantics

The application, argument case, where N : ρ,

[N].M [N ′].M : ↼
σA⇒

⇀
τA,

requires showing, for arbitrary s ∈ J⇀
σAK, that

π1(J[N]a.MKv(s)) >N π1(J[N ′]a.MKv(s)) .

Unfolding definitions, we must show

1 + n+ bJNKvc >N 1 + n′ + bJN ′Kvc
where (n, t) = JMKv(s, a(JNKv))
and (n,′ t′) = JMKv(s, a(JN ′Kv))

Applying the inductive hypothesis on N N ′, we achieve

π1(JNKv(s)) >N π1(JN ′Kv(s))

In the special case where s is the minimal element, we recover bJNKvc >N bJN ′Kvc.
Additionally, by Lemma 22, we have that JNK ≥N×J⇀

τ K JN ′K. This allows us to apply
monotonicity of JMK to deduce that (n, t) ≥N×J⇀

τ K (n′, t′). Altogether, this suffices for the
result.
The variable case,

x.M x.M ′ : ↼
ρA

↼
σA⇒

⇀
τA,

with x : ↼
ρA⇒

⇀
υA requires showing, for arbitrary (s, r) ∈ J⇀

σA
⇀
ρAK, that

π1(Jx.MKv(s, r)) >N π1(Jx.M ′Kv(s, r)) .

Unfolding definitions, we must show

n+m >N n+m′

where (m, t) = JMKv(s, u)
and (m,′ t′) = JM ′Kv(s, u)
and (n, u) = v(x)(r)

Applying the inductive hypothesis on M M ′, we achieve, for any u ∈ J⇀
υAK,

π1(JMKw(s, u)) >N π1(JM ′Kw(s, u)) ,

and thus that m >N m
′, as required. J

B Proofs for Section 6: Categorical Semantics

We formally define the category ΛS/∼ of sequential λ-terms generated by a set of base types
Σ, modulo an equivalence ∼ as follows.

I Definition 35. The category ΛS/∼ is given by: objects are type vectors ⇀
τ , and a morphism

from ⇀
σ to ⇀

τ is an equivalence class under ∼ of closed sequential λ-terms N : ↼
σ⇒

⇀
τ . (Dia-

grammatic) composition is sequencing N ;M with identity id = ?. Open terms are included
in the category by closing them:

↼
x : ↼

ρ ` M : ↼
σ⇒

⇀
τ 7→ ` 〈↼x〉.M : ↼

ρ
↼
σ⇒

⇀
τ .

We will vary the equivalence ∼ throughout this section.

C. Barrett, W. Heijltjes, G. McCusker 39:29

B.1 A pre-monoidal category

I Theorem 36. Proposition 25 (restatement) Terms modulo βη-equivalence form a strict
premonoidal category.

Proof. The associativity and unitality morphisms are identities on type vectors. It remains
to show that the left action −⊗⇀

τ and right action ⇀
τ ⊗− are functorial. Let M : ↼

ρ⇒
⇀
σ and

N : ↼
σ⇒

⇀
υ, and let ⇀

x : ⇀
τ and ⇀

y : ⇀
τ . For the left action:

id⇀
σ×

⇀
τ = ? : ↼

σ
↼
τ ⇒

⇀
τ

⇀
σ = id⇀

σ×
⇀
τ

(M ×⇀
τ); (N ×⇀

τ)
= (〈↼x〉.M. [⇀

x] : ↼
τ

↼
ρ⇒

⇀
σ

⇀
τ) ; (〈↼y〉. N. [⇀

y] : ↼
τ

↼
σ⇒

⇀
υ

⇀
τ)

= (〈↼x〉.M. [⇀
x]. 〈↼y〉. N. [⇀

y] : ↼
τ

↼
ρ⇒

⇀
υ

⇀
τ)

=β (〈↼x〉.M.N. [⇀
x] : ↼

τ
↼
ρ⇒

⇀
υ

⇀
τ)

= (M ;N)×⇀
τ .

For the right action:

⇀
τ × id⇀

σ = 〈↼x〉. [⇀
x] : ↼

τ
↼
σ⇒

⇀
σ

⇀
τ =η ? : ↼

τ
↼
σ⇒

⇀
σ

⇀
τ = id⇀

τ ×
⇀
σ

(⇀
τ ×M); (⇀

τ ×N)
= (M : ↼

ρ
↼
τ ⇒

⇀
τ

⇀
σ) ; (N : ↼

σ
↼
τ ⇒

⇀
τ

⇀
υ)

= M ;N : ↼
ρ

↼
τ ⇒

⇀
τ

⇀
υ

= ⇀
τ ×(M ;N) .

J

B.2 A Cartesian closed category

We now take ∼ to be the equational theory defined in Section 6 and show that ΛS/∼ is in
fact a Cartesian closed category.

I Remark 37. For the η-law, taking P = ? : (↼
ρ⇒

⇀
τ)⇒(↼

ρ⇒
⇀
τ) in ? = 〈x〉. [[x]. P. 〈z〉. z] results

in ? = 〈x〉. [[x]. 〈z〉. z] = 〈x〉. [x] at higher type, so ? = 〈x〉. [x] holds for all types. Iterating
results in ? = 〈↼x〉. [⇀

x]. We will freely use this as a case of the η-law without mention.

I Theorem 28 (restatement). The category ΛS/∼ is a strict Cartesian closed category.

Proof. Consider the equipment defined in Section 6. To prove we have a Cartesian category,
we show existence of a terminal object and existence and uniqueness of products. Terminality
of the unit object (the empty type vector) follows from the terminality (!) equation. We
define the pairing of terms N : ↼

ρ⇒
⇀
σ and M : ↼

ρ⇒
⇀
τ as

[N,M] ∆= ∆; (N ×M) = 〈↼x〉. [⇀
x]. [⇀

x] ; M. 〈↼z〉. N. [⇀
z] : ↼

ρ⇒
⇀
σ

⇀
τ

CSL 2023

39:30 The Functional Machine Calculus II: Semantics

To verify the existence of the product, we show that

[N,M] ;π1 = 〈↼x〉. [⇀
x]. [⇀

x] ; M. 〈↼z〉. N. [⇀
z] ; 〈↼z′〉. 〈↼y〉. [⇀

y]
=η 〈

↼
x〉. [⇀

x]. [⇀
x].M. 〈↼z〉. N. [⇀

z]. 〈↼z′〉
=β 〈

↼
x〉. [⇀

x]. [⇀
x].M. 〈↼z〉. N

=! 〈
↼
x〉. [⇀

x]. [⇀
x]. 〈↼x′〉. N

=β 〈
↼
x〉. [⇀

x]. N
=η N

[N,M] ;π2 = 〈↼x〉. [⇀
x]. [⇀

x] ; M. 〈↼z〉. N. [⇀
z] ; 〈↼z′〉. 〈↼y〉. [⇀

z′]
=β 〈

↼
x〉. [⇀

x]. [⇀
x].M. 〈↼z〉. N. 〈↼y〉. [⇀

z]
=! 〈

↼
x〉. [⇀

x]. [⇀
x].M. 〈↼z〉. 〈↼x′〉. [⇀

z]
=ι 〈

↼
x〉. [⇀

x]. [⇀
x]. 〈↼x′′〉. 〈↼x′〉. [⇀

x′′].M
=β 〈

↼
x〉. [⇀

x]. 〈↼x′〉. [⇀
x].M

=β 〈
↼
x〉. [⇀

x].M
=η M

where ⇀
x,

⇀
x′,

⇀
x′′ : ⇀

ρ, ⇀
y : ⇀
σ and ⇀

z,
⇀
z′ : ⇀

τ . To verify the uniqueness of the product, we show that
for any term P : ↼

ρ⇒
⇀
σ

⇀
τ ,

P =βη P. 〈
↼
y〉. 〈↼z〉. [⇀

z]. [⇀
y]. [⇀

z]. [⇀
y]. 〈↼u〉. 〈↼v〉. π1. [⇀v]. [⇀

u]. π2

=∆ 〈
↼
x〉. [⇀

x]. P. [⇀
x]. P. 〈↼u〉. 〈↼v〉. π1. [⇀v]. [⇀

u]. π2

=ι 〈
↼
x〉. [⇀

x]. P. π1. [⇀
x]. P. π2

=ι 〈
↼
x〉. [⇀

x]. [⇀
x]. P. π2. 〈

↼
w〉. P. π1. [⇀

w]
= [P ;π1, P ;π2]

where π1 = 〈↼a〉. 〈
↼

b〉. [⇀a], π2 = 〈↼a〉. 〈
↼

b〉. [
⇀

b] and where x : ⇀
ρ, v, z : ⇀

σ and u, w, y : ⇀
τ .

For the closed structure, we show the existence and uniqueness of exponents. We define
the currying of a term M : ↼

σ
↼
ρ⇒

⇀
τ as

M∗
∆=η 〈

↼
x〉. [[⇀

x].M] : ↼
σ⇒(↼

ρ⇒
⇀
τ) ,

where ⇀
x : ⇀

σ. To verify the existence and uniqueness, respectively, of exponents, we show that

(id⇀
ρ ×M∗) ; ε = 〈↼x〉. [[⇀

x].M] ; 〈k〉. k =β 〈
↼
x〉. [⇀

x].M =η M

((id⇀
σ ×N) ; ε)∗ = 〈↼x〉. [[⇀

x]. N. 〈k〉. k] =ε N

for ⇀
x : ⇀

σ and k : ↼
ρ⇒

⇀
τ .

The associators and unitors are given by identities and so are trivially natural isomorphisms
which satisfy the coherence diagrams. This fact also makes the category a strict Cartesian
closed category. J

Note that then the canonical morphisms can be recovered from the definition of products
and currying above as ∆ = 〈id, id〉, π1 = id× !, π2 = !× id,M × N = 〈π1;M,π2;N〉, σ =
〈π2, π1〉, η = id∗, etc.

We proceed to show that the canonical functor induced by the soundness theorem is in
fact faithful.

C. Barrett, W. Heijltjes, G. McCusker 39:31

p1 : A1 . . . , pn : An ` pi : Ai
var

Γ, p1 : A1, . . . , pn : An `M : C
Γ, (p1, . . . , pn) : A1 × . . .×An `M : C

{Γ `Mi : Ai}i∈{1,...,n}
Γ ` (M1, . . . ,Mn) : A1 × . . .×An

Γ `M : A Γ ` N : A→ B
Γ `MN : B

app
Γ, p : A `M : B

Γ ` λp.M : A→ B
abs

Figure 2 Typing rules for the λ-calculus with patterns

B.3 Completeness
First, we introduce the simply typed λ-calculus with patterns, which we use for our translation.

I Definition 38. The λ-calculus (with n-ary tuples and patterns) generated by a signature Σ
is given by the following grammar:

M,N = x | MN | λp.M | (M1, . . . ,Mn)
p, q, r, s, t = x | (p1, . . . , pn)

where from left to right the term constructors are a variable, application, abstraction over a
pattern and product. A product is a vector of terms and a pattern is a vector of variables.
We freely allow coercion from patterns to terms. Terms are considered modulo α-equivalence.
We write products, contexts and patterns as vectors (s1, . . . , sn) and elide the isomorphisms
for associativity and unitality so that concatenation of s and t may be written as (s · t).

I Definition 39. Simple types are given by the following grammar

A,B ::= α ∈ Σ | A→ B | A×B

A judgement Γ ` M : A is a typed term in a context Γ = x1 : A1, . . . , xn : An, a finite
function from variables to types. The typing rules for the simply-typed λ-calculus (STLC)
are given in Figure 2.

I Definition 40. The equational theory of the STLC is the least equivalence generated by
the following laws, closed under any context:

Beta (Function): (λp.M)N →β M{N/p}
Eta (Function): x 6∈ fv(M) λ(p1, . . . , pn).M(p1, . . . , pn) =η M : A→ B

Eta (Product): (π1(M), . . . , πn(M)) =η M : A1 × . . .×An

where, in the first case, Γ, x : A `M : B and Γ ` N : A, and where {(N1, . . . , Nn)/(p1, . . . , pn)} =
{N1/p1} . . . {Nn/pn} denotes simultaneous substitution, and, in the last case, we define the
syntactic sugar πi = λ(x1, . . . , xn).xi.

Note that in this calculus, the β-law for products is implemented by β-reduction.
We present the free functor induced by Theorem 28 as a map from FMC terms to lambda

terms, defined by induction on type derivations. Let CCC(Σ) denote the free Cartesian closed
category generated by a signature Σ of base types.

CSL 2023

39:32 The Functional Machine Calculus II: Semantics

I Lemma 41. The interpretation functor {−} : CCC(Σ)→ ΛS/∼ can equivalently be defined
inductively on λ-terms as follows. On types and contexts, respectively, define:

{α} = α, where α ∈ Σ
{A→ B} = {A}⇒{B}

{A1 × . . .×An} = {A1} . . . {An}
{A1, . . . , An} = {An} . . . {A1}

Inductively on the type derivation of Γ `M : A, define an FMC term {Γ `M : A} : {Γ}⇒{A}
by

{p1 : A1, . . . , pn : An ` pi : Ai} = 〈an〉. 〈a1〉. [ai],
{Γ ` (M1, . . . ,Mn) : A1 × . . .×An} = 〈↼x〉. [⇀

x]. {Γ `M1 : A1} . . .[⇀
x]. {Γ `Mn : An}

{Γ, (p1, . . . , pn) : A1 × . . .×An `M : B} = {Γ, p1 : A1, . . . , pn : An `M : B}
{Γ `MN : B} = 〈↼x〉. [⇀

x]. {Γ ` N : A}.
[⇀
x]. {Γ `M : A→ B}. 〈k〉. k

{Γ ` λp.M : A→ B} = 〈↼x〉. [[⇀
x]. {Γ, p : A `M : B}]

where in each case ⇀
x : {Γ}, ai : {Ai}, and k : {A→ B}.

Proof. We present below the equivalence between the simply typed λ-calculus and the free
Cartesian closed category over the signature Σ. Using the functor from CCC(Σ) to ΛS/∼
described Theorem 32 allows us to translate the right-hand sides to FMC terms, giving the
result. In the following, 〈M,N〉 denotes the pairing of morphisms, given by ∆; (M ×N).

{p1 : A1, . . . , pn : An ` pi : Ai} = πi,

{Γ ` (M1, . . . ,Mn) : A1 × . . .×An} = 〈{Γ `M1 : A1}, . . . , {Γ `Mn : An}〉
{Γ, (x1, . . . , xn) : A1 × . . .×An `M : B} = {Γ, x1 : A1, . . . , xn : An `M : B}

{Γ `MN : B} = 〈{Γ ` N : A}, {Γ `M : A→ B}〉 ; ε
{Γ ` λp.M : A→ B} = {Γ, p : A `M : B}∗ . J

We construct a functor J−K : ΛS/∼ → CCC(Σ) which we will show is the left-inverse of
the interpretation {−} : CCC(Σ)→ ΛS/∼ given above. We first introduce a valuation, which
interprets the free variables of a term.

I Definition 42 (Valuation). A valuation v is a function assigning to each FMC-variable
x : τ a λ-term v(x) ∈ JτK. Given a valuation v, let v{x ← N} denote the valuation which
assigns N to x and otherwise behaves as v.

The definition of J−K : ΛS/∼ → CCC(Σ) follows the stack machine intuition of the FMC.
The context of the corresponding lambda term represents the input stack and the lambda
term itself represents the state of the stack at the end of the run, as a function of the input
stack. The top-level arrow ⇒ becomes sequent entailment ` and the type of the input stack
becomes the type of the λ-context and the type of the output stack becomes the type of the
λ-term.

I Definition 29 (restatement). For every signature Σ, define the interpretation J−K :
ΛS/∼ → CCC(Σ) inductively on types as:

JαK = α where α ∈ Σ
Jτ1 . . . τnK = Jτ1K× . . .× JτnK

J↼
σ⇒

⇀
τ K = J⇀

σK→ J⇀
τ K .

C. Barrett, W. Heijltjes, G. McCusker 39:33

For each valuation v, define on the type derivation of Γ ` M : ↼
σ⇒

⇀
τ an open λ-term

s : J⇀
σK ` JΓ ` M : ↼

σ⇒
⇀
τ Kv(s) : J⇀

τ K

as follows:

JΓ ` ? : ↼
σ⇒

⇀
σKv(s) = s

JΓ ` x : αKv = v(x)
JΓ ` 〈x〉.M : ρ↼

σ⇒
⇀
τ Kv(s · r) = JΓ, x : ρ `M : ↼

σ⇒
⇀
τ Kv{x←r}(s)

JΓ ` [N].M : ↼
σ⇒

⇀
τ Kv(s) = JΓ `M : ρ↼

σ⇒
⇀
τ Kv(s · JΓ ` N : ρKv)

JΓ, x : ↼
ρ⇒

⇀
υ ` x.M : ↼

ρ
↼
σ⇒

⇀
τ Kv(s · r) = JΓ, x : ↼

ρ⇒
⇀
υ `M : ↼

υ
↼
σ⇒

⇀
τ Kv(s · v(x)(r)) .

We omit the context and/or types of terms inside the function when it is clear.

We proceed to show that the interpretation functor is well-defined.
We write v{⇀

x← r} as shorthand for v{x1 ← r1} . . . {xn ← rn}, given a valuation v and
r = (r1, . . . , rn), and J

⇀

NKv as shorthand for (JN1Kv · · · JNnKv).

I Lemma 43. For all terms Γ ` 〈↼x〉.M : ↼
ρ

↼
σ⇒

⇀
τ , Γ `

⇀

N : ⇀
ρ and valuation v, we have that

J〈↼x〉.MKv(s · r) = JMKv{⇀x←r}(s) and J[
⇀

N].MKv(s) = JMKv(s · J
⇀

NKv),

where r : J⇀
ρK and s : J⇀

σK.

Proof. By induction on the sizes of vectors ⇀
x and

⇀

N , respectively. J

I Lemma 44 (Weakening). For all terms Γ `M : τ , valuations v and s ∈ JσK, we have that

JΓ ` MKv = JΓ, x ` MKv{x←s},

where x : σ 6∈ fv(M).

Proof. Induction on the type derivation of Γ `M : τ . J

I Lemma 45 (Sequencing). For all terms Γ ` M : ↼
υ

↼
σ⇒

⇀
τ and Γ ` N : ↼

ρ⇒
⇀
υ and for all

valuations v, we have that:

JN ;MKv(s · r) = JMKv(s · JNKv(r))

Proof. We proceed by induction on the type derivation of Γ ` N : ↼
ρ⇒

⇀
υ. See Lemma 20 for

a similar proof. J

I Lemma 46 (Substitution). For every pair of terms Γ, x : ω `M : τ and Γ ` N : ω and for
every valuation v, we have

J{N/x}MKv = JMKv{x←JNKv} .

Proof. We proceed by induction on the type derivation of Γ `M : τ . See Lemma 21 for a
similar proof. J

I Lemma 47 (Well-Definedness). For any closed terms Γ ` M : τ and Γ ` N : τ and valuation
v, we have

M =eqn N implies JMKv = JNKv .

CSL 2023

39:34 The Functional Machine Calculus II: Semantics

Proof. We prove the statement in the case of each equation, making free use of the Sequencing
and Weakening lemmas.

Beta: [N]. 〈x〉.M M{N/x} : ↼
σ⇒

⇀
τ ,

J[N]. 〈x〉.MKv(s) = J〈x〉.MKv(s · JNKv) = JMKv{x←JNKv}(s)
Substitution = J{N/x}MKv(s)

where x, N : ρ.
Interchange: 〈↼x〉. N. [⇀

x].M =ι M. 〈↼y〉. N. [⇀
y] : ↼

ρ
↼
σ⇒

⇀
τ

⇀
υ,

J〈↼x〉. N. [⇀
x].MKv(s · r) = JN. [⇀

x].MKv{⇀x←r}(s)

= J[⇀
x].MKv{⇀x←r}(JNKv(s))

= JMKv(JNKv(s) · r)
= (JNKv(s) · JMKv(r))

JM. 〈↼y〉. N. [⇀
y]Kv(s · r) = J〈↼y〉. g. [⇀

y]Kv(s · JMKv(r))
= JN. [⇀

y]Kv{⇀y←JMKv(r)}(s)

= J[⇀
y]Kv{⇀y←JMKv(r)}(JNKv(s))

= (JNKv(s) · JMKv(r))

where ⇀
x : ⇀

ρ, ⇀
y : ⇀
υ, M : ↼

ρ⇒
⇀
υ and N : ↼

σ⇒
⇀
τ .

Diagonal: M. 〈↼y〉. [⇀
y]. [⇀

y]→∆ 〈
↼
x〉. [⇀

x].M. [⇀
x].M : ↼

σ⇒
⇀
τ

⇀
τ ,

JM. 〈↼y〉. [⇀
y]. [⇀

y]Kv(s) = J〈↼y〉. [⇀
y]. [⇀

y]Kv(JMKv(s))
= J[⇀

y]. [⇀
y]Kv{⇀y←JMKv(s)}()

= (JMKv(s) · JMKv(s))
J〈↼x〉. [⇀

x].M. [⇀
x].MKv(s) = J[⇀

x].M. [⇀
x].MKv{⇀x←s}()

= JM. [⇀
x].MKv{⇀x←s}(s)

= J[⇀
x].MKv{⇀x←s}(JMKv(s))

= JMKv{⇀x←s}(JMKv(s) · s)

= (JMKv(s) · JMKv(s))

where M : ↼
σ⇒

⇀
τ , ⇀
x : ⇀

σ, ⇀
y : ⇀
τ .

Terminal: M. 〈↼y〉 →! 〈
↼
x〉 : ↼

σ⇒

JM. 〈↼y〉Kv(s) = J〈↼y〉Kv(JMKv(s)) = (ε)
J〈↼x〉Kv(s) = (ε)

where M : ↼
σ⇒

⇀
τ , ⇀
x : ⇀

σ and ⇀
y : ⇀
τ

Extensionality: M = 〈↼x〉. [[⇀
x].M. 〈g〉. g] : ↼

ρ⇒(↼
σ⇒

⇀
τ)

J〈↼x〉. [[⇀
x].M. 〈g〉. g]Kv(r) = J[[⇀

x].M. 〈g〉. g]Kv{⇀x←r}(ε)

= J[⇀
x].M. 〈g〉. gKv{⇀x←r}

= JM. 〈g〉. gKv(r)
= J〈g〉. gKv(JMKv(r))
= JgKv{g←JMKv(r)}(ε)
= JMKv(r)

where M : ↼
ρ⇒(↼

σ⇒
⇀
τ) ⇀

x : ⇀
ρ and g : ↼

σ⇒
⇀
τ .

C. Barrett, W. Heijltjes, G. McCusker 39:35

J

I Lemma 48. The interpretation J−K : ΛS/∼ → CCC(Σ) is a Cartesian closed functor.

Proof. Functoriality follows immediately from Lemma 20 (Sequencing). Unitality follows
from observing J?Kv = id. To show J−K is a Cartesian functor, we must show it commutes
with the product functor ×. Making free use of the Sequencing and Weakening lemmas, we
have:

JM : ↼
σ⇒

⇀
τ ×N : ↼

ρ⇒
⇀
υKv(s · r) = JN. 〈↼u〉.M. [⇀

u]Kv(s · r)
= J〈↼u〉.M. [⇀

u]Kv(s · JNKv(r))
= JM. [⇀

u]Kv{⇀u←JNKv(r)}(s)

= J[⇀
u]Kv{⇀u←JNKv(r)}(JMKv{⇀u←JNKv(r)}(s))

= J[⇀
u]Kv{⇀u←JNKv(r)}(JMKv(s))

= (JMKv(s) · JNKv(r))
= (JMKv × JNK)v(s · r) ,

where ⇀
u : ⇀

υ and s ∈ J⇀
σK, r ∈ J⇀

ρK. To show J−K is a Cartesian closed functor, we must further
show that it preserves the arrow functor →. Indeed, we have

JM → NKv(f) = J〈x〉. [M.x.N]Kv(f)
= J[M.x.N]Kv{x←f}(ε)
= JM.x.NKv{x←f}
= JMKv{x←f} ; JxKv{x←f} ; JNKv{x←f}
= JMKv ; f ; JNKv
= (JMKv → JNKv)(f)

where f : J↼
σ⇒

⇀
τ K, x : ↼

σ⇒
⇀
τ and M : ↼

ρ⇒
⇀
σ and N : ↼

τ ⇒
⇀
υ. J

We demonstrate completeness by proving J{Γ `M}Kv = Γ `M : A.

I Theorem 30 (restatement). The functor {−} : CCC(Σ)→ ΛS/∼ is faithful.

Proof. We show that J{Γ `M : A}Kv = Γ `M : A, or equivalently that

J{a1 : A1, . . . , an : An `M : B}Kv(an · · · a1) = M : B .

Note we confuse between the input variables ai and variables of the context of M in order
to avoid proliferation of α-conversions. We proceed by induction on the type derivation of
Γ `M : A.

The base (variable) case:

J{a1 : A1, . . . , an : An ` ai : Ai}Kv(an · · · a1) = J〈an〉. 〈a1〉. [ai]Kv(an · · · a1)
= ai,

where ai : {Ai}.

CSL 2023

39:36 The Functional Machine Calculus II: Semantics

The abstraction case:

J{c : Γ ` λa.M : A→ B}K(c) = J〈↼x〉. [[⇀
x]. {c, a `M}]K(c)

= J[[⇀
x]. {c, a `M}]K{⇀x←c}(ε)

= J[⇀
x]. {c, a `M}K{⇀x←c}

η-expansion = λa.J[⇀
x]. {c, a `M}K{⇀x←c}(a)

= λa.J{c, a `M}K{⇀x←c}(a · c)

I.H. = λa.M

where ⇀
x : {Γ}

The application case:

J{c : Γ `M(N) : B}K(c) = J〈↼x〉. [⇀
x]. {c ` N}. [⇀

x]. {c `M}. 〈k〉. kK(c)
= J{c ` N}. [⇀

x]. {c `M}. 〈k〉. kK{⇀x←c}(c)

Sequencing = J[⇀
x]. {c `M}. 〈k〉. kK{⇀x←c}(J{c ` N}K{⇀x←c}(c))

Weakening + I.H. = J[⇀
x]. {c `M}. 〈k〉. kK{⇀x←c}(N)

Sequencing = J{c `M}. 〈k〉. kK{⇀x←c}(N · c)

Sequencing = J〈k〉. kK{⇀x←c}(N, J{c `M}K{⇀x←c}(c))

Weakening + I.H. = J〈k〉. kK(N,M)
= JkK{k←M}(N)
= M(N)

where M : A→ B, N : A, ⇀
x : {Γ} and k : {A→ B}

The pattern case:

J{c : Γ, (p1, . . . , pn) : A1 × . . .×An `M : B}K(c · p1 · · · pn)
= J{c, p1, . . . , pn `M}K(c · p1 · · · pn)

I.H. = M

The n-ary tuple case:

J{c : Γ ` (M1, . . . ,Mn)}K(c) = J〈↼x〉. [⇀
x]. {c `M1} . . . [⇀

x]. {c `Mn}K(c)
= J[⇀

x]{c `M1} . . . [⇀
x]. {c `Mn}K{⇀x←c}(ε)

= J{c `M1} . . . [⇀
x]. {c `Mn}K{⇀x←c}(c)

Sequencing = J . . . [⇀
x]. {c `Mn}K{⇀x←c}(J{c `M1}K{⇀x←c}(c))

Weakening + IH = J . . . [⇀
x]. {c `Mn}K{⇀x←c}(M1)

= . . .

= J[⇀
x]. {c `Mn}K{⇀x←c}(M1 · · ·Mn−1)

= J{c `Mn}K{⇀x←c}(M1 · · ·Mn−1 · c)

Sequencing = (M1 · · ·Mn−1 · J{c `Mn}K{⇀x←c}(c))

Weakening + IH = (M1, . . . ,Mn)

where ⇀
x : {Γ} and Mi : Ai. J

C. Barrett, W. Heijltjes, G. McCusker 39:37

We now show that terms modulo machine equivalence also form a Cartesian closed
category. First, we show that machine equivalence is well-defined.

I Proposition 49. Machine equivalence (∼) is a congruence.

Proof. It is shown that (∼) is closed under contexts. Reflexivity then follows by induction
on the term, symmetry is immediate, and transitivity follows by induction on types.

Unit case. To show is that ? ∼ ? : ↼
τ ⇒

⇀
τ . This requires that

∀T ∼ T ′ : ⇀
τ . T ∼ T ′ : ⇀

τ

which is tautologous.
Variable case. To show is that if M ∼M ′ : ↼

σ
↼
τ ⇒

⇀
υ then x.M ∼x.M ′ : ↼

ρ
↼
τ ⇒

⇀
υ. Let both

be typed in the context Γ = ⇀
w : ⇀

ω, and assume this includes x : ↼
ρ⇒

⇀
σ. Let the following

stacks be equivalent.

R ∼ R′ : ⇀
ρ T ∼ T ′ : ⇀

τ W ∼W ′ : ⇀
ω

It must be shown that U ∼ U ′ : ⇀
υ for the following stacks U and U ′.

U = (TR, {W/⇀
w}x.M)⇓

U ′ = (T ′R′, {W ′/⇀
w}x.M ′)⇓

Let W and W ′ respectively contain the terms N and N ′ corresponding to x in ⇀
w. Then

{W/⇀
w}x.M = N. {W/⇀

w}M and {W/⇀
w}x.M} = N ′. {W/⇀

w}M ′. Let (R,N)⇓ = S and
(R′, N ′)⇓ = S′, for which the assumption N ∼N ′ gives S ∼ S′ : ⇀

σ. Then

U = (TR,N. {W/⇀
w}M)⇓ = (TS, {W/⇀

w}M)⇓
U ′ =(T ′R′, N ′. {W ′/⇀

w}M ′)⇓ =(T ′S′, {W ′/⇀
w}M ′)⇓

by composition of machine runs. By the premise M ∼M ′ then U ∼ U ′ : ⇀
υ as required.

Application case. To show is that given N ∼N ′ : ρ and M ∼M ′ : ρ↼
σ⇒

⇀
τ then

[N].M ∼ [N ′].M ′ : ↼
σ⇒

⇀
τ . Let all four terms be typed in the context Γ = ⇀

w : ⇀
ω and let

the following stacks be equivalent.

S ∼ S′ : ⇀
σ W ∼W ′ : ⇀

ω

It must be shown that T ∼ T ′ : ⇀
τ for the following stacks T and T ′.

T = (S, {W/⇀
w}[N].M)⇓

T ′ = (S′, {W ′/⇀
w}[N ′].M ′)⇓

For T , by the definition of substitution and by a single push step of the machine,

T = (S, [{W/⇀
w}N]. {W/⇀

w}M)⇓
= (S · {W/⇀

w}N, {W/⇀
w}M)⇓

and similarly T ′ = (S′ · {W ′/⇀
w}N ′, {W ′/⇀

w}M ′)⇓. Since N ∼N ′ then also
{W/⇀

w}N ∼{W ′/⇀
w}N ′. By the premise M ∼M ′ it follows that T ∼ T ′ : ⇀

τ .
Abstraction case. To show is that if M ∼M ′ : ↼

σ⇒
⇀
τ then it follows that

〈x〉.M ∼〈x〉.M ′ : ρ↼
σ⇒

⇀
τ . Let 〈x〉.M and 〈x〉.M ′ be typed in the context Γ = ⇀

w : ⇀
ω (not

including x), and assume the following equivalent stacks and terms.

N ∼N ′ : ρ S ∼ S′ : ⇀
σ W ∼W ′ : ⇀

ω

CSL 2023

39:38 The Functional Machine Calculus II: Semantics

It must be shown that T ∼ T ′ : ⇀
τ for the following stacks T and T ′.

T = (S ·N, {W/⇀
w}〈x〉.M)⇓

T ′ = (S′ ·N ′, {W ′/⇀
w}〈x〉.M ′)⇓

By a single pop step of the machine,

T = (S, {N/x,W/⇀
w}M)⇓

T ′ = (S′, {N ′/x,W ′/⇀
w}M ′)⇓

so that M ∼M ′ gives T ∼ T ′ : ⇀
τ . J

I Proposition 50. Machine equivalence includes βη-equivalence: (=βη) ⊆ (∼).

Proof. For beta, let [N]. 〈x〉.M {N/x}M , and let both terms be typed in context ⇀
w : ⇀

ω

with type ↼
σ⇒

⇀
τ . Let S ∼ S′ : ⇀

σ and W ∼W ′ : ⇀
ω. It must be shown that T ∼ T ′ : ⇀

τ for T
and T ′ as follows.

T = (S, {W/⇀
w}[N]. 〈x〉.M)⇓

T ′ = (S′, {W ′/⇀
w}{N/x}M)⇓

Two steps of the machine on [N]. 〈x〉.M evaluate the redex, to give the following.

T = (S, {W/⇀
w}{N/x}M)⇓

Then by reflexivity, M ∼M and N ∼N , it follows that T ∼ T ′ : ⇀
τ . Since ∼ is a congruence,

if M N then M ∼N .
For expansion, let (M : ρ↼

σ⇒
⇀
τ) =η (〈x〉. [x].M : ρ↼

σ⇒
⇀
τ) where x is not free in M , and let

both terms be typed in the context ⇀
w : ⇀

ω. Let N ∼N ′ : ρ, S ∼ S′ : ↼
σ, and W ∼W ′ : ⇀

ω. It
must be shown that T ∼ T ′ : ⇀

τ for T and T ′ as follows.

T = (S ·N, {W/⇀
w}M)⇓

T ′ = (S′ ·N ′, {W ′/⇀
w}〈x〉. [x].M)⇓

Two steps of the machine on 〈x〉. [x].M pop then push back N ′ on the stack, which gives
the following.

T ′ = (S′ ·N ′, {W ′/⇀
w}M)⇓

Then by reflexivity, M ∼M , it follows that T ∼ T ′ : ⇀
τ . As with reduction, since ∼ is a

congruence, if M =η N then M ∼N . J

We next establish that machine equivalence contains the equational theory of the FMC.

I Theorem 32 (restatement). For all typed, closed FMC terms M : τ and N : τ , we have
that

M =eqn N implies M ∼ N : τ .

Proof. We verify for each equation generating =eqn, which suffices since by Proposition 49,
machine equivalence ∼ is closed under all contexts. In the following, we write

⇀

S to represent
the vector of terms in a stack S, and [

⇀

S] to represent a corresponding sequence of applications
(similar to the notation for [⇀

x]). Beta and (first-order) eta-laws are given by the previous
proposition.

C. Barrett, W. Heijltjes, G. McCusker 39:39

Interchange:

M. 〈↼x〉. N. [⇀
x] =ι 〈

↼
y〉. N. [⇀

y].M : ↼
ρ

↼
τ ⇒

⇀
υ

⇀
σ ,

for M : ↼
ρ⇒

⇀
σ, N : ↼

τ ⇒
⇀
υ, ⇀
x : ⇀

σ and ⇀
y : ρ. We have that for all stacks TR ∼ T ′R′ : ⇀

τ
⇀
ρ,

(TR , M. 〈↼x〉. N. [⇀
x])

(TS , 〈↼x〉. N. [⇀
x])

(T , N. [
⇀

S])
(U , [

⇀

S])
(US , ?)

and

(T ′R′ , 〈↼y〉. N. [⇀
y].M)

(T ′ , N. [
⇀

R′].M)
(U ′ , [

⇀

R′].M)
(U ′R′ , M)
(U ′S′ , ?)

where (R,M) ⇓ S, (T,N) ⇓ U and (R′,M) ⇓ S′, (T ′, N) ⇓ U ′. By reflexivity of (∼) we
have that S ∼ S′ and U ∼ U ′, and the result follows.
Diagonal:

M. 〈↼y〉. [⇀
y]. [⇀

y] =∆ 〈
↼
x〉. [⇀

x].M. [⇀
x].M : ↼

σ⇒
⇀
τ

⇀
τ ,

where M : ↼
σ⇒

⇀
τ , ⇀
x : ⇀

σ and ⇀
y : ⇀
τ . We have that for all stacks S ∼ S′ : ⇀

σ,

(S , M. 〈↼y〉. [⇀
y]. [⇀

y])
(T , 〈↼y〉. [⇀

y]. [⇀
y])

(ε , [
⇀

T]. [
⇀

T])
(T , [

⇀

T])
(TT , ?)

and

(S′ , 〈↼x〉. [⇀
x].M. [⇀

x].M)
(ε , [

⇀

S′].M. [
⇀

S′].M)
(S′ , M. [

⇀

S′].M)
(T ′ , [

⇀

S′].M)
(T ′S′ , M)
(T ′T ′ , ?)

where (S,M) ⇓ T and (S′,M) ⇓ T ′. By reflexivity of ∼, we have that T ∼ T ′ : ⇀
τ and

the result follows.
Terminal:

M. 〈↼y〉 =! 〈
↼
x〉 : ↼

τ ⇒

where M : ↼
σ⇒

⇀
τ , ⇀
x : ⇀

τ and ⇀
y : ⇀
σ. We have that for all stacks T ∼ T ′ : ⇀

σ,

(T ′ , M. 〈↼y〉)
(S , 〈↼y〉)
(ε , ?)

and (T ′ , 〈↼x〉)
(ε , ?)

where (S,M) ⇓ T . The empty stack is trivially related to itself by ∼, and the result
follows.
Eta (Higher-order):

N =ε 〈
↼
y〉. [[⇀

y]. N. 〈x〉. x] : ↼
σ⇒(↼

ρ⇒
⇀
τ) ,

where N : ↼
σ⇒(↼

ρ⇒
⇀
τ), x : ↼

ρ⇒
⇀
τ and ⇀

y : ⇀
σ . We have that for all stacks S ∼ S′ : ⇀

σ,

(S , 〈↼y〉. [[⇀
y]. N. 〈x〉. x])

(ε , [[
⇀

S]. N. 〈x〉. x])
([

⇀

S]. N. 〈x〉. x , ?)
and (S′ , N)

(P , ?) ,

CSL 2023

39:40 The Functional Machine Calculus II: Semantics

where (S′, N) ⇓ P . We thus require to show that [S]. N. 〈x〉. x ∼ P : ↼
ρ⇒

⇀
τ . To verify this,

observe that for all stacks R ∼ R′ : ⇀
ρ,

(R , [
⇀

S]. N. 〈x〉. x)
(RS , N. 〈x〉. x)
(R · P , 〈x〉. x)
(R , P)
(T , ?)

and (R′ , P)
(T ′ , ?) ,

where (S,N) ⇓ P ′ : ↼
ρ⇒

⇀
τ , (R,P) ⇓ T and (R′, P) ⇓ T ′. By reflexivity, we have that

P ∼ P ′ : ↼
ρ⇒

⇀
τ and thus T ∼ T ′ : ⇀

τ , and the result follows. J

