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Abstract

In recent years it has become much more common for software applications to com-
municate with each other directly. Internet connections have become a standard part of
both office and home, and as more business processes and information move into the
electronic realm, direct software communication will become even more prevalent. One
of the largest deterrents to effective communication is the heterogeneous nature of the
data and information involved. We cannot guarantee that two software systems that need
to communicate will be running the same software or modeling their data in the same
way. Obviously, the data must be somehow logically similar — otherwise, there would
not be any meaningful communication possible. A key element of any modern communi-
cation protocol or framework must be a strategy for resolving any data mismatches that
exist between the two sides.

The data mismatch problem is not new; unsurprisingly, there are many existing so-
lutions to it. We would like to judge these solutions by two criteria: generality and
automation. A generic solution will not needlessly limit the kinds of applications and
data models that are supported. An automated solution will limit the amount of tedious,
manual work needed to support a new application or data model. Unfortunately, none of
the existing solutions are both sufficiently generic and sufficiently automated.

This thesis presents an automated solution to the data mismatch problem that is also
fully generic: it makes absolutely no assumptions about the underlying data whatsoever.
In order to achieve this generality, some automation must be sacrificed. Our approach
requires that some atomic transformations be written manually. However, we can ex-
ploit the fact that transformations are composable — with a sufficient number of atomic
transformations, a compound transformation can be automatically discovered between
arbitrary datatypes. This approach is fully generic, since the transformation discovery
algorithms require no knowledge of the structure or semantics of the datatypes involved;
instead, the knowledge of a particular datatype is encapsulated into the atomic transfor-
mations that directly operate on it.

The contributions of this thesis are threefold. First, we present a graph-based model
for transformations that has an efficient polynomial-time discovery algorithm. While
efficient, this model is limited in that it can only represent unary transformations —
those between one input and output datatype. This model is still surprisingly powerful;
we present two case studies that show how this simple model can be used in the context
of a real-world application, and what limitations it has.

Second, we present an extension to this graph-based model that supports polyadic
transformations between multiple input and output datatypes, and show examples of
how this increases the expressive power of the transformation graphs that we can create.
Unfortunately, this expressiveness comes at a price: the naive discovery algorithm for the
new model runs in exponential space and time.

Finally, we show that polyadic transformation discovery is in fact worst-case NP-hard.
Hopefully, the problem is only truly intractable for pathological inputs, and for real-world
transformation graphs, compound transformations can be discovered with reasonable
time and space requirements. We use a novel application of CSP to test this hypothesis,
empirically exploring the complexity space of the problem and highlighting criteria for
designing efficient transformation graphs.
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Introduction

The World Wide Web [13, 12] represents one of the most significant recent advances in computer
science and software engineering. The IP-based Internet [84, 83, 85] had already existed as a net-
working platform for nearly two decades before the advent of the Web; however, it was limited in
scope to a small number of academic and government research laboratories. It was not until the Web
that we had a content delivery platform able to exploit and drive the increasing reach of the Internet
into the personal and business realms. The Internet is now ubiquitous: before, a connection to the

global network was considered an extravagant luxury; now, it is a necessity.

This ever-present connection means that modern software applications are not the isolated sys-
tems of days past. Software systems must now exploit their connectivity by communicating with each
other. This communication might be direct, with a network channel directly linking two applications,
and messages passed between them according to some possibly sophisticated protocol. It might also
be indirect and human-mediated, such as two colleagues exchanging spreadsheets via email.

A common theme is that the two applications must somehow understand each other’s data models
and encodings, at least partially, before any communication can take place. As an example, we
can consider the simple case of two colleagues using different spreadsheet applications — such as
one using Microsoft Excel and the other OpenOffice Calc. While this example obviously lacks the
subtlety and sophistication of, for instance, a complex Web Service protocol, it still highlights the
key underlying issue: these different applications will have different ways of modeling and encoding
their data, and we must somehow reconcile these differences before communication can occur.

In fact, this issue, which we will call the data mismatch problem, is usually the major hurdle en-
countered when developing and integrating applications. An unfortunately high percentage of the
work is spent on the “plumbing” between applications, and not on interesting new business logic
enabled by the new communication capabilities. This has been mentioned as a problem in a wide
range of fields, including medical informatics [21], industrial CAD software [51], the defense indus-
try [90, 89], and integrated information systems both within [68] and between [99] enterprises. The
problem has appeared under many names, including data interoperability, integration, translation,

transformation, and conversion.

One obvious solution to the data mismatch problem is to agree on a standardized intermediary

datatype that is independent of the different applications. Each application would then be responsible
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for understanding only this extra datatype, instead of the datatypes of every other application. The
OpenDocument group, for instance, has recently developed an open XML-based format [58] for
storing spreadsheets and other office documents. This is used as the native format for the OpenOffice
suite, and is supported by many competing office suites, as well. If all office suites were able to
read and write this format, then communication between the applications would be trivial — data
would be imported into each application from the standardized format, without requiring a separate
translation routine for each supported datatype. However, there is not broad agreement on using
the OpenDocument format as a global standard; Microsoft, which has by far the largest market share
for office suites, has proposed an alternative standard based on its own Office Open XML format
[38]. Both formats have been developed and standardized by industry consortia — by OASIS! for
OpenDocument, and by Ecma? for Office Open XML — and both are in the process of becoming
international standards recognized by the International Organization for Standardization (ISO). Each
enjoys broad support within its own user community. Unfortunately, no consensus has developed
between the communities as to which should be used as a single, global standard.

As another example, the Web Service stack of protocols [2] is an attempt to take the technologies
developed for the World Wide Web and use them to provide a “service-oriented” paradigm for con-
necting heterogeneous enterprise applications. Following the design of the Internet protocol stack
(Figure 1.1), the Web Service paradigm consists of a layered set of protocols, each of which provides

a small, well-defined set of services to the other protocols and user applications.

cajeacal
(= =
[
|

R

Hardware layer
(Ethernet, token ring, etc.)

Figure 1.1: The Internet protocol stack

At the lowest end of this layered design, the Web Service stack simply uses existing World Wide
Web protocols and specifications: HTTP [41] and the underlying IP stack [84, 85] for data transport,
URIs [14] for resource identity and network addressing, and XML [18] for data serialization. Above
this are the main “big three” Web Service standards: SOAP [49] for message encoding, WSDL [22]
for service description, and UDDI [107] for service publishing and discovery.

Higher levels of the Web Service stack provide more sophisticated features: message-level se-
curity (such as encryption and digital signatures), application-level security (such as cross-domain
authentication and authorization), multi-party transaction control, service orchestration and chore-
ography, and many others. Solutions have not been fully developed for all of these areas, though the
standards bodies are following a common, useful development strategy by fostering competition be-
tween many different prototype solutions, yielding a Web Service protocol stack that currently looks
like that shown in Figure 1.2. Ideally, one would then distill an overall standardized solution by

extracting the best features of each competing proposal. This has certainly happened, for instance,

thttp://www.oasis-open.org/
2http:/ /www.ecma-international.org/
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with WS-Addressing [50] and WS-Security [75], which are now standards recognized by the W3C?
and OASIS, respectively. One could expect that widely-accepted standards would also coalesce like

this from competing solutions to other higher-level problems.

Business processes

((ePetaws ) (( BemL ) ((ws-Choreography ) ( wscl ) (( xeoL ) (Ccpuaws )

Transactions

(wsoe ) (woot ) || ( wswreiabiity ) || ( wssearty ) || ( wscar ) (_ ws-Coordination )

( wsDiscovery ) || (( WS-ReliableMessaging ] | | ( Ws-Securiypoicy ] || (“ws-cTX

WS-Policy ( WS-Federation ) ( WS-CF ) (WS-AtomicTransaction)
WS-PolicyAttachment WS-Trust WS-TXM
e || ) || Cosman)
WS-PolicyAssertions - WS-SecureConversation
WS-ResourceProperties

WS-MetadataExchange
WS-ResourceLifetime

Messaging

( WS-BusinessActivity )

(_ Ws-Notifcation ) (WS-BrokeredNotifcation ) (* Ws-Topics ] (( soap )

(WS-Enumeration ) ( WS-BaseNotification ) (WS-Eventing) (WS—Addressing)

Serialization

(xme ) (O xmcNamespaces ) (* xMimnfoset ) (* xop ) (bmcabx )

Figure 1.2: Current stack of Web Service protocols [53]

Unfortunately, the higher we look on the stack, the less consensus there is over which proposed
solution should be adopted as “the” Web Service standard. Of course, much of this can be attributed
to the complexity of the issues being addressed, and the relatively short amount of time spent so far
on solving these problems. However, the competition-and-distillation process is slow, and is not guar-
anteed to produce an optimal solution. The companies and organizations that develop the original
competing solutions invest a lot of time and money into their proposals, and have an understandable
desire to have their proposal accepted as the standard, regardless of technical merit, so as not to
waste that investment. This desire can run at odds with the need to produce an interoperable stan-
dard that is understandable and usable by many parties. This is true even at the lowest levels of the
Web Service stack: SOAP and WSDL, for instance, are so extensible, and have so many corner cases,
that it is possible to produce incompatible implementations of these relatively simple standards. This
has led to the creation of a new “meta-standards” body, the Web Services Interoperability Organi-
zation* (WS-I), whose purpose is to define restricted subsets of the existing standards that better
support interoperable implementations.

Even if we assume that the various Web Service stakeholders will eventually agree on noncom-
peting standards, there is not general consensus that the Web Service approach is the correct way to
design a generic, Web-based distributed application platform. An alternative approach, based on Rep-

resentational State Transfer (REST) [40], has been gaining popularity recently as a simpler paradigm

3Worldwide Web Consortium, http://www.w3.org/
*http:/ /www.ws-i.org/
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that more closely aligns with the original design criteria and strengths of the Web itself [106, 91].

These examples highlight an important assumption and limitation of the standardization process:
standards only work if everyone involved is committed to developing, maintaining, and adhering to
the same standard. For various commercial, political, and technical reasons, neither office format is
likely to emerge as a single standard in the near future. Similarly, the debate over the relative merits
of the Web Service and REST paradigms is not likely to be resolved soon, either.

In the case of the data mismatch problem, then, we must seek a solution that can gracefully handle
the case when standardization efforts fail. From our point of view, the argument over the technical
merits of the two office formats is irrelevant — it does not matter which side of the debate is “right”.
As software engineers, we find ourselves in a world that is heterogeneous in a fundamental way that
was not the case before: there is no single authority that can impose a solution on all involved parties.
We cannot use either office format as a single standard intermediary, since this would require a global
consensus that does not exist.

This is not to say that open, independent standards are not needed. From a technical viewpoint,
they obviously simplify the problem greatly. We should therefore promote and desire open standards
whenever possible. Unfortunately, even if the standards are technically sound, we cannot rely on
them as a solution to the data mismatch problem, because of the social nature of the standardization
process. We must accept that we must deal with multiple datatypes, with mismatches that run the
gamut from low-level syntax to high-level semantics, and which are developed by different stake-
holders that might not agree with each other.

If we want to facilitate communication between applications, in the presence of this multitude
of data formats and data models, we must provide a means of transforming or converting between
them. We would like this solution to be both automated and generic. A naive solution to the mismatch
problem requires a manually-written translation for each pair of datatypes. Obviously, we prefer
automated techniques that limit this manual analysis and coding as much as possible. Unfortunately,
existing automated transformation techniques only work within specific contexts — requiring, for
instance, that both datatypes be XML formats or relational database schemas. We prefer generic
techniques that place no restrictions on the kinds of datatypes that are supported.

This thesis presents a graph-based solution to the data mismatch problem that is both highly
automated and highly generic. Our approach is not fully automatic — we require that some atomic
transformations be written manually. However, we can exploit the fact that transformations are
composable: with a sufficient number of atomic transformations, a compound transformation can be
automatically discovered between arbitrary datatypes. This approach is fully generic, though, since
the transformation discovery algorithms require no detailed knowledge of the datatypes involved;
instead, the knowledge about a particular datatype is encapsulated into the atomic transformations
that directly operate on it.

The remainder of this thesis is organized as follows. Chapter 2 provides a more detailed overview
of the data mismatch problem and existing solutions to it. Chapter 3 presents a generic theory of data
that will allow us to formally reason about datatypes with differing syntax, structure, and semantics.
We then show how several interesting problems, including data transformation, can be modeled even
when the datatype definitions are fully opaque. Chapter 4 describes an initial version of our graph-
based transformation framework; by exploiting opaque datatypes, this framework has a very efficient
transformation discovery algorithm. Chapters 5 and 6 present case studies that show how this model
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is useful in real-world scenarios. Chapter 7 then extends the model to support transformations with
multiple inputs and outputs, and highlights the additional kinds of problems that can be solved
with the increased expressiveness. Unfortunately, transformation discovery is provably NP-hard in
this extended model; Chapter 8 uses a novel application of the CSP process algebra to explore the
complexity space of the problem. This lets us show that the intractability is a worst-case bound,
highlighting those kinds of transformation graphs that lend themselves to more efficient discovery.
Finally, Chapter 9 summarizes the contribution of the thesis, and describes some potential areas of

future work in this area.
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Background

In this chapter, we describe the data mismatch problem in detail, showing how problems arise when
dealing with heterogeneous datatypes — both those that are fairly static, and those that are more
dynamic. Next, we provide an overview of existing solutions to the data mismatch problem, and show
how none of them are both generic enough and automated enough for our purposes. Finally, we show
how a classification from Ouksel and Sheth can be used to clarify and organize the different aspects
of the data mismatch problem, including the descriptions of the datatypes that we must support, and

possible solutions to the problem.

2.1 Data mismatch problem

The main hurdle to overcome when dealing with communicating software systems is the mismatch
between their data models. This is true regardless of how the actual communication takes place. It
is an obvious problem when the applications are linked directly by some kind of network channel,
since the data sent by one application must be intelligible by the receiving application. It is also an
issue when the communication is indirect and mediated by people. In this section we highlight the
different problems that arise with heterogeneous datatypes: both when they are relatively static in

nature, and when they are more dynamic, varying widely over time or use case.

2.1.1 Static datatypes

We first consider datatypes that are relatively well-defined and unchanging. As an example, we
can consider in more detail the example, introduced in Chapter 1, of work colleagues exchanging
spreadsheets via email.

The simplest case we can consider is when both colleagues are using the same version of the same
application — Microsoft Excel, for instance. In this case, each application is just communicating with
another copy of itself. Since both applications are exactly the same, it is trivial for them to understand
each other’s data models. Both colleagues’ copies of Excel will make identical assumptions about the
structure and representation of a spreadsheet, and will be able to read spreadsheets created by the
other with no difficulty.
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Of course, the communicating systems will not necessarily be exact copies of each other. For
instance, if only one of the colleagues has upgraded to the latest version of Excel, a data mismatch
occurs. Later versions usually need a new file format to support the new features introduced into
the application. Within the context of a single application, this particular form of data mismatch is
usually handled by ensuring that the newer versions are able to read and write the file formats of
several previous versions. (Of course, more nefarious software developers might use this artificial
incompatibility as a market pressure to incite users to upgrade to the newer, costlier version.) The
developer will usually be able to reuse the file format code from previous versions, so within this
limited scope, this is a perfectly acceptable solution. However, as we will see, this solution does not
scale well at all.

The situation is slightly more complicated when we consider different applications, rather than
different versions of the same application. For instance, one of the colleagues might use OpenOffice
Calc instead of Excel. This means that the differences between the spreadsheet formats are more
fundamental and harder to overcome. It is tempting to use the same solution as before, and somehow
require both applications to read and write both spreadsheet formats. In certain cases, this is the
solution used in real applications. OpenOffice Calc, for instance, has fairly robust support for reading
Excel spreadsheets. Interestingly, this allows us to view “open” and “import” as the same operation:
both translate a spreadsheet from some external format into the appropriate internal data structures.
The “open” operation just happens to handle an external format that more closely corresponds to
this internal representation. As before, in limited scopes, this solution is perfectly acceptable — as
long as both colleagues explicitly instruct their applications to use a format common to both, they
can exchange spreadsheets without difficulty.

Unfortunately, since the applications are developed by different organizations, it is less likely
that code reuse can be used to amortize the cost of this solution. Worse, if we consider a third
colleague using yet another spreadsheet application, such as KDE’s KSpread, we see that requiring
every application to support every format would quickly become cumbersome. One of our main goals
in developing a solution to the data mismatch problem will be to prevent this.

2.1.2 Dynamic datatypes

All of the examples so far are fairly static — the new versions of the applications might require
new versions of the office formats, but this will happen relatively infrequently. Therefore, the new
revisions can just be considered distinct new datatypes. Another example that we want to support is
when the internal structure of the datatypes can vary more rapidly. Most likely, this would be because
the datatype is “extensible”, and allows the user to add their own custom fields depending on their
particular requirements and use cases.

A good example of this is the OME-XML microscope image format [46], developed as part of
the Open Microscopy Environment project [104]. One of the assumptions of this project is that an
image must be tightly coupled to its corresponding metadata, with both stored in the same file. This
metadata is a mixture of static and dynamic: certain curation metadata, such as the image’s owner,
and the details of the microscope used to collect the image, have a static structure that will not
change over time. The OME project has therefore standardized a useful set of these static metadata
elements as part of the core OME-XML format.
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On the other hand, other portions of an image’s metadata will be more dynamic. This usually
consists of the computational results that are generated while analyzing the image. These metadata
elements are dynamic partly due to their time-dependent nature: as more analysis routines are run
against an image over time, more computational results accumulate. More interesting, though, is
that the metadata elements can vary by use case: different biological experiments will require com-
pletely different analysis routines for their images, which will generate completely different kinds of
computational results. OME as a standardization group cannot anticipate all of the possible kinds
of results that will be created by computational biologists — nor should it want to. Instead, the
OME-XML format allows the user to define and include new metadata elements as needed.

To be truly useful, a transformation framework should be able to handle both purely static data-
types, such as the different office formats, and more dynamic ones, such as customized OME-XML.
As we will see, this is not a trivial task; our design decisions when creating a framework will have a
large impact on how well-supported dynamic datatypes will be.

2.2 Existing solutions

While the data mismatch problem is exacerbated by the heterogeneous nature of the Internet land-
scape, it is not a new problem. This section highlights many of the existing solutions to this problem.

We will consider separately manual approaches and automated approaches.

2.2.1 Manual techniques

In the manual approach to the data mismatch problem, the software developer must write any trans-
lations that are needed by the application. This has the benefit that it is fully generic: since each
translation routine is written manually, it can be perfectly tailored to the datatypes that it translates.

To illustrate this approach, we first assume that each application has its own specialized data
format, as shown in Figure 2.1. In this figure, applications are shown as rounded rectangles, and
data formats are shown as document icons. An application and a format are connected by a dashed
line if the application can read and write that format. If two applications are connected to the same
format, they can use that format to communicate. In Figure 2.1, Microsoft Excel and OpenOffice Calc

cannot communicate with each other, since their associated formats are mutually unintelligible.

OpenOffice

Calc

Microsoft
Excel

Excel Calc

Figure 2.1: Applications with different data formats

The naive solution is to allow each application to understand every datatype, as shown in Fig-
ure 2.2. In this case, either datatype can be used to facilitate communication, since both are under-
stood by both applications.

Unfortunately, this approach does not scale well, as evidenced by Figure 2.3. Here we add two

more applications, KSpread and WordPerfect, each with a specialized data format. We can easily see
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OpenOffice

Calc

Microsoft
Excel

Figure 2.2: Applications that can understand many data formats
that D - A different translation routines are needed, where D is the number of data formats and A

is the number of applications. In the special case where every application has its own data format,
this simplifies to A% translation routines. Since each of these routines must be written manually, this

Corel
WordPerfect

Wp

approach is very intensive in terms of development time.

OpenOffice } [ KDE ’

K Calc KSpread
Microsoft
Excel ” NS N

Figure 2.3: Many applications that can understand many formats

Since we cannot reduce the number of applications that we need to support, we must instead try
to reduce the number of datatypes. Standardized formats do this very well: Figure 2.4 shows the
hypothetical world where every spreadsheet application has agreed to use OpenDocument [58] as
its file format. Each pair of applications can communicate, since they each understand the OpenDoc-
ument format. Since the standard mandates exactly one datatype, we now only have to manually

write A translation routines.

OpenOffice

Calc KSpread

‘ KDE ’

\, /
\ /
\, /

Figure 2.4: A standardized format reduces the number of translations needed

Of course, as we mentioned in the introduction, there is not universal support for OpenDocument
as a single standard. Microsoft has developed the Office Open XML [38] format as a competing stan-
dard. Figure 2.5 shows a slightly more accurate version of the current support for these standards.
Some office suites support both standards, while others only support one. We still have fewer trans-
lation routines to write than before, but we can no longer ensure that every pair of applications can
communicate.

If we had a way to transform between the Office Open XML and OpenDocument formats, as
shown in Figure 2.6, we would once again be able to ensure communication between every applica-
tion. Unlike in Figure 2.5, we can now send a spreadsheet from Excel to KSpread. The transformation

between the datatypes can occur in one of three places. It might be part of Excel’s export routine, in
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Corel
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Figure 2.5: Competing standards can prevent communication
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which case it appears to outside observers that Excel supports an additional export format. It might
be part of KSpread’s import routine, in which case it appears that KSpread supports an additional
import format. Finally, it could be part of the communications channel itself. In our running ex-
ample, this might correspond to one of the colleagues running the spreadsheet through a separate
transformation tool before opening the document in their spreadsheet application. In this case, any
transformation that occurs is hidden from both applications; instead, they read and write the data
using their preferred data formats.
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Figure 2.6: Transformations can overcome competing standards
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In this example, we only have one transformation, so it seems reasonable to write it manually,
like the import and export routines of the applications themselves. This does not work well if there
are many transformations, though. We can apply the same idea to Figure 2.3, for instance; the
result, shown in Figure 2.7, shows that we still require O(D?) transformations (instead of D? im-
port/export routines) to ensure that each pair of applications can communicate. However, since we
have decoupled the problem from the specific applications, we can try to automatically generate the
transformations, once again reducing the amount of manual coding required.

2.2.2 Automated techniques

With a large number of possible data transformations to consider, we will want to automate the
process of finding or creating them. There are several existing techniques for tackling this prob-
lem that can exploit the commonalities that will inevitably exist between the different datatypes.
Two datatypes for recording a personnel record, for instance, will both contain some way to store
the employee’s name. With a detailed enough description of the particular datatypes (known as a
schema), one can identify which elements map to each other. These mappings then provide a recipe
for translating data from one schema to another.

In [87], Rahm and Bernstein present an overview of existing research in this area of schema
matching. They first provide a generalized definition of a Match operator that, given two schemas,
returns a set of mappings between elements of the schemas. They then identify several orthogonal
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Figure 2.7: Using transformations without a single standardized format

criteria for classifying different schema matching techniques. Two criteria stand out as being most im-
portant. The first is whether the technique can find matches between complex compound structures
in the schemas, or is limited to low-level atomic data elements; the second is whether mappings are
found primarily by comparing the natural-language names of the data elements (nominal typing), or
by analyzing the relationships between data elements and the constraints placed on them (structural
typing). These criteria can be applied both to purely schema-based techniques, which consider only
the explicit description of a data format, and to techniques that infer parts of the data’s structure from
the contents of actual data instances. (The latter can be used, for instance, to handle data from a
“messy” or “noisy” source that does not conform to a strict, explicit schema description.) The authors
then use this classification to compare and contrast several schema matching tools, including SemInt
[64, 65, 66], the Learning Source Descriptions (LSD) framework [36, 35], the Semantic Knowledge
Articulation Tool (SKAT) [74], TranScm [73], DIKE [81, 80, 79], ARTEMIS [20], and Cupid [67].

Most of these existing tools have been written with one or two specific modeling formalisms (e.g.,
the relational model [27], XML model [18], or object-oriented model [57]) in mind. This might
seem to imply that these existing techniques do not exhibit the level of generality that we seek from
a data transformation framework. It would rule out, for instance, the ability to handle proprietary
binary formats and low-level differences in encoding. However, the underlying ideas usually work
in the presence of any data model that has an appropriately detailed schema description, regardless
of which formalism underlies the data. These techniques could then be extended, for instance, to
binary datatypes described by an ASN.1 [56] schema. Extending an existing tool like this might be a
time-consuming task, but it would be theoretically possible.

Another possible issue is that schema matching tools can only provide candidate mappings, since
the nuanced semantics of the data elements cannot always be expressed in a form intelligible to the
tool. Human intervention is therefore needed to verify or tweak the output of the matching tool.
Nonetheless, this is still much less onerous than the alternative — having to manually examine each

schema and derive the mappings by hand.

The main drawback to this approach is that the effectiveness of any particular schema matching

technique on a particular set of data schemas can be highly variable. There is no one-size-fits-all
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solution. The compositional approach described in this thesis recognizes this: it can incorporate data
transformations created by different schema matching tools, in addition to those written manually.
Thus we can exploit the strengths of schema matching in exactly those situations where it is most
useful.

2.3 S classification

The spreadsheet example from Section 2.1 might seem trivial and contrived, but it allows us to
consider certain aspects of the data mismatch problem without worrying about the actual differences
between the data formats. The basic outline of the problem is the same regardless of whether we are
considering two colleagues manually exchanging spreadsheets via email or two companies’ intricate
purchasing systems automatically sending each other electronic purchase orders.

However, at some point, we will obviously need to consider the datatypes themselves. Since we
want a fully generic solution, we will need to consider a wide variety of data mismatches. Integers
might be encoded in binary or as ASCII decimal strings. Dates might be expressed in an American

format, a British format, or as the number of seconds elapsed since
the Unix epoch on midnight, January 1, 1970. The size recorded in a compressed archive might
refer to the compressed size or the uncompressed size. The dimensions of a manufactured product
might be expressed in Imperial or metric units. If metric is used, the dimensions might be in meters,
millimeters, or kilometers. A postal address might include a different set of fields depending on which
country the user is in.

It will be useful to classify these different kinds of data mismatch to make them more manage-
able. In their study of information systems [78, 98], Ouksel and Sheth identify a useful classification,
identifying mismatches as systemic, syntactic, structural, and semantic. We will call this the S classi-
fication. “System” refers to the particular combination of hardware and software used to implement
an application. “Syntax” refers to the low-level representation of the data — usually in terms of a
specific binary encoding. “Structure” refers to the underlying data primitives used to model an ap-
plication domain — both which structures are available and how they are used. “Semantics” refers
to the inherent meaning and interpretation of the data; the terms information and knowledge are
often used instead of data to refer to semantic content. We will see several examples of how different
aspects of a datatype fall into these four categories in the next chapter, when we develop a formalism
for reasoning about datatypes.

The S classification has a natural ordering, from the “low-level” details of systems up to the “high-
level” details of semantics. However, the boundaries between the four levels in the S classification
are not necessarily crisp; depending on one’s point of view, it can be a subjective decision whether to
consider a certain property of a datatype syntactic rather than structural, for instance. However, for
our purposes, crisp boundaries are not needed. We do not need the S classification to tell us whether
integer endianness exists specifically at the system level or semantic level; instead, the classification
is useful because it highlights a spectrum of properties, all of which we must consider.

It is interesting to point out that the data mismatch problem seems to be largely solved at the
system level: it no longer matters what particular hardware and software is on each side of a network
socket, as long as both correctly implement the underlying network protocol. This works because
the standardization process has succeeded at this level: there is a universally agreed-upon suite of
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standard network protocols, the most important being IP [84], ICMP [83], TCP [85], and UDP [82].
They provide an abstract view of the network connection as a “sequence of bytes”. (In the case of
TCB this is even a “reliable sequence of bytes”.)

One might hope, then, that similar universal standards can be agreed on to solve the data mis-
match problem at higher layers of the S classification. XML [18], for instance, seems like an obvious
choice as a universal syntax, while the Semantic Web’s RDF [61, 8] and OWL [70, 101] have been
touted as universal languages for structure and semantics. Unfortunately, we return to the same
problem mentioned in the introduction — these must be truly universal if they are to be real solu-
tions. The network socket abstraction is truly universal because our computers are, fundamentally,
machines that operate on sequences of bytes. The syntax, structure, and semantics levels, on the
other hand, are much more flexible. They are more dependent on the needs of an application, and
even on the whims of the developers designing and implementing a system. XML cannot be a guar-
anteed universal syntax, for any number of reasons. Many systems that we must support are legacy
applications with pre-existing non-XML syntaxes. Some data models do not map well to XML’s hier-
archical model. The markup overhead can make XML an inefficient syntax for certain use cases. And
of course, we must consider the human element — some developers might choose not to use XML
out of sheer stubbornness.

The mantra is the same: we must accept that there will be a variety of choices at each level of the
S classification, and we need to support them all. The system level is the only place where it is safe
to assume a single, universal solution. A rogue developer might decide to develop a new data format
that is not based on a sequence of bytes, but they would quickly find themselves without a computer
system to implement it on. The same is not true at any other level of the S classification.

A key feature of the transformation framework presented in this thesis is that it does not as-
sume any universal language for syntax, structure, or semantics. In fact, it does not even make the
system-level “sequence of bytes” assumption. The ideas behind the framework work equally well for
datatypes with infinitely many elements. We feel that this generality is an important requirement
for any application or theory that claims to embrace the heterogeneous world brought about by the
global Internet.

Summary

In this chapter we have presented a more detailed overview of the data mismatch problem, and
showed how the underlying issues are exacerbated when the datatypes in question are highly dy-
namic over time or use case. We can use the S classification from Ouksel and Sheth to examine many
of these issues and solutions: for instance, by organizing a datatype’s description into the differing
levels of system, syntax, structure, and semantics.

The obvious manual techniques for solving the data mismatch problem are clearly unsuitable,
due to the amount of cumbersome work that is required as the number of supported applications and
datatypes grows. Intermediary datatypes, which are understood by many applications, are helpful at
relieving this tedium; unfortunately, even when the perfect intermediary datatype exists, we cannot
rely on any centralized authority to mandate its use.

An alternative solution is to rely on translations between datatypes, especially if the discovery
and development of these translations can be automated. There are many existing attempts in the
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literature to provide this functionality. Though many of them are not fully automated, requiring
manual supervision and verification of the results, this still represents a dramatic improvement over
fully manual techniques. Unfortunately, none of these techniques are fully generic, since each only
works within a limited problem domain. We believe that these techniques lack full generality because
they require a precise description of each datatype, from which translations between the datatypes
are inferred. Any data description language that could truly describe any datatype would be far too
complex for this translation inference to be tractable. In the following chapters, we will present a
framework that abandons these precise datatype descriptions, making transformat