
A graph-based approach to the automated
discovery of data transformations

Douglas A. Creager
Oxford University Computing Laboratory

Linacre College
D.Phil. thesis

August 3, 2007

Supervisor: Andrew Simpson





A graph-based approach to the automated discovery of data transformations

Douglas A. Creager
Oxford University Computing Laboratory

Linacre College
D.Phil. thesis

Trinity 2007

Abstract

In recent years it has become much more common for software applications to com-
municate with each other directly. Internet connections have become a standard part of
both office and home, and as more business processes and information move into the
electronic realm, direct software communication will become even more prevalent. One
of the largest deterrents to effective communication is the heterogeneous nature of the
data and information involved. We cannot guarantee that two software systems that need
to communicate will be running the same software or modeling their data in the same
way. Obviously, the data must be somehow logically similar — otherwise, there would
not be any meaningful communication possible. A key element of any modern communi-
cation protocol or framework must be a strategy for resolving any data mismatches that
exist between the two sides.

The data mismatch problem is not new; unsurprisingly, there are many existing so-
lutions to it. We would like to judge these solutions by two criteria: generality and
automation. A generic solution will not needlessly limit the kinds of applications and
data models that are supported. An automated solution will limit the amount of tedious,
manual work needed to support a new application or data model. Unfortunately, none of
the existing solutions are both sufficiently generic and sufficiently automated.

This thesis presents an automated solution to the data mismatch problem that is also
fully generic: it makes absolutely no assumptions about the underlying data whatsoever.
In order to achieve this generality, some automation must be sacrificed. Our approach
requires that some atomic transformations be written manually. However, we can ex-
ploit the fact that transformations are composable — with a sufficient number of atomic
transformations, a compound transformation can be automatically discovered between
arbitrary datatypes. This approach is fully generic, since the transformation discovery
algorithms require no knowledge of the structure or semantics of the datatypes involved;
instead, the knowledge of a particular datatype is encapsulated into the atomic transfor-
mations that directly operate on it.

The contributions of this thesis are threefold. First, we present a graph-based model
for transformations that has an efficient polynomial-time discovery algorithm. While
efficient, this model is limited in that it can only represent unary transformations —
those between one input and output datatype. This model is still surprisingly powerful;
we present two case studies that show how this simple model can be used in the context
of a real-world application, and what limitations it has.

Second, we present an extension to this graph-based model that supports polyadic
transformations between multiple input and output datatypes, and show examples of
how this increases the expressive power of the transformation graphs that we can create.
Unfortunately, this expressiveness comes at a price: the naïve discovery algorithm for the
new model runs in exponential space and time.

Finally, we show that polyadic transformation discovery is in fact worst-case NP-hard.
Hopefully, the problem is only truly intractable for pathological inputs, and for real-world
transformation graphs, compound transformations can be discovered with reasonable
time and space requirements. We use a novel application of CSP to test this hypothesis,
empirically exploring the complexity space of the problem and highlighting criteria for
designing efficient transformation graphs.
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1Introduction

The World Wide Web [13, 12] represents one of the most significant recent advances in computer

science and software engineering. The IP-based Internet [84, 83, 85] had already existed as a net-

working platform for nearly two decades before the advent of the Web; however, it was limited in

scope to a small number of academic and government research laboratories. It was not until the Web

that we had a content delivery platform able to exploit and drive the increasing reach of the Internet

into the personal and business realms. The Internet is now ubiquitous: before, a connection to the

global network was considered an extravagant luxury; now, it is a necessity.

This ever-present connection means that modern software applications are not the isolated sys-

tems of days past. Software systems must now exploit their connectivity by communicating with each

other. This communication might be direct, with a network channel directly linking two applications,

and messages passed between them according to some possibly sophisticated protocol. It might also

be indirect and human-mediated, such as two colleagues exchanging spreadsheets via email.

A common theme is that the two applications must somehow understand each other’s data models

and encodings, at least partially, before any communication can take place. As an example, we

can consider the simple case of two colleagues using different spreadsheet applications — such as

one using Microsoft Excel and the other OpenOffice Calc. While this example obviously lacks the

subtlety and sophistication of, for instance, a complex Web Service protocol, it still highlights the

key underlying issue: these different applications will have different ways of modeling and encoding

their data, and we must somehow reconcile these differences before communication can occur.

In fact, this issue, which we will call the data mismatch problem, is usually the major hurdle en-

countered when developing and integrating applications. An unfortunately high percentage of the

work is spent on the “plumbing” between applications, and not on interesting new business logic

enabled by the new communication capabilities. This has been mentioned as a problem in a wide

range of fields, including medical informatics [21], industrial CAD software [51], the defense indus-

try [90, 89], and integrated information systems both within [68] and between [99] enterprises. The

problem has appeared under many names, including data interoperability, integration, translation,

transformation, and conversion.

One obvious solution to the data mismatch problem is to agree on a standardized intermediary

datatype that is independent of the different applications. Each application would then be responsible

1
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for understanding only this extra datatype, instead of the datatypes of every other application. The

OpenDocument group, for instance, has recently developed an open XML-based format [58] for

storing spreadsheets and other office documents. This is used as the native format for the OpenOffice

suite, and is supported by many competing office suites, as well. If all office suites were able to

read and write this format, then communication between the applications would be trivial — data

would be imported into each application from the standardized format, without requiring a separate

translation routine for each supported datatype. However, there is not broad agreement on using

the OpenDocument format as a global standard; Microsoft, which has by far the largest market share

for office suites, has proposed an alternative standard based on its own Office Open XML format

[38]. Both formats have been developed and standardized by industry consortia — by OASIS1 for

OpenDocument, and by Ecma2 for Office Open XML — and both are in the process of becoming

international standards recognized by the International Organization for Standardization (ISO). Each

enjoys broad support within its own user community. Unfortunately, no consensus has developed

between the communities as to which should be used as a single, global standard.

As another example, the Web Service stack of protocols [2] is an attempt to take the technologies

developed for the World Wide Web and use them to provide a “service-oriented” paradigm for con-

necting heterogeneous enterprise applications. Following the design of the Internet protocol stack

(Figure 1.1), the Web Service paradigm consists of a layered set of protocols, each of which provides

a small, well-defined set of services to the other protocols and user applications.

Hardware layer
(Ethernet, token ring, etc.)

IP

UDP TCP

HTTP FTP SMTP . . .

Figure 1.1: The Internet protocol stack

At the lowest end of this layered design, the Web Service stack simply uses existing World Wide

Web protocols and specifications: HTTP [41] and the underlying IP stack [84, 85] for data transport,

URIs [14] for resource identity and network addressing, and XML [18] for data serialization. Above

this are the main “big three” Web Service standards: SOAP [49] for message encoding, WSDL [22]
for service description, and UDDI [107] for service publishing and discovery.

Higher levels of the Web Service stack provide more sophisticated features: message-level se-

curity (such as encryption and digital signatures), application-level security (such as cross-domain

authentication and authorization), multi-party transaction control, service orchestration and chore-

ography, and many others. Solutions have not been fully developed for all of these areas, though the

standards bodies are following a common, useful development strategy by fostering competition be-

tween many different prototype solutions, yielding a Web Service protocol stack that currently looks

like that shown in Figure 1.2. Ideally, one would then distill an overall standardized solution by

extracting the best features of each competing proposal. This has certainly happened, for instance,

1http://www.oasis-open.org/
2http://www.ecma-international.org/
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with WS-Addressing [50] and WS-Security [75], which are now standards recognized by the W3C3

and OASIS, respectively. One could expect that widely-accepted standards would also coalesce like

this from competing solutions to other higher-level problems.

Transactions

Serialization

Security

XML XML Namespaces XML Infoset XOP DMCBDX

Messaging

WS-BrokeredNotificationWS-Notification

WS-Enumeration WS-BaseNotification

WS-Topics

WS-Eventing

SOAP

WS-Addressing

WS-MetadataExchange

WS-PolicyAttachment

WS-Policy

WS-PolicyAssertions

WS-Discovery

WSDL UDDI WS-Reliability

WS-ReliableMessaging

WS-SecureConversation

WS-Security

WS-SecurityPolicy

WS-Federation

WS-Trust

WS-CAF

WS-Transfer

WS-CF

WS-TXM

WS-Coordination

WS-BusinessActivity

WS-AtomicTransaction

WS-CTX

WS-ResourceProperties

WSRF

WS-ResourceLifetime

BPEL4WS BPML WS-Choreography WSCI XPDL CDL4WS

Business processes

Metadata Reliability

Resources

Figure 1.2: Current stack of Web Service protocols [53]

Unfortunately, the higher we look on the stack, the less consensus there is over which proposed

solution should be adopted as “the” Web Service standard. Of course, much of this can be attributed

to the complexity of the issues being addressed, and the relatively short amount of time spent so far

on solving these problems. However, the competition-and-distillation process is slow, and is not guar-

anteed to produce an optimal solution. The companies and organizations that develop the original

competing solutions invest a lot of time and money into their proposals, and have an understandable

desire to have their proposal accepted as the standard, regardless of technical merit, so as not to

waste that investment. This desire can run at odds with the need to produce an interoperable stan-

dard that is understandable and usable by many parties. This is true even at the lowest levels of the

Web Service stack: SOAP and WSDL, for instance, are so extensible, and have so many corner cases,

that it is possible to produce incompatible implementations of these relatively simple standards. This

has led to the creation of a new “meta-standards” body, the Web Services Interoperability Organi-

zation4 (WS-I), whose purpose is to define restricted subsets of the existing standards that better

support interoperable implementations.

Even if we assume that the various Web Service stakeholders will eventually agree on noncom-

peting standards, there is not general consensus that the Web Service approach is the correct way to

design a generic, Web-based distributed application platform. An alternative approach, based on Rep-

resentational State Transfer (REST) [40], has been gaining popularity recently as a simpler paradigm

3Worldwide Web Consortium, http://www.w3.org/
4http://www.ws-i.org/
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that more closely aligns with the original design criteria and strengths of the Web itself [106, 91].

These examples highlight an important assumption and limitation of the standardization process:

standards only work if everyone involved is committed to developing, maintaining, and adhering to

the same standard. For various commercial, political, and technical reasons, neither office format is

likely to emerge as a single standard in the near future. Similarly, the debate over the relative merits

of the Web Service and REST paradigms is not likely to be resolved soon, either.

In the case of the data mismatch problem, then, we must seek a solution that can gracefully handle

the case when standardization efforts fail. From our point of view, the argument over the technical

merits of the two office formats is irrelevant — it does not matter which side of the debate is “right”.

As software engineers, we find ourselves in a world that is heterogeneous in a fundamental way that

was not the case before: there is no single authority that can impose a solution on all involved parties.

We cannot use either office format as a single standard intermediary, since this would require a global

consensus that does not exist.

This is not to say that open, independent standards are not needed. From a technical viewpoint,

they obviously simplify the problem greatly. We should therefore promote and desire open standards

whenever possible. Unfortunately, even if the standards are technically sound, we cannot rely on

them as a solution to the data mismatch problem, because of the social nature of the standardization

process. We must accept that we must deal with multiple datatypes, with mismatches that run the

gamut from low-level syntax to high-level semantics, and which are developed by different stake-

holders that might not agree with each other.

If we want to facilitate communication between applications, in the presence of this multitude

of data formats and data models, we must provide a means of transforming or converting between

them. We would like this solution to be both automated and generic. A naïve solution to the mismatch

problem requires a manually-written translation for each pair of datatypes. Obviously, we prefer

automated techniques that limit this manual analysis and coding as much as possible. Unfortunately,

existing automated transformation techniques only work within specific contexts — requiring, for

instance, that both datatypes be XML formats or relational database schemas. We prefer generic

techniques that place no restrictions on the kinds of datatypes that are supported.

This thesis presents a graph-based solution to the data mismatch problem that is both highly

automated and highly generic. Our approach is not fully automatic — we require that some atomic

transformations be written manually. However, we can exploit the fact that transformations are

composable: with a sufficient number of atomic transformations, a compound transformation can be

automatically discovered between arbitrary datatypes. This approach is fully generic, though, since

the transformation discovery algorithms require no detailed knowledge of the datatypes involved;

instead, the knowledge about a particular datatype is encapsulated into the atomic transformations

that directly operate on it.

The remainder of this thesis is organized as follows. Chapter 2 provides a more detailed overview

of the data mismatch problem and existing solutions to it. Chapter 3 presents a generic theory of data

that will allow us to formally reason about datatypes with differing syntax, structure, and semantics.

We then show how several interesting problems, including data transformation, can be modeled even

when the datatype definitions are fully opaque. Chapter 4 describes an initial version of our graph-

based transformation framework; by exploiting opaque datatypes, this framework has a very efficient

transformation discovery algorithm. Chapters 5 and 6 present case studies that show how this model
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is useful in real-world scenarios. Chapter 7 then extends the model to support transformations with

multiple inputs and outputs, and highlights the additional kinds of problems that can be solved

with the increased expressiveness. Unfortunately, transformation discovery is provably NP-hard in

this extended model; Chapter 8 uses a novel application of the CSP process algebra to explore the

complexity space of the problem. This lets us show that the intractability is a worst-case bound,

highlighting those kinds of transformation graphs that lend themselves to more efficient discovery.

Finally, Chapter 9 summarizes the contribution of the thesis, and describes some potential areas of

future work in this area.
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In this chapter, we describe the data mismatch problem in detail, showing how problems arise when

dealing with heterogeneous datatypes — both those that are fairly static, and those that are more

dynamic. Next, we provide an overview of existing solutions to the data mismatch problem, and show

how none of them are both generic enough and automated enough for our purposes. Finally, we show

how a classification from Ouksel and Sheth can be used to clarify and organize the different aspects

of the data mismatch problem, including the descriptions of the datatypes that we must support, and

possible solutions to the problem.

2.1 Data mismatch problem

The main hurdle to overcome when dealing with communicating software systems is the mismatch

between their data models. This is true regardless of how the actual communication takes place. It

is an obvious problem when the applications are linked directly by some kind of network channel,

since the data sent by one application must be intelligible by the receiving application. It is also an

issue when the communication is indirect and mediated by people. In this section we highlight the

different problems that arise with heterogeneous datatypes: both when they are relatively static in

nature, and when they are more dynamic, varying widely over time or use case.

2.1.1 Static datatypes

We first consider datatypes that are relatively well-defined and unchanging. As an example, we

can consider in more detail the example, introduced in Chapter 1, of work colleagues exchanging

spreadsheets via email.

The simplest case we can consider is when both colleagues are using the same version of the same

application — Microsoft Excel, for instance. In this case, each application is just communicating with

another copy of itself. Since both applications are exactly the same, it is trivial for them to understand

each other’s data models. Both colleagues’ copies of Excel will make identical assumptions about the

structure and representation of a spreadsheet, and will be able to read spreadsheets created by the

other with no difficulty.
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Of course, the communicating systems will not necessarily be exact copies of each other. For

instance, if only one of the colleagues has upgraded to the latest version of Excel, a data mismatch

occurs. Later versions usually need a new file format to support the new features introduced into

the application. Within the context of a single application, this particular form of data mismatch is

usually handled by ensuring that the newer versions are able to read and write the file formats of

several previous versions. (Of course, more nefarious software developers might use this artificial

incompatibility as a market pressure to incite users to upgrade to the newer, costlier version.) The

developer will usually be able to reuse the file format code from previous versions, so within this

limited scope, this is a perfectly acceptable solution. However, as we will see, this solution does not

scale well at all.

The situation is slightly more complicated when we consider different applications, rather than

different versions of the same application. For instance, one of the colleagues might use OpenOffice

Calc instead of Excel. This means that the differences between the spreadsheet formats are more

fundamental and harder to overcome. It is tempting to use the same solution as before, and somehow

require both applications to read and write both spreadsheet formats. In certain cases, this is the

solution used in real applications. OpenOffice Calc, for instance, has fairly robust support for reading

Excel spreadsheets. Interestingly, this allows us to view “open” and “import” as the same operation:

both translate a spreadsheet from some external format into the appropriate internal data structures.

The “open” operation just happens to handle an external format that more closely corresponds to

this internal representation. As before, in limited scopes, this solution is perfectly acceptable — as

long as both colleagues explicitly instruct their applications to use a format common to both, they

can exchange spreadsheets without difficulty.

Unfortunately, since the applications are developed by different organizations, it is less likely

that code reuse can be used to amortize the cost of this solution. Worse, if we consider a third

colleague using yet another spreadsheet application, such as KDE’s KSpread, we see that requiring

every application to support every format would quickly become cumbersome. One of our main goals

in developing a solution to the data mismatch problem will be to prevent this.

2.1.2 Dynamic datatypes

All of the examples so far are fairly static — the new versions of the applications might require

new versions of the office formats, but this will happen relatively infrequently. Therefore, the new

revisions can just be considered distinct new datatypes. Another example that we want to support is

when the internal structure of the datatypes can vary more rapidly. Most likely, this would be because

the datatype is “extensible”, and allows the user to add their own custom fields depending on their

particular requirements and use cases.

A good example of this is the OME-XML microscope image format [46], developed as part of

the Open Microscopy Environment project [104]. One of the assumptions of this project is that an

image must be tightly coupled to its corresponding metadata, with both stored in the same file. This

metadata is a mixture of static and dynamic: certain curation metadata, such as the image’s owner,

and the details of the microscope used to collect the image, have a static structure that will not

change over time. The OME project has therefore standardized a useful set of these static metadata

elements as part of the core OME-XML format.

8
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On the other hand, other portions of an image’s metadata will be more dynamic. This usually

consists of the computational results that are generated while analyzing the image. These metadata

elements are dynamic partly due to their time-dependent nature: as more analysis routines are run

against an image over time, more computational results accumulate. More interesting, though, is

that the metadata elements can vary by use case: different biological experiments will require com-

pletely different analysis routines for their images, which will generate completely different kinds of

computational results. OME as a standardization group cannot anticipate all of the possible kinds

of results that will be created by computational biologists — nor should it want to. Instead, the

OME-XML format allows the user to define and include new metadata elements as needed.

To be truly useful, a transformation framework should be able to handle both purely static data-

types, such as the different office formats, and more dynamic ones, such as customized OME-XML.

As we will see, this is not a trivial task; our design decisions when creating a framework will have a

large impact on how well-supported dynamic datatypes will be.

2.2 Existing solutions

While the data mismatch problem is exacerbated by the heterogeneous nature of the Internet land-

scape, it is not a new problem. This section highlights many of the existing solutions to this problem.

We will consider separately manual approaches and automated approaches.

2.2.1 Manual techniques

In the manual approach to the data mismatch problem, the software developer must write any trans-

lations that are needed by the application. This has the benefit that it is fully generic: since each

translation routine is written manually, it can be perfectly tailored to the datatypes that it translates.

To illustrate this approach, we first assume that each application has its own specialized data

format, as shown in Figure 2.1. In this figure, applications are shown as rounded rectangles, and

data formats are shown as document icons. An application and a format are connected by a dashed

line if the application can read and write that format. If two applications are connected to the same

format, they can use that format to communicate. In Figure 2.1, Microsoft Excel and OpenOffice Calc

cannot communicate with each other, since their associated formats are mutually unintelligible.

Microsoft
Excel

OpenOffice
Calc

Excel Calc

Figure 2.1: Applications with different data formats

The naïve solution is to allow each application to understand every datatype, as shown in Fig-

ure 2.2. In this case, either datatype can be used to facilitate communication, since both are under-

stood by both applications.

Unfortunately, this approach does not scale well, as evidenced by Figure 2.3. Here we add two

more applications, KSpread and WordPerfect, each with a specialized data format. We can easily see

9
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Microsoft
Excel

OpenOffice
Calc

Excel Calc

Figure 2.2: Applications that can understand many data formats

that D · A different translation routines are needed, where D is the number of data formats and A

is the number of applications. In the special case where every application has its own data format,

this simplifies to A2 translation routines. Since each of these routines must be written manually, this

approach is very intensive in terms of development time.

Microsoft
Excel

OpenOffice
Calc

Excel
Calc

KDE
KSpread

Corel
WordPerfect

KS
WP

Figure 2.3: Many applications that can understand many formats

Since we cannot reduce the number of applications that we need to support, we must instead try

to reduce the number of datatypes. Standardized formats do this very well: Figure 2.4 shows the

hypothetical world where every spreadsheet application has agreed to use OpenDocument [58] as

its file format. Each pair of applications can communicate, since they each understand the OpenDoc-

ument format. Since the standard mandates exactly one datatype, we now only have to manually

write A translation routines.

Microsoft
Excel

OpenOffice
Calc

ODS

KDE
KSpread

Corel
WordPerfect

Figure 2.4: A standardized format reduces the number of translations needed

Of course, as we mentioned in the introduction, there is not universal support for OpenDocument

as a single standard. Microsoft has developed the Office Open XML [38] format as a competing stan-

dard. Figure 2.5 shows a slightly more accurate version of the current support for these standards.

Some office suites support both standards, while others only support one. We still have fewer trans-

lation routines to write than before, but we can no longer ensure that every pair of applications can

communicate.

If we had a way to transform between the Office Open XML and OpenDocument formats, as

shown in Figure 2.6, we would once again be able to ensure communication between every applica-

tion. Unlike in Figure 2.5, we can now send a spreadsheet from Excel to KSpread. The transformation

between the datatypes can occur in one of three places. It might be part of Excel’s export routine, in
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Microsoft
Excel

OpenOffice
Calc

ODS

KDE
KSpread

Corel
WordPerfect

OOXML

Figure 2.5: Competing standards can prevent communication

which case it appears to outside observers that Excel supports an additional export format. It might

be part of KSpread’s import routine, in which case it appears that KSpread supports an additional

import format. Finally, it could be part of the communications channel itself. In our running ex-

ample, this might correspond to one of the colleagues running the spreadsheet through a separate

transformation tool before opening the document in their spreadsheet application. In this case, any

transformation that occurs is hidden from both applications; instead, they read and write the data

using their preferred data formats.

Microsoft
Excel

OpenOffice
Calc

ODS

KDE
KSpread

Corel
WordPerfect

OOXML

Figure 2.6: Transformations can overcome competing standards

In this example, we only have one transformation, so it seems reasonable to write it manually,

like the import and export routines of the applications themselves. This does not work well if there

are many transformations, though. We can apply the same idea to Figure 2.3, for instance; the

result, shown in Figure 2.7, shows that we still require O(D2) transformations (instead of D2 im-

port/export routines) to ensure that each pair of applications can communicate. However, since we

have decoupled the problem from the specific applications, we can try to automatically generate the

transformations, once again reducing the amount of manual coding required.

2.2.2 Automated techniques

With a large number of possible data transformations to consider, we will want to automate the

process of finding or creating them. There are several existing techniques for tackling this prob-

lem that can exploit the commonalities that will inevitably exist between the different datatypes.

Two datatypes for recording a personnel record, for instance, will both contain some way to store

the employee’s name. With a detailed enough description of the particular datatypes (known as a

schema), one can identify which elements map to each other. These mappings then provide a recipe

for translating data from one schema to another.

In [87], Rahm and Bernstein present an overview of existing research in this area of schema

matching. They first provide a generalized definition of a Match operator that, given two schemas,

returns a set of mappings between elements of the schemas. They then identify several orthogonal

11



2 Background

Microsoft
Excel

OpenOffice
Calc

Excel
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WordPerfect

KS

WP

Figure 2.7: Using transformations without a single standardized format

criteria for classifying different schema matching techniques. Two criteria stand out as being most im-

portant. The first is whether the technique can find matches between complex compound structures

in the schemas, or is limited to low-level atomic data elements; the second is whether mappings are

found primarily by comparing the natural-language names of the data elements (nominal typing), or

by analyzing the relationships between data elements and the constraints placed on them (structural

typing). These criteria can be applied both to purely schema-based techniques, which consider only

the explicit description of a data format, and to techniques that infer parts of the data’s structure from

the contents of actual data instances. (The latter can be used, for instance, to handle data from a

“messy” or “noisy” source that does not conform to a strict, explicit schema description.) The authors

then use this classification to compare and contrast several schema matching tools, including SemInt

[64, 65, 66], the Learning Source Descriptions (LSD) framework [36, 35], the Semantic Knowledge

Articulation Tool (SKAT) [74], TranScm [73], DIKE [81, 80, 79], ARTEMIS [20], and Cupid [67].

Most of these existing tools have been written with one or two specific modeling formalisms (e.g.,

the relational model [27], XML model [18], or object-oriented model [57]) in mind. This might

seem to imply that these existing techniques do not exhibit the level of generality that we seek from

a data transformation framework. It would rule out, for instance, the ability to handle proprietary

binary formats and low-level differences in encoding. However, the underlying ideas usually work

in the presence of any data model that has an appropriately detailed schema description, regardless

of which formalism underlies the data. These techniques could then be extended, for instance, to

binary datatypes described by an ASN.1 [56] schema. Extending an existing tool like this might be a

time-consuming task, but it would be theoretically possible.

Another possible issue is that schema matching tools can only provide candidate mappings, since

the nuanced semantics of the data elements cannot always be expressed in a form intelligible to the

tool. Human intervention is therefore needed to verify or tweak the output of the matching tool.

Nonetheless, this is still much less onerous than the alternative — having to manually examine each

schema and derive the mappings by hand.

The main drawback to this approach is that the effectiveness of any particular schema matching

technique on a particular set of data schemas can be highly variable. There is no one-size-fits-all
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solution. The compositional approach described in this thesis recognizes this: it can incorporate data

transformations created by different schema matching tools, in addition to those written manually.

Thus we can exploit the strengths of schema matching in exactly those situations where it is most

useful.

2.3 S classification

The spreadsheet example from Section 2.1 might seem trivial and contrived, but it allows us to

consider certain aspects of the data mismatch problem without worrying about the actual differences

between the data formats. The basic outline of the problem is the same regardless of whether we are

considering two colleagues manually exchanging spreadsheets via email or two companies’ intricate

purchasing systems automatically sending each other electronic purchase orders.

However, at some point, we will obviously need to consider the datatypes themselves. Since we

want a fully generic solution, we will need to consider a wide variety of data mismatches. Integers

might be encoded in binary or as ASCII decimal strings. Dates might be expressed in an American

“MM-DD-YYYY” format, a British “DD-MM-YYYY” format, or as the number of seconds elapsed since

the Unix epoch on midnight, January 1, 1970. The size recorded in a compressed archive might

refer to the compressed size or the uncompressed size. The dimensions of a manufactured product

might be expressed in Imperial or metric units. If metric is used, the dimensions might be in meters,

millimeters, or kilometers. A postal address might include a different set of fields depending on which

country the user is in.

It will be useful to classify these different kinds of data mismatch to make them more manage-

able. In their study of information systems [78, 98], Ouksel and Sheth identify a useful classification,

identifying mismatches as systemic, syntactic, structural, and semantic. We will call this the S classi-

fication. “System” refers to the particular combination of hardware and software used to implement

an application. “Syntax” refers to the low-level representation of the data — usually in terms of a

specific binary encoding. “Structure” refers to the underlying data primitives used to model an ap-

plication domain — both which structures are available and how they are used. “Semantics” refers

to the inherent meaning and interpretation of the data; the terms information and knowledge are

often used instead of data to refer to semantic content. We will see several examples of how different

aspects of a datatype fall into these four categories in the next chapter, when we develop a formalism

for reasoning about datatypes.

The S classification has a natural ordering, from the “low-level” details of systems up to the “high-

level” details of semantics. However, the boundaries between the four levels in the S classification

are not necessarily crisp; depending on one’s point of view, it can be a subjective decision whether to

consider a certain property of a datatype syntactic rather than structural, for instance. However, for

our purposes, crisp boundaries are not needed. We do not need the S classification to tell us whether

integer endianness exists specifically at the system level or semantic level; instead, the classification

is useful because it highlights a spectrum of properties, all of which we must consider.

It is interesting to point out that the data mismatch problem seems to be largely solved at the

system level: it no longer matters what particular hardware and software is on each side of a network

socket, as long as both correctly implement the underlying network protocol. This works because

the standardization process has succeeded at this level: there is a universally agreed-upon suite of
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standard network protocols, the most important being IP [84], ICMP [83], TCP [85], and UDP [82].
They provide an abstract view of the network connection as a “sequence of bytes”. (In the case of

TCP, this is even a “reliable sequence of bytes”.)

One might hope, then, that similar universal standards can be agreed on to solve the data mis-

match problem at higher layers of the S classification. XML [18], for instance, seems like an obvious

choice as a universal syntax, while the Semantic Web’s RDF [61, 8] and OWL [70, 101] have been

touted as universal languages for structure and semantics. Unfortunately, we return to the same

problem mentioned in the introduction — these must be truly universal if they are to be real solu-

tions. The network socket abstraction is truly universal because our computers are, fundamentally,

machines that operate on sequences of bytes. The syntax, structure, and semantics levels, on the

other hand, are much more flexible. They are more dependent on the needs of an application, and

even on the whims of the developers designing and implementing a system. XML cannot be a guar-

anteed universal syntax, for any number of reasons. Many systems that we must support are legacy

applications with pre-existing non-XML syntaxes. Some data models do not map well to XML’s hier-

archical model. The markup overhead can make XML an inefficient syntax for certain use cases. And

of course, we must consider the human element — some developers might choose not to use XML

out of sheer stubbornness.

The mantra is the same: we must accept that there will be a variety of choices at each level of the

S classification, and we need to support them all. The system level is the only place where it is safe

to assume a single, universal solution. A rogue developer might decide to develop a new data format

that is not based on a sequence of bytes, but they would quickly find themselves without a computer

system to implement it on. The same is not true at any other level of the S classification.

A key feature of the transformation framework presented in this thesis is that it does not as-

sume any universal language for syntax, structure, or semantics. In fact, it does not even make the

system-level “sequence of bytes” assumption. The ideas behind the framework work equally well for

datatypes with infinitely many elements. We feel that this generality is an important requirement

for any application or theory that claims to embrace the heterogeneous world brought about by the

global Internet.

Summary

In this chapter we have presented a more detailed overview of the data mismatch problem, and

showed how the underlying issues are exacerbated when the datatypes in question are highly dy-

namic over time or use case. We can use the S classification from Ouksel and Sheth to examine many

of these issues and solutions: for instance, by organizing a datatype’s description into the differing

levels of system, syntax, structure, and semantics.

The obvious manual techniques for solving the data mismatch problem are clearly unsuitable,

due to the amount of cumbersome work that is required as the number of supported applications and

datatypes grows. Intermediary datatypes, which are understood by many applications, are helpful at

relieving this tedium; unfortunately, even when the perfect intermediary datatype exists, we cannot

rely on any centralized authority to mandate its use.

An alternative solution is to rely on translations between datatypes, especially if the discovery

and development of these translations can be automated. There are many existing attempts in the
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literature to provide this functionality. Though many of them are not fully automated, requiring

manual supervision and verification of the results, this still represents a dramatic improvement over

fully manual techniques. Unfortunately, none of these techniques are fully generic, since each only

works within a limited problem domain. We believe that these techniques lack full generality because

they require a precise description of each datatype, from which translations between the datatypes

are inferred. Any data description language that could truly describe any datatype would be far too

complex for this translation inference to be tractable. In the following chapters, we will present a

framework that abandons these precise datatype descriptions, making transformation discovery both

fully general and more efficient.
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As we have mentioned in the previous chapters, one of the main goals of our transformation frame-

work is that it should be fully generic: there should be no restrictions on the kinds of datatypes that

are supported. Existing transformation techniques are not fully generic, only supporting, for instance,

relational or XML datatypes. This lack of generality is due to the fact that these techniques require

a precise description of each datatype; even if it were possible to design a data description language

that is fully generic, it would be exceptionally complex, and impossible to work with or reason about

in practice.

To make our transformation framework fully generic, we abandon this notion of precisely de-

scribed datatypes. Later chapters will describe transformation graphs, whose constituent atomic

transformations will encapsulate all knowledge about each of the datatypes. Thus, the datatypes

can be fully opaque from the point of view of the higher-level transformation discovery logic. This

opacity will be the key feature that enables the efficiency and full generality of our approach. How-

ever, it does have some ramifications that we must remain cognizant of. In this chapter we develop

a formalism that lets us reason about opaque datatypes; this is done by treating the equivalences

between datatypes as first-class objects. We first provide conceptual examples of the equivalences

and datatypes that we should support. We then formalize these notions, and show how datatypes

can be defined by a set of interpretations, along with logical constraints that show how the interpre-

tations are related. These interpretations and constraints can be defined at any appropriate level of

detail; specifically, we show that two important issues — canonicalization and transformation — can

be modeled and reasoned about even when the datatypes and equivalences are fully opaque. The

contents of this chapter have been published previously in [30].

3.1 Overview

In this section we show how the seemingly simple ideas of “data” and “equivalence” are complicated

when we consider the full range of the S classification, and present informal descriptions of several

datatypes that we want our theory to support.
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3.1.1 Data equivalences

A key feature to take into account when designing a data theory is data equivalence. What do we

mean when we say that two data instances are “equivalent”? A naïve answer would be to define

this based on binary equality — two program variables that both contain the 32-bit integer “73” are

obviously equivalent. However, this does not capture the entire picture. We present a few obvious

counterexamples.

First, we can consider low-level encoding details that can affect data equivalence. For instance,

computer processors have a property called endianness that affects how multi-byte numbers are

stored in memory. “Big-endian” processors store these numbers with their most-significant byte first,

whereas “little-endian” processors store the number’s least-significant byte first. As an example, con-

sider the number 1,000, which can be encoded in hexadecimal as the 16-bit quantity 03E8. When

encoded on a big-endian machine, this number is represented by the byte string 〈〈03 E8〉〉. When

encoded on a little-endian machine, however, the byte string becomes 〈〈E8 03〉〉. In one sense, that of

binary equality, the data are not equivalent; in another, equally valid sense, that of integer equality,

they are. This inconsistency holds in reverse, as well. Consider the byte string 〈〈03 E8〉〉. As before,

on a big-endian machine, this evaluates to the integer 1,000. On the little-endian machine, however,

this is interpreted as the hexadecimal number E803, or 59,395. In this case, the data are equivalent

according to binary equality, but not according to integer equality.

To further complicate matters, both of the previous examples assumed that the integers were

unsigned. Modern computers encode signed integers using two’s complement notation, which has the

beneficial property that the same binary addition operator can be used for both signed and unsigned

numbers. This causes a further inconsistency in how a particular byte string can be interpreted as an

integer. For example, on a big-endian machine, the byte string 〈〈E8 03〉〉 is interpreted differently as

a signed integer (-6,141) than as an unsigned integer (59,395), whereas on a little-endian machine,

it is interpreted as 1,000 regardless of signedness. This is another case where data can be equivalent

according to binary equality, but not according to integer equality. These examples are summarized

in Figure 3.1.

〈〈03 E8〉〉

Signed Unsigned
1,000 1,000
-6,141 59,395

Big-endian
Little-endian

〈〈E8 03〉〉

Signed Unsigned
-6,141 59,395
1,000 1,000

Figure 3.1: Differing semantic interpretations of binary integers

Similar inconsistencies can appear at higher abstraction levels. For instance, in the HTML markup

language [86], it is possible to specify the background color of a Web page with the bgcolor attribute

of the opening body tag. To give a Web page a white background, for instance, one could use the

following:

<body bgcolor="white">

This example represents the color using one of the values in the list of named color strings speci-

fied by the HTML standard. It is also possible to specify the color by giving an explicit color value in

the RGB color space, such as:
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<body bgcolor="#ffffff">

This example specifies a background color that has the maximum value of 255 (“ff” in hexadeci-

mal) for each of its red, green, and blue components; this color happens to be the color white. These

two examples are not equivalent according to binary equality, or even according to character string

equality (which can be different from binary equality due to character set issues). However, the

semantics of the bgcolor attribute, as defined by the HTML standard, are such that the character

strings “white” and “#ffffff” represent equivalent colors.

Thus, it is easy to see that a true notion of data equivalence is very application-dependent. It

is also very dependent on the level of abstraction being used — two data that have different binary

encodings might be semantically equivalent, and vice versa. Sometimes semantic equivalence will be

more important; sometimes syntactic equivalence will. The S classification, described in Section 2.3,

provides a useful way to classify these abstraction levels and the different forms of equivalence that

we want to support.

3.1.2 Datatypes

Any study of data needs to think about datatypes. Broadly speaking, we define a datatype to be

some set of data. Notionally, a datatype is different from an arbitrary set of data, because the data

instances that constitute a type are supposed to be “similar” in some way. Exactly what form this

similarity takes will be application-dependent, just like our notion of data equivalence. To illustrate

this, we present several example datatypes, and show how the S classification helps classify them.

Integers

As our first example we can consider the integer types. This is a very low-level set of types; its syntax

is a binary string, or sequence of bytes. As we have seen in previous sections, our interpretation of

these bytes depends on several factors. At the system level, we must know the integer’s endianness,

as this affects the order of the bytes in the sequence. At the structural level, we must know the length

(and therefore numeric range) of the integer; this is necessary, for instance, to know how much

space to reserve in memory for the integer value. At the semantic level, we must know whether the

application intends to use this integer as a signed or unsigned value.

Each of these levels can be seen as imposing constraints on which particular data instances can

appear in the datatype’s set: an integer datatype contains all of the instances that are encoded as a

byte string of a particular length, and are interpreted as integers with a particular endianness and

signedness. Taken together, this constraint-based definition of the datatype’s set brings our original

vague notion of “similarity” into focus — but only for this particular datatype.

Postal address (XML)

Next we look at a higher-level type — a postal address encoded in XML. This data type might be used,

for example, to send “electronic business cards” between address book applications. An instance of

this datatype is shown in Figure 3.2.

At the semantic level, this datatype represents a postal address. As people who have grown up

with a postal system, we are able to encapsulate a lot of semantic meaning into this concept. This
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<address>
<name>Douglas Creager</name>
<company>Oxford University Computing Lab</company>
<line1>Wolfson Building</line1>
<line2>Parks Road</line2>
<city>Oxford</city>
<postcode>OX1 3QD</postcode>
<country>UK</country>

</address>

Figure 3.2: Example instance of the postal address XML type

datatype does not provide us with a way to directly encode this semantic meaning in the data, apart

from the natural language names of the XML tags, but it will inform how we write applications that

use this data.

At the syntax level, we are using the Extensible Markup Language (XML). Therefore, by exten-

sion, our datatype implicitly includes all of the syntactic assumptions and requirements of the XML

standard [18]: for instance, a binary string that is not well-formed XML cannot be a valid instance of

our datatype.

At the structural level, we have an XML schema (not shown) that specifies which XML tags must

be used, the content of those tags, and the order in which the tags must appear. As at the syntax level,

this implicitly includes into the datatype definition all of the structural assumptions and requirements

of our XML schema: a well-formed XML document that does not match our schema is not a valid

instance of our datatype.

At the system level, things are more vague, and will depend in part on the details of the appli-

cation that is accessing the data. Further, the different aspects of the system interpretation of the

datatype are interrelated with the interpretations of the other three levels. Our application will need

to have some sort of XML parser, which will handle the syntax level. It will also need application-level

logic for parsing the abstract document tree, taking care of the structural level. The application itself

will be written with some intuitive notion of what an address actually is, taking care of the semantic

level. In addition, there will be the low-level details of the application itself, such as the hardware

and operating system that it is running on, and any shared libraries that it uses. However, none of

these issues affect whether a particular binary string is an instance of our datatype, and can be safely

ignored.

Again, we can look at these levels as imposing constraints on the members of the datatype’s set:

the set contains all of those data instances that are encoded in XML, conforming to this particular

address schema, and that are used as “postal addresses” within the context of some application.

Postal address (database)

As another example, we might decide to store these postal addresses in a relational database. This

could correspond to an address book application’s internal state of the various business cards that

someone has collected. An instance of this datatype is shown in Figure 3.3.

Semantically, this datatype represents a postal address, just as in the previous example. Specifi-

cally, this means that the semantic-level constraints imposed on the corresponding sets are the same

for both of these datatypes.
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ADDRESSES table
ADDRESS ID 13

NAME "Douglas Creager"

COMPANY "Oxford University Computing Lab"

LINE 1 "Wolfson Building"

LINE 2 "Parks Road"

CITY "Oxford"

POST CODE "OX1 3QD"

COUNTRY ID 30

COUNTRIES table
COUNTRY ID 30

NAME "United Kingdom"

ABBREV "UK"

Figure 3.3: Example instance of the postal address database type

Structurally, however, they are obviously quite different. The tables used in this example are

based on the relational model, which is quite different from the hierarchical model of XML. Instead

of using an XML schema to define which tags must appear in the tree of XML data, we have a database

schema that defines which relational tables we use, and how the tables relate to each other.

The system and syntax levels of this example are rather blurred. Relational databases do provide

an application-visible syntax in the SQL query language, but this does not provide a syntactic repre-

sentation of the data itself. In fact, we have several similar datatypes that are equivalent semantically

and structurally, but different syntactically. We could be referring to the internal representation used

by a particular database management system, such as PostgreSQL or Oracle, to store the data on disk

and in memory. We could be referring to the wire format used by the database server to send back to

the application the results of a query that returns this exact set of data. We could be referring to the

equivalent SQL INSERT statements that could be used to reconstruct the data. We could be referring

to the abstract notion of a relational tuple, in which case there is no actual low-level syntax that can

be represented in a computer. Often, these syntactic differences will not matter, and we can exploit

data independence by ignoring them. At other times, they will be important, and must be included

in the datatype definition.

Postal address (Semantic Web)

As one final example, we can describe a third postal address datatype, which uses the formalisms

and notations of the Semantic Web [15]. The Semantic Web provides a data representation that is

better able to express the semantics of the data involved. It does this by representing data using

subject-predicate-object triples as defined by the Resource Description Framework (RDF) [61, 8]. One

can envision these triples as edges in a graph, with the subject being a source node, the object

being a destination node, and the predicate being a labeled edge connecting the two. This graph

notation is used in Figure 3.4 to show how a postal address could be expressed in the Semantic Web.

(Technically, we should give full URIs [14] for the labels of the edges and the address1 and uk nodes;

we provide shorter labels for brevity.)

Semantically, this datatype once again represents a postal address; however, by using subject-
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address1

Oxford Univ. Com. Lab

Douglas Creager

Parks Road

Oxford

OX1 3QD

name

company

line2

city

postcode

Wolfson Building
line1

uk

country

United Kingdom

UK

name

abbrev

Figure 3.4: Example instance of the postal address Semantic Web type

predicate-object triples, we have encoded a version of these semantics into the data more directly. Of

course, this leaves unanswered the question of how to use this semantic information in the design of

an application.

Syntactically, the Semantic Web uses XML to encode these graphs of RDF triples, so in one very

specific, low-level sense, this datatype is similar to the XML postal datatype described previously.

Structurally, however, not just any XML data is allowed — Semantic Web data must exist in a well-

formed RDF graph, encoded in XML in a specific way. So while the XML syntax is used for both

datatypes, they differ greatly in structure. As with the previous examples, the Semantic Web provides

a schema language — the Web Ontology Language (OWL) [70, 101] — for stating which particular

semantic structures are used. Our datatype would include an OWL ontology describing the overall

structure of the graph in Figure 3.4. RDF graphs that do not match this ontology would not be

instances of this datatype.

3.1.3 Data with multiple interpretations

Our theory of data also needs to support polysemantic data instances, which have identical concrete

representations, but different interpretations. In our framework, a particular data instance can belong

to a different datatype depending on the use case; usually this is due to subtle semantic differences

in how the data is interpreted.

As an example, we can consider a datatype used to store data collected from some piece of

scientific equipment — for example, a digital microscope. Often, some form of preprocessing is

required to “clean up” the raw data before it is used in later analyses. In the case of microscope

images, this usually involves a deconvolution of the image pixels based on the transfer functions

of each lens and filter that the light passed through in the microscope. The raw and deconvolved

images are usually stored using the same binary file format. In some cases, it might be important to

distinguish between raw and deconvolved images; to do this, we can treat them as separate datatypes.

Syntactically and structurally, these datatypes are identical; the only difference between them is a

semantic assumption about what preprocessing has (or has not) already been applied to the image.
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In other cases, it might not matter whether an image has already gone through deconvolution; we can

model this with a datatype where we make no assumption about what preprocessing has occurred.

In this example, then, we have three distinct datatypes: “raw” images, “deconvolved” images,

and “unspecified” images. Any particular image file could be an instance of exactly two of these

types: every image can be an instance of “unspecified”, and can also be an instance of either “raw”

or “deconvolved”, depending on whether it has been preprocessed. This highlights one of the main

ramifications of opaque datatypes: every important, distinguishable difference between data has to

be modeled by separate datatypes, even if, in all other respects, the datatypes would be superficially

identical.

Depending on the details that are recorded in the image file, it might be difficult to infer from

an arbitrary image whether it has been deconvolved. If there is a “has been deconvolved” field, and

we can trust that it is filled in correctly, then the decision is simple. If the field does not exist, or is

untrustworthy, then we cannot easily decide. We must rely on some outside agent — such as the user,

or the type signature of the code that creates the data — to explicitly provide the type of a particular

data instance. In general, even when it is possible to infer a data instance’s type automatically,

the details of the deduction will be different for each example, and will require detailed internal

knowledge of the datatypes, violating opacity. Therefore, we will always assume that the type of each

data instance is provided explicitly. In those cases where automatic deduction is possible, this can be

handled by another system, with the necessary specific knowledge of the datatypes in question; its

answer will then be passed along to our generic transformation framework just like any other typing

information.

3.2 Formalization

The example datatypes described in the previous section were not particularly complex. Even so,

they were able to incorporate several formalisms that represent data in completely different ways.

A fully generic theory of data must be able to incorporate all of these datatypes, regardless of the

differences in the underlying formalisms. In this section we describe such a theory, using a simple

running example to provide clarity.

The notation used is based on the Z notation [102, 103, 108]. However, in places where it

makes our formalization more clear, we depart from strict adherence to the Z standard in three

ways. First, we allow implicit universal quantification: when defining a function, for instance, the

function’s parameters will be implicitly quantified over their types. Second, we allow functions to

be overloaded: two functions can have the same name as long as it is always clear from their types

which function is being declared or used in any given context. Finally, we do not require explicit

constructor names for free types. Implicit free type constructors might seem to lead to ambiguities;

for instance, as we will see later in Definition 4.2, an instance i of type Integer can also be used as a

Value. To do so, the implicit Value constructor must be used to “promote” the Integer into a Value.

The worry is that ambiguities can arise, where a particular expression might have many possible

promotions that are all type-correct. However, in all of our specifications, this will not occur; if an

expression needs to be promoted to conform to the required type, there will only be one promotion

that is possible.

We will revisit each of these extensions the first time they are used.
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3.2.1 Datatypes and equivalences

In order to talk about data, we must first define it. Since we are aiming for full generality in this type

theory, we cannot assume any kind of structure when referring to data — it must be considered com-

pletely opaque. We can also define an equivalence, denoted with a ¤, which defines an equivalence

relation (which is reflexive, symmetric, and transitive) between data. Note that an equivalence is only

a partial equivalence relation on the entire universe of data; it only becomes a proper equivalence

relation when restricted to a particular domain of data.

[Datum]

Equivalence : P (Datum↔ Datum)

∀¤ : Datum↔ Datum •
¤ ∈ Equivalence⇔
∀ d : dom¤ • d ¤ d ∧
∀ d1, d2 : dom¤ • (d1 ¤ d2) ⇒ (d2 ¤ d1) ∧
∀ d1, d2, d3 : dom¤ • (d1 ¤ d2 ∧ d2 ¤ d3) ⇒ (d1 ¤ d3)

As mentioned above, datatypes are represented as sets of data. We can define a simple is-a
relation between data instances and datatypes. By defining this as a function, it follows that the

Datatype sets are pairwise disjoint.

Datatype == P Datum

is-a : Datum → Datatype

∀ d : Datum; t : Datatype • d is-a t⇔ d ∈ t

However, we have also said that a datatype is not just any set of data; the data in question must be

similar in some way. We will express this similarity by defining interpretations and constraints for each

datatype. The interpretations and constraints can both be classified using the S classification. It might

seem that disjoint Datatype sets prevent us from properly supporting the polysemantic datatypes

from Section 3.1.3. However, interpretations allow us to do exactly that. The Datum instance is

an abstract entity, and does not represent the data instance’s concrete representation. Instead, the

concrete representation is one of the Datum’s (possibly many) interpretations. Since we will allow

multiple data instances (which might belong to different datatypes) to have identical interpretations,

we can correctly support polysemantic data — they will have identical concrete interpretations and

differing semantic interpretations.

We can apply these ideas to one of the integer types mentioned in Section 3.1.2. There are

multiple integer datatypes, since bit length, endianness, and signedness all affect the integer inter-

pretation. For simplicity, we will look at one integer datatype in particular: 16-bit, little-endian, and

unsigned.

Integer16,L,U : Datatype

Our first task is to specify the datatype’s interpretations. In the case of the integer datatypes,

there are two interpretations: an instance’s binary encoding, and its integer value. We use the Syn

subscript to indicate that the binary interpretation is syntactic, and the Sem subscript to indicate that
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the integer interpretation is semantic. Both interpretations are defined as partial functions:

binarySyn : Datum 7→ ByteString
integerSem : Datum 7→ Z

In the first case, we define the binary interpretation using the byte string type specified in Appendix A.

Similarly, we define an integer interpretation in terms of Z’s integer type (Z). It is important to point

out that this integer interpretation is not the same as any concrete representation of an integer

— rather, it is an abstract mathematical concept that fully captures the semantics of an “integer”.

With these interpretations in place, we can formalize our notion of binary equivalence and integer

equivalence. Two data are binary-equivalent if their binary interpretations are equal; similarly, they

are integer-equivalent if their integer interpretations are equal.

¤bin : Equivalence

∀ d1, d2 : dom¤bin •
(d1 ¤bin d2)⇔ (binarySyn d1 = binarySyn d2)

¤int : Equivalence

∀ d1, d2 : dom¤int •
(d1 ¤int d2)⇔ (integerSem d1 = integerSem d2)

In both cases, we did not restrict the interpretation to the Integer16,L,U datatype. Instead, we de-

fined it as a generic property that can be applied to any Datum, since there are many other datatypes

that might be encoded in binary or interpreted as an integer. The interpretations are both partial

functions, though, because not every Datum has a binary or integer interpretation. We must then

apply these generic properties to our specific datatype:

Integer16,L,U ⊆ dom binarySyn
Integer16,L,U ⊆ dom integerSem

After defining the interpretations, we must also specify the datatype’s constraints. Each of these

constraints will depend in some way on at least one of the interpretations. First, we have the struc-

tural constraint that our integer type is 16 bits (or two bytes) long. This is defined in terms of the

datatype’s binary interpretation. Note that this is a two-way constraint; we must not only say that

each of our integers is 16 bits long, but also that every 16-bit binary string corresponds to a valid

instance of this type.

∀ i : Integer16,L,U • #(binarySyn i) = 2

∀ b : Bytes 2 • ∃1 i : Integer16,L,U • binarySyn i = b

Our other constraint states how the binary and integer interpretations relate to each other, which

we can calculate using the functions of Appendix A. This constraint is informed by both the system-

level endianness property and the semantic-level signedness property. As before, the constraint is

two-way: we must explicitly state that every integer interpretation in the correct numeric range has

a corresponding instance of the Integer16,L,U datatype.

∀ i : Integer16,L,U • integerSem i = unsigned littleEndian binarySyn i
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∀ z : 0..(216 − 1) • ∃1 i : Integer16,L,U • integerSem i = z

This completes a formal specification of this particular integer type. The other integer types can be

defined analogously.

3.2.2 Opaque datatypes

The amount of detail that went into the description of this integer datatype highlights an important

distinction in our formalism. The Integer16,L,U datatype had a full specification — we provided a

complete, formal description of both of the datatype’s interpretations, and of the constraints that

relate them. In this particular case, this full specification was not overly verbose. We were able to use

Z’s existing mathematical integer type (Z) to model the semantics of an integer, and it was relatively

straightforward to provide a formal definition of binary data (ByteString) in Appendix A.

Often a complete formal description is not readily available, and the effort involved in developing

a precise definition might not be worth the benefit gained from doing so. In these cases, it is pos-

sible to provide a datatype with a partial specification, where we define some of the interpretations

and constraints as abstract entities. This becomes especially useful when considering how multiple

partially-specified datatypes relate to each other. If every interpretation and constraint is left abstract

and undefined, whether by choice or necessity, we then have a fully opaque datatype. Fully opaque

datatypes will be important in the remainder of this thesis, in that they will allow us to develop more

efficient algorithms by purposely ignoring many details of the datatypes that we work with. Later

parts of this chapter will show that this opacity, which is the key to the efficiency of our methods,

does not affect the correctness of our algorithms.

As an example, we can revisit the postal address types, which have new interpretations that were

not used by the integer datatype. However, whereas we provided (or were given) full definitions of

the Z and ByteString types, we will leave these new interpretations abstract:

[XMLDocument, XMLSchema]
[RelationalTuple, RelationalSchema]
[PostalAddress]

XMLDocument represents the logical document tree of an XML document, while RelationalTuple

represents a row from some relational table. In both cases, we have also mentioned a type that

represents the schema that describes the data’s structure. PostalAddress represents the semantic

meaning of a postal address; this allows us to talk about the real-life concept of an address used by

the postal service to identify a physical location, though we do not need to provide any details of

how this semantic meaning is represented. We can now define interpretations and equivalences for

the postal address datatypes, similarly to the integer example:

xmlStruct : Datum 7→ XMLDocument
relationalStruct : Datum 7→ RelationalTuple
addressSem : Datum 7→ PostalAddress

¤xml : Equivalence

∀ d1, d2 : dom¤xml •
(d1 ¤xml d2)⇔ (xmlStruct d1 = xmlStruct d2)
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¤rel : Equivalence

∀ d1, d2 : dom¤rel •
(d1 ¤rel d2)⇔ (relationalStruct d1 = relationalStruct d2)

¤addr : Equivalence

∀ d1, d2 : dom¤addr •
(d1 ¤addr d2)⇔ (addressSem d1 = addressSem d2)

XML equivalence implies that two data instances contain the same structure of XML elements and

attributes. Relational equivalence implies that two data instances are identical tuples from identical

relational tables. Address equivalence implies that two data instances are postal addresses that refer

to the same physical location, regardless of how the instances are structured or encoded.

With these interpretations defined, we can define the datatypes themselves. The XML address

datatype will have binary, XML, and address interpretations; the relational address datatype will have

relational and address interpretations. (We ignore the syntax of the relational datatype to maintain

data independence and simplify the definitions.)

AddressXML : Datatype

AddressXML ⊆ dom binarySyn
AddressXML ⊆ dom xmlStruct
AddressXML ⊆ dom addressSem

AddressRel : Datatype

AddressRel ⊆ dom relationalStruct
AddressRel ⊆ dom addressSem

Next we specify the constraints, for which we will need several helper functions and relations,

which, again, we do not provide full definitions for:

encodes: ByteString 7→ XMLDocument

instanceof: XMLDocument↔ XMLSchema
instanceof: RelationalTuple↔ RelationalSchema
AddressSchemaXML : XMLSchema
AddressSchemaRel : RelationalSchema

interpret: XMLDocument 7→ PostalAddress
interpret: RelationalTuple 7→ PostalAddress

The encodes function maps a byte string to the XML document that it represents. (The function is

partial since not all byte strings represent valid XML documents.) We have not said how to derive

an XML document from the binary string; we have just said that we can. We could easily provide a

definition for encodes; a simple one would be

encodes = (binarySyn
∼) o

9 xmlStruct

However, as mentioned previously, we will purposely ignore any such definition, since we want to

show that we can consider fully opaque datatypes.

The instanceof relations and interpret functions are the first examples of overloaded Z definitions,
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one of our extensions to the notation. The two flavors of instanceof allow us to verify that an XML

document or relational tuple matches its corresponding schema. We also mention the particular

schemas used by our XML and relational datatypes. The two flavors of interpret allow us to deter-

mine the semantic meaning of an XML document or relational tuple. These are then applied to the

datatypes as constraints:

∀ d : AddressXML •
(binarySyn d) encodes (xmlStruct d) ∧
(xmlStruct d) instanceof AddressSchemaXML ∧
interpret (xmlStruct d) = addressSem d

∀ d : AddressRel •
(relationalStruct d) instanceof AddressSchemaRel ∧
interpret (relationalStruct d) = addressSem d

This provides a formal, fully opaque rendering of the datatype definitions in Section 3.1.2. For an

XML postal address, its binary encoding must match its logical XML document; this XML document

must conform to the postal address schema; and the document must have some valid real-world

interpretation as a postal address. Similar constraints apply to relational postal addresses. In the

next sections we will show that we can still reason about interesting data-related problems when the

datatypes in question are opaque.

3.2.3 Canonicalization

One example that highlights the importance of differing notions of equivalence is data canonical-

ization. A well-known current example of canonicalization involves XML documents and digital

signatures [37, 16, 17].

The problem stems from the fact that every XML document has many different encodings as a

concrete sequence of bytes. Three aspects of the XML syntax, in particular, affect the encoding of

a document: attributes, namespaces, and whitespace. In most XML applications, these differences

are not an issue, since the application works with a high-level view of the XML content; this is

often in the form of the Document Object Model API [63], which represents an XML document by

its abstract tree structure. However, one application area where these differences are important is

digital signatures. Briefly, digital signatures are a more cryptographically-secure version of checksums

and error-correcting codes. They provide a means of attesting that the content of a document has

not been modified in transit between two parties. This is an important security feature in modern

applications that helps prevent, among other things, man-in-the-middle attacks.

The algorithms used to implement digital signatures are not constrained to XML documents;

they work on any binary payload. This can be problematic when signing XML documents. Alice

can send an XML document to Bob, signing it before sending it along the communications channel.

However, there might be communications gateways in between Alice and Bob that modify the binary

representation of an XML document without modifying the document structure. When Bob receives

the document, its binary representation will have changed, and Alice’s signature will no longer match

the document.

Looking at this in terms of our datatype formalism, we can define a function that can sign a byte

string:
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[Signature]

sign : ByteString → Signature

∀ b1, b2 : ByteString • (sign b1 6= sign b2) ⇒ (b1 6= b2)

This captures the essence of a digital signature: if the signatures match, the byte strings most likely

match as well; conversely, if the signatures do not match, the byte strings are different. Often, we

consider this signature property to be a true equivalence. However, it is more accurate to say that

¤bin is a refinement of ¤xml, since ¤xml defines more data instances to be equivalent than ¤bin. The

number of signatures is much smaller than the number of binary strings, so some overlap is inevitable.

This refinement is “close enough” to an equivalence, though, to still be useful; even though we cannot

provide a full guarantee, matching signatures strongly imply that the binary strings are the same.

We can define a similar function for signing data that simply signs a datum’s binary interpretation;

signatures then work for arbitrary data, too, but only under binary equivalence:

signbin : Datum 7→ Signature

∀ d : dom¤bin • signbin d = sign binarySyn d

∀ d1, d2 : dom¤bin • (signbin d1 6= signbin d2) ⇒ (d1 6¤bin d2)

We run into a problem in the case of XML. Alice’s and Bob’s applications do not care about binary

equivalence; they care about XML equivalence. The hope, then, is that the signature predicate holds

for XML equivalence, too:

∀ d1, d2 : dom¤xml • (signbin d1 6= signbin d2)
?
⇒ (d1 6¤xml d2)

For this to be the case, we would need the following implication to hold:

∀ d1, d2 : dom¤xml • (d1 6¤bin d2)
?
⇒ (d1 6¤xml d2)

However, we know this is not true; two different byte strings can represent the same XML document.

What is needed is a canonicalization function. In the case of XML documents, we need to choose

one particular binary encoding for each logical XML document. We would then define a canonxml

function that maps an XML datum to its canonical binary encoding. The required property would

then hold:

∀ d1, d2 : dom¤xml • (canonxml d1 ¤bin canonxml d2)⇔ (d1 ¤xml d2)

Two XML documents that have the same logical structure, when canonicalized, would also have the

same binary encoding. Expressed another way, two data that are XML-equivalent, when canonical-

ized, would also be binary-equivalent. When signing XML documents, we must then ensure that we

sign the binary representation of the canonicalized XML:

signxml : Datum 7→ Signature

∀ d : dom¤xml • signxml d = sign binarySyn canonxml d

∀ d1, d2 : ¤xml • (signxml d1 6= signxml d2) ⇒ (d1 6¤xml d2)
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In fact, we can define canonicalization as a generic property that a function might provide be-

tween any two equivalences:

DataFunction == Datum 7→ Datum

canonicalizes
� À �

:
DataFunction↔ (Equivalence × Equivalence)

∀ f : DataFunction; ¤1,¤2 : Equivalence •
f canonicalizes
�

¤1

À

¤2

�

⇔
dom¤1 ⊆ dom f ∧
ran f ⊆ dom¤2 ∧
∀ d1, d2 : dom ¤1• (d1 ¤1 d2)⇔ (f d1 ¤2 f d2)

With this generic property defined, we can easily state that the canonxml function canonicalizes XML

equivalence in terms of binary equivalence:

canonxml : DataFunction

canonxml canonicalizes
�

¤xml

À

¤bin

�

It should be noted that this formalism does not help us find a detailed definition of the canonxml

function. In general, the definition of a canonicalization function will be highly dependent on the

details of the underlying data formalism and how this relates to its binary encodings. However, if

desired (and beneficial), one could use this formalism to prove that a fully-defined function correctly

canonicalizes two equivalences.

3.2.4 Transformations

This formalization of datatypes and equivalences also gives us a convenient way to describe trans-

formations. They will be represented by data functions, just like the canonicalization example from

the previous section. The key feature of a transformation that makes them useful as a solution to the

data mismatch problem is that they maintain some equivalence between disparate datatypes.

We can return once again to the postal address example, and consider two address book ap-

plications: one which uses the relational datatype, and one which uses the XML datatype. Since

the datatypes both refer to postal addresses, instances of these types can be semantically address-

equivalent (¤addr). Therefore, in theory, the two applications can communicate. We can model this

situation similarly to the canonicalization example, reusing the DataFunction type from that section.

We need to introduce the notion of typing the data functions, however:

source : DataFunction → Datatype
dest : DataFunction → Datatype

∀ f : DataFunction; t : Datatype •
source f = t⇔ dom f ⊆ t ∧
dest f = t⇔ ran f ⊆ t

We can define the source and destination datatypes for a data function; this simply states that all

of the function’s input or output values come from the respective datatype. These are defined as

functions, since datatype sets are disjoint.
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A data function then links its source type to its destination type:

links
�

*
�

: DataFunction → (Datatype × Datatype)

∀ f : DataFunction; tS, tD : Datatype •
f links
�

tS * tD

�

⇔ (source f = tS) ∧ (dest f = tD)

Lastly, a data function maintains an equivalence if that equivalence holds between each of the func-

tion’s inputs and the corresponding output:

maintains : DataFunction↔ Equivalence

∀ f : DataFunction; ¤ : Equivalence •
f maintains ¤⇔ (f ⊆ ¤)

With these definitions in place, we can state the existence of the required transformation: it links

the XML and relational postal address datatypes (AddressXML and AddressRel), and maintains the

postal address semantic equivalence (¤addr).

xformAddress : DataFunction

xformAddress links
�

AddressXML * AddressRel

�

xformAddress maintains ¤addr

Note that once again, we have abstracted away a lot of unnecessary detail — we have said nothing

about how xformAddress performs this transformation.

Since transformations are modeled as functions between data, they are also composable. This

allows us to consider sequences of datatypes, and sequences of data functions:

TypeSequence == seq1 Datatype
FunctionSequence == seq1 DataFunction

types : TypeSequence↔ FunctionSequence
source : FunctionSequence → Datatype
dest : FunctionSequence → Datatype

∀ ts : TypeSequence; fs : FunctionSequence •
ts types fs⇔

#ts = #fs + 1 ∧
∀ i : 1 . . #fs • source fs (i) = ts (i) ∧ dest fs (i) = ts (i + 1) ∧
source fs = (head ts) ∧
dest fs = (last ts)

A sequence of functions is well-typed if the destination type of each data function matches the source

type of its successor. We can then define the source and dest operators for sequences, much as they

are defined for individual functions: the source (destination) of a function sequence is the source

(destination) of the first (last) function in the sequence.

With these definitions, we can define a compose operator on function sequences:

compose : FunctionSequence → DataFunction

∀ fs : FunctionSequence • compose fs = o
9 /(fs)
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∀ fs : FunctionSequence •
source fs = source (compose fs) ∧
dest fs = dest (compose fs)

The operator is defined using distributed composition on the functions in the sequence.

Because of the transitivity of data equivalence, it is obvious that a compound transformation main-

tains an equivalence if each transformation in its sequence maintains it. Each atomic transformation,

and the compound transformation that results, might be partial, so the compound transformation

need not generate a transformed value for every instance of the source datatype. However, if it

does, we can be sure that the original and transformed instances are equivalent according to the

equivalence in question.

Summary

In this chapter, we have presented a theory of data that supports full generality; it does this by

treating the equivalences between data instances as first-class objects, and by defining a datatype

in terms of a number of interpretations and the logical constraints that relate them together. We

can define these interpretations and constraints abstractly, stating that they exist without providing

any structural details of their definitions. Datatypes defined in this abstract way are said to be fully

opaque.

Importantly, many data-related problems, such as canonicalization and transformation, can still be

expressed and reasoned about when the datatypes in question are fully opaque. The distinguishing

feature of a canonicalization function is that it operates within the context of a single datatype, pro-

viding a “bridge” between two equivalences that disagree about instances of that datatype. Transfor-

mations, on the other hand, translate from one datatype to another, ensuring that some equivalence

is maintained by this translation. Further, compound transformations, which consist of a sequence

of transformations composed together, are able to maintain any equivalence that is maintained by

each of its constituent transformations. In both cases, these properties are true regardless of the

underlying structure of the datatypes and equivalences in question.

In the remainder of this thesis, we will show how to use a variety of graph-based structures to

construct a framework for discovering compound transformations automatically. The fact that we

can do this in the presence of fully opaque datatypes will be an important reason for the efficiency of

our method.
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In previous chapters, we presented the motivations behind our transformation framework, and its

two major requirements: automation and full generality. In Chapter 3, we showed how we can still

reason about many interesting properties of data when the datatype definitions are fully opaque. We

will now exploit this fact to develop an efficient transformation discovery framework. The efficiency

and correctness of our technique is a direct consequence of fully opaque datatypes: conceptually,

since we are able to ignore many of the complex details of a datatype definition, we greatly reduce

the amount of information we must consider when searching for a solution.

In this chapter, we present a graph-based framework that allows us to use opaque datatypes

to efficiently discover transformations between arbitrary datatypes. We first present a conceptual

overview of the transformation graph and describe its main elements: datatypes and atomic trans-

formations, which form the graph’s basic structure; properties, which allow the same graph to be

used for multiple use cases, which will likely have different optimality criteria for the discovered

transformations; and declaration patterns, which allow repetitive features of a transformation graph

to be defined more concisely. We then present a language and file format that can be used to define

transformation graphs, with support for each of these main elements. Finally, we present a formal-

ization and denotational semantics for the graph language, serving two purposes. First, it shows

that the graph language is well-founded and consistent with itself. Second, and more importantly, it

can be seen, along with the transformation graph file format, as providing a language-independent

specification for implementing this framework. A prototype implementation, written in Python1, has

been developed; its overall design and graph construction logic is identical to that of the denota-

tional semantics. Other implementations (or a more robust version of the Python prototype) could

be developed along the same lines. Parts of this chapter have previously appeared in [29].

4.1 Overview

In this section we present a conceptual overview of our graph model for describing and reasoning

about transformations. A transformation graph consists of datatypes and atomic transformations.

The datatypes are sets of similar data instances, as defined in Chapter 3; a datatype will specify the

1http://www.python.org/
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instances at each level of the S classification. Atomic transformations represent the ability to translate

directly from one datatype to another, while maintaining some equivalence between them. Atomic

transformations are composable; this allows a directed path in a transformation graph to represent

a sequence of atomic transformations that can be composed into a compound transformation. A

compound transformation path, highlighted in red in Figure 4.1, represents a transformation between

arbitrary datatypes in a transformation graph. As shown in Chapter 3, a compound transformation

maintains any equivalence that is maintained by each of its constituent atomic transformations.

Figure 4.1: A transformation path between two types in a graph

Since arbitrary transformations are represented by directed paths, any standard pathfinding algo-

rithm, such as Dijkstra’s [34] or Bellman-Ford [9, 42], can be used as a discovery algorithm. These

pathfinding algorithms allow the edges in the graph to be weighted, which causes the algorithms to

find the paths with the smallest sum of weights, rather than with the fewest number of edges. We

want transformation graphs to be reusable across multiple use cases; therefore, instead of defining

weights directly for each atomic transformation, we allow the structures of the graph to have an

arbitrary set of properties. The client can then use a custom weight provider to calculate an appro-

priate numeric weight for each edge given the properties defined on its atomic transformation. Our

model also supports declaration patterns, which allow repetitive features of a transformation graph

to be defined more concisely. Finally, though we introduce this graph-based approach as a solution to

the data mismatch problem, it is in fact more general, and can be used to solve any problem whose

solution can be specified by an inductive property. In this section, we describe all of these elements

of the transformation framework in more detail.

4.1.1 Datatypes and transformations

The core elements of a transformation graph are datatypes and atomic transformations. The datatypes

are represented by the nodes of the graph. These are datatypes as defined in Chapter 3 — they include

any syntactic, structural, or semantic details necessary to fully understand the layout, encoding,

and interpretation of data of this type. The atomic transformations represent the ability to directly

translate an instance of one datatype into another, while maintaining some equivalence. In this

section, we use a running example to show how datatypes and transformations are used to construct

transformation graphs.

Images

As an example, Figure 4.2 shows two datatypes representing images: generic TIFF, representing

an image in the TIFF format [1], and generic JPEG, representing an image in the JPEG format
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[54]. Also shown in the figure are two atomic transformations for translating between these two

image types. This could be custom code written by the image processing application that will use

this transformation graph; alternatively, the transformations could be implemented using an existing

library such as the Java Advanced Imaging API2 or the ImageMagick C library3.

generic TIFF generic JPEG
translate

translate

Figure 4.2: A transformation graph with two image formats

Because of the nature of the two image formats, the translate transformations are not always

reversible. The TIFF format usually encodes the image pixels using a lossless encoding: it is possible

to decode the binary representation of the pixels into the exact pixel matrix that was used to create

the encoding. The JPEG format, on the other hand, uses a lossy compression format, where the

decoding process produces a pixel matrix that is very similar, but not identical, to the original. Lossy

algorithms like this are able to achieve higher compression ratios, and therefore more efficient storage

of an image, at the cost of precision. The algorithms are designed such that the human eye — the

usual intended client of an image — cannot readily tell the difference between the original and

decoded pixels.

As mentioned, this can have consequences on the translate transformations. The translation

between a JPEG image and a TIFF image is not affected, since the TIFF format is able to faithfully

reproduce the compressed pixel matrix that is the result of the lossy JPEG algorithm. The same is

not true, however, when translating a TIFF image into a JPEG, since the result of the transformation

is not a faithful reproduction of the original TIFF pixel matrix. Depending on what our application

needs to do with the images, this may or may not be a problem. Therefore, we cannot determine

in advance whether the TIFF-to-JPEG translation will be a useful transformation to include in our

application’s transformation graph.

Metadata extraction

To continue the example, our application might want to extract certain metadata elements from

multiple image formats — for instance, the image’s dimensions, original format, creator, and creation

date — and encode this information in a specialized XML format. As shown in Figure 4.3, we can

add a new datatype to the graph to represent this metadata.

generic TIFF generic JPEG
translate

translate

simple metadata

extract extract

Figure 4.3: Adding a simple metadata type to the graph

2http://java.sun.com/products/java-media/jai/
3http://www.imagemagick.org/
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The simple metadata type, being an XML datatype, will likely have associated with it an XML schema

document (XSD) that describes its structure. This XSD could be used for validation purposes, or

simply as documentation for application developers.

The graph also contains transformations for extracting the metadata from each of the image

datatypes. Both transformations will hard-code the metadata’s format field to “TIFF” or “JPEG”,

respectively. They will also extract whatever metadata they can from the images themselves. The

transformations might not always be able to extract the full set of metadata from the images, both

because the formats differ in their capabilities for storing metadata, and because individual images

might not include all of the possible metadata tags allowed by the format.

An interesting feature of the extraction transformations is that, unlike the translation transfor-

mations, it is not possible to write their inverse. That is, given the metadata information about an

image, it is not possible to reconstruct some representation of the image itself, since we have thrown

away the pixel data in the extraction process. It might seem that the image and its metadata are

distinct entities, and therefore that the extraction process is not something that we can represent as

a transformation in our graph. However, the two datatypes do refer to the same logical entity — the

image — even if they provide markedly different representations of that entity. This is similar to the

notion of a resource as defined by the REST architectural style [40], where a resource is any abstract

“thing that can be named”, and which can have many concrete representations. Since the resource

itself is abstract, a REST application is only able to directly handle a resource’s representations.

This leads to the notion of resource equivalence. The image and metadata datatypes are resource-

equivalent since they are different concrete representations of the same resource. The extraction

process is a valid transformation since it maintains this equivalence. On the other hand, if we were

to consider a metadata type that stores information about a collection of datatypes, then we would be

working with a separate resource. The two datatypes would not be resource-equivalent, so the extrac-

tion process could not maintain resource equivalence. Assuming that this was one of the equivalences

that our application needed maintained, the extraction would no longer be a valid transformation.

Standardized metadata format

The metadata format described previously was one created specifically for our hypothetical image

processing application. We might decide to use a standardized metadata format, such as Dublin

Core [33], instead. Figure 4.4 shows the transformation graph with a Dublin Core datatype added.

The graph also contains two transformations for generating the Dublin Core metadata. The first

simply converts the metadata that was already extracted into the simple metadata format into the

Dublin Core encoding. Since both encodings are in XML, this might, for instance, be a simple XSLT

transformation. Since the Dublin Core format contains many more metadata fields than our simple

format does, this transformation will result in many of the Dublin Core fields being missing. Having

noticed that the TIFF format includes support for many more metadata tags than we extracted for

the simple metadata datatype, we have also included an extraction transformation that extracts any

possible extra metadata from the TIFF, and outputs it directly into the Dublin Core format.

Both of these new transformations are useful for different reasons. The conversion transformation

is useful because it will automatically support any image formats that we had written simple metadata
extraction transformations for. The new extraction transformation is useful because we were able to
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generic TIFF generic JPEG
translate

translate

simple metadata

extract extract

Dublin Core metadata

extract
convert

Figure 4.4: Adding a more complex, standardized metadata type to the graph

exploit knowledge specific to the TIFF format to get a more accurate transformation into the Dublin

Core format. Our application will most likely want to use the new extraction transformation when

extracting Dublin Core metadata from a TIFF image, overriding the other possibility of using our

simple metadata format as an intermediary. The next section will introduce properties, which provide

a means for stating these kinds of preferences.

Specialized image formats

As a final example, our image processing application might want to interface with an existing appli-

cation, such as the Open Microscopy Environment4 (OME) [104]. OME defines a robust metadata

model for a particular domain of interest — in this case, high-resolution microscope images of bi-

ological samples. OME defines two specialized file formats for storing the images and associated

metadata: OME-XML [46] and OME-TIFF [62]. Figure 4.5 shows the transformation graph with

OME-XML and OME-TIFF datatypes added.

generic TIFF generic JPEG
translate

translate

simple metadata

extract
extract

Dublin Core metadata

extract
convert

OME-TIFF OME-XML
translate

translate

identity

extract extract

Figure 4.5: Adding a third-party image format to the graph

The graph also contains several transformations of interest. We include two translate transforma-

tions, just as with the generic TIFF and generic JPEG datatypes. These new translation transforma-

tions are implemented by code included in OME. We also provide transformations for extracting the

Dublin Core metadata from the OME image formats. Alternatively, we could have extracted the OME

metadata into the simple metadata format, and then relied on the existing conversion transformation

4http://www.openmicroscopy.org/
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to get to Dublin Core, assuming that we did not care about the Dublin Core fields that are not defined

in the simple metadata type.

Finally, we can also include an identity transformation that “converts” an OME-TIFF image into a

generic TIFF. However, this transformation does not have to actually do anything, since every OME-

TIFF is already a valid generic TIFF. This is another transformation that we cannot write an inverse

for, since an arbitrary generic TIFF will not have the appropriate extra metadata to be an OME-TIFF,

and we have no way to generate this extra metadata as part of a transformation.

4.1.2 Compound transformations

As mentioned earlier, by representing datatypes and atomic transformations as the nodes and edges

of a directed graph, we can use directed paths in this graph to represent compound transformations

between arbitrary types. With an appropriate selection of atomic transformations, the transformation

graph will be fully connected, giving us the ability to translate between any pair of datatypes in the

graph. Moreover, there are many efficient algorithms for finding directed paths in a graph, giving us

a transformation discovery algorithm that is much more efficient than those used with other solutions

to the data mismatch problem. This efficiency stems from the fact that we have abstracted away a

large amount of unnecessary detail: instead of presenting detailed knowledge about the datatypes

to the transformation discovery algorithm, we have encapsulated this information into the atomic

transformations. A particular atomic transformation will incorporate knowledge of its input and

output datatypes into its implementation; however, the high-level discovery algorithm does not need

to know the details of how this translation is performed, and therefore does not need to know any

details about the datatypes themselves. Instead, it only needs to know that some translation exists

between those two types.

This pathfinding-based approach works because of how we have defined transformations in gen-

eral, and how we have specified compound transformations in particular. As mentioned in Chapter 3,

a “transformation” is a computation that maintains some data equivalence between its inputs and

outputs. Further, this equivalence maintenance is exactly the property that defines a solution to the

data mismatch problem. By implementing some atomic transformation and adding it to a transfor-

mation graph, the user has asserted that the atomic transformation maintains some equivalence of

interest. Moreover, we have shown in Section 3.2.4 that equivalence maintenance is a property that

can be easily extended to compound transformations: a compound transformation will maintain any

equivalence that is maintained by all of its constituent atomic transformations. It is this inductive

definition which allows us to use a pathfinding algorithm to search for compound transformations.

As the algorithm executes, it extends the current directed path by adding another graph edge to it;

an inductive proof step easily shows that the new path also maintains the data equivalence, assuming

that the edge and the previous path also maintain it. As we will show in the next section, we can

use this same mechanism to distinguish between different compound transformations that translate

identical datatypes, as long as our optimality criteria can also be specified with inductive definitions;

in graph algorithm terms, our pathfinding algorithm becomes a shortest pathfinding algorithm.

Even though we have described this technique in terms of datatypes and transformations, it is in

fact more general. Our technique works because we can specify the problem that we are trying to

solve using a property — in our case, the maintenance of data equivalences — that can be shown
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inductively for the possible solutions. This induction-based search is implemented by a pathfinding

algorithm. The technique is not limited to the data mismatch problem, though: it can be used to solve

any problem that is defined by a property that can be shown inductively for the possible solutions.

4.1.3 Properties

There were several cases in the previous examples where there were multiple ways to transform

data from one type to another. For instance, we could generate the Dublin Core metadata from

a generic TIFF using the extraction transformation that we wrote directly for that purpose, or we

could use the simple metadata datatype as an intermediary. In this case, it is obvious that the direct

extraction into Dublin Core will almost always be the ideal solution. Another example involves the

lossy transformation between a generic TIFF and a generic JPEG. In this case, it is not always clear

what the correct solution is; if our application does not need full precision in the transformed pixel

matrix, the lossy transformation is perfectly acceptable. If we need to ensure that the pixels are

identical in all formats, we cannot allow the lossy transformation to be executed.

We support these different use cases using properties. Each datatype and transformation can in-

clude an arbitrary set of key-value pairs. The transformation discovery algorithms will then use a

weight provider to calculate a numeric weight for each atomic transformation based on its properties.

Different use cases are supported by using a different weight provider for each; the properties in

the graph remain the same. The weight providers are able to use any information about the trans-

formation to calculate its numeric weight, as long as this information can be expressed as a graph

property.

We present several examples to show how this system of properties and weight providers allows us

to support multiple transformation use cases using a single transformation graph. First, we examine

the hypothetical transformation graph shown in Figure 4.6. This graph consists of datatypes and

transformations from three separate applications that deal with postal addresses. The particulars of

the postal address types differ between applications.

DB

Binary CSV XML

Application 1 Application 2 Application 3

α

β γ

δ

Figure 4.6: Example postal address transformation graph

Application 1 stores addresses in a relational database, and has its own custom binary format for

encoding addresses. Both of these datatypes contain six fields: Line1, Line2, City, Region, PostCode,

and Country. Application 2 stores the addresses in Comma-Separated Value (CSV) text files. This

application was written to work explicitly with American postal addresses, and therefore contains

a different set of fields: Line1, Line2, City, State, and ZIP. Application 3 stores its addresses in

XML; however, the designers of this application made the data model a bit too general, so it does
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not contain specialized fields for city and region. Instead, the XML type contains the fields Line1,

Line2, Line3, Line4, PostCode, and Country. In addition to these datatypes, the graph contains the

transformations labeled α, β , γ, and δ.

Local vs. remote execution

In our first use case, we assume that some client (not necessarily any of the three original applica-

tions) wants to transform data from Application 1’s database type to Application 3’s XML type. There

are two paths between these types: 〈α, β , γ〉 and 〈α, δ〉. Different use cases might imply that either

of these two paths is the optimal transformation. At first glance, it would seem that the shorter path

would be best; most of the time, this will be the case. It could also be possible, however, that the δ

transformation is very slow compared to β and γ. For instance, it might use some networked service

to perform the translation. If β and γ both run locally, it could be faster to use the CSV type as an

intermediary to prevent the overhead of network traffic and remote computation.

We can model this with an appropriate use of properties and weight providers. For instance, we

could use a property named local as a Boolean flag to indicate whether a transformation executes

locally. We could then declare that δ is a remote transformation, and that α, β , and γ are local, as

shown in Figure 4.7. If the transformation client wants to ensure that only local transformations are

used, they would use a weight provider that assigns a numeric weight of infinity to any transformation

whose local property was False, effectively preventing the corresponding edge from being used by the

pathfinding algorithm.

DB

Binary CSV XML

α

β γ

δ

local = False

local = True local = True

local = True

χ(xform) = if xform.local then 1 else ∞

Figure 4.7: Using properties to prohibit remote transformations

In this situation, any compound transformation that contains any non-local atomic transformation

will have an overall weight of infinity. If the pathfinding algorithm returns a shortest path of infinite

weight, then we know that there cannot be a finite, and therefore strictly local, compound transfor-

mation; if there were, then it would have to have a smaller weight than the supposedly shortest path

discovered by the pathfinding algorithm. If we want to truly prevent non-local transformations, we

must verify that the discovered path has a finite weight before accepting it as a solution.

This weight provider also does not allow us to distinguish between multiple compound transfor-

mations that have a mixture of local and non-local transformations — the compound transformations

will all have infinite, and therefore “equal”, weights. Luckily, the pathfinding algorithm does not re-

strict us to scalar transformation weights; we can use any weight that forms a semiring, such as those

for which we can define an addition operator and a total ordering.

This allows us to use a more sophisticated solution for this situation: we use two-element vectors

instead of scalars as the transformation weights. We add weights together using piecewise vector
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addition. We compare weights by examining the first elements first; we only compare the second

elements if the first elements are equal. We can then use the following weight provider:

χ(xform) = if xform.local then [0, 1] else [1, 0]

With these vector-based weights, the shortest path algorithm will correctly favor strictly local

compound transformations, as before; now, though, it will also find the “most” local compound

transformation when the possible solutions have a mixture of local and non-local atomic transforma-

tions. The first element of a compound transformation’s weight vector will be the number of non-local

atomic transformations; the second element will be the number of local ones. By comparing the first

elements of the vector first, we ensure that any strictly local compound transformation, regardless of

length, will be considered more optimal than any compound transformation containing a non-local

element. Mixed compound transformations will be considered more optimal if they contain fewer

non-local atomic transformations.

Partial transformations

Another scenario that we might want to model concerns the partiality of certain transformations.

The CSV type does not contain a Country field, so if we use it as an intermediary type, as in the

previous example, we will lose information in the transition from the database type to the XML type.

Again, according to the needs of the client, this may or may not be important. If it is, we can model it

using properties and weight providers. For instance, we can declare another Boolean property named

retainsCountry and use it as shown in Figure 4.8. Then, as before, we could use a weight provider

to give transformations whose retainsCountry property is False an edge weight of infinity, effectively

ruling out the 〈α, β , γ〉 path.

DB

Binary CSV XML

α

β γ

δ

retainsCountry = True

retainsCountry = False

retainsCountry = True

χ(xform) = if xform.retainsCountry then 1 else ∞

Figure 4.8: Using properties to require the preservation of the Country field

As one last example, we can consider the inverse transformation: from the XML type to the

database type. This will require corresponding inverse atomic transformations, which we will name

α−1, β−1, γ−1 and δ−1. As we mentioned above, the XML datatype was made overly general; it

does not distinguish the city and region of an address, which are just included somewhere in the

Line fields. In order to transform into the CSV or binary types, the γ−1 and δ−1 transformations

must perform some analysis, or make a guess, as to which part of the address corresponds to the

city and region name. Our transformation framework cannot make this analysis any easier, since

the implementation of the transformations is opaque to the graph structure and the pathfinding

algorithm used for discovery. However, since atomic transformations can be written in any existing

transformation language, the transformation writer can use whatever tools are available to make this

job easier.
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4.1.4 Declaration patterns

Often, portions of a transformation graph are repetitive, with the same pattern of datatypes and

atomic transformations appearing multiple times, with few differences between them. For instance,

as shown in Figure 4.9, the transformation graph for an XML schema will often need (at least) the

following:

• a datatype for the “raw” binary XML data,

• a datatype for the XML data stored in a DOM tree [63],

• a transformation for parsing the binary XML into a DOM tree, and

• a transformation for encoding a DOM tree into binary XML.

Ideally, we want to prevent the graph designer from having to repeat these definitions for each XML

datatype.

Raw XML DOM tree
encode

parse

Figure 4.9: An oft-repeated pattern of datatypes and transformations

The solution is to allow declaration patterns. A declaration pattern is a set of datatypes and

transformations that are parameterized. That is, the name of the datatype or transformation, or

some of its properties, can be a parameter rather than a proper value. The pattern can then be

applied later, with actual values specified for each parameter. This would allow us to define the XML

pattern above, with parameters for the datatype and transformation names, and for the property

specifying the datatype’s XML schema definition. The graph designer would then apply this pattern

for each XML datatype.

4.2 Graph definition language

In this section we define a language for constructing transformation graphs, and a file format that

encodes this language. It will include support for all of the transformation graph elements defined in

the previous section. Along with the denotational semantics presented later in the chapter, this will

form the basis for implementing this transformation framework in a software library. We define the

language using an EBNF grammar, and illustrate its use by providing several examples.

A graph declaration consists of a list of statements. The different kinds of statement can appear

in any order. Some combinations of statements are inconsistent, and will therefore lead to an invalid

transformation graph; in Section 4.3 we formally show when and how this can happen, and also

show which transformation graph is produced from a sequence of statements when there are no

inconsistencies.

〈graph-decl〉 ::= 〈statement〉∗

〈statement〉 ::= 〈abbreviation〉 | 〈provides〉 | 〈requires〉 | 〈declaration〉 |
〈pattern-definition〉 | 〈pattern-application〉

The different kinds of allowed statements are described in more detail in the following sections.
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4.2.1 Identifiers

〈id〉 ::= 〈namespaced-id〉 | 〈abbrev-id〉

Since the datatypes, transformations, and properties in a graph are all named, we need an iden-

tifier type. We are dealing with wide-ranging datatypes involving many applications written by dif-

ferent groups; therefore, the identifier scheme should make it easy to generate globally unique iden-

tifiers. We provide this feature by adapting the idea of a two-part, namespaced identifier from the

XML standard [18]. However, whereas in XML the namespaces are URIs [14], we adopt a simpler

notation more similar to Java or Python package names.

〈digit〉 ::= “0” . . “9”
〈alpha〉 ::= “a” . . “z” | “A” . . “Z”
〈alphanum〉 ::= 〈alpha〉 | 〈digit〉 | “ ”

〈id-fragment〉 ::= 〈alpha〉 〈alphanum〉∗

〈local-id〉 ::= 〈id-fragment〉 (“.” 〈id-fragment〉)∗
〈namespaced-id〉 ::= 〈local-id〉 “::” 〈local-id〉

Every identifier in a transformation graph consists of two identifier parts: a namespace and a lo-

cal identifier. These two parts are separated by a double-colon. Local identifiers are unique within

the context of a single namespace. Each identifier part consists of one or more identifier fragments,

separated by periods. An identifier fragment is a string of alphanumeric characters (including under-

score), beginning with a letter.

As mentioned, the fragments that make up a namespace have semantic meaning similar to that

of a Java package name. They are intended to start with the reverse of the Internet DNS name of

the person or organization that “controls” the namespace. (Extra fragments after the reversed DNS

name can be used to create multiple namespaces controlled by the same organization.) Namespaces

beginning with core are reserved for core structures defined by the transformation language and

libraries. Example namespaces include:

core
core.java
core.xml
com.example.addresses
com.example.employees

The fragments that make up a local identifier have no pre-determined semantics — they can be

defined in whatever way is most appropriate to the data model or application domain. Example local

identifiers include:

adapter
class
schema
generic.jpeg
extract.simple.jpeg.metadata

Taking together, example full identifiers include:

core::adapter
core.java::class
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core.xml::schema
com.example.images::generic.jpeg

Namespace abbreviations

〈abbreviation〉 ::= “namespace” 〈local-id〉 “:” 〈local-id〉 “;”
〈abbrev-id〉 ::= 〈local-id〉 “:” 〈local-id〉

Within the scope of a single graph declaration file, an abbreviation can be given for a namespace

for brevity. Namespace abbreviations have the same structure as any other identifier part, though

they will usually consist of only a single identifier fragment. A namespace abbreviation is defined

using the namespace statement:

namespace cx: core.xml;

Once a namespace statement has been encountered, identifiers can be constructed using the new

abbreviation. The identifier’s namespace is replaced with the abbreviation, and the double colon

is replaced with a single colon. For instance, with the above namespace statement in effect, the

following two identifiers are equivalent:

core.xml::schema
cx:schema

It is not possible for namespaces and namespace abbreviations to clash, since the delimiter used

signals whether the namespace is specified in full or via an abbreviation.

Reserved words

The following are reserved words; they cannot be used as namespaces, namespace abbreviations, or

local identifiers.

apply, augment, datatype, define, from, namespace, pattern, provides, requires,

to, transformation

4.2.2 Declarations

〈declaration〉 ::= 〈datatype-definition〉 | 〈datatype-augmentation〉 |
〈xform-definition〉 | 〈xform-augmentation〉

The bulk of a graph definition will consist of declarations. As their name implies, these statements

declare the structures that make up the graph, and the properties of those structures.

Definitions and augmentations

All declarations fall into two categories: definitions and augmentations. Definitions are used to bring a

structure into existence. It is an error for any structure to be defined more than once. Augmentations,

on the other hand, provide new property values for an existing structure. It is an error to have an

augmentation that refers to a non-existent structure.
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Properties

Datatypes and atomic transformations can include properties that affect the pathfinding algorithms

and the transformations themselves. They are modeled as a map or dictionary: every structure has

a set of property keys, each of which map to a single property value. A property key is an identifier;

different contexts will provide identifiers with specific meanings. (For instance, a transformation

written in Java could have a core.java::class property that specifies which Java class implements the

transformation.)

〈property-value〉 ::= 〈integer〉 | 〈string〉 | 〈id〉

Property values can be one of three things:

• An integer literal. This can be expressed in decimal or hexadecimal, following the usual C-like

syntax:

〈hex-digit〉 ::= 〈digit〉 | “a” . . “f” | “A” . . “F”
〈integer〉 ::= “-”? 〈digit〉+ |

“-”? (“0x” | “0X”) 〈hex-digit〉+

4 // decimal
0xFF03 // leading "0x" means hexidecimal

• A string literal. A string literal must be enclosed in double-quotes, and the standard C-like

escape sequences are valid.

〈str-char〉 ::= “\n” | “\r” | “\f” | “\t” | “\b” |
“\"” | “\’” | “\\” | (¬ {“\”, “"”})

〈string〉 ::= “"” 〈str-char〉∗ “"”

"string"
"string ’with single-quotes’"
"string \"with double-quotes\""

• An identifier.

〈property〉 ::= 〈id〉 〈property-value〉 “;”
〈properties-clause〉 ::= “{” 〈property〉∗ “}”

Properties are defined in a properties clause, which is a list of property definitions, each ending in

a semicolon, enclosed within curly braces. Each property in the clause is specified with its key first,

its value second. For instance:

{
// The value of the core::adapter property is another
// identifier.
core::adapter core.java::adapter;

// The value of the core.java::class property is a string.
core.java::class "com.example.TransformationImpl";

}
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Datatypes

〈datatype-definition〉 ::= “define” “datatype” 〈id〉
(〈properties-clause〉 | “;”)

〈datatype-augmentation〉 ::= “augment” “datatype” 〈id〉
(〈properties-clause〉 | “;”)

Datatypes represent the nodes in a transformation graph. Datatype declarations specify the name

of the datatype and an optional properties clause. If the properties clause is absent, then the decla-

ration statement should be terminated with a semicolon.

define datatype demo::datatype1;

define datatype demo::datatype2
{

demo::property1 "property value";
}

augment datatype demo::datatype1
{

demo::property2 86;
}

Atomic transformations

〈xform-definition〉 ::= “define” “transformation” 〈id〉
“from” 〈id〉 “to” 〈id〉
(〈properties-clause〉 | “;”)

〈xform-augmentation〉 ::= “augment” “transformation” 〈id〉
(〈properties-clause〉 | “;”)

Atomic transformations represent the edges in a transformation graph. Atomic transformation

declarations are very similar to datatype declarations. The only difference is that a transformation

definition must specify a source and destination datatype. (A transformation augmentation should not

mention the datatypes, since they will have already been specified by the corresponding definition.)

define transformation demo::xform1
from demo::datatype1
to demo::datatype2;

define transformation demo::xform2
from demo::datatype2
to demo::datatype1

{
demo::xform.weight 86;

}

augment transformation demo::xform1
{

demo::xform.description "This is a nice transformation.";
}
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4.2.3 File dependencies

Graph definitions are intended to be modular — different portions of a large data transformation

graph can be specified in separate files. These files must then be merged together into a single graph

before any transformation discovery can take place. One way to do this would be to require the

client to provide an ordered list of files to include in the graph. This is not an ideal solution, however,

especially as the number of files increases.

Instead, one can explicitly specify dependencies between files in the files themselves. This is done

by naming the files with an identifier. The identifier of a file is specified by including a provides

statement. The file should also contain a series of requires statements, each one specifying a file

that must be loaded before this one. These required files should include, for instance, the definitions

of any datatypes or transformations that are augmented in the file.

〈provides〉 ::= “provides” 〈id〉 “;”
〈requires〉 ::= “requires” 〈id〉 “;”

As an example, consider the following two files:

provides tests::types;

// Binary file format for a JPEG image.
define datatype tests::jpeg;

and

provides tests::java;

requires tests::types;

namespace java: core.java;

// Specify the Java class for the binary JPEG image.
augment datatype tests::jpeg
{

java:class "java.nio.ByteBuffer";
}

// And create a new datatype to hold a Java-specific internal
// representation of an image.
define datatype tests::java.image
{

java:class "java.awt.Image";
}

This shows an example of using two files to separate a graph into its language-independent and

language-dependent parts. The Java-specific part depends on the language-independent parts — for

instance, in how it augments the existing tests::jpeg datatype. The file’s “requires tests::types”

statement expresses this dependency. This scheme for identifying files requires some way to locate

a file given its name; however, this does not need to be a complex lookup service. Instead, we can

specify a simple set of rules for deriving a file location from its name, such as using the namespace

as a directory name, and the local identifier as a filename within that directory.
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4.2.4 Declaration patterns

As mentioned in Section 4.1.4, declaration patterns provide a way to parameterize common patterns

of datatypes and transformations. This can help avoid repetition in the graph’s declaration.

To illustrate this, we can examine how the previously mentioned XML pattern could be declared,

without patterns, for a hypothetical postal address schema:

namespace java: core.java;
namespace xml: core.xml;

define datatype demo::raw.address
{

java:class "java.nio.ByteBuffer";
core::syntax xml:raw;
xml:schema "http://example.com/schemas/address.xsd";

}

define datatype demo::dom.address
{

java:class "org.w3c.dom.Document";
core::syntax xml:dom;
xml:schema "http://example.com/schemas/address.xsd";

}

define transformation demo::parse.address
from demo::raw.address
to demo::dom.address

{
core::adapter "com.example.xml.DocumentBuilderAdapter";
xml:schema "http://example.com/schemas/address.xsd";

}

define transformation demo::encode.address
from demo::dom.address
to demo::raw.address

{
core::adapter "com.example.xml.TransformerAdapter";
xml:schema "http://example.com/schemas/address.xsd";

}

Certain properties in these declarations will have the same value every time. For instance, the

raw datatype will always have a core.java::class property of java.nio.ByteBuffer. We can recast this

example using a declaration pattern as follows:

namespace java: core.java;
namespace xml: core.xml;

define pattern xml:raw.and.dom
$raw.datatype,
$dom.datatype,
$parse.xform,
$encode.xform,
$xml.schema
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{
define datatype $raw.datatype
{

java:class "java.nio.ByteBuffer";
core::syntax xml:raw;
xml:schema $xml.schema;

}

define datatype $dom.datatype
{

java:class "org.w3c.dom.Document";
core::syntax xml:dom;
xml:schema $xml.schema;

}

define transformation $parse.xform
from $raw.datatype
to $dom.datatype

{
core::adapter "com.example.xml.DocumentBuilderAdapter";
xml:schema $xml.schema;

}

define transformation $encode.xform
from $dom.datatype
to $raw.datatype

{
core::adapter "com.example.xml.TransformerAdapter";
xml:schema $xml.schema;

}
}

apply pattern xml:raw.and.dom
{

$raw.datatype: demo::raw.address;
$dom.datatype: demo::dom.address;
$parse.xform: demo::parse.address;
$encode.xform: demo::encode.address;
$xml.schema: "http://example.com/schemas/address.xsd";

}

The key feature of a declaration pattern is that its declarations can be parameterized. A parameter

is represented by a local identifier (i.e., one without a namespace), preceded by a “$”.

〈parameter〉 ::= “$” 〈local-id〉

The declarations inside a pattern body have the same form as those outside, except a parameter

can be used in place of any datatype or transformation name, or property value. (Property names

cannot be parameterized.)

〈id-or-param〉 ::= 〈id〉 | 〈parameter〉
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〈prop-value-or-param〉 ::= 〈prop-value〉 | 〈parameter〉
〈pattern-property〉 ::= 〈id〉 〈prop-value-or-param〉
〈pattern-properties-clause〉 ::= “{” 〈pattern-property〉∗ “}”

〈pattern-dt-def〉 ::= “define” “datatype” 〈id-or-param〉
(〈pattern-properties-clause〉 | “;”)

〈pattern-dt-aug〉 ::= “augment” “datatype” 〈id-or-param〉
(〈pattern-properties-clause〉 | “;”)

〈pattern-xform-def〉 ::= “define” “transformation” 〈id-or-param〉
“from” 〈id-or-param〉 “to” 〈id-or-param〉
(〈pattern-properties-clause〉 | “;”)

〈pattern-xform-aug〉 ::= “augment” “transformation” 〈id-or-param〉
(〈pattern-properties-clause〉 | “;”)

A pattern is defined by providing a list of parameters and a pattern body. As with any declaration,

an empty pattern body can be replaced with a semicolon, though empty patterns will not be useful

in practice.

〈pattern-declaration〉 ::= 〈pattern-dt-def〉 | 〈pattern-dt-aug〉 |
〈pattern-xform-def〉 | 〈pattern-xform-aug〉

〈pattern-body〉 ::= “{” 〈pattern-declaration〉∗ “}”
〈param-list〉 ::= ε | 〈parameter〉 (“,” 〈parameter〉)∗
〈pattern-definition〉 ::= “define” “pattern” 〈id〉 〈param-list〉

(〈pattern-body〉 | “;”)

Patterns are applied by supplying a binding, which gives values for each of the parameters in the

pattern definition. The parameters mentioned in the binding must exactly match those mentioned in

the pattern definition. If a parameter is mentioned in the pattern’s parameter list, but never used in

the pattern body, it must still be provided a value when the pattern is applied.

〈param-assignment〉 ::= 〈parameter〉 “:” 〈property-value〉 “;”
〈binding〉 ::= “{” 〈param-assignment〉∗ “}”
〈pattern-application〉 ::= “apply” “pattern” 〈id〉

(〈binding〉 | “;”)

Care must be taken with the declarations that appear in a pattern. For instance, the following is

a perfectly valid pattern definition:

define pattern test::pattern
{

define datatype test::datatype;
}

The datatype definition inside of the pattern is not parameterized, so applying this parameter will

always try to define a new datatype named test::datatype. Since it is illegal to define a datatype more

than once, it will also be illegal to apply this pattern more than once.

4.3 Formalization and semantics

In this section we present a formalization of our graph-based transformation framework. We use the

formalization to show that the graph definition language is well-formed and consistent. Moreover,
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it can be used with the graph definition file format as a basis for implementing the framework.

This formalization is presented in three sections. First, we provide a definition for transformation

graphs. Second, we define a simplified version of the graph definition language, and provide a

denotational semantics for the language in terms of the declarations of the graph’s datatypes and

atomic transformations. Third, we add declaration patterns to the transformation language, and

modify the denotational semantics accordingly.

4.3.1 Graph structure

First, we define the identifiers that are used to refer to the different elements of a graph. For the

purposes of this formalization, the actual structure of an identifier is unimportant, and we use an

opaque type.

Definition 4.1 (Identifiers).

[Identifier]

A property collection is a mapping between identifiers and values. A property value can be one of

three things: an integer, a string, or an identifier. We do not consider how to represent integers or

strings; like identifiers, they are treated as opaque objects.

Definition 4.2 (Property collections).

[Integer, String]
Value ::= Integer | String | Identifier
Properties == Identifier 7→ Value

The Value type is the first example of implicit free type constructors, one of our extensions to the

Z notation described in Section 3.2. In the standard Z notation, as defined in [103], we would have

to provide explicit constructors for the three kinds of Value; however, since it will always be clear

from context (and formally unambiguous) which case is used in any situation, we elide these explicit

constructors for brevity.

With these definitions in place, we can define a schema to represent a datatype. A datatype has a

name, which is an identifier, and a property collection.

Definition 4.3 (Datatypes).

Datatype
name : Identifier
properties : Properties

To make it easier to add properties to a datatype’s property collection, we define an augment
function. Given a datatype and a property collection, this function returns an updated datatype

schema with the same name and the combination of the two property collections.

Definition 4.4 (Augmenting a datatype).

augment : (Datatype × Properties) → Datatype

augment (dt, θ) =
〈|name   dt.name,
properties   dt.properties ⊕ θ |〉
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We provide a similar definition for atomic transformations. They are modeled much like the

Datatype schema, except we must also record the transformation’s source and destination datatypes.

Definition 4.5 (Atomic transformations).

AtomicTransformation
name : Identifier
from : Identifier
to : Identifier
properties : Properties

We also provide an augment function for atomic transformations, defined similarly to the augment
function for datatypes.

Definition 4.6 (Augmenting a transformation).

augment : (AtomicTransformation × Properties) → AtomicTransformation

augment (xf, θ) =
〈|name   xf.name,
from   xf.from,
to   xf.to,
properties   xf.properties ⊕ θ |〉

Lastly, we can define a data transformation graph, which is simply a set of datatypes and atomic

transformations, each keyed by identifier. We include constraints to ensure that the name of each

datatype (or transformation) matches its key.

Definition 4.7 (Graphs).

Graph
datatypes : Identifier 7→ Datatype
transformations : Identifier 7→ AtomicTransformation

∀ id : dom datatypes • datatypes (id).name = id
∀ id : dom transformations • transformations (id).name = id

For convenience, we provide a name for the empty graph (i.e., the one with no datatypes or

transformations):

Definition 4.8 (The empty graph).

∅Graph : Graph

∅Graph = 〈|datatypes   ∅, transformations   ∅ |〉

We will call a graph well-formed iff its transformations only refer to datatypes that exist in the

graph.

Definition 4.9 (Well-formedness of graphs).

well-formed : P Graph

well-formed G⇔
∀ t : ran G.transformations •

t.from ∈ dom G.datatypes ∧ t.to ∈ dom G.datatypes
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4.3.2 Graph declaration language

We can now formalize the language for constructing transformation graphs from Section 4.2. A graph

is constructed via a graph declaration, which consists of a number of declarations. For simplicity, in

this section we only include declaration statements in the language. We add pattern statements to

the language in the next section. After defining the language, we provide a denotational semantics

that specifies which particular transformation graph is defined by a sequence of statements in the

graph definition language.

Language definition

There are two categories of declarations: definitions and augmentations. A definition creates a new

object, whereas an augmentation adds new properties to an existing object. Each kind can refer to a

datatype or an atomic transformation, yielding four possible declaration statements.

Definition 4.10 (Declarations).

Declaration ::= def type Identifier as Properties
| aug type Identifier with Properties
| def xform Identifier

from Identifier to Identifier as Properties
| aug xform Identifier with Properties

A graph declaration is then a sequence of declarations.

Definition 4.11 (Graph declarations).

GraphDecl == seq Declaration

It is possible for a declaration to be used erroneously; we will refer to the error condition as Ω.

The result of a graph declaration will then be either a Graph or Ω, the combination of which we refer

to as GraphΩ.

Definition 4.12 (Error conditions).

GraphΩ ::= Graph | Ω

Language semantics

With the language defined, we can now construct a denotational semantics for graph declarations.

We do this by defining interpretation functions for each element of the language; taken together, these

will uniquely define the graph produced by any graph declaration. We will use the Gdbdb ecec notation

to refer to all of the interpretation functions defined in this section, since it should be obvious from

context when we are interpreting a single declaration or an entire graph definition.

We start by defining how each kind of declaration modifies an existing graph. We will define this

interpretation function with several cases.

Definition 4.13 (Interpreting a declaration in terms of a graph).

Gdbdb ecec : (Declaration × GraphΩ) → GraphΩ
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The simplest case is when the graph is already in the error condition; in that case, the error

propagates regardless of the declaration.

Case 4.13a (Propagation of errors).

Gdbdbd : DeclarationececΩ = Ω

A datatype definition adds a new Datatype schema instance to the graph’s datatype set if there is

not already a datatype with the same name. If there is an existing datatype, the result is the error

condition.

Case 4.13b (Datatype definitions).

Gdbdbdef type α as θececG =
if α /∈ dom G.datatypes then
〈|datatypes  

G.datatypes ∪ {α 7→ 〈|name   α, properties   θ |〉},
transformations   G.transformations |〉

else
Ω

A datatype augmentation adds new properties to the property collection of an existing datatype.

We use the previously defined augment function to simplify this definition. If the specified datatype

does not already exist, the result is the error condition.

Case 4.13c (Datatype augmentations).

Gdbdbaug type α with θececG =
if α ∈ dom G.datatypes then
〈|datatypes  

G.datatypes ⊕ {α 7→ augment (G.datatypes (α), θ)},
transformations   G.transformations |〉

else
Ω

A transformation definition adds a new AtomicTransformation schema instance to the graph’s

transformation set if there is not already a transformation with the same name. Further, the graph

must already contain the transformation’s source and destination datatypes. If either of these con-

straints is not met, the result is the error condition.

Case 4.13d (Transformation definitions).

Gdbdbdef xform α from β to γ as θececG =
if (α /∈ dom G.transformations) ∧
({β , γ} ⊆ dom G.datatypes) then
〈|datatypes   G.datatypes,
transformations  
G.transformations ∪ {α 7→ 〈|name   α,

from   β ,
to   γ,
properties   θ |〉} |〉

else
Ω
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A transformation augmentation adds new properties to the property collection of an existing

transformation. We use the previously defined augment function to simplify this definition. If the

specified transformation does not already exist, the result is the error condition.

Case 4.13e (Transformation augmentations).

Gdbdbaug xform α with θececG =
if α ∈ dom G.transformations then
〈|datatypes   G.datatypes,
transformations  
G.transformations ⊕ {α 7→ augment (G.transformations (α), θ)} |〉

else
Ω

This completes the interpretation function for a single declaration. We can provide a similar

interpretation function for graph declarations, showing how a sequence of declarations modifies an

existing graph.

The interpretation function for graph declarations is defined in two parts. An empty sequence

obviously leaves the graph unchanged, regardless of whether the graph was in an error condition. For

a non-empty sequence, we interpret the sequence’s first declaration in terms of the original graph. We

then interpret the remainder of the sequence in terms of the new graph. This allows us to inductively

step through the sequence of declarations, interpreting each one in turn.

Definition 4.14 (Interpreting a graph declaration in terms of a graph).

Gdbdb ecec : (GraphDecl × GraphΩ) → GraphΩ

Gdbdb〈〉ececG = G

Gdbdb〈d〉á restececG = GdbdbrestececG [[d]]G

We can show that the interpretation of graph declarations propagates errors, just like the inter-

pretation of declarations does.

Theorem 4.15 (Propagation of errors in graph declarations). For any graph declaration gd, GdbdbgdececΩ =
Ω.

Proof. We prove this inductively on the structure of the declaration sequence.

Base case. Let gd = 〈〉. Definition 4.14 trivially shows that GdbdbgdececΩ = Ω.

Inductive case. Let gd = 〈d〉á rest and assume that GdbdbrestececΩ = Ω. By Definition 4.14 we know

that

GdbdbgdececΩ = GdbdbrestececG [[d]]Ω

Case 4.13a tells us that errors propagate through an individual declaration, so that GdbdbdececΩ = Ω. By

substitution,

GdbdbgdececΩ = GdbdbrestececΩ

Finally, by the inductive assumption, we know that GdbdbrestececΩ = Ω. By substitution,

GdbdbgdececΩ = Ω
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Definition 4.14 provides a semantics for graph declarations in terms of an existing graph. Finally,

we can provide a new interpretation function that provides a semantics for graph declarations on

their own — we simply start with an empty graph.

Definition 4.16 (Interpreting a graph declaration).

Gdbdb ecec : GraphDecl → GraphΩ

Gdbdbgdecec = Gdbdbgdecec∅Graph

We can say that this interpretation function is “useful” by showing that any graph declaration

evaluates to either a well-formed graph or the error condition.

Theorem 4.17 (No errors implies well-formedness). For every graph declaration gd, if Gdbdbgdecec 6= Ω,

then Gdbdbgdecec is a well-formed graph.

Proof. We prove this by induction on the sequence of declarations in gd. Any errors that arise are

propagated through to the end by Case 4.13a. By Definition 4.16, we start with the empty graph,

which is trivially well-formed. We must therefore show that each declaration, if given a well-formed

graph, must produce either a well-formed graph or Ω.

First, we must show that the constructed graph satisfies all of the constraints defined in the Graph

schema. Specifically, since we have modeled the datatypes and transformations elements as partial

functions, we must ensure that any declaration that adds to these mappings maintains functionality.

In both definitions (Cases 4.13b and 4.13d), we first check that there is not an existing object with

the same name, returning Ω otherwise. The augmentations (Cases 4.13c and 4.13e) do not add to

the mappings, so functionality cannot be violated. We therefore correctly ensure functionality in all

cases.

Finally, we must also show that the graph is well-formed, by showing that the source and desti-

nation datatype of each transformation exists. Case 4.13d ensures that this is true when a transfor-

mation is defined, returning Ω otherwise. Since no other declarations create transformations, and

no declarations remove datatypes, we can be sure that this well-formedness propagates through any

remaining declarations.

Another way to show that the language is useful is to show that it is complete — that the language

provides a way to construct every well-formed graph.

Theorem 4.18 (Constructibility of well-formed graphs). Every well-formed graph G has at least one

graph declaration gd that constructs it:

∀ G : Graph | well-formed G • ∃ gd : GraphDecl • Gdbdbgdecec = G

Proof. We prove this by construction. We create a graph declaration that starts with a sequence of

def type declarations, one for each of the datatypes in the graph. Each def type declaration contains

the full property collection of the corresponding datatype. The def type declarations can appear in

any order.

Following the def type declarations, the graph declaration contains a sequence of def xform dec-

larations, one for each of the transformations in the graph. Each def xform declaration contains the
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full property collection of the corresponding transformation. The def xform declarations can appear

in any order.

Assuming that the graph declaration does not inadvertently interpret to Ω, it obviously interprets

to the graph G. There are two possible ways that the graph declaration could interpret to Ω. First, it

might declare a particular datatype or transformation twice. This cannot happen, however, since we

have added exactly one def type declaration for each distinct datatype in the graph G, and exactly

one def xform declaration for each distinct transformation. None of these definitions repeat. Second,

we might try to create a transformation with a nonexistent source or destination datatype. However,

we know that since the graph G is well-formed, the transformations must have existing source and

destination datatypes. Further, since we are careful to create all of the datatypes before creating any

of the transformations, we are sure that the def xform declarations cannot cause false errors. Since

Gdbdbgdecec cannot be Ω, it must equal G.

4.3.3 Declaration patterns

In this section we augment the transformation language to include the declaration patterns described

in Section 4.1.4. This requires a modification to the denotational semantics of the language, as well.

As before, we use a modified form of the Z notation, allowing implicit free type constructors. These

are used, for instance, in the definitions of ValueP (Definition 4.20) and IdentifierP (Definition 4.21).

Language definition

Declaration patterns are useful because they are parameterized. Like identifiers, we do not concern

ourselves with the low-level encoding of a parameter, and treat it as an abstract type. A binding is a

mapping of parameters to concrete values.

Definition 4.19 (Parameters and bindings).

[Parameter]
Binding == Parameter 7→ Value

Parts of the new transformation language will accept a parameter name when a value is expected;

we call this combination ValueP to distinguish it from when only a value is allowed.

Definition 4.20 (Parameterized values).

ValueP ::= Value | Parameter

Similarly, parts of the new transformation language will accept a parameter name when an iden-

tifier is expected; we call this combination IdentifierP to distinguish it from when only an identifier is

allowed.

Definition 4.21 (Parameterized identifiers).

IdentifierP ::= Identifier | Parameter

Finally, parts of the new transformation language will accept a property collection whose values

can be parameters; we call this combination PropertiesP to distinguish it from a property collection
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that can only contain concrete values. Note that the names of the properties cannot be parameterized;

they must be explicit identifiers.

Definition 4.22 (Parameterized properties).

PropertiesP == Identifier 7→ ValueP

A parameterized declaration can accept a parameter for the name of the object to define or aug-

ment, and can accept parameters for the values in its property collection.

Definition 4.23 (Parameterized declarations).

DeclarationP ::= defP type IdentifierP as PropertiesP
| augP type IdentifierP with PropertiesP
| defP xform IdentifierP

from IdentifierP to IdentifierP as PropertiesP
| augP xform IdentifierP with PropertiesP

A parameterized graph declaration is then simply a sequence of parameterized declarations.

Definition 4.24 (Parameterized graph declarations).

GraphDeclP == seq DeclarationP

A declaration pattern has a name, which is an identifier, and a body, which is a parameterized

graph declaration.

Definition 4.25 (Declaration patterns).

Pattern
name : Identifier
body : GraphDeclP

With the previous definitions in place, we can add two new statements to the transformation

language. The first defines a new pattern; the second applies an existing pattern based on a binding

of parameters to values. All of the previous (unparameterized) declarations are still allowed. (To

distinguish them, we use the term statement to refer to elements of the pattern-aware language and

the term declaration for elements of the pattern-free language.)

Definition 4.26 (Statements).

Statement ::= Declaration
| def pattern Identifier as GraphDeclP
| apply pattern Identifier with Binding

A patterned graph declaration is then a sequence of statements.

Definition 4.27 (Patterned graph declaration).

PatternedGraphDecl == seq Statement

Language semantics

In the previous section, the semantics of the transformation language defined how a transformation

graph was constructed from a graph declaration. We must now augment the semantics to show how
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a graph can be constructed from a patterned graph declaration. We used the Gdbdb ecec notation to refer to

the interpretation functions for the pattern-free language. We will define a new set of interpretation

functions, called P dbdb ecec, for the pattern-aware language.

We start by defining evaluation functions for each of the parameterized clauses in the language.

We will use the db ec notation to refer to all of the evaluation functions defined in this section, since it

should be obvious from context which is referred to.

Given a binding, we can evaluate a parameterized value. The evaluation of a concrete value is

the concrete value. A parameter is evaluated by looking for it in the binding: if it is bound to some

value, the evaluation is that value; if not, the evaluation is the error condition Ω.

Definition 4.28 (Evaluating a parameterized value).

ValueΩ ::= Value | Ω

db ec : (ValueP × Binding) → ValueΩ

dbα : Identifierecφ = α
dbi : Integerecφ = i
dbs : Stringecφ = s
dbp : Parameterecφ =

if p ∈ dom φ then φ(p) else Ω

Given a binding, we can evaluate a parameterized identifier. The evaluation of an identifier is the

identifier. A parameter is evaluated by looking for it in the binding: if it is bound to some identifier

(but not to any other kind of value), the evaluation is that identifier; if not, the evaluation is the error

condition Ω.

Definition 4.29 (Evaluating a parameterized identifier).

IdentifierΩ ::= Identifier | Ω

db ec : (IdentifierP × Binding) → IdentifierΩ

dbα : Identifierecφ = α
dbp : Parameterecφ =

if (p ∈ dom φ) ∧ (φ(p) ∈ Identifier) then φ(p) else Ω

Given a binding, we can evaluate a parameterized property collection. We evaluate each param-

eterized value in the property collection in turn; if any evaluate to Ω, the property collection as a

whole evaluates to Ω. Otherwise, each value is replaced by its evaluation.

Definition 4.30 (Evaluating a parameterized property collection).

PropertiesΩ ::= Properties | Ω

db ec : (PropertiesP × Binding) → PropertiesΩ

dbθPecφ =
if ∃ vP : ran θP • dbvPecφ = Ω then Ω
else { (α 7→ vP) : θP • α 7→ dbvPecφ }

Next, given a binding, we can evaluate a parameterized declaration. We provide separate defini-

tions for each kind of declaration, but the rationale for each is identical: if any part of the declaration

evaluates to Ω, then the declaration does as well; otherwise, each part is replaced by its evaluation.
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Definition 4.31 (Evaluating a parameterized declaration).

DeclarationΩ ::= Declaration | Ω

db ec : (DeclarationP × Binding) → DeclarationΩ

Case 4.31a (Datatype definitions).

dbdefP type αP as θPecφ =
if (dbαPecφ = Ω) ∨ (dbθPecφ = Ω) then Ω
else def type dbαPecφ as dbθPecφ

Case 4.31b (Datatype augmentations).

dbaugP type αP with θPecφ =
if (dbαPecφ = Ω) ∨ (dbθPecφ = Ω) then Ω
else aug type dbαPecφ with dbθPecφ

Case 4.31c (Transformation definitions).

dbdefP xform αP from βP to γP as θPecφ =
if (dbαPecφ = Ω) ∨ (dbβPecφ = Ω) ∨
(dbγPecφ = Ω) ∨ (dbθPecφ = Ω) then Ω

else def xform dbαPecφ from dbβPecφ to dbγPecφ as dbθPecφ

Case 4.31d (Transformation augmentations).

dbaugP xform αP with θPecφ =
if (dbαPecφ = Ω) ∨ (dbθPecφ = Ω) then Ω
else aug xform dbαPecφ with dbθPecφ

Finally, given a binding, we can evaluate a parameterized graph declaration. We evaluate each of

the sequence’s declarations in turn; if any evaluate to Ω, then the parameterized graph declaration

does as well; otherwise, each declaration is replaced by its evaluation.

Definition 4.32 (Evaluating a parameterized graph declaration).

GraphDeclΩ ::= GraphDecl | Ω

db ec : (GraphDeclP × Binding) → GraphDeclΩ

dbgdecφ =
if (∃ d : ran gd • dbdecφ = Ω) then Ω
else db ecφ ◦ gd

With these evaluation functions in place, we can proceed with defining the P dbdb ecec interpretation

functions. In the previous section, the interpretation functions directly yielded graphs. With the new

language features, however, we must keep track of extra state, and therefore require a separate state

schema.

The state of an interpretation is defined by the graph constructed so far, and the set of patterns

that have been defined. An interpretation can also be in an erroneous state, which we signify by Ω.

We will use subscripts when it is important to distinguish the erroneous state (ΩS) from the erroneous

graph (ΩG).
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Definition 4.33 (States).

State
graph : Graph
patterns : Identifier 7→ Pattern

∀ id : dom patterns • patterns (id).name = id

StateΩ ::= State | Ω

We say that a state and a graph are consistent iff they are either both erroneous, or the graphs are

identical.

Definition 4.34 (Consistency of states and graphs).

S and G are consistent⇔ (S = ΩS ∧ G = ΩG) ∨ (S.graph = G)

For convenience, we provide a name for the empty state (i.e., the one with an empty graph and

no patterns):

Definition 4.35 (The empty state).

∅State : State

∅State = 〈|graph   ∅Graph, patterns   ∅ |〉

We can now proceed with defining the interpretation functions. We start by defining how each

kind of statement modifies an existing state. As before, we will define this function with several cases.

Definition 4.36 (Interpreting a statement in terms of a state).

P dbdb ecec : (Statement × StateΩ) → StateΩ

The simplest case is when we are already in the error condition; in that case, the error propagates

regardless of the statement.

Case 4.36a (Propagation of errors).

P dbdbstmt : StatementececΩ = Ω

An unparameterized declaration is interpreted in terms of the current graph using Gdbdb ecec. If the

declaration interprets to the erroneous graph, then the corresponding statement interprets to the

erroneous state.

Case 4.36b (Unparameterized declarations).

P dbdbd : DeclarationececS =
if GdbdbdececS.graph 6= ΩG then
〈|graph   GdbdbdececS.graph,
patterns   S.patterns |〉

else
ΩS

A pattern definition adds a new Pattern schema instance to the state if there is not already a

pattern with the same name. If there is an existing pattern, the result is the error condition.
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Case 4.36c (Pattern definitions).

P dbdbdef pattern α as gdPececS =
if (α /∈ dom S.patterns) then
〈|graph   S.graph,
patterns   S.patterns ∪ {α 7→ 〈|name   α, body   gdP |〉} |〉

else
Ω

A pattern can be applied with a binding of parameters to values. First, we evaluate the pattern’s

body in terms of the given binding; this substitutes each parameter’s actual value into the pattern’s

declarations. We then interpret this substituted pattern body in terms of the current graph. Since

there are no longer any parameters in the pattern body, this final step is performed using the existing

Gdbdb ecec function.

There are three ways that a pattern application can interpret to Ω. First, the pattern might not

have been defined. Second, the pattern’s body might evaluate to Ω, signifying that some of the

parameters mentioned in the pattern body were not assigned values by the binding. Third, the

evaluated body might interpret to Ω; this might occur, for instance, if, after successfully substituting

values for all of the parameters, the pattern body tries to define a datatype or transformation that

already exists.

Case 4.36d (Pattern applications).

P dbdbapply pattern α with φececS =
if (α ∈ dom S.patterns) ∧ (dbS.patterns (α).bodyecφ 6= Ω) ∧
(GdbdbdbS.patterns (α).bodyecφececS.graph) 6= Ω then
〈|graph   GdbdbdbS.patterns (α).bodyecφececS.graph,
patterns   S.patterns |〉

else
Ω

This completes the interpretation function for a single statement. We can provide a similar inter-

pretation function for entire patterned graph declarations, showing how the sequence of statements

modifies an existing state.

The interpretation function for patterned graph declarations is defined in two parts. An empty

sequence obviously leaves the state unchanged, regardless of whether the state was in an error con-

dition. For a non-empty sequence, we interpret the sequence’s first statement in terms of the original

state. We then interpret the remainder of the sequence in terms of the new state. This allows us to

inductively step through the sequence of statements, interpreting each one in turn.

Definition 4.37 (Interpreting a patterned graph declaration in terms of a state).

P dbdb ecec : (PatternedGraphDecl × StateΩ) → StateΩ

P dbdb〈〉ececS = S

P dbdb〈stmt〉á restececS = P dbdbrestececP [[stmt]]S

We can show that the interpretation of patterned graph declarations propagates errors, just like

the interpretation of statements does.
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Theorem 4.38 (Propagation of errors in patterned graph declarations). For any patterned graph

declaration gdP, P dbdbgdPececΩ = Ω.

Proof. We prove this inductively on the structure of the statement sequence.

Base case. Let gdP = 〈〉. Definition 4.37 trivially shows that P dbdbgdPececΩ = Ω.

Inductive case. Let gdP = 〈stmt〉 á rest and assume that P dbdbrestececΩ = Ω. By Definition 4.37 we

know that

P dbdbgdPececΩ = P dbdbrestececP [[stmt]]Ω

Case 4.36a tells us that errors propagate through individual statements, so that P dbdbstmtececΩ = Ω. By

substitution,

P dbdbgdPececΩ = P dbdbrestececΩ

Finally, by the inductive assumption, we know that P dbdbrestececΩ = Ω. By substitution,

P dbdbgdPececΩ = Ω

Definition 4.37 provides a semantics for patterned graph declarations in terms of an existing state.

Finally, we can provide a new interpretation function that provides a semantics for patterned graph

declarations on their own — we simply start with an empty state.

Definition 4.39 (Interpreting a patterned graph declaration).

P dbdb ecec : PatternedGraphDecl → StateΩ

P dbdbgdPecec = P dbdbgdPecec∅State

This concludes the denotational semantics for the extended transformation language. To prove its

correctness, we must show two things. First, we must show that the semantics of the new language is

consistent with the semantics of the old. Second, we must show that the new semantics is still useful,

by proving that any patterned graph declaration that interprets without errors yields a well-formed

graph.

We prove consistency by showing that a sequence of unparameterized declarations, which is a

valid graph declaration in both languages, yields an equivalent interpretation in each. We first prove

this in terms of an already consistent state and graph, and then prove it in the more general case.

Lemma 4.40 (Consistency is maintained by interpretation). Given an unpatterned graph declaration

gd, if S0 and G0 are consistent according to Definition 4.34, then P dbdbgdececS0
and GdbdbgdececG0

are also

consistent.

Proof. There are two ways that S0 and G0 can be consistent. If S0 and G0 are Ω, then P dbdbgdececS0
and

GdbdbgdececG0
are also Ω by Theorems 4.38 and 4.15, respectively. They are therefore trivially consistent.

If S0 and G0 are not Ω, we must prove this by induction on the structure of the sequence of

declarations.
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Base case. Let gd = 〈〉. Definition 4.14 tells us that the empty sequence does not affect the

interpreted graph:

GdbdbgdececG0
= Gdbdb〈〉ececG0

= G0

Similarly, Definition 4.37 tells us that the empty sequence does not affect the interpreted state:

P dbdbgdececS0
= P dbdb〈〉ececS0

= S0

Since we already know that S0 and G0 are consistent, we can see by substitution that P dbdbgdececS0
and

GdbdbgdececG0
are consistent as well.

We must consider the inductive case in two parts, depending on whether the first declaration in

the sequence interprets to Ω.

Inductive case 1. Let gd = 〈d〉 á rest. In this case, we assume that the first declaration in the

sequence interprets to an error, so we also let GdbdbdececG0
= ΩG. We would like to show that both

interpretations of gd are Ω, and therefore trivially consistent.

Definition 4.14 tells us that

GdbdbgdececG0
= GdbdbrestececG [[d]]G0

One of our assumptions for this case is that GdbdbdececG0
= ΩG, so by substitution,

GdbdbgdececG0
= GdbdbrestececΩG

Theorem 4.15 tells us that ΩG propagates through the G interpretation of any sequence of declara-

tions, so GdbdbrestececΩG
= ΩG. By substitution,

GdbdbgdececG0
= ΩG

Showing that the state-based interpretation is ΩS takes slightly more work. To start with, we are

given that S0 and G0 are consistent, and that they are not Ω. Therefore,

S0.graph = G0

We have assumed for this case that GdbdbdececG0
= ΩG, and so by substitution:

GdbdbdececS0.graph = ΩG

Case 4.36b tells us that since the G interpretation of d in terms of S0.graph is ΩG, then the P
interpretation in terms of S0 is ΩS:

P dbdbdececS0
= ΩS

We can now proceed with a similar argument as for the graph-based interpretation. Definition 4.37

tells us that

P dbdbgdececS0
= P dbdbrestececP [[d]]S0

We have just proved that P dbdbdececS0
= ΩS, so by substitution,
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P dbdbgdececS0
= P dbdbrestececΩS

Theorem 4.38 tells us that ΩS propagates through the interpretation of any sequence of statements,

so P dbdbrestececΩS
= ΩS. By substitution,

P dbdbgdececS0
= ΩS

We have showed that P dbdbgdececS0
= ΩS and that GdbdbgdececG0

= ΩG. We know that ΩS and ΩG are

trivially consistent; therefore, by substitution, we know that P dbdbgdececS0
and GdbdbgdececG0

are consistent

as well.

Inductive case 2. Let gd = 〈d〉 á rest. In this case, we assume that the first declaration in the

sequence does not interpret to an error, so we also let P dbdbdececS0
= S1 and GdbdbdececG0

= G1. Assume that,

by induction, if any S ′ and G ′ are consistent, then P dbdbrestececS ′ and GdbdbrestececG ′ are also consistent. We

would like to show that P dbdbgdececS0
and GdbdbgdececG0

are consistent.

We are given that GdbdbdececG0
, and therefore GdbdbdececS0.graph, do not evaluate to Ω. Therefore, Case

4.36b tells us that interpreting d in terms of S0 gives us a new state whose graph is GdbdbdececS0.graph:

(P dbdbdececS0
).graph = Gdbdbdecec(S0.graph)

We are also given that S0 and G0 are consistent. Since they are not Ω, we know that S0.graph = G0.

Therefore, by substitution,

(P dbdbdececS0
).graph = GdbdbdececG0

We are also given that P dbdbdececS0
= S1 and that GdbdbdececG0

= G1. Again by substitution,

S1.graph = G1

This shows that S1 and G1 are consistent. The inductive hypothesis tells us that interpreting rest in

terms of S1 and G1 maintains this consistency:

P dbdbrestececS1
and GdbdbrestececG1

are consistent

Next, Definition 4.14 tells us that

GdbdbgdececG0
= GdbdbrestececG [[d]]G0

We are given that GdbdbdececG0
= G1, so by substitution,

GdbdbgdececG0
= GdbdbrestececG1

Similarly, Definition 4.37 tells us that

P dbdbgdececS0
= P dbdbrestececP [[d]]S0

We are given that P dbdbdececS0
= S1, so by substitution,

P dbdbgdececS0
= P dbdbrestececS1

Since we have shown that P dbdbrestececS1
and GdbdbrestececG1

are consistent, by substitution,
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P dbdbgdececS0
and GdbdbgdececG0

are consistent

We have just proved that if we have a consistent state and graph, then every declaration in the

language maintains this consistency. We can now show that entire graph declarations yield consistent

results regardless of which interpretation function we use.

Theorem 4.41 (Consistency of the two languages). Given an unpatterned graph declaration gd,

P dbdbgdecec and Gdbdbgdecec are consistent.

Proof. Definition 4.39 tells us that the P interpretation of gd starts with an empty state:

P dbdbgdecec = P dbdbgdecec∅State

Similarly, Definition 4.16 tells us that the G interpretation starts with an empty graph:

Gdbdbgdecec = Gdbdbgdecec∅Graph

Since the empty state’s graph is, by Definition 4.35, the empty graph, it is obvious that

∅State and∅Graph are consistent

Lemma 4.40 tells us that interpreting any sequence in terms of ∅State and ∅Graph maintains this

consistency:

P dbdbgdecec∅State
and Gdbdbgdecec∅Graph

are consistent

Therefore, by substitution,

P dbdbgdecec and Gdbdbgdecec are consistent

For the second part of our correctness proof, we must show that the new transformation language

is still “useful” — that any patterned graph declaration produces either an error or a well-formed

graph.

Theorem 4.42 (No errors implies well-formedness). For any patterned graph declaration gdP, if

P dbdbgdPecec 6= Ω, then P dbdbgdPecec.graph is well-formed.

Proof. We prove this by induction on the sequence of statements in gdP. Any errors that arise are

propagated through to the end by Case 4.36a. By Definition 4.39, we start with the empty state,

whose graph is trivially well-formed. We must therefore show that each declaration, if given a state

with a well-formed graph, must produce either Ω or another state with a well-formed graph.

For unpatterned declarations, we use the graph-based interpretation function from the previous

section directly on the state’s graph. By Theorem 4.17, we know that this function maintains well-

formedness.

Pattern definitions obviously maintain well-formedness, since they do not modify the state’s

graph.
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Pattern applications can generate Ω if the pattern does not exist, or if the binding does not supply

values for each of the parameters used in the pattern’s body. Otherwise, according to Definition

4.36d, the pattern body is evaluated in terms of the binding, yielding a sequence of unpatterned

declarations. This sequence is then interpreted in terms of the state’s graph. As before, Theorem

4.17 shows that a sequence of unpatterned declarations maintains well-formedness or generates Ω.

Therefore, pattern applications must, as well.

Another interesting property of the new language is that it is reducible. That is, it is possible to

replace all of the pattern statements in a patterned graph declaration with unpatterned declarations,

without changing the resulting graph.

Theorem 4.43 (Reducibility of patterns). Every patterned graph declaration gdP that does not in-

terpret to Ω can be reduced to an equivalent unpatterned graph declaration gd, where P dbdbgdPecec is

consistent with Gdbdbgdecec.

Proof. Since P dbdbgdPecec 6= Ω, we know by Theorem 4.42 that P dbdbgdPecec.graph is well-formed. Further,

we know by Theorem 4.18 that this well-formed graph must have some unpatterned graph declara-

tion gd that constructs it.

Summary

In this chapter we presented a transformation discovery framework based on transformation graphs.

This framework exploits the fact that datatypes can be opaque: since they are opaque, the datatypes

can be used as the nodes of a transformation graph, without having to provide any details of their

internal structure. This knowledge is encapsulated into the atomic transformations that operate on a

datatype; these atomic transformations then form the edges of the graph. We can use declaration pat-

terns to simplify graph definitions when there are common patterns of datatypes and transformations

that occur frequently.

With this graph structure in place, a path represents a compound transformation between arbi-

trary datatypes; this works because the atomic transformations that comprise the compound trans-

formation are composable. We have defined a transformation to be any translation between two

datatypes that maintains some equivalence; a compound transformation, then, maintains any equiv-

alence that is maintained by each of its constituent atomic transformations.

Because compound transformations are represented by paths, we can use any efficient pathfinding

algorithm to discover them. Again, this works because the datatypes are opaque: we do not (and

cannot) concern ourselves with the detailed internal structure of the datataypes while searching for

a solution. Instead, all of the possible interactions with a datatype are fully specified by which atomic

transformations are available that can operate on it, greatly reducing the state space we must search

through when looking for a transformation solution. Moreover, our use of properties and weight

providers allows different clients to use the same transformation graph for different use cases, which

have different criteria for determining which compound transformation is optimal.

Finally, we have presented a formalization and denotational semantics for our graph-based frame-

work, which served two purposes. First, it showed that the more complex features, like declaration

patterns, can be represented in terms of a simple “datatypes and atomic transformations” model
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without losing correctness. Second, the denotational semantics can be used, along with the graph

definition file format, as a description of a language-independent implementation of the transforma-

tion framework.

Having presented a conceptual overview and formalization of the graph-based model, we will

next consider two case studies. These case studies, while hypothetical, will be of sufficient complexity

to show that our transformation discovery approach can be useful in practice. This will also highlight

the limitations of the model, specifically with how it handles datatypes whose internal structure

changes rapidly, either over time or by use case. In later chapters, we will consider extensions to the

graph model that let us overcome these weaknesses.
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5CASE STUDY

Zucchini Corporation

In this chapter we present a case study based on a hypothetical manufacturing company named

Zucchini Corporation. Zucchini has an existing software system that it uses to keep track of its

product line, warehouse inventory, and manufacturing schedule. This kind of manufacturing resource

planning (MRP) application is very common in industrial contexts. While this particular example is

very simple when compared to an MRP application that would be used by a real-world organization,

it contains enough detail to highlight various data transformation issues that arise during such a

system’s development and use, and to show how the graph-based transformation framework from

the previous chapter can be a useful solution.

This case study examines one particular use case in Zucchini’s day-to-day interactions with its

MRP software — that of generating purchase orders. The products that Zucchini manufactures each

require certain subcomponent parts before being assembled. Some of these subcomponents are also

produced in-house, meaning that they too have constituent subparts. This breakdown repeats, yield-

ing a bill of materials tree for each product manufactured and sold by Zucchini. The internal nodes

of the tree are subcomponents that are produced in-house; the leaf nodes are externally supplied

subcomponents that are bought from suppliers.

We focus on these leaf nodes. In response to a set of orders from Zucchini’s customers, the MRP

application will schedule the manufacturing facilities to produce the appropriate products, including

all of the necessary in-house subcomponents defined in the bill of materials. Each of these scheduled

productions requires its constituent parts to be on-hand, either already in Zucchini’s standing inven-

tory, or bought and received from a supplier in time for manufacturing to begin. The details of how

the MRP application schedules productions and maintains a standing inventory are well outside the

scope of this case study. For our purposes, we treat the MRP application as an opaque black box that

generates purchase orders — such as the one shown in Figure 5.1 — which request the purchase of

subcomponents from their suppliers, and the delivery of those items by a certain date.

In this case study, we assume that Zucchini’s suppliers have differing capabilities for receiving

purchase orders electronically, and differing formats for encoding the purchase orders. We examine

how data transformation graphs, as defined in Chapter 4, can help mitigate these differences.
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19 October 2006

Purchase order: 200610-0102
Customer number: 20693-482

Bill to: Zucchini Corp.
Corp. HQ
New York, NY

Ship to: Zucchini Corp.
NY-Penn Warehouse
Scranton, PA

Qty Product Unit price Total price

25 WD-21-893 Whizza-widget 4.25 106.25
14 yd2 CL-INV-289 Invisibility fabric 19.50 273.00

Subtotal 379.25

5% sales tax (New York state) 18.96

TOTAL $398.21

Figure 5.1: An example purchase order

5.1 Initial capabilities

Zucchini Corp. runs a slightly customized version of a common MRP software suite written by Turnip-

soft Solutions, a large enterprise software developer. Purchase orders generated by this software can

be output in one of two formats. The first is a simple printout in the Adobe Portable Document

Format (PDF). The second, the Turnipsoft Binary Data Interchange (TBDI) format, is suitable for

electronic interchange. TBDI is a binary format for business documents developed specifically for the

Turnipsoft suite. The details of the TBDI purchase order format are shown in Tables 5.1 and 5.2.

A purchase order consists of a header section, containing information about the purchase order as a

whole, followed by a sequence of line item sections, one for each line item in the order.

The header section, shown in Table 5.1, starts with a magic number that identifies this as a TBDI

document. This magic number is always the hexadecimal quantity 〈〈54 42 44 49〉〉, which is equivalent

to the ASCII character string “TBDI”. It is followed by a document type field that identifies which

particular TBDI business document is represented — in our case, a purchase order. Next comes

a length field that states the overall length in bytes of the purchase order document, including all

of its line items. These three fields are all encoded as unsigned 32-bit integers. Next comes the

purchase order date, which is the date that the purchasing company generated this order. The date

is expressed as eight numeric ASCII bytes (〈〈30〉〉 through 〈〈39〉〉, inclusive), in YYYYMMDD format.

Next is the purchase order number. This is encoded as an ASCIIZ string, which is a sequence of 8-

bit ASCII characters terminated by a null byte (〈〈00〉〉). Next are the customer ID, billing address, and

shipping address fields, also encoded as ASCIIZ strings. Next comes the currency field, an ASCIIZ string

specifying the ISO 4217 [55] code of the currency used throughout this purchase order. Amounts in

differing currencies are not supported within a single order. Next comes the decimal modifier, a signed

32-bit integer that is used to encode non-integral currency amounts in the purchase order using only

integral types. Given a decimal modifier d, a currency value z actually corresponds to the amount

z × 10−d. For instance, to encode the amount US$53.42, one could use a currency field of “USD”,

a decimal modifier of 2, and an amount value of 5,342. Like the currency field, a single decimal
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Table 5.1: TBDI purchase order header format

Field name Length Type Description
Magic 4 uint32 Magic number (0x54424449)
DocType 4 uint32 Document type

(1 = purchase order)
Length 4 uint32 Length (in bytes) of the entire pur-

chase order
Date 8 ASCII Date the purchase order was

placed, in YYYYMMDD format
PONumber 1 + n ASCIIZ Purchase order number
CustID 1 + n ASCIIZ Customer ID
BillTo 1 + n ASCIIZ Billing address
ShipTo 1 + n ASCIIZ Shipping address
Currency 1 + n ASCIIZ The currency used for each

amount in this purchase order
Decimals 4 int32 The decimal modifier for this pur-

chase order
Total 4 int32 The total amount of the purchase

order
NumLines 4 uint32 The number of line items on this

purchase order

modifier is used throughout the purchase order. Following the currency information is total purchase

order price, a signed 32-bit currency amount. The last field in the header specifies the number of line

item sections that follow.

Table 5.2: TBDI line item format

Field name Length Type Description
Length 4 uint32 Length (in bytes) of this line item
ProductID 1 + n ASCIIZ The product ID for this line item
Quantity 4 int32 The quantity for this line item
Unit 1 + n ASCIIZ The unit of the quantity field
UnitPrice 4 int32 Price per unit for this line item
LineTotal 4 int32 Total price for this line item

Each line item section, shown in Table 5.2, starts with a length field, specifying the total length

of the line item section in bytes. Next is the product ID for this line, expressed as an ASCIIZ string.

Next is the quantity, expressed as a signed 32-bit integer. Next is the unit field, an ASCIIZ string that

specifies the units of the quantity value. Often this will be “ea” (for each), signifying a product sold

as discrete entities. Next is the unit price, a signed 32-bit currency amount, which expresses the cost

for each unit of product. Last is the line total, which will usually equal the unit price multiplied by

the quantity. This will not be the case for a line item that does not represent an actual product, such

as a subtotal.

Any element which goes into the total price of the purchase order, including taxes, service fees,

and shipping charges, should be represented by a line item section. Extra line item sections can be

used to represent informational line items such as subtotals, so the total cost of the purchase order
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might not exactly equal the sum of every line item. (It must, however, not be greater than this

sum.) All of the identifiers in a purchase order are expected to contain only alphanumeric characters,

spaces, and hyphens, a restriction carried over from the Turnipsoft MRP software suite. All multi-byte

values are big-endian.

As an example, we can look at the purchase order shown in Figure 5.1. We can encode this

purchase order as a TBDI document as shown in Table 5.3.

Table 5.3: Purchase order encoded as a TBDI document

Data Field Length
HEADER

“TBDI” Magic 4
〈〈00 00 00 01〉〉 DocType 4
〈〈00 00 01 00〉〉 Length (256) 4
“20061019” Date 8
“200610-0102” 〈〈00〉〉 PONumber 12
“20693-482” 〈〈00〉〉 CustID 10
“Zucchini Corp.” 〈〈0A〉〉 15
“Corp. HQ” 〈〈0A〉〉

)

BillTo 9
“New York, NY” 〈〈00〉〉 13
“Zucchini Corp.” 〈〈0A〉〉 15
“NY-Penn Warehouse” 〈〈0A〉〉

)

ShipTo 18
“Scranton, PA” 〈〈00〉〉 13
“USD” 〈〈00〉〉 Currency 4
〈〈00 00 00 02〉〉 Decimals (2) 4
〈〈00 00 9B 8D〉〉 Total (39,821⇒ $398.21) 4
〈〈00 00 00 04〉〉 NumLines (4) 4

Section length 141
LINE ITEM 1

〈〈00 00 00 1D〉〉 Length (29) 4
“WD-21-893” 〈〈00〉〉 ProductID 10
〈〈00 00 00 19〉〉 Quantity (25) 4
“ea” 〈〈00〉〉 Unit 3
〈〈00 00 01 A9〉〉 UnitPrice (425⇒ $4.25) 4
〈〈00 00 29 81〉〉 LineTotal (10,625⇒ $106.25) 4

Section length 29
LINE ITEM 2

〈〈00 00 00 23〉〉 Length (35) 4
“CL-INV-289” 〈〈00〉〉 ProductID 11
〈〈00 00 00 0E〉〉 Quantity (14) 4
“sq. yd.” 〈〈00〉〉 Unit 8
〈〈00 00 07 9E〉〉 UnitPrice (1950⇒ $19.50) 4
〈〈00 00 6A A4〉〉 LineTotal (27,300⇒ $273.00) 4

Section length 35
LINE ITEM 3

〈〈00 00 00 18〉〉 Length (24) 4
“SUB” 〈〈00〉〉 ProductID 4
〈〈00 00 00 00〉〉 Quantity (0) 4
“N/A” 〈〈00〉〉 Unit 4
〈〈00 00 00 00〉〉 UnitPrice (0) 4
〈〈00 00 94 25〉〉 LineTotal (37,925⇒ $379.25) 4

Section length 24

72



5.2 Supplier with the same software

Table 5.3: (continued)

Data Field Length
LINE ITEM 4

〈〈00 00 00 1B〉〉 Length (27) 4
“TAX-NY” 〈〈00〉〉 ProductID 7
〈〈00 00 00 00〉〉 Quantity (0) 4
“N/A” 〈〈00〉〉 Unit 4
〈〈00 00 00 00〉〉 UnitPrice (0) 4
〈〈00 00 07 68〉〉 LineTotal (1,896⇒ $18.96) 4

Section length 27

5.2 Supplier with the same software

The first of Zucchini’s suppliers that we examine is Eggplant Widgets, Ltd. Like Zucchini, Eggplant

also uses the Turnipsoft application suite for its MRP needs. Since both companies’ applications

support the TBDI format natively, no actual transformation is needed before sending the data to the

Eggplant system. We are left with the simple transformation graph shown in Figure 5.2.

TBDI

Figure 5.2: Initial purchase order transformation graph

5.3 Supplier with non-electronic purchasing

The next supplier we examine is Amalgamated Okra (AO). AO is an old, well-established company,

and has a legacy purchasing process in place that is non-electronic. Purchase orders must be sent to

AO’s office via the postal service or by fax, after which orders are confirmed by telephone.

Since Zucchini’s software can output purchase orders in the PDF format for printing, we once

again do not need any transformations. We can add the Turnipsoft PDF format to the transformation

graph, as shown in Figure 5.3.

TBDI PDF

Figure 5.3: Adding PDF to the purchase order graph

5.4 The big consortium

Our next supplier is Global Cucumber, Inc., one of the founding members of the VeggieBiz Electronic

Commerce Consortium. The Consortium was formed several years ago to define an XML- and Web

Service-based communication standard for companies in this business area.

Under these auspices, the Consortium has developed the VeggieBiz XML Business Document

(VXBD) format. Like TBDI, the Consortium standard defines many different business document for-
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mats under the name VXBD. We look only at the purchase order format. This format is described by

the following RelaxNG [26, 25] schema:

start = purchaseOrder

customerID = element customerID { xsd:anyURI }
poNumber = element purchaseOrderNumber { xsd:anyURI }
productID = element productID { xsd:anyURI }

addressLine = element line { text }

amount = {
attribute currency { text },
xsd:decimal

}

lineItem = element lineItem {
productID,
(

element quantity {
attribute unit { text }?,
xsd:integer

},
element pricePer { amount }

)?,
element totalLinePrice { amount }

}

purchaseOrder = element purchaseOrder {
element date { xsd:date },
poNumber,
customerID,
element billingAddress { addressLine+ },
element shippingAddress { addressLine+ }?,
element lineItems { lineItem+ },
(

element subtotal { amount },
element adjustments { lineItem+ }

)?,
element total { amount }

}

Apart from the obvious difference in syntaxes, there are some subtle differences between the

TBDI and VXBD formats. First, VXBD assumes that all of the identifiers (purchase order numbers,

customer IDs, product IDs) are expressed as URIs. TBDI, on the other hand, inherits its assumptions

about identifiers from the Turnipsoft application that it was written for, and assumes that identifiers

are short and contain only alphanumeric characters, spaces, and hyphens.

Another difference regards the line items in the purchase order. In TBDI, there is a single set of

line items, which contains not only the main line items of the purchase order, but also informational

items such as subtotals, and extra charges such as taxes and shipping. In VXBD, the lineItems

tag only contains the purchase order’s main line items. Extra charges like taxes and shipping are
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considered adjustments, and appear in a separate section. The subtotal (which must be the sum of

the costs in the lineItems tag) only appears if there are adjustments in the purchase order.

A final difference involves the currency amounts in the purchase order. In TBDI, the header

section contains a currency and decimal modifier field that is in force for the entire purchase or-

der document. In the VXBD format, currency amounts are encoded as strings using XML Schema’s

xsd:decimal data type, so decimal modifiers are not needed. Further, each amount has its own

currency XML attribute, allowing for different currencies to appear in a single purchase order.

The purchase order from Figure 5.1 can be expressed in this VXBD format as follows:

<purchaseOrder>
<date>2006-10-19</date>
<purchaseOrderNumber>
http://turnipmrp.zucchini.com/purchaseOrders/200610-0102

</purchaseOrderNumber>

<customerID>
http://vxbd.globalcucumber.co.uk/customers/20693-482

</customerID>
<billingAddress>
<line>Zucchini Corp.</line>
<line>Corp. HQ</line>
<line>New York, NY</line>

</billingAddress>
<shippingAddress>
<line>Zucchini Corp.</line>
<line>NY-Penn Warehouse</line>
<line>Scranton, PA</line>

</shippingAddress>

<lineItems>
<lineItem>
<productID>
http://vxbd.globalcucumber.co.uk/products/WD-21-893

</productID>
<quantity>25</quantity>
<pricePer currency="USD">4.25</pricePer>
<totalLinePrice currency="USD">106.25</totalLinePrice>

</lineItem>
<lineItem>
<productID>
http://vxbd.globalcucumber.co.uk/products/CL-INV-289

</productID>
<quantity unit="sq. yd.">14</quantity>
<pricePer currency="USD">19.50</pricePer>
<totalLinePrice currency="USD">273.00</totalLinePrice>

</lineItem>
</lineItems>

<subtotal currency="USD">379.25</subtotal>
<adjustments>
<lineItem>
<productID>
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http://www.state.ny.us/sales-tax
</productID>
<totalLinePrice currency="USD">18.96</totalLinePrice>

</lineItem>
</adjustments>

<total currency="USD">398.21</total>
</purchaseOrder>

Zucchini’s software does not directly support the VXBD format, and for various political reasons,

Turnipsoft does not plan on adding this support in the near future. Zucchini would still like to au-

tomate purchasing with Global Cucumber, however, so some transformation into VXBD is needed.

Luckily, the transformation from TBDI into VXBD is not very complex, and Zucchini’s in-house soft-

ware team is able to develop and test an implementation in a couple of months. While they are at it,

they implement an inverse transformation, as well. Since VXBD supports multiple currencies within

a single purchase order, whereas TBDI does not, the inverse transformation must be partial — there

is not always an equivalent TBDI document for a VXBD purchase order.

Another interesting feature of the transformations is that they must be implemented in a decla-

ration pattern, rather than as two individual transformations. This is due to the different nature of

the identifiers in the two formats. This is a similar problem to the fact that different companies will

have different identifiers for the same product; when Zucchini’s MRP software decides that it needs

to order a certain quantity of product A, it has to remember that the supplier calls this product B

instead. When outputting a purchase order, it uses the supplier’s identifier for the product, not its

own.

It would seem that this mechanism could be used to handle the different identifiers in TBDI and

VXBD. However, this is not the case — the Turnipsoft developers made an unfortunate decision to

place too many restrictions on what is considered a valid identifier. Since URIs contain characters

that are not valid in a Turnipsoft identifier, it is therefore not possible to use the same identifier

mapping mechanism to translate Zucchini’s alphanumeric product identifiers into the URIs required

by VXBD. Instead, a separate mapping must be maintained. Rather than incorporating this mapping

into the transformations directly, the transformations can be encapsulated into a declaration pattern

that takes this identifier mapping as a parameter. This allows the transformations to be reused by

other Turnipsoft users; all that is needed is to provide a different identifier mapping when applying

the declaration pattern.

We can add the VXBD format, and the transformation pattern developed by Zucchini, to the

graph as shown in Figure 5.4. The red dashed box around the new transformations indicates that

they are defined in a parameterized declaration pattern; the box’s label defines the pattern’s formal

parameters.

(ID mapping)
TBDI

PDF

VXBD

Figure 5.4: Adding VXBD to the purchase order graph
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5.5 A competing consortium

While the goals of the VeggieBiz consortium are laudable, there was a technical and political dis-

agreement that developed early in the standardization process. As often happens, this led some of

the founding member companies to split away and form a competing consortium. Thinking that

the VeggieBiz communication protocols were needlessly complex, the new consortium called its the

competing standard the Simplified Business Exchange Platform (SBEP). The SBEP Group had the

same overall goals as the VeggieBiz consortium: to develop a standard suite of data formats and

protocols for electronic commerce. The main difference of opinion was over the choice of implemen-

tation; whereas VeggieBiz developed a solution based on Web Services [2], SBEP opted for a more

lightweight solution based on a REST architecture [40].
Both consortia decided to use XML for their data interchange formats; unfortunately, the schism

occurred before the design of the VXBD format was finalized. As a result, the SBEP Group proceeded

to develop a similar, but incompatible, XML purchase order format, conforming to the following

schema:

start = purchaseOrder

customerID = element customerID { xsd:anyURI }
poNumber = element purchaseOrderNumber { xsd:anyURI }
productID = element productID { xsd:anyURI }

addressLine = element line { text }

lineItem = element lineItem {
productID,
(

element quantity {
attribute unit { text }?,
xsd:integer

},
element pricePer { xsd:decimal }

)?,
element totalLinePrice { xsd:decimal }

}

purchaseOrder = element purchaseOrder {
element date { xsd:date },
poNumber,
customerID,
element currency { text },
element billingAddress { addressLine+ },
element section {

element shippingAddress { addressLine+ }?,
element lineItems { lineItem+ },
(

element subtotal { xsd:decimal },
element adjustments { lineItem+ }

)?
}+,
(
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element subtotal { xsd:decimal },
element adjustments { lineItem+ }

)?,
element total { xsd:decimal }

}

As the two XML formats have a common ancestry in the pre-schism consortium, the two datatypes

are obviously quite similar. The differences stem from design decisions that were made after the split.

SBEP decided not to support multiple currencies within a single purchase order. They did decide,

however, to support multiple shipping addresses; a single SBEP purchase order can contain separate

line item sections, each of which can be delivered to different locations. Our example purchase order,

though, does not require this extra feature, so its SBEP rendering is very similar to the VXBD version:

<purchaseOrder>
<date>2006-10-19</date>
<purchaseOrderNumber>
http://turnipmrp.zucchini.com/purchaseOrders/200610-0102

</purchaseOrderNumber>

<customerID>
http://sbep.broccoli.com/customers/20693-482

</customerID>
<currency>USD</currency>
<billingAddress>
<line>Zucchini Corp.</line>
<line>Corp. HQ</line>
<line>New York, NY</line>

</billingAddress>

<section>
<shippingAddress>
<line>Zucchini Corp.</line>
<line>NY-Penn Warehouse</line>
<line>Scranton, PA</line>

</shippingAddress>
<lineItems>
<lineItem>
<productID>
http://sbep.broccoli.com/products/WD-21-893

</productID>
<quantity>25</quantity>
<pricePer>4.25</pricePer>
<totalLinePrice>106.25</totalLinePrice>

</lineItem>
<lineItem>
<productID>
http://sbep.broccoli.com/products/CL-INV-289

</productID>
<quantity unit="sq. yd.">14</quantity>
<pricePer>19.50</pricePer>
<totalLinePrice>273.00</totalLinePrice>

</lineItem>
</lineItems>
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</section>

<subtotal>379.25</subtotal>
<adjustments>
<lineItem>
<productID>
http://www.state.ny.us/sales-tax

</productID>
<totalLinePrice>18.96</totalLinePrice>

</lineItem>
</adjustments>

<total>398.21</total>
</purchaseOrder>

While the two consortia are unlikely to recombine in the near future, many companies, including

Zucchini Corp., are in the unenviable position of having to do business with companies that use both

architectures. As a result, an interoperability group was formed to try to mitigate the differences

between the two. Their attempts to reconcile the Web Service implementation and the REST imple-

mentation are outside the scope of this case study (and many members of the interoperability group

secretly believe that these attempts will never be successful). However, their work on the data for-

mats has been fruitful; the similarity of the two XML schemas made it straightforward to define two

XSLT [24] transformations for converting between them. As before, these transformations will neces-

sarily be partial: a SBEP purchase order with multiple shipping addresses cannot be transformed into

VXBD, while a VXBD purchase order with multiple currencies cannot be transformed into the SBEP

format. Since both formats use URIs for the various identifiers in the purchase order, no identifier

mapping is needed; therefore, unlike in the previous example, we do not need to define these trans-

formations in a declaration pattern. We can add the SBEP datatype, and the XSLT transformations,

to our transformation graph as shown in Figure 5.5.

(ID mapping)
TBDI

PDF

VXBD

SBEP

Figure 5.5: Adding SBEP to the purchase order graph

5.6 Putting it together

With the transformation graph that we are slowly piecing together, we can put together a generic

strategy for handling purchase orders regardless of the supplier they are intended for. The Turnipsoft

software is able to create the purchase orders in two formats directly. As shown in Figure 5.6,

we highlight this in the transformation graph with a thicker border for these two datatypes. This

graph also shows the VXBD declaration pattern instantiated (and therefore shown with a blue dashed

border) with the Zucchini-Global Cucumber identifier mapping.
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Zucchini-GC mapping
TBDI

PDF

VXBD

SBEP

Figure 5.6: Identifying the source nodes in the transformation graph

We then maintain a mapping between suppliers and datatypes. The mapping that we have devel-

oped to this point is shown in Table 5.4. For each supplier, we run the pathfinding algorithm twice

— once from each source datatype provided by the MRP application — searching for a shortest path

to the supplier’s destination type. This gives us the compound transformation necessary to translate

the purchase order output of Zucchini’s MRP application into a format readable by the corresponding

supplier.

Table 5.4: Initial supplier mapping

Supplier Datatype

Eggplant Widgets, Ltd. TBDI
Amalgamated Okra PDF
Global Cucumber, Inc. VXBD
Broccoli, Inc. SBEP

Note that we are not considering what to do with the data once it has been transformed into

the appropriate type. The functional semantics of invoking a VeggieBiz Web Service to submit the

purchase order, for instance, might be quite different from the semantics of the Turnipsoft binary

exchange, or the Amalgamated Okra post/telephone process. This might necessitate a fundamentally

different application logic on the part of Zucchini’s software.

At this point, we have provided enough detail that we can use the Python prototype mentioned

in the previous chapter to implement this transformation graph. As described in earlier sections, the

transformations between the TBDI and VXBD datatypes are implemented as custom code, containing

the specific logic needed to parse these two formats. In the graph, the transformations are declared

in a declaration pattern, with a parameter that specifies the necessary identifier mapping; this means

that the concrete transformation code must be parameterized similarly. Our pathfinding and execu-

tion engine is then responsible for providing the right value for this parameter, based on the value

provided in the graph file’s apply pattern statement.

The transformations between the VXBD and SBEP datatypes, on the other hand, are written as

XSLT transformations. Much of the logic for executing an XSLT transformation — for loading the XSLT

library and linking the input and output channels to it, for instance — is boilerplate. Our prototype

supports the use of transformation adaptors to support this kind of boilerplate code. The adaptors

are conceptually similar to, and are used in the same way as, the parameterized transformations

described previously. In this case, for instance, the XSLT transformation adaptor takes as a parameter

the specific XSLT file to use. Transformation adaptors are different, however, in that the same code is

used for an entire class of related transformations, rather than for several instantiations of the same

transformation. As such, transformation adaptors are largely an implementation detail, and do not
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appear in the underlying abstract formalism.

5.7 Supplier that can receive multiple datatypes

One final example to consider is a supplier that can accept multiple purchase order formats. Avo-

cado LLC, for instance, is hedging their bets by supporting both the VXBD and SBEP purchase order

formats. This does not require any changes to the transformation graph, but the mapping between

suppliers and datatypes can now have multiple datatypes for a single supplier, as shown in Table 5.5.

Table 5.5: Supplier mapping with multiple output formats

Supplier Datatypes

Eggplant Widgets, Ltd. TBDI
Amalgamated Okra PDF
Global Cucumber, Inc. VXBD
Broccoli, Inc. SBEP
Avocado LLC SBEP, VXBD

We can still follow the same basic strategy for finding a purchase order transformation, but we

must now execute the discovery algorithm many times. Before, the algorithm was executed D times

for each supplier, where D is the number of datatypes that can be output directly by Zucchini’s

software. Now, we must execute the algorithm D · S times for each supplier, where S is the number

of datatypes that the supplier can accept.

Luckily, we can use a clever trick to eliminate many of these new executions. We add a dummy

source node and sink node to the graph, which do not correspond to any real datatypes. We then

connect the source node to each datatype generated by Zucchini’s software, and connect each of the

supplier’s accepted datatypes to the sink node. The modified graph for Avocado LLC, for example, is

shown in Figure 5.7.

Zucchini-GC mapping
VXBD

SBEP

TBDI

PDF

Figure 5.7: Using dummy nodes to reduce the number of discovery executions

A shortest path in this modified graph will provide us with a shortest path (and therefore a

compound transformation) from one of Zucchini’s output datatypes to one of the supplier’s accepted

datatypes. Further, there cannot be a shorter path involving one of the other generated or accepted

datatypes; if there were, this would yield a shorter path from the source node to the sink node, which

is not possible, as we already have the shortest such path. With this modification in place, we now

only require a single execution of the discovery algorithm for each of Zucchini’s suppliers.
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Summary

In this chapter, we have presented a case study based on the hypothetical Zucchini Corporation,

and used a prototype implementation of the framework from Chapter 4 to show how transformation

graphs could be used as a solution to one particular aspect of their manufacturing process. We were

able to support Zucchini suppliers that have differing requirements for accepting electronic purchase

orders, taking into account standardization efforts by multiple competing industry consortia. A naïve

use of this graph-based solution requires several executions of the discovery algorithm when there

are many purchase order formats that can be generated or accepted; however, we can use a dummy

source and sink node to reduce this to a single discovery execution, exploiting the fact that the

shortest path algorithm can find the optimal pairing.

While our transformation graph framework, as currently presented, is sufficient to tackle the

issues raised in this case study, it is not sophisticated enough to deal with all of the use cases that

might arise when dealing with data transformations. In our next case study, we present some of these

troublesome use cases, giving us insight into possible extensions to the model that could support

them.
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Generic data server

In this chapter we present another case study involving the transformation of data, and show how

our current transformation framework cannot provide a full solution. We examine the design, imple-

mentation, and use of a generic data server — an application responsible for the persistent storage of

data whose structure, though well-defined, is not known in advance. At first glance, this might seem

to fall perfectly under the purview of a standard relational database management system (RDBMS).

However, in our running example, not all of the data formats that we need to support will be rela-

tional structures; even if we decide to use an RDBMS for the actual storage, we will need to somehow

translate each data format into the appropriate relational tables.

We start by presenting a detailed overview of the problem that we wish to solve. We then show

how transformation graphs can be used to solve part of this problem: the need to support a wide

variety of proprietary image and metadata formats. Initially, we only examine one aspect of the

solution, and concentrate on transforming the different representations of the images’ pixel arrays.

Finally, we highlight some issues that arise when we try to incorporate the more complex metadata

formats into the design, giving insight into how we can extend our model to better support them.

6.1 Problem description

The example that we present is based on the Open Microscopy Environment1 (OME), an overview of

which can be found in [104]. The primary goal of the OME project is to provide a centralized mech-

anism for storing biological microscope images and their associated metadata, including any derived

computational results. Two issues complicate this goal. First, the different microscope manufacturers

have traditionally stored the images collected by their microscope software in opaque, proprietary

image formats. Worse, at acquisition time, they collect differing sets of metadata describing the im-

ages. Any software that aims to provide a generic imaging infrastructure must be able to tolerate

and reconcile these differences. The OME project has helped alleviate this problem by producing

a standard set of the most commonly useful metadata elements for biological imaging, along with

an extensible XML-based file format for storing this metadata [46]. As we have pointed out several

times throughout this thesis, standardized formats are only useful when there is at least a tacit agree-

1http://www.openmicroscopy.org/
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ment, by all parties involved, to use them in the spirit that they are intended. Encouragingly, this

data model and file format are being accepted and adopted by the microscope manufacturers and

scientific researchers, suggesting that it can be a key part of a viable, long-term solution. However,

the profusion of proprietary formats remains a problem, since existing tools based on them are still

quite common.

The second issue is that the purpose of these images is for researchers to apply sophisticated and

complex computational and analytic routines to them. The very nature of scientific research means

that we cannot know which particular analyses will be run; what acquired or previously computed

metadata will be needed by those analyses; or what kinds of results those analyses will generate. This

means that, in addition to the wide variety of acquisition formats that must be supported, we must

also support an unknown number of highly specific data formats for storing computational results.

The former can be alleviated to a certain extent by developing a standard acquisition format, as OME

has done. The latter, however, is much more open-ended, and does not have as simple a solution.

Complicating matters further, it is not just the high-level structure and semantics of the different

data formats that varies; it is also the modeling formalisms that are used. As we mentioned previously,

it would be tempting to assume that an RDBMS adequately solves our problem: the acquisition

metadata could be stored in relational tables; the image pixels themselves could be stored in binary

large object (BLOB) columns or as pointers into a separate mass storage; and the relational schema

could be extended at runtime to support new, unanticipated data formats needed by the analytic

routines.

However, many of the data formats that we need to support do not translate easily into relational

tables, and the way in which this data is accessed does not always fall easily into the declarative query

pattern provided by SQL. Most obvious is the low-level pixel data. It is theoretically possible to store

this information in a relational database — again, either as a BLOB or as a pointer into other storage.

The usage of the pixel data will vary by application, though: an analysis routine will likely need to

examine the precise numeric value of each and every pixel, while visualization software will often

be able to handle compressed representations of the pixels, even if information is lost as a result.

Further, the difference in scale between the size of the pixel data and the associated metadata can be

several orders of magnitude: a typical high-throughput screen, for instance, can easily have several

terabytes of raw image data, as compared to a few kilobytes or megabytes of computational results

and acquisition metadata. Assuming that our RDBMS can handle this disparity of scale, tuning it to

do so efficiently can be an administrative nightmare. As we will see, the OME design considers this

to be such an important consideration that there is a separate component specifically designed to

support the fast storage and retrieval of the image pixels.

The metadata associated with the images will also not always fit perfectly into a relational model.

Dense numeric matrices, for instance, seem to be a perfect fit for a relational table. However, since

they are almost always accessed atomically, the querying capabilities provided by a relational rep-

resentation are usually wasted; it is more efficient to treat a dense matrix as a special kind of pixel

array, and store it in a packed binary form. (Actually, it is more accurate to say the reverse — that

a pixel array is a special kind of dense matrix — but this distinction is not important.) On the other

hand, most feature abstraction [77] and motion tracking [96] analyses generate data structures that

are very hierarchical in nature: images contain features, which contain subfeatures, and so on; in

addition to these containment relations, the features are grouped across time and space into linked
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lists and other similar structures. While it is certainly possible to design relational tables to store

these data structures, they lend themselves much more to the hierarchical model provided by XML.

As we can see, we not only need to support a wide, extensible variety of data formats; the

differences appear at all levels of the S classification, from syntax to semantics. A system like an

RDBMS, which focuses on a single modeling paradigm, cannot be a solution on its own.

6.2 Pixel transformations

Having given an overview of the problem we are trying to solve, we can now examine one part of the

solution: efficiently providing access to the pixels stored in the different proprietary formats. (For

now, we only consider accessing the pixels; we will add support for the acquisition metadata in the

next section.) If OME were designed to be a single, standalone application (or a single library that

many applications link to), we could use an object-oriented design like the one described by the UML

diagram in Figure 6.1. This would define an Image interface that defines methods for reading the

pixels from a particular image. There would then be a class for each of the specific image formats

supported, each of which would be responsible for implementing the logic for reading pixels from

that particular format. Client code would then be written strictly in terms of the Image interface; the

underlying server code would instantiate the implementation class appropriate to each image as it is

encountered. Further, this design is extensible: a new image format could be supported simply by

writing a new implementation class and ensuring that the server’s instantiation code is aware of it.

The client code would require no modification.

getPixels(): Pixels5D
getPixels(x1, x2, y1, y2, z1, z2, t1, t2, c1, c2): Pixels5D
getTimeslice(t): Pixels4D
getStack(t, c): Pixels3D
getPlane(z, t, c): Pixels2D

«interface»
Image

MetaMorph DICOM ZeissLSM DeltaVision

Figure 6.1: Possible object-oriented design for the image server

However, OME is not intended to be a single application or library — rather, it is a component

in a larger, decoupled, heterogeneous system, as shown in Figure 6.2. Client components can be

third-party software, over which the OME developers have no design control. Further, they will be

running on different physical machines, and therefore cannot always use OME-provided code as a

linked library.

To fit into this design, OME includes a separate image server component (OMEIS) that is re-

sponsible for providing fast, network-visible, format-neutral access to the images’ pixel data. This

component effectively serves the same purpose as the Image interface, but over an HTTP-based [41]
network protocol instead of as a locally linked object-oriented library. As shown in Figure 6.3, its

interface also includes a new operation for storing the pixels, instead of just providing read access.
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Acquisition 
software

Analytic tools

Interactive 
visualizations

2D rendering 
software

OME

Figure 6.2: Decoupled design of the OME system

Since the implementation of the image server is hidden behind this HTTP interface, it can be imple-

mented using whichever design (and programming language) is most appropriate, without having

to consider the design and language used to implement its clients. Specifically, we could choose to

write the image server in an object-oriented language like C++, Java, or C#, and use the same basic

design from Figure 6.1.

storePixels(pixels): Identifier
getPixels(id): Pixels5D
getPixels(id, x1, x2, y1, y2, z1, z2, t1, t2, c1, c2): Pixels5D
getTimeslice(id, t): Pixels4D
getStack(id, t, c): Pixels3D
getPlane(id, z, t, c): Pixels2D

«interface»
ImageServer

Figure 6.3: Interface provided by the image server

However, to meet its speed requirements, the image server was designed differently. Instead of a

complex, extensible program that itself knows about many image formats, the image server, written in

C, only handles a single internal image format, which is highly optimized to the particular operations

provided by the server’s interface. This has the benefit that the image server, even when accessed

via the network, is quite fast — often limited only by the speed of the hard disks used to store the

images. It has the drawback that instead of storing the images on the server directly in their original

format, they must first be converted to the image server’s internal format, with this conversion logic

being the responsibility of another component.

This conversion is an obvious application of a transformation graph, such as the one shown in Fig-

ure 6.4. In this particular transformation graph, there is an atomic transformation directly connecting

each external image format to the OMEIS internal format, though there is nothing that requires this.

Any transformation graph can be used; a particular graph would allow an external format to be

stored in the image server as long as there were some compound transformation (represented as a

path in the graph) connecting the external format to the OMEIS internal format.

OMEIS Pixels

OME XML OME TIFF DeltaVision

MetaMorph DICOM Zeiss LSM . . .

. . .

Figure 6.4: An image server transformation graph

With a transformation graph in place, we can add an importer component to the design as shown
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in Figure 6.5. The importer, which contains the transformation graph, is able to read files from

whichever external formats the graph supports. Using its transformation graph, these proprietary

formats are translated into the OMEIS internal format, after which they are stored in the image server.

Client code can then use the image server’s format-neutral API to read the pixel data, regardless of

which proprietary format the image was originally stored in.

Importer
Image Server

Big disk

import()

storePixels()

DV 
image DV

OMEIS

Figure 6.5: Using a transformation graph to import images

Apart from two minor differences, this is the design that OME implements. First, as currently

implemented, the import component does not include an actual transformation graph. Rather, it uses

an object-oriented design similar to Figure 6.1, but where the implementation classes are responsible

for translating an external format into the OMEIS format, rather than for providing direct read access

to the pixels. However, this can be viewed as a restricted form of transformation graph, which

requires atomic transformations to directly connect the external formats to the OMEIS format, as is

the case in the graph in Figure 6.4.

The second, more interesting, difference is that the image server can store the original files in

addition to the translated internal pixels. Instead of translating the image into the internal format

locally and sending it to the image server in bulk, the important component sends the original file

along with instructions for how to read each part of the raw pixel array from the original file. This

has two benefits. First, even though the original file is opaque to the image server itself (since it has

no knowledge of its particular format), there are many client applications that can make use of the

original file. It can also be useful to store for archival purposes. Either way, storing the original file

and the converted pixels in one place is helpful in that it simplifies the design.

The second benefit is that it allows us to reduce the storage requirements for the server, which can

be useful given the amount of image data that a typical laboratory can produce. Microscope images

tend to go through a life cycle: initially, they are part of an active experiment, and will be accessed

many times by analysis and visualization software. Once the experiment has been completed, though,

the image data will be accessed much less frequently. The instructions for extracting the image from

the original file are much smaller than the converted pixels themselves; we therefore only need to

archive the original file and the translation instructions, knowing that this is sufficient to reconstruct

the internal pixel representation if it happens to be needed again. This is only possible because the

translation between binary pixel representations is a highly regular, structured transformation —

every step that is performed comes from a small set of translation primitives. In the case of arbitrary

datatypes, though, the transformations can come in a wide variety of forms; therefore, we would

have to archive both the input and output of each transformation execution.
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6.3 Metadata transformations

In the previous section we showed how to use a transformation graph to store images in an arbitrary

format on a highly specialized image server. However, the external image formats also contain a large

amount of metadata describing the images, which we have ignored to this point. In this section, we

show what changes must be made to the design to incorporate the associated metadata.

The easiest way to proceed would be to reuse and modify the design of the OMEIS importer from

Figure 6.5. The modified design, shown in Figure 6.6, looks remarkably similar. In fact, there are

only two changes. First, we are no longer storing the translated results in an image server; this

makes sense, since we are no longer dealing with pixel arrays. Instead, the metadata is stored in

a new component called the data server (OMEDS). As hinted at earlier, we do not want to reinvent

any persistence and querying capabilities when perfectly good solutions exist, so the data server is

basically just a thin wrapper around an RDBMS.

Importer
Data Server

RDBMS

import()

storeMetadata()

DV 
image DV

Metadata

Figure 6.6: Using a transformation graph to import image metadata

This leads nicely to the second difference from the image server importer: the transformation

graph in the importer component no longer translates the external formats into an internal pixel

representation. Rather, the acquisition metadata is extracted from the external image files and con-

verted to the format expected by the new data server. Since the data server is implemented using a

relational database, this internal metadata format will be based on a standardized relational schema

designed to store the OME-defined set of common acquisition metadata. This set of metadata is rel-

atively static, even if few existing external formats support it in its entirety. This makes this modified

design perfectly acceptable for storing the acquisition metadata — the static nature of the data means

that we only need a single internal metadata datatype. Supporting a new external format works as

before, by simply adding a new atomic transformation to the importer’s graph; this would require no

changes to the rest of the importer component or to the data server itself.

This solution works for the static datatypes used for the acquisition metadata. The computational

results, on the other hand, are very dynamic — we do not know in advance what datatypes will be

needed, and therefore cannot have a single, predefined internal format for storing the data. OME

solves this by introducing semantic types. Each input and output of an OME analysis module is an

instance of some semantic type, which is a compound data structure similar to a C struct or Pascal

record. Each element of a semantic type can be an atomic data value (string, integer, Boolean, etc.)

or a simple typed reference to another semantic type instance. This admittedly simple design does

not provide the full generality described in previous chapters, but it has the benefit that it translates
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readily into both relational and XML schemas.

These extensible semantic types require many corresponding datatypes in a transformation graph.

First, we have the description of a semantic type: the name of the type, and the names and types of

each element. This gives us an XML schema that defines how semantic type descriptions appear in an

OME-XML file, and an equivalent relational schema, which defines the internal database table used

by the data server to store descriptions of semantic types. Second, in addition to the datatypes used

to describe the semantic types, we have datatypes for the semantic type instances themselves. There

are at least two datatypes for each semantic type: one for the XML transmission representation, and

one for the data server’s internal relational table representation.

We can also model the original acquisition metadata format as a collection of semantic types,

allowing us to reuse some of this transformation logic. These acquisition semantic types will have

even more corresponding datatypes in the transformation graph — one for each external format that

contains that particular kind of metadata. In fact, these will be the same datatypes that represented

the external formats in the image server’s transformation graph; after all, it is the same external

format, from which we can independently extract the pixel data or acquisition metadata.

For each semantic type, there will be a transformation between the XML representation and the

internal relational representation, and vice versa. These transformations correspond, respectively, to

importing and exporting arbitrary metadata from the data server using the OME-XML transmission

format. The logic of this transformation will be very similar across semantic types, which means that

we can use a declaration pattern to greatly simplify the description of the transformation graph. The

XML and relational datatypes, along with the transformations between them, are all defined in a

declaration pattern, which can be instantiated with a semantic type description.

Combining all of this together, we have the single, large transformation graph shown in Fig-

ure 6.7. This has the original transformations between the external image formats and the OMEIS

internal pixel format, and can therefore be used as the image server importer’s transformation graph.

It also contains the three datatypes for describing a semantic type, and the declaration pattern (shown

with a red dashed box) used to define the datatypes for each semantic type’s instances. This pattern

can then be instantiated (shown with a blue dashed box) for each semantic type that is needed. For

those semantic types that are known at acquisition time, we can add extra transformations that can

extract that metadata from the external formats that contain it. This lets us use the same transfor-

mation graph for importing the acquisition metadata, whose types are known in advance, and for

storing the computational results, whose are not.

The only major problem with this solution is that the import process now requires multiple steps.

There are many different datatypes that must be extracted from a particular external format: one for

the internal OMEIS pixel representation, and one for each metadata semantic type that the external

format supports. In the previous chapter’s case study, we had a similar situation, where a supplier

could accept multiple purchase order datatypes. This meant that there were multiple possible des-

tination nodes in the transformation graph. By connecting each of these possible destinations to a

dummy sink node, we were able to find the optimal compound transformation to any one of these

destinations.

Unfortunately, the same trick does not work with the image and metadata transformation graph.

With the purchase order example, we only needed a single compound transformation to any of the

destinations; in this example, we need to generate values for all of the destination datatypes. This
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Figure 6.7: A combined transformation graph for importing pixels and metadata

means that we must still execute the transformation discovery algorithm once for every datatype that

we want to extract from the external format. Not only does this waste effort in finding the compound

transformations, but the compound transformations that we find might also repeat a lot of work in

extracting each semantic type independently. In the next chapter, we will show how to expose part of

the structure of these datatypes to the transformation layer, which provides a more elegant solution

to this problem.

Summary

In this chapter, we presented a second case study, based on a generic data server. This server, which

must store data from a wide range of datatypes, differs from a standard relational database manage-

ment system in that the supported datatypes can differ across the full range of the S classification.

In an RDBMS, on the other hand, the data can differ structurally and semantically, but must all be

based on the relational model.

For highly structured data, such as the pixel data from a microscope image, we can use a special-

ized internal format to provide highly optimized access to the data. We can then use a transformation

graph to translate the pixels into this internal format from the original proprietary image formats.

The transformation graph also works in a straightforward way for the images’ acquisition metadata,

since these datatypes will tend not to change much over time. For more dynamic types, though, such

as the computational results from highly experiment-specific analysis routines, more sophisticated

techniques are needed. Part of a solution is provided by declaration patterns, which can be parame-

terized by the user-defined semantic types. However, it would also be helpful to expose part of this

dynamic internal structure to the transformation discovery layer; we must be careful, though, to do

this in a controlled manner, without losing the efficiency benefits that were gained because of fully

opaque datatypes. In the next chapter, we extend our graph model to allow this.

90



7Polyadic graphs

As shown in the previous case studies, the graph structure described in Chapter 4 can be used to

model some fairly complex, real-world data transformation use cases. However, it includes a ma-

jor limitation that we would like to lift if possible. The transformation graph model discussed so

far has required all of the atomic transformations to be unary: they must have exactly one input

and one output. In this chapter, we describe polyadic transformations — those that can have mul-

tiple inputs and outputs — and examine how transformation discovery is affected by the presence

of multiple inputs and outputs. First we present several examples of transformation graphs that

are more difficult, or impossible, to express without polyadic transformations, including the highly

dynamic datatypes found in the case study from Chapter 6. We present these examples using an intu-

itive workflow notation that focuses on atomic transformations as opaque units of computation. This

notation, though intuitive, does not lend itself well to an obvious discovery algorithm, so we next

introduce a notation based on sets of datatypes. In this notation, polyadic discovery can be performed

using a simple pathfinding algorithm, as with unary graphs. We then show that the workflow and set

notations are equivalent — that any set-based solution can be correctly translated into an analogous

workflow solution, and vice versa. This allows us to use the same set-based discovery algorithm to

find workflow-based compound transformations. Unfortunately, due to the size of the set graphs,

this polyadic discovery algorithm is very inefficient; by introducing a third notation, based on hyper-

graphs, we can further show that polyadic discovery is NP-hard. This implies that it is not just our

algorithm that is inefficient, but rather that the underlying problem is inherently difficult, and that

an efficient discovery algorithm is unlikely to exist.

7.1 Overview and examples

To this point we have only considered atomic transformations in terms of how they are pieced to-

gether into transformation graphs, such as the simple graph shown in Figure 7.1. Since this view

strongly equates transformations to the edges in a graph, we have implicitly included many of the

assumptions about a graph edge into our understanding of a transformation. Specifically, since an

edge in a directed graph must have exactly one source node and exactly one destination node, we

have only been able to consider transformations with exactly one input and exactly one output.
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A

B

C

D
α

β

γ

δ

Figure 7.1: A simple transformation graph in the graph notation

A different approach is to focus on transformations as units of computation — since, as we have

pointed out previously, we can use this pathfinding technique to find any compound computation

that can be defined by an inductive property. This view does not impose the same restriction on

the number of inputs and outputs as the graph-based view. Instead, a transformation can have

any number of inputs and outputs, and we define a transformation’s arity to be the maximum of

these two values. The special class of transformations with one input and output are called unary

transformations; those with multiple inputs or outputs are called polyadic transformations. We can

also consider the arity of an entire graph: a graph that contains only unary transformations is also

unary, whereas a graph that contains any polyadic transformations is also polyadic.

We can introduce a new workflow notation that highlights this computational view. Instead of

merging several transformations together into a graph, each is represented as a “black box” of logic

or code. Its input datatypes are listed on the left side of this box, and its output datatypes on the

right. Every unary graph can also be represented in this notation: Figure 7.2 shows the same example

graph using this workflow notation.

A B

α

A C

β

B D

γ

C D

δ

Figure 7.2: The same graph in the workflow notation

In this section we present several examples of transformation graphs that benefit from polyadic

transformations, using this workflow notation. We then present a more precise description of what

forms a valid workflow-based transformation graph.

7.1.1 Examples

In this section we present several examples of how polyadic transformation graphs can be used to

solve problems whose solutions are less efficient or not possible when using unary graphs.

Polyadic compound transformations

One important example is that the compound transformation that we extract from a transformation

graph can itself be polyadic. One situation where this is useful is described in Section 5.6 of the Zuc-

chini Corporation case study. Once we had a sufficiently large transformation graph containing all of

the various purchase order datatypes, we used a pathfinding algorithm to find optimal transforma-

tions for each supplier’s datatype. At first, this required executing the pathfinder multiple times for

each supplier — once for each possible source type provided directly by the MRP application software

92



7.1 Overview and examples

— since we did not know in advance which source datatype would lead to the optimal solution. We

were able to eliminate these extra executions by introducing a dummy source node and sink node,

which allowed a single discovery execution to find the optimal solution, regardless of which actual

source and sink datatype were used.

We could have also solved this using a polyadic graph. To encode the fact that we have multiple

source datatypes given to us, we simply add a source node for each to the workflow graph, as shown

in Figure 7.3. We also add a sink node for the desired output type, such as VXBD for Global Cucumber,

or PDF for Amalgamated Okra.

VXBD TBDI

Translate

TBDI VXBD

Translate

VXBD SBEP

Translate

SBEP VXBD

Translate
PDF

TBDI

desired
output
type

Figure 7.3: The Zucchini transformation graph in the workflow notation

Running the polyadic discovery algorithm on these two cases yields the workflows in Figure 7.4

(shown with the unused transformations removed to reduce clutter). Note that in each case, the

compound transformation that results has two input types (the source nodes), and is therefore poly-

adic. This is true even though, in both cases, only one of the sources is actually used — this does not

change the fact that both are available.

TBDI VXBD

Translate

PDF

TBDI

VXBD

PDF

TBDI

PDF
(b)

(a)

Figure 7.4: Workflow solutions for two Zucchini suppliers

Another important point is that we must still execute the discovery algorithm once for each sup-

plier. It might seem reasonable to follow the same pattern for the destination datatypes as we did for

the source datatypes, and to create a single graph with sink nodes for each supplier’s purchase order

type. However, our definition of a workflow will require that a value must be generated for every

sink node. If we then execute this resulting workflow for each Zucchini purchase order, then each

order will be translated into every supplier format. Since the desired behavior is for each purchase

order to be translated only into the format for its particular supplier, this is incorrect. Note that we

could use multiple sinks if a given purchase order needed to be sent to multiple suppliers; in this

case, the purchase order does have to be translated into several datatypes. However, we would still

need separate sets of sink nodes and separate discovery executions for each distinct combination of

suppliers on some purchase order.

93



7 Polyadic graphs

Components of a datatype

Polyadic graphs can also be used to include part of the internal structure of a datatype directly into

the transformation graph. As we have seen in our case studies, this can be very useful when the

structure of a datatype changes often. An example of this involves the image metadata types from

Section 4.1.1. Instead of defining a direct conversion transformation between simple metadata and

Dublin Core, we could define an extractor transformation for simple metadata that has one output for

each of the constituent metadata elements, and a constructor transformation that can create a Dublin

Core record from these elements, as shown in Figure 7.5.

simple metadata

Date
Creator

Dimensions
Format

Extract

Date
Creator
Dimensions
Format Dublin Core

Construct

Figure 7.5: Extractor and constructor transformations

At first glance, this might not seem like a more elegant solution, since it requires twice as many

transformations to perform the same task. However, the focus of the transformations has shifted

slightly: instead of a conversion transformation that must incorporate knowledge of both datatypes,

we have two transformations that each only need to know about a single datatype. This can provide

more opportunities for transformation reuse; by writing a constructor transformation for a new meta-

data type, we automatically have the equivalent of a conversion transformation from simple metadata
to the new datatype, without having to know or incorporate any knowledge of simple metadata. Fur-

ther, we get conversion transformations from any other datatype that we have defined an extractor

transformation for.

There are two issues with this approach that must be considered. First, the constituent parts must

be fully specified datatypes. This means, for instance, that we must decide on some concrete encoding

for the metadata elements; since these element datatypes will be shared by all of the extractor and

constructor transformations, their encoding should not be tied too closely to any one of the metadata

types’ encodings.

The second issue concerns the constructor transformations. As mentioned, Dublin Core supports

many more metadata elements than the simple metadata type; it seems reasonable to define its con-

structor transformation with inputs for these extra elements, as shown in Figure 7.6. Unfortunately,

doing so would prevent us from transforming from simple metadata to Dublin Core, since polyadic

transformations must have all of their inputs satisfied before they can be executed.

Type
Subject
Source
Date
Creator
Dimensions
Format Dublin Core

Construct

Figure 7.6: A Dublin Core constructor with more metadata inputs
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Since we have not yet developed a discovery algorithm for compound transformations in polyadic

graphs, it would be tempting to change our requirements and allow polyadic transformations to have

optional inputs. Unfortunately, this will make it much more difficult to develop an efficient discovery

algorithm. A different solution would be to represent this use case with multiple constructor trans-

formations — one for each possible combination of input elements. Each constructor would still need

all of its inputs satisfied before it could be executed; the discovery algorithm would determine the

optimal constructor transformation to use, just as it would whenever there were multiple valid trans-

formation paths between two datatypes. This solution would also allow the use of properties on the

different constructors to allow for tradeoffs between constructing the data quickly (but possibly with

missing elements) or more fully (but possibly requiring more time to obtain the necessary elements).

Of course, we would not want to require the user to have to declare each of these constructors indi-

vidually; this would be cumbersome and repetitive. A language feature like the declaration patterns

of Section 4.1.4 could be used to alleviate this.

Merging data from multiple sources

Another situation to consider is when we want to merge data from two or more different sources into

a single, more generic, datatype. For example, the OME-XML format from Section 4.1.1 supports a

large, extensible, set of metadata elements, different subsets of which overlap with the other meta-

data types in the transformation graph. For instance, an OME-XML file could store the name of the

original image format and the image dimensions from simple metadata, the image source description

from Dublin Core, while extracting the color model of the image directly from a TIFF file. OME-XML

stores the image metadata in the same file as the image itself, so we could extract the pixel array from

the TIFF as well. This yields three sources, all of which are necessary to create a complete OME-XML

file. The resulting creation transformation is shown in Figure 7.7.

generic TIFF
Dublin Core
simple metadata OME-XML

Create

Figure 7.7: A creation transformation for OME-XML with multiple sources

Of course, we can combine this example with the previous one and use extractor and constructor

transformations instead. Rather than defining the transformation to specifically use simple metadata,

Dublin Core, and generic TIFF as inputs, we would define an OME-XML constructor transformation

(shown in Figure 7.8) that lists its component parts as inputs. The discovery algorithm would then

be responsible for finding the best way to generate these inputs. It might use simple metadata,

Dublin Core, and generic TIFF as we did, yielding the workflow shown in Figure 7.9. If a different

solution were more optimal, a different workflow would result, without having to write any new

transformations.

Single-use datatypes

The last feature of polyadic graphs that we consider is that of single-use datatypes. Up to this point,

we have assumed that the data we are dealing with exists in a form that can be read in any order and
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Figure 7.8: An alternative constructor transformation for OME-XML
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Figure 7.9: The workflow corresponding to the OME-XML creation transformation

multiple times, such as a local file or an internal memory buffer. We might also want to transform

data that comes from a streaming source, in which case the data must be processed in order and can

only be read once. Properly utilizing a streaming source can lead to large efficiency gains, since the

memory overhead needed is constant regardless of the size of the data; this scales extremely well to

large datasets.

In a unary graph, this distinction is less important; it cannot change which transformation paths

are possible, since the data cannot be used multiple times in a path anyway. The only way that a

datatype (and by extension, any instance of that datatype) can appear in a path more than once is

due to a cycle, as shown in Figure 7.10. However, a cyclic path such as 〈α, β , γ, δ, ε〉 cannot ever be

an optimal transformation, since we can always remove the cycle and instead use 〈α, ε〉, in which the

B datatype does not repeat. Even if we did use the cyclic path as a solution, though, no data would be

reused. Rather, there are two instances of datatype B: the first is generated from A by transformation

α, the second from D by transformation δ. Each of these instances is used exactly once.

A

B

CD

E
α

β

γ

δ

ε

Figure 7.10: A cyclic transformation path

In a workflow, however, it is perfectly acceptable to use a datatype more than once; a simple

example is shown in Figure 7.11, where the same instance of datatype A is used as an input to

transformations α and β .
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A C

β

A B

α

C
B D

γ
A D

Figure 7.11: A workflow with datatype A used twice

If we want to allow certain datatypes to be limited to a single use, we need to slightly modify the

definition of a workflow. For a single-use datatype, denoted in a workflow by italicizing it, each source

node and transformation output of that type can have at most one outgoing dataflow link. This cor-

rectly prevents a datatype from being reused without first being regenerated by some transformation.

We can modify the workflow graph to limit datatype A to a single use, as shown in Figure 7.12. In

this case, only one of the dashed dataflow links can be used, and by extension, only one of transfor-

mations α and β can be executed. Since transformation γ requires the outputs of both α and β , there

is no longer a valid workflow solution from {A} to {D}.

A C

β

A B

α

C
B D

γ
A D

Figure 7.12: No workflows are possible when datatype A is limited to a single use

7.1.2 Workflow notation

Having presented several examples of polyadic transformation graphs, we can now more precisely

describe what constitutes a valid transformation workflow.

A workflow represents a compound transformation; the workflow solution only includes the

atomic transformations that are actually executed as part of the compound transformation. As men-

tioned previously, each atomic transformation is represented as a “black box” of logic or code. Unlike

the graph notation, the workflow notation does not represent the underlying datatypes directly. This

means that we must introduce special source and sink nodes for the given and desired datatypes.

There are then dataflow links that show the flow of data through the transformation graph. Each

dataflow link can receive data from a source node or from an output of one of the workflow’s exe-

cuted transformations. Each link can provide data to a sink node or to the input of a transformation.

Each transformation that is executed as part of a workflow must have all of its inputs satisfied by an

incoming dataflow link. No transformation input can have more than one dataflow link providing it

data. Each sink node must also be satisfied by (exactly one) incoming link. Finally, each dataflow

link must be well-typed: both sides must be of the same type.

For example, 〈β , δ〉 is a valid compound transformation between datatypes A and D in the exam-

ple graph from Figure 7.1. This solution is shown in Figure 7.13 as a unary path and in Figure 7.14

as a workflow.

We can use the dataflow links in a workflow to infer an order of execution for the graph’s trans-

formations. Before any particular transformation can be executed, we must have already generated
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Figure 7.13: A compound transformation represented as a path
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Figure 7.14: The same compound transformation represented as a workflow

values for each of its inputs. If an input receives its value from an output of another transformation,

then the transformation that generates the value must obviously be executed before the transforma-

tion that uses the value. By looking at all of the links, we can piece together an overall execution order

for the workflow. Note that this might not fully specify the order of execution; consider, for instance,

the workflow shown in Figure 7.15. Transformation α must execute before β since it generates the

instance of datatype B that β uses as an input; similarly, α must execute before γ. However, there

is nothing that requires β to execute before γ, or vice versa. Therefore, this workflow has two valid

execution orders: 〈α, β , γ〉 and 〈α, γ, β〉. Thus, the execution orders of a workflow, which can be

found using a simple topological sort, induce a partial order on the transformations in the workflow.

A B

α

B D

γ

B C

β

A
C

D

Figure 7.15: A workflow with many possible execution orders

It is also possible for a workflow to have no valid executions. For instance, a workflow might

contain cycles, as shown in Figure 7.16. None of the workflow rules described above are violated,

since each of α’s inputs has an incoming dataflow link. However, because of the link between α’s C

output and its C input, any valid execution order would require that α execute before itself, which is

obviously not possible. Since they are clearly not very useful, we will not consider workflows that do

not have valid execution orders.

Finally, while it is useful to think of transformations as units of computation, and to represent

compound transformations as workflows, it is important to realize that not all computations are valid

transformations. Even though transformation graphs are generic enough to be used with other kinds

of computation (assuming that they can be specified by an inductive property), we must remain

aware of the limitations of transformations when we use this technique to solve the data mismatch

problem. The most important distinction is that, as mentioned in Chapter 3, transformations are

defined in terms of data equivalence. They deal with pre-existing data, and generate new represen-

tations or encodings of that data that are equivalent to the originals according to some criteria that

are important to the application. Fundamentally new data cannot be created by a pure transfor-
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C
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Figure 7.16: A workflow containing a cycle

mation. We assume that this property also holds when the transformation is polyadic — all of the

inputs and outputs of a transformation must be representations of equivalent data. Because of this,

we further assume that a transformation cannot have two inputs (or outputs) of the same datatype,

since this would only provide two indistinguishable copies of the same data representation. As stated

in Section 3.1.3, any important, distinguishable difference must be modeled with separate datatypes.

7.2 Polyadic discovery

The workflow notation from the previous section allows us to intuitively describe several example

polyadic transformation graphs. However, the notation does not lend itself to an obvious discovery

algorithm. In this section, we present a new set-based notation that allows us to again use a simple

pathfinding algorithm to discover compound transformations.

7.2.1 Set notation

We begin by introducing a new set notation for representing transformation graphs. The idea behind

this notation is to keep track of the set of datatypes that are available at each step of a compound

transformation. To do this, we create a graph that contains a node for each subset of the graph’s

datatypes. As with the original unary graph notation, each edge represents a transformation; how-

ever, since there might be many situations where a transformation is eligible for execution, each

transformation will likely have many edges in a set notation graph.

As an example, we can consider the graph shown in Figure 7.17. Part (a) shows the graph in the

workflow notation, while part (b) shows its equivalent representation in the set notation. This graph

defines four datatypes — A, B, C, and D — which requires 24 = 16 nodes in the set notation, one for

each subset of datatypes. We then add edges for each transformation. A transformation is eligible for

execution when we have values for all of its inputs, so we add an edge starting from any node that is

a superset of the transformation’s inputs. After the transformation has executed, we have available

all of its output datatypes, in addition to all of the datatypes that were available previously. (For

now, we assume that all datatypes are reusable.) Therefore, each edge is connected to the union of

its source and its transformation’s outputs. It is possible that no new datatypes will be introduced,

as we might already have values for each of the transformation’s output datatypes. This will cause

a self-cycle: the source and sink of that particular edge will be the same node. Even though such a

self-cycle will never be included in a shortest path, we include them in the set notation to simplify

our definitions. However, to remove clutter, they will not be displayed visually.

To illustrate these construction rules we can examine transformation β . This transformation has

a single input of type B. There are eight nodes in the graph that include B. We add edges from {B} to

{B, C}, from {A, B} to {A, B, C}, from {B, D} to {B, C, D}, and from {A, B, D} to {A, B, C, D}. In each
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Figure 7.17: A transformation graph in the (a) workflow and (b) set notations

case we add C, the transformation’s output, to the set of previously available datatypes. Technically,

there will also be self-cycles at {B, C}, {A, B, C}, {B, C, D}, and {A, B, C, D}; however, since they

already contain the only type that would be created by the transformation, they are not shown.

With the structure of a transformation graph in place, we can now turn our attention to compound

transformations. Since we are including datatypes in the graph directly, we do not need to introduce

special source and sink nodes as in the workflow notation; instead, we will use some of the existing

nodes as sources and sinks. We define the source node, which we denote with a thick border, to be the

node with the specific set of datatypes that we are given to start with. We define several sink nodes,

which we denote with a double border, each of which is a superset of the datatypes that we desire.

There is only one source node since we know exactly which datatypes we are provided with; on the

other hand, there are many sink nodes since there are many possible ways to provide the desired

output types. With the source and sink nodes defined in this way, a compound transformation is

simply a path from the source node to any one of the sink nodes. Figure 7.18 shows a compound

transformation between {A} and {C, D} in both notations. Note that there are two possible paths

in the set notation, just like there are two valid execution orders for the workflow: β and γ can be

executed in any order.
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Figure 7.18: Compound transformations in both notations
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There is another slight difference between the workflow and set notations: in a workflow, a single

datatype instance can sometimes be obtained from several separate possible locations, a distinction

that the set notation cannot reproduce. For instance, Figure 7.19 shows two distinct workflows that

have the same representation in the set notation. Transformation β requires an input of type A; this

input can either be provided by the output of transformation α, or by the instance of A that we are

given. Regardless of which A is used, 〈α, β〉 is the only possible solution. However, as mentioned

in Section 3.1.3, every important difference between data instances must be modeled using separate

datatypes. Thus, it does not matter which A instance we use for β ’s input; if there was an important

difference between the two, they would have to be separate datatypes. Therefore, this does not affect

the correctness of our discovery algorithm; if there is more than one possible workflow, we choose

one arbitrarily.
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Figure 7.19: Two workflows with the same set notation equivalent

7.2.2 Discovery algorithm

Having defined the workflow and set notations for polyadic graphs, we can now describe an algorithm

for discovering polyadic compound transformations. In the next section, we will show that this

algorithm is correct, by showing that the two notations are equivalent — specifically, that a solution

found in the set notation has an equivalent solution in the workflow notation, and vice versa.

The polyadic discovery algorithm is fairly straightforward:

1. Translate the polyadic transformation graph into the set notation.

2. Find a shortest path from the set graph’s source node to any of its sink nodes.

3. Use this path to add dataflow links to the transformation graph’s workflow.

The first step is simple, given the rules from Section 7.2.1 for creating a valid set graph. First, we

create a node for every subset of datatypes in the transformation graph. Then, for each transforma-

tion, we identify the nodes that satisfy the transformation’s inputs — i.e., that contain a superset of

the transformation’s input types. For each of these, we add an edge representing the transformation.
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The edge starts at the node we have just identified, and ends at the node representing the union of

the source node (the datatypes we had before executing the transformation) and the transformation’s

outputs (the datatypes created by the transformation). After adding the correct edges for each trans-

formation, we mark the source and sink nodes of the set graph. There is one source node, containing

the datatypes that we start with. There are many sink nodes, one for each superset of the desired

output datatypes.
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Figure 7.20: An example transformation graph for the discovery algorithm

As an example, we can examine the transformation graph shown in Figure 7.20 using the work-

flow notation. This graph contains five datatypes and five atomic transformations. The equivalent set

notation graph is shown in Figure 7.21. We require thirty-two nodes in the set graph, one for every

subset of the five datatypes. We then add edges for each of the five transformations — for example,

an edge labeled γ from {A, B, C, D} to {A, B, C, D, E}, since {A, B, C, D} satisfies all of γ’s inputs, and

γ then additionally generates an instance of E. Finally, we mark {A, B} as the set graph’s source node,

and mark every superset of {D, E} as a sink node.
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Figure 7.21: The corresponding set graph

As mentioned earlier, we can make several slight optimizations to the set graph. First, we do

not have to include a node for the empty set of datatypes: since every transformation must have at

least one input, and transformations cannot reduce the number of datatypes we have available, the

∅ node cannot ever be reachable. Second, we do not have to include any self-loops in the set graph,

since they cannot possibly appear in a shortest path. (However, we will include these self-loops in the

formalism that appears later, to simplify the specification and our proofs.)

With this set graph defined, we can see that {A, B, C, D, E} is the only sink node reachable from

the source. There are eight possible paths that connect {A, B} to {A, B, C, D, E}, all of length three:
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〈α, β , γ〉 〈α, δ, γ〉 〈β , ε, γ〉 〈δ, ε, γ〉
〈α, γ, β〉 〈α, γ, δ〉
〈β , α, γ〉 〈δ, α, γ〉

These eight possibilities stem from several decisions that can be made. First, we can use either α

or ε to generate an instance of C. Similarly, we can use either β or δ to generate an instance of

D. Finally, for two of the outcomes, the transformations can be executed in multiple orders. As

with unary transformation graphs, we can use properties to assign numeric weights to each atomic

transformation, which might cause one of the combinations to be more optimal. However, this will

not eliminate any nondeterminism if an optimal combination can be executed in multiple orders.

The final step in the discovery algorithm is to construct a workflow from one of the optimal set

paths. (If there are many optimal paths, as is the case in this example, we can choose one arbitrarily.)

We start with an empty workflow — one that contains only the source and sink nodes, and no

transformations. We then step through the set path; as we encounter each transformation in the

path, we add it to the workflow, also adding dataflow links to satisfy all of its inputs. Finally, after

adding all of the set path’s transformations, we add dataflow links to satisfy each of the sink nodes. As

we will show in the next section, we will always be able to satisfy each atomic transformation’s inputs

when it is added to the workflow, assuming that the set path is a valid compound transformation.
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Figure 7.22: Constructing a workflow from a set path

We can illustrate this process on the set path 〈α, γ, δ〉, as shown in Figure 7.22. We first add α to

the workflow, connecting its input to the A source node. Next, we add γ, connecting its inputs to the

B source node and α’s C output, respectively. Next, we add δ, connecting its input to the A source

node. This is the last transformation in the set path; finally, we connect the workflow’s sink nodes to

δ’s D output and γ’s E output, respectively.

We can repeat this process for all eight optimal set paths. Combinations of transformations that

can be executed in multiple orders only result in a single workflow, since the workflow notation hides

the explicit ordering of transformations. This gives us the four workflows shown in Figure 7.23. Any

one of these workflows is an optimal compound transformation between {A, B} and {D, E}.
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Figure 7.23: The four possible workflow solutions

7.3 Correctness of the algorithm

Having described an algorithm for discovering polyadic compound transformations, we would now

like to show that the algorithm is correct. To do this, we will first develop formal descriptions of

polyadic transformation graphs, and of the workflow and set notations. We will then show that

the notations are equivalent — that we can translate between the two notations without losing any

important information. This will allow us to show that the optimal set path found by the discovery

algorithm can be correctly translated into an analogous optimal workflow.

7.3.1 Polyadic transformation graphs

Our first task is to formalize the notion of a polyadic transformation graph, independent of the

notation used to visualize and reason about it. This will be very similar to the formalization for unary

graphs defined in Section 4.3; the only real difference is that the atomic transformations in the graph

can have multiple inputs and outputs.

A polyadic transformation is an atomic transformation that allows for multiple input and output

datatypes. It is modeled using a schema similar to the AtomicTransformation schema, with the input

and output components defined to be sets of identifiers rather than single identifiers.

Definition 7.1 (Polyadic transformations).
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PolyadicTransformation
name : Identifier
inputs : P Identifier
outputs : P Identifier
properties : Properties

A polyadic graph is a transformation graph whose transformations can be polyadic. Its definition

is identical to the Graph schema (Definition 4.7), except that PolyadicTransformation is used instead

of AtomicTransformation.

Definition 7.2 (Polyadic graphs).

PolyadicGraph
datatypes : Identifier 7→ Datatype
transformations : Identifier 7→ PolyadicTransformation

∀ id : dom datatypes • datatypes (id).name = id
∀ id : dom transformations • transformations (id).name = id

7.3.2 Workflow notation

With polyadic graphs defined, we can now turn our attention to the workflow notation. A dataflow

link connects elements of a workflow. Each link starts at one of the workflow’s source nodes (denoted

by source), or at the output of one of the graph’s transformations. It ends at one of the workflow’s

sink nodes (denoted by sink), or at the input of one of the graph’s transformations. If it starts or ends

at a transformation, we only need to specify the transformation’s name, since transformations can

only have a single input or output of the appropriate type. Links also have a datatype; later on we

will use this to ensure that all of the links in a workflow are well-typed.

Definition 7.3 (Dataflow links).

LinkSource ::= source | Identifier
LinkSink ::= sink | Identifier

DataflowLink
from : LinkSource
to : LinkSink
datatype : Identifier

A workflow is a view of a polyadic graph based on units of computation. To simplify things, we

will define the Workflow schema in parts.

Definition 7.4 (Workflows). First, we specify the structure of a workflow, which consists of executions

and dataflow links. An execution is an instance of one of the graph’s transformations; each transfor-

mation can be executed at most once, so we can model this with a set of transformation names. We

also specify the workflow’s set of source and sink nodes, each of which is one of the graph’s datatypes.
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WorkflowStructure
sources : P Identifier
sinks : P Identifier
executions : P Identifier
links : P DataflowLink

We must include several structural constraints to ensure that the workflow is valid. First, we

ensure that each source and sink node’s datatype, each link’s datatype, and each execution’s trans-

formation, are all actually defined in the graph.

WorkflowDefinedness
WorkflowStructure
PolyadicGraph

sources ⊆ dom datatypes
sinks ⊆ dom datatypes
executions ⊆ dom transformations
∀ l : links • l.datatype ∈ dom datatypes

Further, if a link starts at a source node, then that source node must actually be defined in the

workflow. If it starts at a transformation, then the transformation must be one that is executed by the

workflow, and it must have an output of the appropriate datatype.

ValidLinkSources
WorkflowStructure
PolyadicGraph

∀ l : links •
if l.from = source then

l.datatype ∈ sources
else

l.from ∈ executions ∧
l.datatype ∈ transformations (l.from).outputs

Similarly, if a link ends at a sink node, then that sink node must actually be defined in the

workflow. If it ends at a transformation, then the transformation must be one that is executed by the

workflow, and it must have an input of the appropriate datatype.

ValidLinkSinks
WorkflowStructure
PolyadicGraph

∀ l : links •
if l.to = sink then

l.datatype ∈ sinks
else

l.to ∈ executions ∧
l.datatype ∈ transformations (l.to).inputs

We must ensure that each transformation input in the graph has at most one incoming dataflow

link.
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NoConflictingInputs
WorkflowStructure
PolyadicGraph

∀ xform : ran transformations • ∀ input : xform.inputs •
#{ l : links | l.to = xform.name ∧ l.datatype = input } ≤ 1

Similarly, we must ensure that each sink node in the workflow has exactly one incoming dataflow

link.

NoConflictingSinks
WorkflowStructure
PolyadicGraph

∀ s : sinks •
#{ l : links | l.to = sink ∧ l.datatype = s } = 1

Finally, we must ensure that each executed transformation has an incoming dataflow link for all

of its inputs.

AllInputsSatisfied
WorkflowStructure
PolyadicGraph

∀ xform : executions •
∀ input : transformations (xform).inputs •
∃ lIN : links • lIN.to = xform ∧ lIN.datatype = input

We then conjoin all of these different constraints together to define the Workflow schema.

Workflow
WorkflowDefinedness
ValidLinkSources
ValidLinkSinks
NoConflictingInputs
NoConflictingSinks
AllInputsSatisfied

7.3.3 Set notation

Next we can provide a similar formalization for the set notation. We will define this specification

in two parts: the first to represent the basic structure of a set graph, and the second to encode a

compound transformation found by the discovery algorithm.

Graph structure

Our first task is to define how the datatypes and atomic transformations in a polyadic transformation

graph are encoded as nodes and edges in a set graph. We start by defining the nodes: each node in a

set-based graph represents a set of datatypes.

Definition 7.5 (Set-based nodes).
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SetNode
datatypes : P Identifier

Each edge in a set-based graph represents one transformation step: given one set of available

datatypes (from), we execute the given polyadic transformation (transformation) to reach a new set

of datatypes (to).

Definition 7.6 (Set-based edges).

SetEdge
from : P Identifier
to : P Identifier
transformation : Identifier

A set-based graph is a view of a polyadic graph based on sets of datatypes. Like the Workflow

schema, there are many constraint clauses in SetGraph, which we will examine in turn.

Definition 7.7 (Set-based graphs). First, we define the components of a set-based graph. A set-based

graph consists of a set of nodes and a set of edges, represented by the SetNode and SetEdge schemas,

respectively.

SetGraphStructure
nodes : P SetNode
edges : P SetEdge

We also include constraints to ensure that each node’s datatype set, each edge’s source and desti-

nation, and each edge’s transformation are all defined in the graph.

SetGraphDefinedness
SetGraphStructure
PolyadicGraph

∀ n : nodes • n.datatypes ⊆ dom datatypes
∀ e : edges •
(∃ n : nodes • n.datatypes = e.from) ∧
(∃ n : nodes • n.datatypes = e.to) ∧
e.xform ∈ dom transformations

Next we define a consistency constraint for edges. Each edge must satisfy two conditions. First,

we must be able to execute the edge’s transformation; this means that the edge’s source node (e.from)

must contain at least all of the datatypes needed by the edge’s transformation. Second, we ensure

that all of the datatypes created by the transformation are in the edge’s destination node, in addition

to all the datatypes that were previously available in the source node.

SetEdgeInputsSatisfied
SetGraphStructure
PolyadicGraph

∀ e : edges •
transformations (e.transformation).inputs ⊆ e.from
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SetEdgeOutputsCreated
SetGraphStructure
PolyadicGraph

∀ e : edges •
e.to = e.from ∪ transformations (e.transformation).outputs

Finally, we define two completeness constraints. The first states that there is a node for every

possible subset of the datatypes defined by the graph. The second states that whenever a source set

contains all of the necessary inputs for a transformation, then there is an edge for that transformation

from that source set.

SetNodeCompleteness
SetGraphStructure
PolyadicGraph

nodes = { ids : P dom datatypes • 〈|datatypes   ids |〉 }

SetEdgeCompleteness
SetGraphStructure
PolyadicGraph

∀ id : dom transformations; source : P dom datatypes |
transformations (id).inputs ⊆ source •
∃ e : edges • e.from = source ∧ e.transformation = id

With each of these constraint schemas defined, we can construct the overall SetGraph schema to

be the conjunction of them.

SetGraph
PolyadicGraph
SetGraphStructure
SetGraphDefinedness
SetEdgeInputsSatisfied
SetEdgeOutputsCreated
SetNodeCompleteness
SetEdgeCompleteness

Compound transformations

Next we must describe the compound transformations found by the discovery algorithm. A set path

is a directed path through a set graph. We will define the SetPath schema in parts.

Definition 7.8 (Set paths). First, we consider the overall structure of a set path: it consists of a source

node and sink node, and the sequence of set edges that comprise the path. We also associate the set

path with the set graph that contains it; we must therefore ensure that any edges or nodes mentioned

within the path actually exist in the graph.
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SetPathStructure
graph : SetGraph
source : SetNode
sink : SetNode
edges : seq SetEdge

source ∈ graph.nodes
sink ∈ graph.nodes
ran edges ⊆ graph.edges

Next we ensure that the path’s source and sink are consistent with its sequence of edges. Specifi-

cally, the first edge in the path must start from the path’s source, and the last edge in the path must

end at the path’s sink. If the path is empty (contains no edges), than its source and sink must be

identical; this implies that there can be many distinct empty paths within a set graph — one for each

node.

SetPathSourceSinkConsistency
SetPathStructure

if #edges = 0 then
source = sink

else
(head edges).from = source.datatypes ∧
(last edges).to = sink.datatypes

We must also ensure that the edges are consistent with themselves; each edge must end where

the following edge begins.

SetPathEdgeConsistency
SetPathStructure

∀ i : 1 . . (#edges − 1) • edges (i).to = edges (i + 1).from

We can now define the SetPath schema as the conjunction of these constraint schemas.

SetPath
SetPathStructure
SetPathSourceSinkConsistency
SetPathEdgeConsistency

7.3.4 Equivalence of the two notations

With formal specifications for the workflow and set notations, we can now show that the two nota-

tions are equivalent. Our overall strategy for this proof will involve three phases. First, we examine

the workflow notation, and provide a precise description of the execution orders and traces of a work-

flow. Second, we examine the set notation, and show that set graphs and set paths are deterministic.

Finally, we will exploit this determinism to show how the relationship between workflow executions

and set paths links the two notations.
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Execution orders and workflow traces

A workflow defines the set of atomic transformations that need to be executed for a compound

transformation, but does not explicitly state the order that they should be executed in. However, the

workflow’s dataflow links allow us to infer a valid order of execution for the transformations.

A sequence of transformations is an execution order of a workflow if two conditions are met.

First, the sequence must contain exactly those transformations executed by the workflow. Second,

for any dataflow link that connects two transformations, the link’s source must precede the link’s

destination. We can then show that this definition ensures that every transformation input will have

a value available when the transformation is executed. Since we have already stated that workflows

cannot contain multiple executions of a given transformation, we only consider injective sequences

(i.e., those with no duplicates).

Definition 7.9 (Execution orders).

Execution == iseq Identifier

executes : Execution↔ Workflow

∀ exec : Execution; w : Workflow •
exec executes w⇔

ran exec = w.executions ∧
∀ l : w.links | l.from 6= source ∧ l.to 6= sink •

exec∼(l.from) < exec∼(l.to)

For convenience, we also provide a function that returns all of the valid execution orders for a

workflow.

executionsOf : Workflow → P Execution

executionsOf w = { exec : Execution | exec executes w }

It is possible for a workflow to have more than one valid execution order. However, as we have

mentioned previously, we do not want to consider workflows, like the cyclic one in Figure 7.16, that

have no valid execution order.

Definition 7.10 (Executable workflows). A workflow is executable if there is at least one valid execution

order for it.

ExecutableWorkflow == ran executes

An execution order tells us one possible sequence of transformations for executing a workflow. It

will also be important to know which datatypes are available at each step of the execution’s sequence.

The trace of a workflow execution determines which datatypes are available at each step of the

corresponding compound transformation. The trace starts with the workflow’s source, since these are

the only datatypes that are given. Each successive element of the trace adds the datatypes created

by the corresponding transformation. Each step is represented by a bag, since it is possible that a

datatype will have been generated more than once.
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Definition 7.11 (Workflow traces).

TraceElement == bag Identifier
Trace == seq TraceElement

trace db ec : (Execution × Workflow) 7→ Trace

dom trace = executes
∀ exec : Execution; w : Workflow | exec executes w •

#(tracew dbexecec) = (#exec) + 1 ∧
tracew dbexecec(1) = bag w.sources ∧
tracew dbexecec(i + 1) =

tracew dbexecec(i) ] bag w.transformations (exec (i)).outputs

With these definitions in place, we can prove that every execution order is valid: that it ensures

that each transformation input has a value when the transformation is executed. To prove this valid-

ity, we must show two things. First, we must show that each datatype appears in an execution trace

immediately after it is generated. This, coupled with the monotonicity of execution traces, allows us

to prove that each datatype is also available immediately before it is used.

Theorem 7.12 (Traces consistent with link sources). For every dataflow link in a workflow, the link’s

datatype appears in every execution trace immediately after the link’s source generates the datatype.

For links that start at a source node, the datatype is available immediately, and must appear in the

first element of the trace. For links that start at a transformation, the datatype appears in the trace

immediately after the source transformation is executed.

∀ w : Workflow • ∀ l : w.links; exec : executionsOf w •
if l.from = source then

l.datatype −À (head tracew dbexecec)
else

l.datatype −À tracew dbexecec(exec∼(l.from) + 1)

Proof. We prove this separately for links that start at a source node and links that start at a transfor-

mation.

Links from a source node. If the link begins at one of the workflow’s source nodes (signified when

l.from = source), then the ValidLinkSources constraint from Definition 7.4 tells us that the link’s

datatype must be one of the workflow’s source datatypes:

l.datatype ∈ w.sources

Definition 7.11 tells us that the first element of an execution trace is the bag containing the workflow’s

source datatypes:

tracew dbexecec(1) = bag w.sources

Therefore, the link’s datatype is obviously a member of the first trace element:

l.datatype −À tracew dbexecec(1)
l.datatype −À (head tracew dbexecec)

Links from a transformation. If the link begins at a transformation (signified when l.from 6=
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source), then the ValidLinkSources constraint from Definition 7.4 tells us that the link’s datatype

must be an output of the link’s source transformation:

l.datatype ∈ w.transformations (l.from).outputs

Since we know that the datatype is an element of the transformation’s output set, we can trivially say

that it is a member of the corresponding bag:

l.datatype −À bag w.transformations (l.from).outputs

We know that the link’s source transformation was executed in position exec∼(l.from). Definition 7.11

tells us the contents of the trace immediately after this step.

tracew dbexecec(exec∼(l.from) + 1) =
tracew dbexecec(exec∼(l.from)) ]

bag w.transformations (exec (exec∼(l.from))).outputs

This can be simplified to

tracew dbexecec(exec∼(l.from) + 1) =
tracew dbexecec(exec∼(l.from)) ]

bag w.transformations (l.from).outputs

Since we have already shown that l.datatype is a member of the bag union’s second operand, we

know that it must also be a member of the union as a whole:

l.datatype −À tracew dbexecec(exec∼(l.from) + 1)

This proves both branches of the if statement, thus proving the theorem.

Theorem 7.13 (Traces consistent with link sinks). For every dataflow link in a workflow, the link’s

datatype appears in every execution trace immediately before the link’s sink consumes the datatype.

For links that end at a sink node, the datatype is not consumed until the end of the execution, and

must appear in the last element of the trace. For links that end at a transformation, the datatype

must appear in the trace immediately before the sink transformation is executed.

∀ w : Workflow • ∀ l : w.link; exec : executionsOf w •
if l.from = sink then

l.datatype −À (last tracew dbexecec)
else

l.datatype −À tracew dbexecec(exec∼(l.to))

Proof. We prove this separately for links that end at a sink node and links that end at a transforma-

tion.

Links to a sink node. Let l.to = sink. According to the ValidLinkSinks constraint from Defini-

tion 7.4, the link’s datatype must be one of the workflow’s sink nodes:

l.datatype ∈ w.sink

Theorem 7.12 tells us that this datatype also must appear in some element of the execution trace. (If
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the link starts at a source node, it will appear in the trace’s first element; otherwise, it will appear

immediately after the link’s source transformation is executed.)

∃ i : dom tracew dbexecec • l.datatype −À tracew dbexecec(i)

Execution traces are monotonic, so if the datatype appears at any point in the trace, it must also

appear in every subsequent step — specifically, the last step.

l.datatype −À (last tracew dbexecec)

Links from a source node to a transformation. Let l.to 6= sink and l.from = source. Since the link

starts at one of the workflow’s source nodes, Theorem 7.12 tells us that its datatype must appear in

the first element of the execution trace:

l.datatype −À (head tracew dbexecec)

The indices of a sequence all are at least one; specifically, the index of the link’s destination transfor-

mation in the execution order must be at least one:

1 ≤ exec∼(l.to)

Execution traces are monotonic, so if the datatype appears at any point in the trace, it must also

appear in every subsequent step:

l.datatype −À tracew dbexecec(exec∼(l.to))

Links from a transformation to another transformation. Let l.to 6= sink and l.from 6= source. Since

the link does not start at one of the workflow’s source nodes, Theorem 7.12 tells us that its datatype

must appear in the execution trace immediately after its source transformation is executed:

l.datatype −À tracew dbexecec(exec∼(l.from) + 1)

Since both ends of the link are transformations, Definition 7.9 ensures that the source transformation

appears before the destination transformation in the execution order:

exec∼(l.from) < exec∼(l.to)

This is equivalent to

exec∼(l.from) + 1 ≤ exec∼(l.to)

Execution traces are monotonic, so if the datatype appears at any point in the trace, it must also

appear in every subsequent step:

l.datatype −À tracew dbexecec(exec∼(l.to))
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Determinism of set graphs and set paths

Having provided a formal description of the workflow notation, we now turn our attention to the set

notation. One important property of a set graph is that it is deterministic. That is, if we start at any

node in the set graph, and follow a well-defined sequence of transformations, there is at most one

set path that can result. There might be no valid set path, which will happen if we come to a node

from which we cannot execute the next transformation in the sequence. However, we will never face

a choice of which edge to follow next; this will be fully determined by the starting node and the

sequence of transformations.

To prove this determinism, we must show three things. First, we can easily show that individual

set edges are deterministic. Next, we can show how to construct a set path from a starting position

and a sequence of transformations. Finally, we can use these two properties to show that entire set

paths are also deterministic.

Theorem 7.14 (Determinism for set edges). For each node in a set graph, there cannot be multiple

outgoing edges for any atomic transformation:

∀ g : SetGraph • ∀ e1, e2 : g.edges •
(e1.from = e2.from ∧
e1.transformation = e2.transformation) ⇒ e1 = e2

Proof. We are given that the sources and transformations of the two edges are identical:

e1.from = e2.from
e1.transformation = e2.transformation

Since the transformations are identical, the outputs of the transformations must also be equal:

g.transformations (e1.transformation).outputs =
g.transformations (e2.transformation).outputs

The SetEdgeOutputsCreated constraint from Definition 7.7 tells us that

e1.to = e1.from ∪ g.transformations (e1.transformation).outputs
e2.to = e2.from ∪ g.transformations (e2.transformation).outputs

Since each respective operand of the unions are equal, the union itself must be, too:

e1.to = e2.to

Finally, since we have shown each element of the edge schemas to be equal, the edges are as well:

e1 = e2

Before we can prove that set paths are deterministic, we must define what it means to construct

a set path from a sequence of edges.

Definition 7.15 (Constructing a set path). A set path is constructed by a source node and a sequence

of transformations iff the path starts at the source node, and consists of exactly the same sequence of

transformations.
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stcurtsnoc : SetPath → (seq Identifier × P Identifier)
db , ec constructs : (seq Identifier × P Identifier)↔ SetPath

stcurtsnoc p = (p.source.datatypes, p.edges o
9 ( .transformation))

db , ec constructs = stcurtsnoc∼

With this construction definition, and the proof that individual set edges are deterministic, we

can now show that entire set paths are also deterministic.

Theorem 7.16 (Determinism for set paths). Within a given set graph, there is at most one set path

that can be constructed from a source node and a sequence of transformations.

∀ xs : seq Identifier; source : P Identifier; p1, p2 : SetPath •
(dbxs, sourceec constructs p1 ∧
dbxs, sourceec constructs p2 ∧
p1.graph = p2.graph) ⇒ p1 = p2

Proof. We are given that the graph elements of the path schemas are equal; we must therefore show

that the other three elements are also equal. We do this separately for empty and non-empty paths.

Empty paths. Let #xs = 0. Definition 7.15 tells us that

source = p1.source.datatypes
source = p2.source.datatypes

By substitution, it is obvious that

p1.source.datatypes = p2.source.datatypes

Since the SetNode schema only contains the datatypes element, we have also proved the source nodes

to be equal:

p1.source = p2.source

Definition 7.15 also tells us that the length of a path is equal to the length of the transformation

sequence that constructs it:

#p1.edges = #xs = 0
#p2.edges = #xs = 0

The empty sequence is the only sequence of length zero:

p1.edges = 〈〉
p2.edges = 〈〉

Therefore, by substitution,

p1.edges = p2.edges

Finally, the SetPathSourceSinkConsistency constraint from Definition 7.8 tells us that the source

and sink of an empty path must be identical:

p1.source = p1.sink
p2.source = p2.sink
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Since we have already shown that p1.source equals p2.source, then by substitution, the sinks are

equal as well:

p1.sink = p2.sink

We have shown that each respective element of p1 and p2 are equal; thus, the paths are equal as

well:

p1 = p2

Non-empty paths. Let #xs 6= 0. Using the same reasoning as for empty paths, we can show that

the path sources are equal:

p1.source = p2.source

To prove that the path’s edges are equal, we must prove inductively that each element of the

sequence is equal.

Base case. The SetPathSourceSinkConsistency constraint from Definition 7.8 tells us the first edge

of the path must start at the path’s source node.

(head p1.edges).from = p1.source
(head p2.edges).from = p2.source

We have already shown that the path sources are equal, so by substitution,

(head p1.edges).from = (head p2.edges).from

Definition 7.15 tells us that a path’s edges must match the transformation sequence that constructs

it:

(head p1.edges).transformation = head xs
(head p2.edges).transformation = head xs

Therefore, by substitution,

(head p1.edges).transformation = (head p2.edges).transformation

We have shown that the first edge in each path have equivalent sources and transformations;

Theorem 7.14 tells us that the edges themselves must also be equal:

head p1.edges = head p2.edges

Inductive case. Assuming that p1.edges (i) = p2.edges (i), we need to show that p1.edges (i+1) =
p2.edges (i + 1). Because the current edges in the sequence are equal, we know that they have the

same destination node:

p1.edges (i).to = p2.edges (i).to

The SetPathEdgeConsistency constraint from Definition 7.8 tells us that the next edges must start

where the current edges ended:
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p1.edges (i + 1).from = p1.edges (i).to
p2.edges (i + 1).from = p2.edges (i).to

By substitution, we therefore know that the next edges must have the same source node:

p1.edges (i + 1).from = p2.edges (i + 1).from

Definition 7.15 tells us that a path’s edges must match the transformation sequence that constructs

it:

p1.edges (i + 1).transformation = xs (i + 1)
p2.edges (i + 1).transformation = xs (i + 1)

Therefore, by substitution,

p1.edges (i + 1).transformation = p2.edges (i + 1).transformation

We have shown that the next edges have equivalent sources and transformations; Theorem 7.14

tells us that the overall edges themselves must also be equal:

p1.edges (i + 1) = p2.edges (i + 1)

The induction that we have just proved shows that each edge in the two paths are respectively

equal; therefore, the edge sequences are equal, as well.

p1.edges = p2.edges

Since we know that the final edge of the two paths are equal, we know that their destination

nodes are equal, too:

(last p1.edges).to = (last p2.edges).to

The SetPathSourceSinkConsistency constraint from Definition 7.8 tells us that the last edge in each

path must end at the path’s sink node:

(last p1.edges).to = p1.sink
(last p2.edges).to = p2.sink

By substitution, the path sinks must be equal:

p1.sink = p2.sink

We have shown that each respective element of p1 and p2 are equal; thus, the paths are equal as

well:

p1 = p2
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Linking workflow executions and set paths

With formal specifications for the two notations, we can now show that they are equivalent. We do

this by defining a bijection between workflow executions and set paths, thereby validating step three

of the polyadic discovery algorithm described in Section 7.2.2.

At first glance, it might seem that we need to provide a bijection between workflows and set

paths, since these are the constructs that represent compound transformations in the two notations.

However, this bijection does not exist. As we have already mentioned, a workflow might have several

executions, since the dataflow links only induce a partial order on the workflow’s transformations

(Figure 7.15). Further, the same sequence of transformations can result in multiple workflows: if a

particular datatype is generated more than once, a transformation input using that datatype might

be satisfied by several different dataflow links (Figure 7.19).

Neither of these issues matter, however. In the first case, the pathfinding algorithm gives us

a set path, which defines a total order on the underlying atomic transformations. We therefore

know exactly which execution order we will be using to construct the corresponding workflow. In

the second case, it does not matter if the execution order can yield multiple workflows; their only

difference will be that some of the transformation inputs can receive their values from multiple

sources. Our interpretation of a datatype, as stated in Section 3.1.3, means that these multiple values

will all be equivalent and interchangeable. This allows us to choose one of the resulting workflows

arbitrarily.

To start the proof, we can say that a workflow and set graph correspond to each other, denoted

by the ì symbol, if they both represent the same abstract polyadic transformation graph: i.e., when

they both encode the same set of datatypes and atomic transformations.

Definition 7.17 (Correspondence of workflows and set graphs).

ì : Workflow↔ SetGraph

∀ w : Workflow; sg : SetGraph •
w ì sg⇔

w.datatypes = sg.datatypes ∧
w.transformations = sg.transformations

Next, we can prove the bijection between workflow executions and set paths.

Theorem 7.18 (Equivalence of workflow executions and set paths). Each execution of a workflow

has exactly one analogous set path in the corresponding set graph.

∀ w : Workflow; sg : SetGraph | w ì sg •
∀ exec : executionsOf w •
∃1 p : SetPath • p.graph = sg ∧ dbexec, w.sourceec constructs p

This theorem requires two separate proofs: one for the existence of the set path, and one for the

uniqueness of it.

Proof of existence. We prove the existence of the path by providing a recipe for its construction, and

then showing that it is a valid path that is correctly constructed by the workflow execution.

We start by providing an abbreviated name for the execution’s trace, as we will be using it fre-

quently in the proof.
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trace == tracew dbexecec

Next we construct the sequence of set edges that will form the body of the set path. It will have the

same length as the workflow execution.

edges : seq SetEdge

#edges = #exec

Each edge in the path is an execution of the respective transformation from the workflow execution.

The execution’s trace tells us which datatypes are available immediately before and immediately after

this transformation is executed; we use these as the source and destination nodes for the edge.

∀ i : dom exec •
edges (i).transformation = exec (i) ∧
edges (i).from = set trace (i) ∧
edges (i).to = set trace (i + 1)

We can now construct the final set path. The workflow defines which datatypes are given to us

initially; we use this as the source node of the path. The last element of the execution trace tells us

which datatypes are available after all of the transformations have executed; we use this as the sink

node of the path.

path == 〈|graph   sg, edges   edges,
source   〈|datatypes   w.sources |〉,
sink   〈|datatypes   set last trace |〉 |〉

We must now show that path is a valid SetPath and that it is constructed by the workflow execu-

tion. The construction proof is trivial, since we can see the following equalities by inspection:

path.source.datatypes = w.sources
#exec = #path.edges
∀ i : dom exec • exec (i) = path.edges (i).transformation

These are exactly the properties needed by Definition 7.15 to show that

dbexec, w.sourceec constructs path

However, we must also show that the path that we have constructed satisfies all of the constraints

defined in the SetPath schema.

Edge consistency. To satisfy the SetPathEdgeConsistency constraint, we must show that each edge

ends at the same node that the following edge starts from. By choosing carefully which indices we

look at, we can see from the construction of the path that

∀ i : 1 . . #exec − 1 •
path.edges (i + 1).from = set trace (i + 1) ∧
path.edges (i).to = set trace (i + 1)

By substitution, therefore,

∀ i : . .#path.edges − 1 • path.edges (i + 1).from = path.edges (i).to
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Source and sink consistency, empty execution. If the execution is empty, then we must satisfy the

SetPathSourceSinkConsistency constraint by showing that the path’s source and sink nodes are equal.

From the definition of our path,

path.source.datatypes = w.sources
path.sink.datatypes = set last trace

Since the execution is empty, its trace has only one element.

path.sink.datatypes = set trace (1)

According to Definition 7.11, the first element of an execution trace is the set of source nodes in the

workflow:

trace (1) = bag w.sources

By substitution and simplification,

path.sink.datatypes = set (bag w.sources)
= w.sources
= path.source.datatypes

Since the SetNode schema contains only one element, we have therefore shown that the path’s source

and sink are equal.

path.source = path.sink

Source and sink consistency, non-empty execution. If the execution is not empty, then we must

satisfy the SetPathSourceSinkConsistency constraint by showing that the path’s first edge starts from

the path’s source, and that the path’s final edge ends at the path’s sink. From the definition of our

path,

path.source.datatypes = w.sources
path.edges (1).from = set trace (1)

According to Definition 7.11, the first element of an execution trace is the set of source nodes in the

workflow:

trace (1) = bag w.sources

By substitution and simplification,

path.edges (1).from = set (bag w.sources)
= w.sources
= path.source.datatypes

Next we show that the path’s sink is consistent. From the definition of our path,

path.sink.datatypes = set last trace

Also, if we set i = #path.edges, the path definition tells us that
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path.edges (#path.edges).to = set trace (#path.edges + 1)

Since the length of the trace is #path.edges + 1, we can simplify this to

(last path.edges).to = set last trace

Finally, by substitution,

(last path.edges).to = path.sink.datatypes

Node definedness. To satisfy the first part of the SetPathStructure constraint, we must show that

each of the set nodes mentioned in the path are actually defined in the graph. The definition of the

path tells us that

path.source.datatypes = w.sources

The WorkflowDefinedness constraint from Definition 7.4 tells us that

w.sources ⊆ dom w.datatypes

Because we are given that the underlying graphs of the workflow and set graph are the same, we

know that sg.datatypes and w.datatypes are equal. Substituting for both sides, we see that

path.source.datatypes ⊆ dom sg.datatypes

Similarly, the path definition tells us that

path.sink.datatypes = set last trace

From Definition 7.11, we can see that every datatype mentioned in an execution trace must have

been defined in the execution’s workflow.

∀ b : ran trace • ∀ dt : set b • dt ∈ dom w.datatypes

Since this constraint holds for every element of the trace, it specifically holds for the last element:

∀ dt : set last trace • dt ∈ dom w.datatypes

We can simplify this to

set last trace ⊆ dom w.datatypes

and substitute to get

path.sink.dataypes ⊆ dom sg.datatypes

We have now shown that both path.source.datatypes and path.sink.datatypes are subsets of the

set graph’s datatypes. The SetNodeCompleteness constraint from Definition 7.7 tells us that the set

graph contains a node for every subset of datatypes in the graph.

∀ dts : P dom sg.datatypes •
∃ n : sg.nodes • n.datatypes = dts
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We can apply this specifically to the path’s source and sink nodes:

∃ n : sg.nodes • n.datatypes = path.source.datatypes
∃ n : sg.nodes • n.datatypes = path.sink.datatypes

The SetNode schema only contains one element, so we can simplify this to:

∃ n : sg.nodes • n = path.source
∃ n : sg.nodes • n = path.sink

Finally, we can eliminate the quantifications as follows:

path.source ∈ sg.nodes
path.sink ∈ sg.nodes

Edge definedness. To satisfy the second part of the SetPathStructure constraint, we must show

that each of the edges in the set path are actually defined in the graph. The SetEdgeCompleteness

constraint of Definition 7.7 requires the existence of an edge in certain situations; our goal is to show

that each edge in the path satisfies these criteria, thereby ensuring that the edge exists. The first

criterion is that the path’s edge must refer to a transformation defined in the graph.

The definition of the path tells us that

∀ i : dom path.edges •
path.edges (i).transformation = exec (i)

Definition 7.9 tells us that every transformation in the execution order has appears in the workflow’s

execution set:

exec (i) ∈ w.executions

The WorkflowDefinedness constraint of Definition 7.4 tells us that every transformation in a work-

flow’s execution set is defined in the graph:

w.executions ⊆ dom w.transformations

Since anything that is an element of a subset must also be an element of the superset,

exec (i) ∈ dom w.transformations

Because we are given that the underlying graphs of the workflow and set graph are the same, we

know that sg.datatypes and w.datatypes are equal. Substituting for both sides, we see that

path.edges (i).transformation ∈ dom sg.transformations

This shows that each edge’s transformation is defined in the graph. The second criterion requires

us to show that each edge’s source contains all of the inputs needed to execute its transformation.

We have just shown previously that each edge’s transformation is in the workflow’s execution set:

∀ i : dom path.edges •
exec (i) ∈ w.executions

The AllInputsSatisfied constraint from Definition 7.4 tells us that any transformation in this execution
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set must have incoming links for all of its inputs:

∀ input : w.transformations (exec (i)).inputs •
∃ lIN : w.links •

lIN.to = exec (i) ∧ lIN.datatype = input

Theorem 7.13 tells us that each input link’s datatype must appear in the execution trace immediately

before its destination transformation is executed.

lIN.datatype −À trace (exec∼(lIN.to))

Since lIN.to = exec (i), we can simply as follows:

lIN.datatype −À trace (exec∼(exec (i)))
lIN.datatype −À trace (i)

By rewriting, we see that we have an existential quantification that can be eliminated:

∃ lIN : w.links •
lIN.datatype = input ∧ lIN.datatype −À trace (i)

input −À trace (i)

By rewriting again, we find a universal quantification that can be eliminated and simplified:

∀ input : w.transformations (exec (i)).inputs •
input −À trace (i)

w.transformations (exec (i)).inputs v trace (i)
w.transformations (exec (i)).inputs ⊆ set trace (i)

Finally, by rewriting and substituting, we get:

∀ i : dom path.edges •
w.transformations (exec (i)).inputs ⊆ set trace (i)
sg.transformations (path.edges (i).transformation).inputs
⊆ path.edges (i).from

This shows that each edge’s source node correctly contains all of the inputs needed by its trans-

formation. By assigning variables as follows,

id == path.edges (i).transformation
source == path.edges (i).from

the SetEdgeCompleteness constraint from Definition 7.7 tells us that:

∃ e : sg.edges •
e.from = path.edges (i).from ∧
e.transformation = path.edges (i).transformation

Since their source nodes and transformations are equal, Theorem 7.14 tells us that the edges them-

selves are equal, too, by the determinism of set edges:

∃ e : sg.edges •
e = path.edges (i)
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We can eliminate the existential quantification as follows:

∀ i : dom path.edges •
path.edges (i) ∈ sg.edges

Lastly, we can eliminate the universal quantification as follows:

ran path.edges ⊆ sg.edges

This shows that path is a valid path according to Definition 7.8, and that it is correctly constructed

by the workflow execution.

We have shown that each workflow execution has some equivalent set path; now we must show

that this set path is unique.

Proof of uniqueness. Luckily, the uniqueness proof is much simpler than the existence proof. If we

assume that there are two paths, p1 and p2, that satisfy the conditions of the theorem, we have:

∀ w : Workflow; sg : SetGraph | w ì sg •
∀ exec : executionsOf w •
(∃ p1 : SetPath •

p1.graph = sg ∧ dbexec, w.sourceec constructs p1) ∧
(∃ p2 : SetPath •

p2.graph = sg ∧ dbexec, w.sourceec constructs p2)

However, Theorem 7.16 tells us that set paths are deterministic: two paths constructed from the same

source node and transformation sequence must be identical. Therefore,

p1 = p2

These proofs show the correctness of the polyadic discovery algorithm described in Section 7.2.2.

The construction rules for a set graph allow us to create the corresponding set notation version of a

polyadic graph. We can then use a simple pathfinding algorithm to find a set path solution. Finally,

since set paths and workflow executions are equivalent, we can correctly construct a workflow that

corresponds to the set path solution. Furthermore, since a corresponding workflow and set path

consist of the same transformations, their costs are identical. Thus, an optimal set path must also be

an optimal workflow.

7.4 Complexity analysis

In the previous section, we proved the correctness of our polyadic transformation discovery algo-

rithm. Now we can analyze the algorithm’s complexity. It is easy to see that the complexity is

dominated by the size of the set graph, since it includes a node for every set of datatypes in the trans-

formation graph. This requires a set graph with O(2D) nodes, where D is the number of datatypes in

the graph. The pathfinding algorithm that we use to find a solution runs in time polynomial to the
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size of the set graph. Thus, it is obvious that our set-based algorithm will run in time exponential to

the number of datatypes — highly undesirable.

Of course, this does not imply that the underlying problem is inherently “difficult”; we might just

have given a poor solution. In this section, we develop yet another notation for polyadic graphs, and

use it to show that polyadic transformation discovery is NP-hard. This shows that the problem is

fundamentally hard, and implies that there is no efficient, polynomial-time solution.

7.4.1 Hypergraphs

The notation used in this section is based on the hypergraph [10, 11, 4]. A (directed) hypergraph

is similar to a graph, but its edges are allowed to have multiple source and destination nodes. For

comparison, Figure 7.24 shows a polyadic transformation graph represented both as a workflow and

as a hypergraph. Nodes in the hypergraph represent datatypes, just as with unary transformation

graphs. Each atomic transformation is represented by a hyperedge, with a source node for each

input datatype and a sink node for each output datatype. The γ transformation, for instance, has a

hyperedge connecting the A and B nodes to the D node.
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Figure 7.24: A transformation graph in the workflow and hypergraph notations

In a unary graph, a compound transformation is represented by a path; for polyadic graphs, we

will use the corresponding notion of a hyperpath. Figure 7.25 shows the compound transformation

that generates datatypes C and D from A, as both a workflow and a hyperpath.
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Figure 7.25: A compound transformation as a workflow and a hyperpath

Because of the possibility of branching and merging, a hyperpath is a much subtler construction

than the linear path found in a unary graph. Briefly, a hyperpath is a subset of the hyperedges in a
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hypergraph. Like hyperedges, a hyperpath has a source and a sink. Some treatments of the subject

allow the source and sink to be a set of nodes; others require them to be single nodes. All of the

hypergraphs that we will consider will have a single source and a single sink, so this distinction will

not concern us.

Not just any subset of hyperedges is a valid hyperpath. At least one of the hyperedges must end

at the hyperpath’s sink. Further, the hyperpath must contain a “subhyperpath” to each of that hy-

peredge’s sources. The hyperpath in Figure 7.25(b), for instance, must contain a hyperedge ending

at the sink node. This hyperedge has datatypes C and D as its sources, so there must also be sub-

hyperpaths from the source to each of these datatypes, as shown in Figure 7.26. We can repeat this

process recursively, including smaller subhyperpaths at each stage, until we have worked our way

back to the original source node. This forms a hyperpath tree of hyperedges, rooted at the original

sink node. Figure 7.26 also shows the corresponding tree for our example hyperpath. More details

on hyperpaths and hyperpath trees can be found in [6] and [45].

C, D → T

B → C (β) A, B → D (γ)

A → B (α)

S → A

S → A A → B (α)

S → A

α

β

γ

S

T
α

β

γ

S

T

A

B C

D A

B C

D

Figure 7.26: Two subhyperpaths, both including the α hyperedge

7.4.2 Hyperpath-finding efficiency

Having described how hypergraphs and hyperpaths can be used to represent transformation graphs

and compound transformations, we can now analyze the efficiency of transformation discovery in

this model. For unary graphs, this was equivalent to the shortest path problem; for polyadic graphs,

we will examine the analogous shortest hyperpath problem. However, the extra complexity of hyper-

graphs and hyperpaths adds several wrinkles that we did not have to consider in the unary case.

Like edges, the hyperedges in a hypergraph can be weighted. For unary graphs, it is obvious

how to calculate the weight of a path: it is simply the sum of the weights of the path’s edges.

For hyperpaths, though, there is not a single obvious way to calculate a hyperpath’s weight from the

weights of its hyperedges. As we can see from Figure 7.26, hyperedges can appear multiple times in a

hyperpath tree. For instance, as highlighted in the hyperpath tree, both of the C and D subhyperpaths

contain the α transformation’s hyperedge. Intuitively, this is because α’s result — the B datatype —

is required by both the β and γ transformations. However, even though α appears in the hyperpath

tree multiple times, it is only contained in the overall hyperpath once. Intuitively, this is because α

is only executed once, regardless of how many times its output is used. These two interpretations
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allow us to calculate two different weights for the hyperpath: the first by including α’s weight twice

(since it is “used” twice in the overall hyperpath), the second by including it exactly once (regardless

of how many times it is used).

These weighting functions, and many others, are examined in [59], [6], and [7]; a summary can

be found in [5]. Using the terminology from [7], the first weight function (where α is counted twice)

is called the traversal cost of the hyperpath; the second (where every hyperedge is counted at most

once) is called the cost. Intuitively, we can distinguish these two metrics by whether they consider

the hyperedges of a hyperpath to belong to a bag or a set. Figure 7.27 shows a hypergraph with two

possible hyperpaths between the source and sink nodes, along with their hyperpath trees. Path (a)

has no repeated hyperedges, so its cost and traversal cost are both 7. Path (b), on the other hand, has

a repeated edge (from the source node S to datatype A); its cost is 6, while its traversal cost is 8. As

we can see, the choice of weighting function can easily affect which hyperpath should be considered

“shortest”. If we use traversal cost as our metric, path (a) is the optimal solution; if we use cost, path

(b) is optimal.
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Figure 7.27: Examples of different hyperpath weight functions

Traversal cost is an example of a value-based function; these functions have simple recursive defi-

nitions that depend solely on the weights of their subhyperpaths. The traversal cost of the hyperpath

in Figure 7.25(b), for instance, is simply the sum of the traversal costs of the subhyperpaths in

Figure 7.26. The cost of the hyperpath, however, is not as easy to calculate, since summing the sub-

hyperpath costs would result in α being included twice. We would need to analyze the structure of

the two subhyperpaths to discover this and produce the correct hyperpath cost.

This means that the two weighting functions have quite different time complexities: each recur-

sive step in the traversal cost function requires exactly one operation, whereas each recursive step

in the cost function requires time proportional to the size of the recursive subhypergraphs. As [59]
and [6] show, there is an efficient polynomial-time algorithm for finding shortest hyperpaths if a

value-based function is used to calculate hyperpath weights. For more complex functions like cost,

however, the shortest hyperpath problem is NP-hard. An NP-hard algorithm is one that we consider

to be fundamentally “difficult”. There is a large class of problems, known as NP (for nondetermin-

istically polynomial), for which there are no known polynomial solutions. Moreover, it is accepted
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wisdom — though it has not yet been proved — that no polynomial solutions exist. An NP-hard

problem, then, is at least as difficult as all of the problems in NP; if we were ever to find an efficient,

polynomial solution to an NP-hard problem, this could be used to build an efficient solution to every

NP problem.

Returning to transformation graphs, these two weight functions correspond to different assump-

tions about how a compound transformation will be executed. If we use traversal cost, we imply

that each time the output of a transformation is used, we need to re-execute that transformation.

However, the data that the transformation generates will usually be reusable, so re-executing the

transformation is not necessary. The cost metric correctly takes this into account by including each

transformation’s weight exactly once.

Of course, nothing would require us to actually execute a repeated transformation multiple times.

It might be tempting to use the efficient traversal cost metric to find a solution, and then execute each

transformation only once, regardless of how many times it appears in the traversal cost solution.

Unfortunately, as we have already shown with Figure 7.27, the choice of weighting function affects

which solution the discovery algorithm finds. Using a weighting function that does not match how

the transformations will actually be executed can cause the discovery algorithm to find suboptimal

solutions.

This means that if we want to discover polyadic compound transformations via a hypergraph, we

must use cost as the weighting metric for the hyperpath-finding algorithm. As with the set notation,

the resulting solution is not an efficient, polynomial-time algorithm. However, with the hypergraph

solution, we have gone one step further and shown that the solution is NP-hard. Though it has not yet

been proved, our current intuition is that the P and NP complexity classes are distinct. This strongly

implies that there is no polynomial time algorithm for polyadic transformation discovery, and that

the underlying problem is fundamentally difficult.

Summary

In this chapter we have investigated polyadic transformation graphs, which differ from the transfor-

mation graphs seen previously in that their atomic transformations can have more than one input

and output datatype. We introduced an intuitive workflow notation for polyadic graphs that focuses

on each of these atomic transformations as opaque units of computation. Unfortunately, this notation

does not lend itself to an obvious discovery algorithm for compound transformations. We therefore

defined a set notation, in which compound transformations are once again represented by paths. This

yields a simple discovery algorithm: translate the polyadic transformation graph into the set nota-

tion, use a pathfinder to find a compound transformation, and translate the resulting set path into a

workflow.

Next, we proved that this algorithm is sound. To do this, we developed a formal specification of

the workflow and set notations, and showed that there is a bijection between workflow executions

and set paths. This shows that a set path found by the pathfinder can be correctly used to construct

an equivalent workflow.

Though provably correct, our algorithm is very inefficient, due to its exponential space require-

ments. We then showed that it is not just our solution which is inefficent; rather, the underlying

problem is fundamentally difficult. To show this, we developed a hypergraph notation, in which
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compound transformations are represented by hyperpaths and are discovered using an analogous

hyperpath-finding algorithm. The efficiency of a hyperpath-finding algorithm depends strongly on

the function used to calculate a hyperpath’s weight given the weights of its constituent hyperedges;

unfortunately, the weighting function needed for polyadic transformation discovery yields an algo-

rithm that is NP-hard. This implies that there is no efficient, polynomial-time algorithm for polyadic

transformation discovery. However, this intractability is a worst-case bound. In the next chapter, we

will investigate the algorithm’s complexity further, to see if there are situations where transformation

discovery is reasonably efficient.
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In the previous chapter, we described how transformation graphs can be extended to support polyadic

transformations — those with multiple inputs and outputs. Unfortunately, as we showed, the trans-

formation discovery algorithm in this extended model is provably NP-hard. Ideally, this intractability

will be a worst-case bound, with the hope that “normal” transformation graphs will lend themselves

to discovering compound transformations more efficiently. In this chapter, we investigate this hypoth-

esis. To this end, we develop a rapid prototype of the algorithm, allowing us to quickly test many

simple transformation graphs, looking for features that lend themselves to efficient discovery. There

are many tools that could be used for this purpose; we use the Communicating Sequential Processes

(CSP) process algebra [52, 93] to develop the prototype implementation, and the FDR refinement

checker [92, 95] to explore the problem’s complexity space. Analyzing the results, we can highlight

certain optimizations that FDR makes while performing its refinement checks, which we then relate

to the underlying transformation discovery problem. This shows several analogous optimizations

that we can make to the algorithm presented in the previous chapter. The contents of this chapter

have been published previously in [31].

8.1 CSP implementation

In this section, we describe a prototype implementation of the transformation discovery problem de-

scribed in the previous chapter, written in CSP. The usual strategy for working with CSP specifications

is to define two processes: one providing a specification of what the system should do, and the other

describing a particular implementation of the system. One then uses a refinement checker such as

FDR to verify that the implementation refines, and therefore satisfies, the specification.

We will follow a similar approach, though our CSP processes will not describe a “specification”

and “implementation”, per se. Instead, we will use the first process to describe the structure of the

graph, and the basic rules about when transformations can be executed. We will use the second

process to describe the specific property that we are looking for in a solution: that, given instances of

a particular set of initial datatypes, there is some sequence of transformations that can be executed

that will yield instances of a different set of desired datatypes. Note that we do not describe how

to find solutions; we only provide a declarative description of the problem structure and of valid
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solutions.

8.1.1 Graph structure

We start by declaring the CSP types needed for the specification. The Datatype type represents a

single datatype from the transformation graph. (The overloading of the term “datatype” is unfortu-

nate but unavoidable; we will use “type” to refer to the syntactic concept in the CSP language, and

“datatype” to refer to a node in a transformation graph.) A Transformation has a unique identifier,

and is defined by two sets of datatypes: one for its inputs and one for its outputs. A particular

transformation graph can be encoded by providing concrete values for the Datatype type and the

Transformations, GivenTypes, and DesiredTypes variables. The Transformations variable contains all

of the transformations in the graph. The GivenTypes variable specifies which datatypes we are given

instances of, while DesiredTypes specifies which datatypes need to be generated by the discovered

compound transformation.

datatype Datatype, XformID
nametype Transformation = XformID × (P Datatype) × (P Datatype)
variable Transformations, GivenTypes, DesiredTypes

Next we define the event channels that will be used in the specification. The have channel signals

when a datatype has become available, regardless of how it was obtained. The given channel is used

to notify other processes which datatypes are given. The execute channel signals that a particular

atomic transformation has executed. The produce channel indicates that a datatype has been pro-

duced as the output of some transformation. Finally, the finish channel signifies that a datatype has

been used as the final result of the compound transformation.

channel given, have, produce, finish : Datatype
channel execute : XformID

Now we can construct the CSP process that represents the structure and rules of a transformation

graph. We follow the standard approach of declaring subprocesses for each of the individual prop-

erties or constraints of the system, which we then compose together into a final specification using

parallel composition.

We first define a MakeAvailable process that is responsible for generating have messages whenever

a datatype instance becomes available. This can happen in one of two ways: we can be given the

instance (in which case we match a given message), or it can be generated by the execution of a

transformation (in which case we match a produce message).

α(MakeAvailable) = {|given, produce, have |}
MakeAvailable =

given?t → have!t → MakeAvailable
u
produce?t → have!t → MakeAvailable

Next we define a Given process that generates the initial given messages for the datatypes that we

start with. The alphabet of this process contains all given messages, even though only certain given

messages are created; this ensures that CSP events only appear for those datatypes that actually are
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given to us.

α(Given) = {|given |}
Given = ||| t : GivenTypes • given!t → Stop

Next we define a process to handle the finish messages. We keep track of which datatypes we

have; when one of the DesiredTypes becomes available, we allow a finish event for it. We do not

want to generate multiple finish events for any datatype, so we must also keep track of the datatypes

that have already been finished. This means that we only allow a finish event if the datatype is one

of the desired outputs, it is available, and we have not already generated a finish event for it.

α(Finish) = {|finish, have |}
Finish =

let
Have (avail, finished) =

have?t → Have (avail ∪ {t}, finished)
u
finish?t : (avail \ finished) ∩ DesiredTypes → Have (avail, finished ∪ {t})

within
Have (∅,∅)

Our next process is responsible for preventing a particular transformation from executing before

all of its inputs are satisfied. We define it similarly to the Finish process: we keep track of which input

datatypes we have; once all of them are available, we allow any number of execute events to occur

for this transformation. The process alphabet contains a have event for each input datatype, and the

execute event for the transformation.

α(XformPrereq ( (id, inputTypes, outputTypes) )) =
{execute.id} ∪ { t : inputTypes • have.t }

XformPrereq ( (id, inputTypes, outputTypes) ) =
let

Have (avail) =
(avail = inputTypes) & execute!id → Have (avail)
u
have?t : inputTypes → Have (avail ∪ {t})

within
Have (∅)

For the transformation graphs described in this chapter, we assume that every datatype is reusable:

that any instance of the datatype can be used multiple times without penalty. We do not allow single-

use datatypes as described in Section 7.1.1. For this reason, we do not remove any elements from the

set of available datatypes in the Finish and XformPrereq processes. If desired, we could use a more

complicated definition for these processes to limit the number of times that a particular datatype

could be consumed.

The above process verifies that the prerequisites are satisfied for a single transformation. We must

use parallel composition to combine them together: since multiple transformations might be waiting

for the same datatype to satisfy an input, they must be notified of its availability simultaneously. This

means that they must synchronize on the corresponding have event. This parallel composition yields
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the Prereqs process, which verifies the prerequisites of each atomic transformation simultaneously.

α(Prereqs) =
⋃

{ xf : Transformations • α(XformPrereq (xf )) }
Prereqs = ‖ xf : Transformations • XformPrereq (xf )

Next we define a process that describes what happens when a particular transformation is exe-

cuted. The process is fairly straightforward: it waits for the appropriate execute event, after which

it outputs produce events for each of the transformation’s output datatypes. We use replicated in-

terleaving to allow the produce events to occur in any order. The overall process then ends in Skip.

The process alphabet does not contain any extra events — only the execute and produce messages

appropriate to the transformation.

α(ExecuteOneOnce ( (id, inputTypes, outputTypes) )) =
{execute.id} ∪ { t : outputTypes • produce.t }

ExecuteOneOnce ( (id, inputTypes, outputTypes) ) =
execute!id → (||| t : outputTypes • produce!t → Skip)

The ExecuteOneOnce process is parameterized on the definition of a transformation; now we

instantiate this process for each of the actual transformations in the graph. The ExecuteAnyOnce

process allows the environment to execute any one transformation. Its alphabet includes all of the

produce messages, since we want to prevent datatypes that do not play a part in some transformation

from being produced.

α(ExecuteAnyOnce) = {|execute, produce |}
ExecuteAnyOnce = u xf : Transformations • ExecuteOneOnce (xf )

With the ExecuteAnyOnce process, we have allowed the environment to execute a single trans-

formation. Now we allow it to execute a sequence of them. Since the ExecuteAnyOnce process ends

with a Skip (due to it being defined in terms of ExecuteOneOnce), we can accomplish this with a

recursive sequential composition. The Execute process allows any sequence of transformations to

be executed; it does not take into account whether a transformation has its inputs satisfied. This

constraint is handled by the Prereqs process, and so it will be introduced automatically when we

compose together all of the graph processes.

α(Execute) = α(ExecuteAnyOnce)
Execute = ExecuteAnyOnce o

9 Execute

Finally, we can merge together all of the previous processes using parallel composition. This yields

an overall Graph process that satisfies the constraints introduced by each of its constituent parts. We

also provide a view of the graph (GraphOutputs) that hides everything except for the finish channel;

this allows us to only concern ourselves with which final datatypes can actually be produced, without

worrying about the details of which transformations were executed.

α(Graph) = {|given, have, execute, produce, finish |}
Graph = MakeAvailable ‖ Given ‖ Finish ‖ Prereqs ‖ Execute

α(GraphOutputs) = {|finish |}
GraphOutputs = Graph \ (α(Graph) \ {|finish |})
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8.1.2 Transformation discovery process

Next we construct the CSP process that tests whether all of the desired datatypes are eventually

produced by some compound transformation. When we only have a single desired type, this is

exceedingly simple. Since we have hidden everything except for the finish message for our desired

type, we just want to ensure that this message occurs. This property is given by the Want′T process,

which has exactly two traces:

Want′T ({t}) = finish!t → Stop

traces [[ Want′T ({t}) ]] = {〈〉, 〈finish.t〉}

The empty sequence is a trace of every process. We are hoping that 〈finish.t〉 will be a trace of

GraphOutputs, since this would imply that there is some sequence of transformations that produces

the desired datatype. If this is true, the traces of Want′T will be a subset of the traces of GraphOutputs.

Therefore, a traces refinement check will provide us with a solution:

assert GraphOutputs vT Want′T (DesiredTypes)

We can use a similar traces check when we have many desired output datatypes. We can construct

a WantT process that allows the appropriate finish events in any order:

WantT (∅) = Stop
WantT (types) = ||| t : types • finish!t → Stop

traces [[ WantT ({t1, t2}) ]] =
{〈〉, 〈finish.t1〉, 〈finish.t2〉, 〈finish.t1, finish.t2〉, 〈finish.t2, finish.t1〉}

If the transformation graph can generate all of these datatypes, the GraphOutputs process will

output exactly one finish message for each. Further, since the finish messages are not coupled to the

order in which the atomic transformations are executed, GraphOutputs will be able to output these

finish messages in any order. Thus, the traces of WantT will be a subset of the traces of GraphOutputs.

(In fact, because neither process has any other visible events, they will be traces-equivalent.)

On the other hand, if the graph cannot generate each desired datatype, then the GraphOutput

process will not have any trace containing every finish event. Since WantT does contain such a trace,

the traces of WantT will not be a subset of the traces of GraphOutputs. This means that a valid

compound transformation exists iff the following refinement holds:

assert GraphOutputs vT WantT (DesiredTypes)

Unfortunately, while this correctly tells us if a compound transformation exists, it does not tell us

what the transformation is. Luckily, we can find this information with only slight modifications. We

create a new WantF process as follows:

WantF (∅) = Stop
WantF ({t}) = Stop
WantF (types) = u t : types • finish!t → WantF (types \ {t})

This differs from WantT in two respects. First, we use internal choice instead of interleaving to

establish each permutation of the finish events. Second, for each of these permutations, we only

accept all but one of the finish events, refusing the final one.
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With these changes, we can use the stable failures model of CSP instead of the previous traces

model. If there is a valid compound transformation, the GraphOutputs process must allow every

finish message to occur, in any permutation. The WantF process, however, only accepts all but one of

these events; there is no situation where it will accept every finish event. Thus, the stable failures of

GraphOutputs are not a subset of the stable failures of WantF.

If, on the other hand, no compound transformation is possible, then there must be at least one

finish event that GraphOutputs refuses. Further, it will refuse this finish event at every point during

its execution. WantF can also refuse this event at any point: either because there are other finish

events for the internal choice to fall back on, or because it is the final remaining finish event, which

we always refuse. Thus, the stable failures of GraphOutputs are a subset of the stable failures of

WantF. We can now check the following negated refinement:

assert WantF (DesiredTypes) 6vF GraphOutputs

There are two important points to note. First, the order of the operands in the refinement check has

been reversed. As we will see in our time complexity analysis, this causes a noticable improvement

in efficiency on its own. Second, our choice of semantic model is important. The Graph process

can execute the same transformation repeatedly forever, which causes the GraphOutputs process to

diverge. By using the stable failures model instead of the failures-divergences model, we ignore these

situations.

When we check this refinement, there are two possible outcomes. If the refinement check suc-

ceeds, then we know that there is no valid compound transformation. If it fails, then the compound

transformation exists, and FDR will provide a counterexample to the refinement. By examining this

counterexample, we will find the sequence of execute events that defines the execution order of the

compound transformation solution. Furthermore, since FDR uses a breadth-first search to perform

the refinement check, the counterexample returned will be the one with the fewest events in its trace.

Since this corresponds to the compound transformation with the fewest atomic transformations, the

result of the refinement check will be the optimal transformation solution.

8.2 Analysis using FDR

In the previous section we presented a prototype implementation of the polyadic discovery algorithm

using the CSP process algebra. By casting the problem as a suitable refinement test between two

processes, we can use the FDR refinement checker to search for compound transformations. In this

section, we run this refinement check over many different transformation graphs, of varying shapes

and sizes, recording how efficiently FDR can find solutions (in both space and time). Doing so gives

us an empirical view into the complexity space of the problem, with the hope of finding regions of

transformation graphs for which the discovery algorithm is more efficient than the NP-hard worst-

case bound. Ideally, these regions will correspond to the kinds of transformation graphs that are

more likely to appear in practice, suggesting that polyadic discovery can still be a useful tool.

The obvious way to measure the space and time complexity of our prototype would be to record

the maximal amount of memory used by FDR, and the amount of wallclock or actual processor time

needed to perform the refinement check. However, we use a different metric: all measurements are
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made with respect to the underlying labeled transition system (LTS) that FDR creates for a compiled

CSP process. Because of supercompilation [47], FDR will usually not have to store the process’s entire

abstract LTS in memory. We measure the space complexity as the size of this smaller supercompiled

LTS. The refinement check, however, must be performed on the full abstract LTS, which requires

explicating the supercompiled LTS into its full form. (The explicated LTS nodes are allocated and

deallocated as they are needed, so as to avoid storing the full LTS in memory at once.) We therefore

use the number of explicated LTS states visited during the refinement check as a measure of the time

complexity.

We measure the space and time complexity in this way because these measurements depend only

on the definition of the CSP process. The space complexity metric is fully deterministic, since FDR

will always compile a CSP process into the same LTS. The time metric is fully deterministic, as well,

since FDR will perform the same search for any particular refinement check. Our measurements,

therefore, do not depend on the speed or load of the machine used to perform the refinement check,

and are more reproducible.

All of the figures mentioned in this section begin on page 141.

8.2.1 Space complexity

Our first experiment is to measure the space complexity of the constructed graph representation. Ini-

tially, we only consider how the graph size is affected by the number of datatypes in the graph, so we

consider graphs containing a varying number of datatypes and no transformations. Figure 8.1 shows

the size of the labeled transition system that FDR constructs for each transformation graph process.

As the figure uses a logarithmic scale, we can see that the graph size grows exponentially; graphs

with more than twenty datatypes took over an hour to compile on a reasonably fast workstation.

The problem is with the Finish and XformPrereq processes, specifically with their internal Have

subprocesses. These subprocesses maintain the set of available datatypes as a state parameter. Un-

fortunately, sets require exponential space; since FDR is compiling this subprocess into a low-level

operator tree, the Have process’s LTS also requires exponential space. Luckily, we can modify the

Finish process as follows:

Finish =
let

DontHave (t) = have!t → Have (t)
Have (t) =
(t ∈ DesiredTypes) & finish!t → Finished (t)
u
have!t → Have (t)

Finished (t) = have!t → Finished (t)
within
||| t : Datatype • DontHave (t)

We can make a similar modification to XformPrereq:

XformPrereq ( (id, inputTypes, outputTypes) ) =
let
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α(DontHave (t)) = {execute.id, have.t}
DontHave (t) = have!t → Have (t)
Have (t) = (execute!id → Have (t)) u (have!t → Have (t))

within
‖ t : inputTypes • DontHave (t)

Here we have redefined the internal subprocesses to only keep track of a single datatype. We

then create copies of these internal subprocesses for each of the datatypes, and use a composition

operator to combine them. For the Finish process, we can use interleaving, since the subprocess

alphabets are disjoint. In the XformPrereq process, on the other hand, the subprocesses for each input

datatype must synchronize on the execute event, since all of the inputs must be available before the

transformation can proceed. We must therefore use alphabetized parallel for the composition.

FDR will compile the subprocesses into low-level operator trees; however, since they no longer

maintain exponential state, these trees will be small. The composition of these smaller processes is

far more efficient than the original exponential LTS; Figure 8.2 shows the same space measurements

for a graph constructed with the modified Finish and XformPrereq processes. With this modification,

we are easily able to represent graphs with hundreds of datatypes. This optimization works because

the availability of any one datatype is independent of the rest. As we will show later, this modification

to the CSP process will also suggest a similar modification to our naïve discovery algorithm.

Next we show how the size of the graph process is affected by the number and arrangement of

transformations in the graph. For this experiment, we fix the number of datatypes in the graph, and

examine four situations, as shown in Figure 8.3. First, as a control, we again examine the graph with

no transformations. Second, we introduce a single directed cycle of transformations that encompasses

all of the datatypes in the graph. Third, we consider a graph with two directed cycles, pointing in

opposite directions. Finally, we consider the fully-connected graph, where a transformation directly

connects every possible pair of datatypes, including self-cycles.

Figures 8.4 and 8.5 show how the number of LTS states and transitions, respectively, vary based on

the shape of the graph and the number of datatypes in it. The None, Cycle, and Double-cycle graphs

all have linear growth, whereas the All-pairs graph has quadratic growth. This can be easily explained

by Figure 8.6 — the All-pairs graph has a transformation connecting each pair of datatypes, which

gives a quadratic growth for the number of transformations as compared to the number of datatypes.

This suggests that we should also compare the size of the LTS to the number of transformations, as is

shown in Figure 8.7. In this case, each style of transformation graph yields linear growth for its LTS

size. Part of the overall growth comes from the datatypes, and part comes from the transformations;

Figure 8.8 combines everything together into a three-dimensional graph to show this relationship.

The contour lines show that the resulting surface is planar, yielding an O(D + T) overall size for

a graph’s LTS. One can imagine the graph from Figure 8.6 lying on the XY plane; these curves are

then projected up onto the growth plane to yield a single growth curve for a particular style of

transformation graph.

8.2.2 Time complexity

Next we examine the time complexity of the algorithm. We again look at four different “shapes” of

transformation graph, this time shown in Figure 8.9. In all cases, we are seeking a transformation
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between the source datatype S and the destination datatype D. The shapes differ in the number of

additional datatypes in the graph, and in how the datatypes are connected. In part (a), we have a

single sequence of datatypes A1 through An, with a single path through the graph from S to D. In part

(b), we have the same sequence of datatypes A1 through An, but in this case, they are not needed

to transform from S to D. In part (c), we have two sequences of datatypes, A1 through An and B1

through Bn, between S and D. Either one can be used as a valid transformation path. Finally, in part

(d), we again have two sequences of datatypes between S and D, but we introduce crosslinks as well,

allowing the algorithm to jump from the A datatypes to the B datatypes at any point in the sequence.

In this graph, there are n + 2 valid transformations between S and D.

The results of this analysis are shown in Figures 8.10 through 8.13. Logarithmic scales are used in

these figures when the growth rates are especially pronounced. Several important conclusions can be

drawn from this data. In most cases, the number of LTS states and transitions that must be examined

during the discovery algorithm is much greater than the number needed to represent the graph itself.

This implies that with our more efficient process definition, FDR is not initially instantiating the entire

structure of the graph; rather, the graph process is encoding a recipe for dynamically instantiating

the graph as needed. This corresponds with our understanding of FDR’s use of supercompilation

to distinguish between low- and high-level operator trees: the exponential state is “hidden” by the

high-level parallel compositions. We must still examine many of these exponential states during the

refinement check, taking time, but it is not necessary to store them all in memory at once, saving

space.

Next, we can see that the execution time for the discovery algorithm is almost entirely dependent

on the number of transformation paths that must be checked. This is most apparent in shape B

(Figure 8.11), where regardless of the number of datatypes in the graph, there is a constant size

transformation solution. Once the discovery algorithm finds this path, no more processing is required.

In this case, the order of the operands in our stable failures refinement is beneficial, since FDR must

normalize the left-hand side before performing the check. In this case, the left-hand side is WantF

— whose LTS size depends only on the number of desired datatypes, and not on the size of the total

transformation graph. For our earlier traces refinement, on the other hand, the left-hand side was

GraphOutputs, whose size increases as new datatypes and transformations are added, even if they are

not needed in the discovered solution. Thus, for the failures refinement, the normalization happens

much faster, since it operates on a much smaller CSP process.

Figure 8.14 shows the relationship between the complexity curves of shapes A (Figure 8.10),

C (Figure 8.12), and D (Figure 8.13). Shape C seems to be a simple modification to the graph

from shape A, only adding a single additional possible transformation path. However, since FDR is

performing the equivalent of a breadth-first search, it will try to make progress down both paths

simultaneously. Only after reaching the end of both intermediary sequences will FDR discover that

only one was needed to reach the destination. Worse, it must consider every interleaving of the trans-

formations in the two paths while advancing through the graph. Shape D exacerbates this problem

by introducing crosslinking edges. Now, instead of having to consider all possible permutations of

two transformation paths, FDR must consider permutations of n+2 paths. The growth is much more

pronounced, and approaches the worst-case exponential growth; whereas with shape A we were able

to consider graphs with 150 datatypes in a reasonable amount of time, shape D quickly becomes

infeasible after only twenty datatypes.
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Finally, it is important to point out we have not truly eliminated the exponential growth curve

of the algorithm’s running time; it is still exponential for pathological inputs. This might seem to

be a discouraging result at first, but it is in fact still useful in practice. As we will discuss in the

next section, real-world transformation graphs tend not to contain a large number of datatypes and

transformations, so any improvement in the efficiency of the discovery algorithm for smaller graphs

will be helpful.
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Figure 8.2: Space required for the modified transformation graph process
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Figure 8.3: The different transformation graph shapes used in the space analysis
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1

10

100

1k

10k

100k

1.0M

 0  10  20  30  40  50  60

1

10

100

1k

10k

100k

1M

N
u

m
b
e
r 

o
f 

L
T

S
 s

ta
te

s 
(l

o
g
 s

ca
le

)

N
u

m
b
e
r 

o
f 

L
T

S
 t

ra
n

si
ti

o
n

s 
(l

o
g
 s

ca
le

)

Number of datatypes

~700 sec.

States

Transitions

Figure 8.12: Number of states checked for shape C
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Figure 8.13: Number of states checked for shape D
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8.3 Interpreting and exploiting the results

Having expressed the polyadic discovery problem as a CSP process, and analyzed the complexity

space of this process, we can now show how the insights from this analysis can be used with the set

graph algorithm from the previous chapter. First, we interpret the kinds of transformation graphs

that were more efficient, identifying the features of those graphs that led to efficiency gains, and

showing why “real-life” transformation graphs will tend to have those features. Then, we show how

the particular technique that FDR uses — lazy evaluation — can be incorporated into the discovery

algorithm described in Chapter 7.

8.3.1 Causes of the efficiency gains

In this section, we review the classes of transformation graph for which FDR was able to find a solu-

tion more efficiently. The example graphs that we used were fairly abstract, so we extrapolate these

results to describe the “real-world” graph features that would lead to similar efficiency gains. Finally,

we argue that these features are exactly those that will tend to appear in practical transformation

graphs, increasing the utility of our polyadic discovery algorithm.

According to our analysis, the space complexity for the discovery algorithm is fairly static, deter-

mined only by the number of datatypes and transformations in the graph. This implies that reducing

the number of datatypes in a graph can be an effective way to improve efficiency. In practice, this

strategy should prove useful, since large transformation graphs tend to be easily separated into con-

nected components. Intuitively, this is because the datatypes in the graph will tend to form “clumps”,

where a datatype can be transformed into anything in its clump, but not into anything outside of

it. For instance, we might add datatypes to the graph in Figure 4.5 to represent the contact details

(such as a postal address) of the scientist collecting a particular microscope image. However, we will

never be able to transform the image itself into a postal address, and vice versa. The image formats

will form one connected component, and the contact detail datatypes will form another. By treating

these connected components as separate transformation graphs, we reduce the number of datatypes

and the space required to represent the graph.

The time complexity, on the other hand, depends much more on the “shape” of the graph. As

suspected, certain input graphs provide much more efficient executions of the discovery algorithm.

The major factor in determining the running time of the algorithm is the number of possible trans-

formation paths that must be checked. The time required by FDR grew dramatically as edges were

added to the graph, especially when those edges added new transformation paths without making

any new datatypes reachable. This yields a portion of the graph where many different interleavings

of transformation sequences must be considered. Each of these sequences will eventually yield the

same set of available datatypes, but will require different intermediary sets to get there.

In practice, transformation graphs will usually avoid this inefficiency, since the clumps of data-

types in a graph will not be highly interconnected. Indeed, the entire reason for using this graph-

based approach is to limit the need to write direct transformations between datatypes. Instead,

transformation graphs tend to follow an “intermediary format” pattern, as shown in Figure 8.15. In

this pattern, one or more datatypes (the shaded types in the center of the graph) become de facto or

official standards within different communities of users and developers. Individual application de-
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velopers then write transformations between their datatypes (the unshaded types on the periphery of

the graph) and one of these standards. These star-like graphs form trees, where there is exactly one

path between any pair of nodes. While a real-world transformation graph is not likely to be a perfect

tree (and might therefore allow multiple paths between a certain pair of datatypes), it can still pro-

vide full connectivity between all datatypes without providing an overabundance of transformation

paths to check.

Figure 8.15: Using intermediary datatypes to simplify a transformation graph

A similar factor affecting the algorithm’s time complexity is whether the compound transforma-

tion that we are seeking actually exists. FDR is able to find a correct transformation much faster than

it is able to prove that no transformation exists. Intuitively, this makes sense; once FDR has found a

solution, it does not need to consider any of the remaining possibilities and can stop processing. If

there is no solution, FDR must check every possible transformation path to prove this. In practice, a

program or user invokes the discovery algorithm because they know (or can reasonably assume) that

the desired compound transformation exists. For real-world use cases, therefore, the time complexity

will tend to be much more efficient than the worst case.

8.3.2 Modifying the algorithm

Having showed in the previous section how the efficiency gains found by FDR should be useful in

practice, we now turn our attention to modifying our discovery algorithm to exploit these improve-

ments. All of the efficiency gains in our examples stemmed from one major feature: lazy evaluation.

This was only possible with the modified Finish and XformPrereq processes described in Section 8.2.

With the reduced state space of the internal Have subprocesses, FDR did not need to store the entirety

of a set-based graph. Instead, it encoded a recipe for lazily deriving the appropriate portions of the

graph as they become relevant.

This explains why the initial space requirements are fairly independent of the connectivity of the

graph: while there might be many more paths that need to be checked, the recipe used to describe

the graph remains roughly the same size. The time complexity, however, is highly dependent on the

connectivity; when there are more edges, a larger fraction of the set-based graph must be checked to

find a solution.

We can illustrate this by revisiting the example set graph from Section 7.2.2, repeated here in

Figures 8.16 and 8.17. Examining the set graph closely, we see that only a small fraction of the nodes

are reachable from the {A, B} source node. In fact, if we look at the connected components of the

set graph, as shown in Figure 8.18, we see that the number of reachable nodes (and therefore the

number of possible set paths) will always be relatively small. The connected components are defined
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entirely by the atomic transformations in the graph, so this is true regardless of the source and sink

nodes used.
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Figure 8.16: An example transformation graph for the discovery algorithm
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Figure 8.17: The corresponding set graph

By incorporating FDR’s lazy evaluation strategy, we can exploit this knowledge. For reference, we

repeat the naïve version of the discovery algorithm, as presented in Chapter 7:

1. Translate the polyadic transformation graph into the set notation.

2. Find a shortest path from the set graph’s source node to any of its sink nodes.

3. Use this path to add dataflow links to the transformation graph’s workflow.

To support lazy evaluation in FDR, we had to rewrite the Have subprocesses to store a recipe for

constructing a set graph, rather than the set graph in its entirety. To support lazy evaluation in

our algorithm, we will need a similar recipe. Luckily, we already have one: the original workflow

notation encodes this in its representation of atomic transformations as “black boxes” of logic or code.

We can therefore interleave the set graph construction of step one with the pathfinding of step two,

as follows:

1. Add the source node, and its outgoing transformation edges, to the set graph.

2. Run the pathfinding algorithm, as before. As new nodes are encountered, add them, along

with their outgoing transformation edges, to the set graph. As soon as we encounter a shortest

path to any sink node (i.e., to any node that is a superset of our desired output types), stop

processing.
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Figure 8.18: The connected components of the example set graph

3. If any such set path is found, use it to construct a corresponding workflow.

With these modifications, we ensure that only set nodes that are actually reachable from the

source are instantiated in the set graph. Moreover, nodes that are reachable, but are “further” away

than a sink node, will also not be instantiated, since we stop processing as soon as a set path is found.

As always, we have not improved the worst-case efficiency of the algorithm: if the set graph is fully

connected, for instance, all O(2D) nodes will be reachable from the source, instantiated in the set

graph, and visited by the pathfinder. However, our analysis using FDR leads us to believe that these

pathological cases will be rare in practice, and that the lazy instantiation strategy will often be a

helpful optimization.

8.4 Limitations of this technique

The technique described in this chapter allowed us to empirically analyze the complexity space of

the polyadic transformation discovery algorithm. This technique can be used in a similar way for any

algorithm or problem that can expressed as a refinement between two CSP processes, by finding the

inputs that can be solved more efficiently by FDR, and searching for common features of those inputs.

This would then hopefully provide insights into how the algorithm can be made more efficient for

those cases.

One limitation of this technique is that it is highly dependent on our selection of inputs and on

the tool that we use. We must choose an appropriate sampling of inputs if we want a true view of the

problem’s complexity space. More importantly, even if we choose an appropriate suite of test inputs,

there is no guarantee that FDR will find all of the efficient solutions that are possible. When FDR finds

a compound transformation inefficiently, for instance, this does not mean that this input graph has

no efficient solution; instead, it might be that FDR’s refinement checking strategies cannot reproduce

the necessary optimizations. If we were to use a different modeling formalism and model checker, or
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even a different CSP refinement checker, we might get different results for our analysis. Because of

this, we cannot establish a tight bound on the problem’s complexity using this technique. However,

we can establish an upper bound. Put another way, negative results are not indicative, in general.

Positive results, on the other hand, represent real optimizations that can be exploited, though even

these results might not be fully optimal.

Our general strategy was to develop a rapid prototype of the algorithm in a declarative style,

without having to choose a particular execution strategy for a low-level implementation. If we want

more confidence in our view of the problem’s complexity space, we could use several prototypes,

each using a different underlying language, hoping that each efficient input would be found by at

least one of them. SAT solvers, in particular, would be a good choice for an additional prototype;

being the earliest and most visible NP-hard problem [28], Boolean satisfiability has inspired research

into many sophisticated optimization techniques [48, 109, 32, 39].

Summary

In the previous chapter, we presented an algorithm for polyadic transformation discovery and showed

that it was NP-hard, implying that the underlying problem is inherently difficult. However, this is only

a worst-case bound on the algorithm’s efficiency; the hope is that for practical examples of transfor-

mation graphs, the discovery algorithm would execute more efficiently. To this end, we have devel-

oped a declarative CSP description of the discovery problem, allowing us to use the FDR refinement

checker to analyze the complexity space of the problem. By using FDR to find compound transfor-

mations in graphs of varying sizes and shapes, we have identified several classes of transformation

graph that are more efficient. By examining the high-level patterns that these efficient transformation

graphs have in common, we identify several design criteria that lead to efficient discovery. Luckily,

the transformation graphs that meet these criteria are indeed the ones that are likely to appear in

practice.

Given this analysis, we then modified the naïve discovery algorithm from the previous chapter to

incorporate the primary optimization used by FDR: lazy evaluation. By only instantiating the nodes in

the graph as they are encountered during the pathfinding algorithm, and by stopping the processing

once a shortest path has been discovered, we can exploit the same efficiencies in our pathfinding

algorithm that FDR exploited in its refinement check. Further, as we have shown, these efficiencies

are likely to occur exactly in those transformation graphs that tend to appear as practical, real-world

examples. Thus, while we cannot improve the algorithm’s worst-case intractability, we have been

able to empirically show that a slight modification to the algorithm allows practical transformations

to be discovered efficiently and effectively.
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In this chapter we summarize the contributions of this thesis. First, we present an overview of the

data mismatch problem, highlighting its importance in today’s highly connected software systems. We

show how existing techniques are not general enough: while being useful parts of an overall solution,

they do not solve the problem in its entirety. Next, we present our graph-based transformation

framework, which can be used to solve the data mismatch problem in a truly generic way. Then,

we show how we can extend the expressiveness of this graph model to support more sophisticated

use cases, at the cost of sacrificing the efficiency of the transformation discovery algorithm. Next,

we use a novel application of the CSP process algebra to empirically analyze the complexity space

of the extended discovery algorithm. By doing so, we find graph features that are executed faster

than the worst-case upper bound; luckily, these are features that will tend to appear often in practical

transformation graphs. Finally, we examine several related research areas, comparing them with the

topics covered in this thesis, and we present several remaining open questions, suggesting areas for

future work in this area.

9.1 Motivation

As software engineers and computer scientists, we now find ourselves in a world that is heteroge-

neous in a fundamental way that was not the case even a decade ago. Before, software systems were

usually designed and used in isolation. Decisions about architecture, algorithms, and data models

could be made strictly based on the needs of the one application. Communication and interoperability

were sometimes necessary requirements of a system, but this was the exception, not the rule.

Now, on the other hand, the Internet is ubiquitous, and most software systems are expected to

communicate with their peers. As the global network connection becomes more established as a

given in our computing infrastructure, the amount and sophistication of this communication can

only be expected to increase. While the primary criteria for each design decision is still the benefit to

our particular application, we must now be aware of the ramifications of those decisions in the larger

context brought about by the Internet.

One particular issue that we must worry about when considering interoperability is how the ap-

plication’s data is modeled and encoded, both internally and externally. Even within a particular
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problem domain, where different applications deal with logically similar data, the representations of

the data will likely be different. Moreover, these differences can occur at many levels, from high-

level semantic differences in how the data is interpreted, through medium-level differences in how

data elements are structured and organized, to low-level syntactic differences in how the data is con-

cretely encoded. This leads to the data mismatch problem: for different applications to communicate

and coexist effectively in today’s highly networked environment, we must somehow reconcile these

differences, preferrably in an automatic and generic way.

One way to approach the problem is to consider the different equivalences that exist between the

data models, in addition to the differences between them. Like data mismatches, these equivalences

will also appear at many conceptual levels. Two datatypes can be semantically equivalent if they

describe the same real-world concepts. They can be structurally equivalent if they are organized using

the same primitive structures. They can be syntactically equivalent if they are both physically encoded

into a stream or buffer of bytes in the same way. Our task, then, is to find a way to translate between

two datatypes, overcoming some mismatch, while at the same time maintaining some equivalence.

Apart from the naïve and tedious task of creating custom translations for each pair of applications,

the most obvious solution is to develop and mandate an intermediary format to serve as a lingua

franca between systems. Applications would be responsible for supporting this intermediary format

in addition to whatever custom data models and formats were needed. Unfortunately, while this

provides a simple technical solution to mismatched data models, it relies on the developers, users,

and other stakeholders of each system to agree on and adhere to the standard. Often this does not

happen, and the community balkanizes into several groups centered around competing standards.

Thus, while we need to promote the standardization process whenever possible, we cannot rely on

globally mandated standards as a solution. Instead, we must accept that there could be a multitude

of data models and formats to support, with various differences and incompatibilities between them.

Our solution, then, should be able to incorporate and exploit any standardized intermediaries when

they exist, while also gracefully handling situations where they do not.

9.2 Solution

While the data mismatch problem is becoming more urgent with the advent of the ubiquitous Inter-

net, it has been acknowledged as a valid concern for quite some time. As such, it is not surprising that

there are many existing approaches that try to reconcile data mismatches automatically, to varying

degrees of success. However, these previous approaches all follow the general strategy of requiring

a precise description of each datatype — either explicitly written by the developer or derived from

actual data. From these descriptions, the relationships between two datatypes are inferred, providing

a recipe for translating between them.

Unfortunately, these approaches suffer from two main drawbacks. First, the descriptions sup-

ported by a particular technique can only be provided for certain kinds of datatypes: for instance,

they might require that the data be stored in relational tables, or be described using an XML schema.

Any datatype that does not meet these requirements would not be supported without some initial

manual translation. Second, inferring the relationships from the datatype descriptions is not trivial,

often requiring some form of natural language processing or manual verification of the results. While

this certainly does not render these techniques useless, it can make them more difficult to use in the
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larger context of application development.

We take a different approach, and abandon this precise description of the datatypes. Instead,

we require that atomic transformations be written between certain pairs of datatypes. Obviously,

a description of the datatypes — whether more formal, like a relational or XML schema, or more

informal, like documentation — will be necessary to write an atomic transformation. However,

once an atomic transformation is written, this information can be discarded, since it is not needed

by the higher-level transformation framework. Instead, the detailed knowledge of the datatype is

encapsulated into the atomic transformation, which is treated as a “black box” of logic or code.

With several of these atomic transformations, we can construct a transformation graph, with nodes

representing datatypes and edges representing atomic transformations. While the transformation

graph gives us a nice model for representing translations between datatypes, they can sometimes be

repetitive. Every XML datatype, for instance, will usually have similar transformations for translating

between its various internal and external encodings. We can use constructs like declaration patterns

to make these situations less tedious.

Since the underlying atomic transformations are composable, each path in a transformation graph

represents a compound transformation between arbitrary datatypes. There are many efficient path-

finding algorithms that can then be used to discover compound transformations. Moreover, we can

support different use cases, with different criteria for which compound transformations are optimal,

by allowing the user to assign numeric weights to the atomic transformations dynamically.

Thus, we have a solution that is automatic and generic. It is not fully automatic, in that the

atomic transformations must be written by hand; however, since each atomic transformation can

be written in whichever programming or transformation language is most suitable to it, existing

transformation code can often be incorporated into a transformation graph as-is. Further, this amount

of manual work is much less than would be required to connect each pair of applications directly, or

to incorporate the results of existing (and limited) automated techniques into a larger solution.

Our graph-based approach is also fully generic — since we do not require a precise description

of the datatypes, having encapsulated this knowledge into the atomic transformations that operate

on them, there are absolutely no restrictions placed on the datatypes that we support. Relational

databases, XML documents, and proprietary binary formats are all supported, as long as someone is

able to provide an atomic transformation that can translate each datatype into something else. Our

approach even works for abstract datatypes and for infinite datatypes.

9.3 Extension

Our simple graph-based approach is useful, and can be used to solve many interesting transformation

use cases. However, it only supports unary transformations. It would be helpful to allow the more

expressive polyadic transformations — those with multiple inputs and outputs — if possible. Polyadic

transformations would be especially useful when the internal structure of a datatype can vary over

time or use case; by exposing some of this structure in the transformation graph, we can use the

transformation discovery algorithm to handle and mitigate some of these differences. Polyadic trans-

formations allow us to expose this detail in a controlled manner, while still retaining the benefits of

the encapsulation and opacity of datatypes.

There are several notations that we can use to describe a polyadic transformation graph. The
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workflow notation presents an intuitive view of the graph, representing the available atomic trans-

formations as black boxes of code or logic, and showing the flow of data (which might be reusable)

through a compound transformation. The set notation focuses on which datatypes are available at

each step of a compound transformation. This gives us an obvious discovery algorithm, which we can

prove finds correct compound transformation solutions; unfortunately, it does this very inefficiently,

due to the space requirements for generating and storing a set graph. Finally, the hypergraph notation

is logically concise, and very familiar due to its similarities with simple unary transformation graphs.

We can use this hypergraph notation to show that polyadic discovery is NP-hard — rather than that

our set-based algorithm was just poorly designed.

9.4 Analysis

The fact that polyadic discovery is NP-hard might seem like a discouraging result at first, since it

implies that the discovery algorithm cannot possibly execute in a reasonable amount of time for non-

trivial transformation graphs. Luckily, this intractability is only a worst-case bound. There are many

problems that are similarly intractable, but only for pathological inputs; for “real-world” inputs, they

can be much more efficient. The hope is that polyadic discovery is one of these problems.

To investigate this hypothesis, we use a novel technique for analyzing the complexity of the

problem. First, we provide a formal, declarative description of the problem as a refinement between

two CSP processes. We can then use the FDR refinement checker as a prototype implementation.

By performing the refinement check with a wide variety of inputs, we get an empirical view of the

complexity space of the problem, looking for possible optimizations. Some of these optimizations

require modifications to the CSP definitions, while others are found automatically by FDR’s search

algorithm.

By examining the inputs that lead to more efficient solutions in FDR, we can identify and classify

common features of those input graphs. This is useful for two reasons. First, we can determine

which particular graph features lead to efficiency gains, looking at how those features correspond

to real-world transformation graphs. In our case, these efficient graphs are ones that will tend to

appear more often in practice, lending support to our hypothesis that real-world transformation

graphs are not pathologically intractable. Second, by understanding which input graphs are leading

to efficient discovery, we can infer which optimizations — such as lazy evaluation — FDR is using

in its search. We can then incorporate these same optimizations into our own set-based discovery

algorithm. Together, these show that polyadic transformation graphs can still be useful in practice,

even if we are unable to remove the worst-case NP-hard bound on the discovery algorithm.

9.5 Related work

Having presented a summary of the contributions of this thesis, we can now examine how it relates to

other similar research topics. We look at other approaches for solving our problem of interest, as well

as other applications of the technique that we use. We examine three research areas in particular:

schema matching, and the automated composition of both workflows and Semantic Web Services.
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9.5.1 Schema matching

Schema matching refers to another approach for solving the data mismatch problem. Several schema

matching techniques were described previously in Chapter 2. The primary difference between schema

matching and the approach described in this thesis is that schema matching techniques try to infer

relationships between different datatypes from a detailed model of the data. This model might come

from a formal description of the data, such as a database or XML schema, or it could be constructed by

examining samples of the data. Moreover, the model might focus on the natural-language names of

the elements of a datatype (nominal typing) or on the relationships between its elements (structural

typing). However, regardless of its source or form, these techniques require some kind of model to

discover a translation between datatypes.

This reliance causes an interesting tradeoff for schema matching techniques. First, it is beneficial

for the description of each datatype to be as detailed as possible, since this provides more information

from which to infer a translation. However, the extra detail greatly increases the complexity of the

search, making it more inefficient to successfully discover a translation. Many of the research efforts

in this area seek to reconcile these competing interests.

Our technique avoids this tradeoff, since we do not use a description of the datatypes to infer

a translation. Instead, we rely on small units of transformation to be provided by the user of our

framework; we then provide a means of combining these small pieces together in a way that requires

no deep understanding of their internals. This gives us an effective abstraction barrier between the

individual atomic transformations and our composition technique. This abstraction barrier removes

the conflicting concerns inherent in schema matching. Our atomic transformations can benefit from

as much detail as can be provided for the datatypes involved. However, none of this information is

used by the high-level composition logic, preventing the extra detail from affecting the efficiency of

the search.

9.5.2 Workflow composition

Having looked at other solutions to the data mismatch problem, we can now examine other similar

uses of composition in the field. First, we look at the composition of workflows in the context of Web

Services.

In the Web Service world, workflows can be used to describe higher-level interactions between

Web Services. Many languages — including the Business Process Execution Language [60], the Busi-

ness Process Modeling Notation [76], and the Web Service Choreography Interface [3]— have been

proposed for describing these workflows at varying levels of abstraction and complexity. There are

existing proposals [88, 19, 97] for automatically discovering and generating new workflows, and for

combining existing workflows, based on declarative descriptions of the goals of the application. One

would hope that these existing techniques could be used to discover translations between datatypes,

since data transformations are a simple specialization of the generic class of computation supported

by Web Services.

However, Web Service workflows are too complex for our needs. Web Services are very generic,

and support a huge range of interactions. This requires a correspondingly sophisticated workflow

language to be able to model the rich interactions between services. They need to represent com-

plex sequences of messages and operations, between multiple parties, with non-trivial control flow
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semantics. Along these lines, UML activity diagrams have been proposed [100] as one possibility for

modeling and expressing these complex interactions. Regardless of their particular form, any Web

Service language for describing and composing workflows will approach the same level of complexity

and sophistication as a full-fledged process algebra like CSP.

Our transformation technique operates in a much simpler model, even when considering polyadic

transformations. Atomic transformations are functional in nature, having no side effects. They have

very simple interfaces, taking the data to translate as input and generating the translation as output.

This allows us to model the composition of transformations using only dataflow links; no complex

control flow structures are needed. We can exploit this simple structure to reduce the search space

we must examine when looking for compound transformations, greatly increasing the efficiency of

our technique compared to Web Service composition frameworks. In the extreme case of unary

transformations, the dataflow diagram reduces to a simple directed graph, giving us a very efficient

pathfinding algorithm for discovering transformations.

9.5.3 Semantic Web Service composition

One relatively recent addition to the Web Service stack of standards and protocols attempts to in-

tegrate the ontological descriptions of the Semantic Web with the lower-level transport and service

interface descriptions of Web Services. Dubbed Semantic Web Services [72, 105], this paradigm as-

sumes that a Web Service interface description will describe not only the low-level details of a service,

such as its name and the XML types of its inputs; it will also provide a formal description, expressed

in an extension to OWL [70, 101, 69], of the semantics of those inputs, and of how its outputs

logically relate to its inputs. One application of these machine-readable semantics is to support com-

posing these services automatically with respect to some larger specification [71, 23]. If we could

use Semantic Web primitives to express the translation behavior required of a solution to the data

mismatch problem, we could possibly use these semantics-based composition techniques to discover

data transformations.

In one sense, our technique also claims to include “semantic meaning” in our transformation solu-

tions, since they purportedly operate on datatypes defined across the full range of the S classification.

We have given several examples of datatypes that we must translate between, whose differences ex-

ist solely at the semantic level — the raw and deconvolved images from Section 3.1.3 being a prime

example. One of the main inefficiencies in Semantic Web-based algorithms is the need to encode this

semantic meaning in a form that is, at least to some extent, “understandable” by a machine. Because

of our strict adherence to datatype opacity, we do not suffer from this inefficiency. In our framework,

it is perfectly acceptable for this semantic meaning to live solely in the minds of the human devel-

opers who write and use the transformations in our system. While not directly understandable by

(or even necessarily represented in) a machine, this semantic meaning can still inform the decisions

made about the datatypes and transformations, which can have a visible influence on the results

produced by our high-level transformation discovery logic. As with most other aspects of our system,

the information is available for use in the low-level transformation definitions, while encapsulation

prevents the extra detail from reducing the efficiency of our algorithms.

Semantic Web-based service descriptions are also much more expressive, since they have the full

range of propositional logic available for describing the semantics of a service operation. Services are
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usually modeled as implications, where the truth of an operation’s precondition implies the truth of

its postcondition. The composition of services is modeled as a conjunction of the two corresponding

implications, with an appropriate renaming of variables to model the sharing or passing of data

between the two. The hypothesis that a valid composite service exists is then naturally modeled

as an existential quantification. One can also add other conjunctive clauses to the quantification to

provide further details of the requirements of the desired composite service. This approach requires

the use of a theorem prover to show that this quantification can be satisfied.

Our approach also supports complex specifications of the desired compound transformation,

but as usual, we add several constraints to make the discovery more efficient. Specifically, our

pathfinding-based approach requires that the declarative specification of the output be expressible

as a simple induction over the atomic transformations that make up the solution. This is easiest to

see in the case of data transformation, where a compound transformation maintains any equivalence

that is maintained by all of its constituent members. However, our discovery algorithm works for

any kind of computation whose semantics can be described as an induction. This is analogous to the

different cost metrics that can be used to find hyperpaths: as long as one correctly limits the amount

of information considered at each step, the problem is tractible.

9.6 Discussion

In this section, we discuss some interesting features, false starts, and personal observations that

occurred while developing this thesis.

When first developing the polyadic extension in Chapter 7, the author examined many other

graph problems as a possible basis before settling on the workflow and set notations. For instance,

it seemed possible for quite some time to cast polyadic transformation discovery as an example of a

maximum flow problem, with the data itself being the commodity flowing through the graph. In its

simplest incarnation, the nodes in the graph would represent datatypes. An atomic transformation

would be represented by a gadget of nodes and edges that would draw some amount of flow from the

transformation’s input nodes, and deposit the flow in its output nodes. Of course, this formulation

did not work. The fundamental issue has already been described previously — we must require all

of a transformation’s inputs to be available before the transformation can execute, which is difficult

to require of a flow graph. Furthermore, the outputs may or may not be needed, depending on the

downstream elements of the transformation graph. Not all of these issues are insurmountable, but

overcoming them makes the flow graph more complex than it needs to be; casting the problem in

terms of the workflow, set, and hypergraph notations provides a much more intuitive view of the

problem.

Another interesting feature of our transformation discovery framework is that it does not rely on a

standardization process, or on a single formalism or data modeling technique. Many research projects

provide formalisms that can be used to model any feasible application data model, which is certainly

a necessary part of any generic framework. However, while one can find some instantiation of the

formalism that is equivalent to a particular data model, it is not necessarily a direct representation

of the data model itself. In the case of data transformations, this is not an acceptable restriction —

we cannot claim to support transformations for a particular datatype if the user must first manually

translate that datatype into some other representation. Similarly, we cannot rely on a centralized
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standards body to provide a solution, since we cannot impose this solution on all interested parties.

They may or may not have valid technical reasons for avoiding the standardized solution. While it

is tempting to not support those parties who do not buy into the standardization process, we feel

that this is an unnecessary restriction, since their reasons might be perfectly valid. In the ideal case,

the framework would work even with clients and users that cannot, or choose not to, directly use or

support it. As pointed out several times throughout this thesis, we consider this to be a key feature

of a framework that aims to be useful in today’s highly networked world.

Finally, the author found the algorithm analysis of Chapter 8 to be a particularly exciting applica-

tion of the CSP process algebra. This use of CSP and FDR falls well outside the scope of its original

intended use: the specification of complex parallel and distributed systems. The concept of refine-

ment, which the theory of CSP is based on, is useful in a wide range of other areas, though, and it was

gratifying to be able to show that the existing tool support could extend so easily to such a radically

different problem domain. This is a testament to the robustness and soundness of Hoare’s theory and

Roscoe’s tool. The only drawback to this line of inquiry was due to the proprietary nature of the FDR

program. Being at Oxford, the author was privileged to have access to several of the developers and

designers behind FDR, who were an invaluable aid while examining the transformation discovery

algorithm. Other researchers without this access might have been hard-pressed to correctly interpret

the results.

This analysis was also an interesting example of what one of the examiners termed “experimental

computer science”. Especially in the area of algorithm design, most work of this nature is firmly

grounded in the realm of theory. New algorithms are implemented in order to help show their

utility, but the efficiency of an algorithm is usually shown formally as a mathematical proof. We

have followed this strategy ourselves in Chapter 7, by using a reduction to hypergraphs to show

that the polyadic discovery problem is NP-hard. It is more rare to perform an empirical analysis of

an algorithm, as we have done in Chapter 8. Part of this could be due to aesthetic reasons, where a

formal proof seems to carry more weight due to its finality and rigor, but there are legitimate logistical

reasons, too — in order to empirically test an algorithm in this way, one must have at least a prototype

implementation of it. Especially in the initial stages of the development of a new algorithm, when

certain design decisions have not been finalized, it can be difficult to implement a prototype that will

be true to the end result — meaning that any measurements we make will be inaccurate. Moreover,

if the development of the prototype is time-consuming in its own right, it can be too expensive to

devote time to it. This makes it very difficult to follow an iterative design approach if we want to

incorporate this kind of empirical analysis into the process.

In our case, the analysis was not cumbersome because of the approach we took. The prototype

“implementation” was not really an implementation as such; because we used a process algebra to

model the problem, our description of it was very declarative in nature. While this did require a

working knowledge of CSP, which can be a subtle and difficult language to master, the resulting

formal description of the problem is very concise, and maps very well to an English description of the

problem. More importantly, though, the formal description is directly executable, due to the existence

of the FDR refinement checker. This makes it very easy to experiment with different design decisions

in a very agile way, while allowing us to have immediate feedback about the relative efficiency of

those decisions. Of course, as we mentioned in Chapter 8, we are not able to find a tight bound on

the efficiency, since FDR might not always find optimal solutions, but it is helpful nonetheless.
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9.7 Future work

In this final section, we consider the many tasks and open research questions that remain. The most

obvious is that, while we have described a theoretical framework for our graph-based approach to

transformation discovery, there is currently only a basic prototype implementation of this technique.

To be useful in a wider context, we would need to create a well-engineered library implement-

ing these ideas. For unary graphs, this should be fairly simple, as the theory only relies on well-

established, well-known graph algorithms. The most difficult engineering task, in fact, would likely

be supporting atomic transformations written in a wide range of programming and transformation

languages. The polyadic discovery algorithm is slightly more complex, in that its implementation

focuses on the new set notation, though it should still be relatively straightforward to develop.

There are several open research questions that involve our empirical analysis of the polyadic

discovery algorithm. First, as we mentioned in Chapter 8, we can repeat our experiments using

another declarative description of the problem (expressed, for instance, as a Boolean satisfiability

[28] problem), along with another corresponding prototype implementation. This would ideally

give us more confidence that our view of the problem’s complexity space is accurate. Second, there

has been a lot of research into compression and optimization techniques for CSP processes. The

supercompilation approach described in [47] is integral to the lazy evaluation strategy that we have

already exploited. The hierarchical compression functions described in [94] seem promising, as

well. It would be fruitful to see if any of these CSP compressions could be used to obtain further

optimizations. Finally, this technique could be similarly used for any algorithm or problem that can

expressed as a refinement of CSP processes, by finding the inputs that are solved more efficiently

by FDR, and searching for common features of those inputs. This would then hopefully provide

insights into how the algorithm could be made more efficient for those cases. One could verify the

general utility of this technique by applying it to several well-known NP-hard problems, seeing if it

can reproduce existing results and lead to new insights.

There are also open questions that pertain directly to our graph-based transformation approach.

First, our use of a transformation graph to encode the known translations between datatypes is

centered within the context of a single application. This might seem counterintuitive, since the

purpose of our framework is to support communication betweeen multiple applications; however, as

a simplification, we take the view that only one of the applications — the one with the transformation

graph — is responsible for mediating this communication. The situation becomes more complicated

when both communicating applications have transformation graphs at their disposal.

A simple solution would be to retain the restriction that only one application mediates the commu-

nication. If both applications have transformation graphs available, then they use some negotiation

protocol (or a predefined set of rules) to determine which application’s transformation graph is used.

The other application would then act as if it could only communicate using its own application-

specific datatypes. This solution might not be optimal, however, since there is no guarantee that

either transformation graph on its own will be able to find the “best” transformation between the two

native datatypes.

A more interesting solution would attempt to merge the two transformation graphs together; this

assumes that the combined graph could find a more optimal compound transformation. (It could

certainly do no worse, since it would fully contain both individual graphs, and therefore retain all of
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the possible solutions of each.) We would probably need to ensure that any compound transformation

crosses the “boundary” between the two constituent graphs only once, representing the fact that we

only want to send a single data instance across the wire between the two applications — though

it might also be interesting to see if we can model the tradeoffs between a “chatty” connection

on the wire and the efficiency of the individual atomic transformations. Other interesting topics

in this area include how to combine the two weighting functions if the applications have different

optimality criteria for the compound transformation; and how to efficiently assemble the combined

transformation graph when the applications are separated by a (possibly slow or faulty) network

connection.

One final research question concerns how a transformation framework like this fits into larger

architectural design paradigms. The various flavors of service-oriented architecture (SOA) seem

the most complementary, as they are also designed to support communication between decoupled,

heterogeneous software systems. The idea of a multitude of datatypes, which we can dynamically

and automatically transform between, seems to fit especially well with the REST notion of different

representations of a resource [40]. One can easily see a REST client using a transformation graph

to automatically translate the resource representation provided by the server into something more

understandable; equally, one can see a server using a transformation graph to seamlessly support a

wider range of output datatypes.

There are two slight inconsistencies, neither of which are insurmountable, with how REST data-

types are defined in terms of the MIME standard [43, 44]. First, MIME types are mostly — and

preferrably — assigned by a central authority, which does not match well with our very decentralized

notion of datatype definitions. The frameworks would be more consistent if REST used URIs [14] (or

any other decentralized, globally unique identifier scheme) for datatype names. The second differ-

ence is that MIME types tend to focus only on the syntactic and structural levels of the S classification

— with image/jpeg and application/xml, which are purely syntactic, being examples of common

MIME types. Structural types are also possible, the most common being schema-specific types for

different XML formats. However, MIME types cannot really support more subtle distinctions between

datatypes, such as structurally and syntactically identical datatypes that must be interpreted accord-

ing to different semantics; nor do they support our policy of using separate datatypes to represent any

distinguishable differences between datatypes. Again, though, these differences are not fundamental

inconsistencies, and could easily be overcome if one were to add transformation graph capabilities to

a REST application.

Similar issues arise when considering transformation graphs in the context of Web Services. One

could envision using WSDL [22] to describe a service that accepts or generates many possible data-

types by incorporating a transformation graph within it. As a more intriguing example, one could see

a Web Service client using a transformation graph to seamlessly connect to a wide range of services,

each with a slightly different contract regarding input and output datatypes, bringing us closer to

the dream of truly dynamic (and automatic) service discovery. As with REST, there are some slight

inconsistencies, most notably with how the Web Service protocols assume that every datatype will be

syntactically encoded using XML. Again, though, none of these issues seem insurmountable.
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Summary

In this thesis we have presented a framework for discovering data transformations that is automated

and fully generic. Instead of relying on precise descriptions of each datatype, we require a small

number of atomic transformations to be written manually. These can be formed into a graph, in

which compound transformations between arbitrary datatypes are represented by paths. Thus, we

can use any efficient pathfinding algorithm to discover arbitrary data transformations. This approach

is very efficient, and works well when the datatypes in question are relatively static. If the internal

structure of the datatypes can vary quickly with time or over use case, though, it can be helpful

to expose some of this internal structure to the transformation discovery layer. We can model this,

and other sophisticated transformation graphs, using polyadic transformations, which have multiple

inputs and outputs. At the cost of efficiency, we can extend our graph model to support polyadic trans-

formations. In this extended model, we can create a naïve exponential-space discovery algorithm;

moreover, we can show that the problem is NP-hard, and therefore inherently difficult. By develop-

ing a declarative description of the problem in CSP, we can empirically analyze the complexity space

of the problem. This shows that there is an interesting class of inputs, which luckily correspond to

“real-world” polyadic transformation graphs, where polyadic discovery is more efficient. We there-

fore have a transformation framework that is very efficient when we only have transformations with

one input and output; when we must support transformations with multiple inputs and outputs, our

framework is worst-case intractable, though still useful in practice.
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AAPPENDIX

Z utility library

This appendix contains definitions of several Z types, schemas, and functions that are used in formal-

izations throughout this thesis.

A.1 Bags and sets

In this section we provide two simple functions for converting between bags and sets. Any bag can

be converted into a set by removing duplicates; since bags are represented in Z by mapping each

element to the number of occurrences of that element, the domain of the bag is the same as the bag’s

corresponding set.

Definition A.1 (Converting bags to sets).

[X]
set : bag X → P X

∀ xs : bag X • set xs = dom xs

Similarly, since every element of a set occurs exactly once, a set can be converted into a bag by

simply mapping each element of the set to one.

Definition A.2 (Converting sets to bags).

[X]
bag : P X → bag X

∀ xs : P X • bag xs = { x : xs • x 7→ 1 }

A.2 Binary strings

In this section, we present a formalization of binary strings; these functions are used in the formal

description of the integer datatypes described in Chapter 3.

Any description of binary data must first define bits. Bits are simple — there are exactly two of

them: 0 and 1. We can also define a bit string, which is an ordered sequence of bits.
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Definition A.3 (Bits).

Bit ::= 0 | 1
BitString == seq Bit

We will often refer to bit strings of a particular length. We can define a Bits function to help with

this, which returns the set of all bit strings of the specified length.

Definition A.4 (Bit strings of bounded length).

Bits : N � P BitString

Bits n = { b : BitString • #b = n }

We will also often need to translate a binary string into its integer equivalent. We assume that the

most-significant bit is the first element of the bit string’s sequence, so that the bit string appears in

an intuitive order when rendered on the page. (This is not to be confused with interpreting integer

datatypes; this is a low-level helper function to get the decimal value of a base-2 integer.)

Definition A.5 (Bits as integers).

intBit : Bit � N

intBit 0 = 0
intBit 1 = 1

Definition A.6 (Bit strings as integers).

intBits : BitString → N

intBits 〈〉 = 0
∀ b : Bit; bin : BitString •

intBits biná 〈b〉 = (intBits bin) × 2 + (intBit b)

intBits 〈10010011〉 = 147

This allows us to define a byte, which is an 8-bit value, and a byte string, which is an ordered

sequence of bytes. We also define a Bytes function which returns the set of all byte strings of a given

length.

Definition A.7 (Bytes and byte strings).

Byte == Bits 8
ByteString == seq Byte

Definition A.8 (Byte strings of bounded length).

Bytes : N � P ByteString

Bytes n = { b : ByteString • #b = n }

When referring to literal byte strings, one of two notations will be used. When expressing the

bytes in the string by their numeric (specifically hexadecimal) values, the 〈〈48 69〉〉 notation will be

used. When expressing the bytes by their corresponding ASCII characters, the “Hi” notation will be

used.
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〈〈48 69〉〉 = “Hi” = 〈〈01001000〉, 〈01101001〉〉

The integer representation of a byte string is more complicated, because we must contend with

signedness and endianness issues. The simplest case to define is the unsigned, big-endian version,

since we can use distributed concatenation to turn the big-endian byte string into an equivalent

big-endian bit string.

Definition A.9 (Unsigned integers).

unsigned : ByteString → N

∀ b : ByteString • unsigned b = intBits (á/ b)

Definition A.10 (Big-endian integers).

bigEndian : ByteString → ByteString

bigEndian = id ByteString

For signed integers expressed in two’s complement, the most-significant bit (which is the first bit

in the sequence) will have the value −2n−1 instead of 2n−1, but all of the other bits will have the

same value as in the unsigned case.

Definition A.11 (Signed integers).

signed : ByteString → N

signed 〈〉 = 0
∀ b : ByteString | #b > 0 •

let bits == á/ b •
signed b =
(intBits (tail bits)) − (intBit (head bits)) ∗ 2(#bits−1)

Finally, for little-endian byte strings, we can just reverse the byte string before passing it on to the

unsigned or signed functions.

Definition A.12 (Little-endian integers).

littleEndian : ByteString → ByteString

littleEndian = rev

With these definitions, we can evaluate a particular byte string in all four cases:

〈〈93 E8〉〉 = 〈〈10010011〉, 〈11101000〉〉
bigEndian 〈〈93 E8〉〉 = 〈〈10010011〉, 〈11101000〉〉
littleEndian 〈〈93 E8〉〉 = 〈〈11101000〉, 〈10010011〉〉

á/ bigEndian 〈〈93 E8〉〉 = 〈1001001111101000〉
á/ littleEndian 〈〈93 E8〉〉 = 〈1110100010010011〉

unsigned bigEndian 〈〈93 E8〉〉 = 37864
unsigned littleEndian 〈〈93 E8〉〉 = 59539
signed bigEndian 〈〈93 E8〉〉 = −27672
signed littleEndian 〈〈93 E8〉〉 = −5997
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