
A modular architecture for
biological microscope image analysis

by
Douglas A. Creager

Submitted to the Department of Electrical Engineering
and Computer Science

in partial fulfillment of the requirements for the degree of
Master of Engineering in Electrical Engineering and Computer Science

at the
MASSACHUSETTS INSTITUTE OF TECHNOLOGY

February 2003
© 2003 Douglas A. Creager, MMIII. All rights reserved.

The author hereby grants to M.I.T. permission to reproduce
 and distribute publicly paper and electronic copies of this thesis

 and to grant others the right to do so.

Author ...
Department of Electrical Engineering and Computer Science

February 4, 2003

Certified by ...
Bruce Tidor

Associate Professor
Department of Electrical Engineering and Computer Science

Thesis Co-Supervisor

Certified by ...
Peter Sorger

Associate Professor
Department of Biology

Thesis Co-Supervisor

Accepted by ..
Arthur C. Smith

Chairman, Department Committee on Graduate Theses

3

A modular architecture for
biological microscope image analysis

by
Douglas A. Creager

Submitted to the Department of Electrical Engineering and Computer Science
on February 4, 2003 in partial fulfillment of the

requirements for the degree of
Master of Engineering in Electrical Engineering and Computer Science

Abstract
The Open Microscopy Environment (OME) provides a standardized, open-
source environment in which microscope images can be acquired, analyzed, and
visualized. The OME analysis system provides a modular architecture for
analyzing these images. Analysis routines are broken down into their logical
components, which are coded separately as modules. Modules are linked
together into analysis chains by using semantic data types to form data
dependencies between the modules. Tools are being developed to allow these
chains to be pieced together graphically from a toolbox of analysis modules, and
to allow the user to extend the toolbox in a seamless, language-independent
manner. The execution of an analysis routine against a set of images is
automated, allowing the user to focus on the design of the analysis routine,
rather than the details of computation, and allowing the analysis engine to
perform various optimizations, such as the reuse of analysis results.

Thesis co-supervisors:

Bruce Tidor
Associate Professor
Department of Electrical Engineering
and Computer Science

Peter Sorger
Associate Professor
Department of Biology

5

Acknowledgements

The core OME system is being developed at the Sorger Lab in MIT’s Department
of Biology; the Wellcome Trust Biocentre in Dundee, Scotland; the Danuser Lab
at ETH Zürich; the Institute of Chemistry and Cell Biology at Harvard Medical
School; and the Image Informatics and Computational Biology Unit at the
National Institutes of Health.

Erik Brauner, Ilya Goldberg, Brian Hughes, Josiah Johnston, Peter Sorger, and
Jason Swedlow have been invaluable in their help with the development and
testing of the OME project in general, and the analysis system specifically.

The author would also like to thank Mike Bonnet, Enid Choi, Dennis Gregorovic,
Rich Hanna, Todd Nightingale, Brian Pharris, Derik Pridmore, Jon Salz, and
Kevin Schmidt for their support throughout the development of this project.

7

Table of Contents

1 Introduction ... 11
1.1 Open Microscopy Environment .. 14
1.2 Towards a new analysis system.. 15

2 Design overview.. 17
2.1 Modular analysis design.. 17
2.2 Operational record ... 20
2.3 Support for future refinements ... 21

3 Database schema details ... 25
3.1 Data types and attributes... 25
3.2 Analysis modules ... 28
3.3 Analysis chains ... 29
3.4 Analysis executions.. 32

4 Analysis chain execution algorithm .. 33
4.1 Finite state machine.. 33
4.2 Calculating module paths.. 35
4.3 Reusing analysis results ... 35
4.4 Analysis handlers ... 39
4.5 Code status.. 40

5 Test cases.. 41
5.1 Preparing the database... 43
5.2 Executing the no-link chain ... 47
5.3 Attribute reuse #1: executing the no-link chain again 49
5.4 Attribute reuse #2: executing the linked chain .. 51
5.5 Attribute reuse #3: executing the linked chain again.................................... 54

6 Conclusion ... 59
6.1 Future plans .. 60

References ... 61
A Source code - SQL .. 63

A.1 Preexisting OME tables... 63
A.2 Preexisting OME attribute tables ... 64
A.3 Data types and attributes.. 66
A.4 Analysis modules .. 67

8

A.5 Analysis chains .. 68
A.6 Analysis executions... 69

B Source code - Perl.. 73
B.1 Analysis executions.. 73
B.2 Analysis handlers... 93

B.2.1 Handler interface... 93
B.2.2 Perl handler.. 96
B.2.3 Command-line handlers ... 101

B.3 Test cases... 112

9

List of Figures

Figure 1 – Conceptual workflow .. 18
Figure 2 – Database as a communications medium.. 19
Figure 3 – Data links .. 30
Figure 4 – Module links ... 30
Figure 5 – Module paths.. 31
Figure 6 – Analysis algorithm finite state machine... 34
Figure 7 – Simple test analysis chain .. 42
Figure 8 – Test analysis chain with links.. 43
Figure 9 – CreateProgram output .. 45
Figure 10 – CreateView output .. 46
Figure 11 – ImportTest output .. 46
Figure 12 – Executing the no-link chain ... 49
Figure 13 – Attribute reuse #1: executing the no-link chain again 51
Figure 14 – Attribute reuse #2: executing the linked chain 54
Figure 15 – Attribute reuse #3: executing the linked chain again.......................... 57
Figure 16 – DATASETS table ... 63
Figure 17 – IMAGE_DATASET_MAP table .. 63
Figure 18 – IMAGES table ... 64
Figure 19 – REPOSITORIES table.. 64
Figure 20 – IMAGE_DIMENSIONS table .. 65
Figure 21 – IMAGE_WAVELENGTHS table .. 65
Figure 22 – XY_IMAGE_INFO table.. 66
Figure 23 – XYZ_IMAGE_INFO table .. 66
Figure 24 – DATATYPES table ... 66
Figure 25 – DATATYPE_COLUMNS table .. 67
Figure 26 – FEATURES table ... 67
Figure 27 – FORMAL_INPUTS table.. 67
Figure 28 – FORMAL_OUTPUTS table .. 68
Figure 29 – PROGRAMS table ... 68
Figure 30 – ANALYSIS_VIEW_LINKS table... 69
Figure 31 – ANALYSIS_VIEW_NODES table... 69
Figure 32 – ANALYSIS_VIEWS table .. 69
Figure 33 – ACTUAL_INPUTS table.. 69
Figure 34 – ACTUAL_OUTPUTS table .. 70

10

Figure 35 – ANALYSES table ... 70
Figure 36 – ANALYSIS_EXECUTIONS table... 71
Figure 37 – ANALYSIS_PATH_MAP table .. 71
Figure 38 – ANALYSIS_PATHS table .. 71
Figure 39 – OME::Tasks::AnalysisEngine module .. 93
Figure 40 – OME::Analysis::Handler module .. 95
Figure 41 – OME::Analysis::PerlAnalysis module... 98
Figure 42 – OME::Analysis::PerlHandler module .. 101
Figure 43 – OME::Analysis::CLIHandler module .. 105
Figure 44 – OME::Analysis::FindSpotsHandler module....................................... 112
Figure 45 – OME::Tests::AnalysisEngine::CreateProgram script........................ 123
Figure 46 – OME::Tests::AnalysisEngine::CreateView script 128
Figure 47 – OME::Tests::ImportTest script.. 131
Figure 48 – OME::Tests::AnalysisEngine::ExecuteView script 132

11

CHAPTER 1
Introduction

Much of modern biological research revolves around the acquisition and analysis
of images of cells and proteins obtained from high-powered optical microscopes.
By imaging cells that carry fusions between proteins of interest and Green
Fluorescent Protein (GFP) (or its spectral variants), the biologist can capture rich,
detailed images that contain a wealth of biological information [1-3]. Two major
paradigms have developed for the use of these images in the context of a
biological experiment. In the first, cells are divided into groups and each treated
with one of a group of hundreds of chemicals, cDNA’s, or inhibitory RNA’s. The
microscope images are then used to search for and screen the phenotypic
variations in the effects of each chemical. In the second, smaller groups of cells
are modified genetically or treated with the same chemicals. Time-lapse movies
of these cells are then captured by the microscope, looking for phenotypic
changes which are not necessarily static; dynamic changes in the cell cycle, for
instance, can be picked out of the resulting images [4]. In the general case,
images obtained from the microscopes are five-dimensional in nature: They
contain the usual three spatial dimensions, one of which is much less precise in
spatial granularity, plus one spectral and one temporal dimension.

Fully digital microscopes, in which these images are obtained with CCD’s and
sent directly to a computer to be stored and analyzed, are now standard. The
usual workflow for digital imaging can be broken down into four main areas:

1. Acquiring images from the microscope;

12

2. Transforming the images and analyzing their content for relevant
biological information;

3. Visualizing the images and the analysis results;

4. Archiving the images for future reference.

Tools exist to aid the biologist in all four of these areas. However, as things
currently stand, there are several problems that hinder quantitative research.
First, there is no standard file format for storing images. Rather, each microscope
manufacturer uses its own proprietary format. Not only are the details of
encoding the image different; often, even the logical structure of the file formats
vary quite dramatically. Most common image formats, such as the Tagged
Image File Format (TIFF), around which most microscope image formats are
based, only store two-dimensional images. As such, there is no standard way for
encoding a five-dimensional image in a two-dimensional file. Some file formats
solve this problem by creating discrete two-dimensional files for each XY plane
in an image. This approach has the problem of separating the image data into
multiple pieces, all of which must be kept together for an image to remain valid.
Another approach is to hack the two-dimensional format to hold all five
dimensions. While files such as these are easier to keep track of, they still stuffer
the disadvantages of not being standardized; each manufacturer modifies the
two-dimensional format in different ways to support five-dimensional images.

The proprietary nature of the file formats is, in itself, another problem. Since the
design of the acquisition software is closely coupled with the design of the
microscope itself, the code is understandably proprietary and closed-source.
However, the file format of the resulting images is usually proprietary as well.
As long as an experimenter sticks to microscopes provided by a single
manufacturer, this does not pose a problem. However, most biology labs contain
several microscopes, built by different companies. Ensuring compatibility
between all of the images and programs quickly becomes a logistical nightmare.

13

Another problem with the current arrangement lies in the analysis software
available to the biologist. Most analysis packages that come from the microscope
manufacturers provide the user with a fixed set of routines that can be used to
analyze images. If an analysis that would be helpful in investigating a given
image is not available in the package provided with the microscope, then the
biologist is out of luck. There are few ways to transfer the image to another
program that does have the desired routine; further, there is no way to extend
the package to support the new routine. This turns out to be a problem
fundamental to the way images are analyzed in a biological context. Biology
experiments are extremely open-ended; the analysis routines that would be
useful in any given instance are entirely dependent on the details of the
experiment being performed. This means that a fixed set of analysis routines can
never be general enough to support useful biological research. Instead, an
analysis system where the user is free to create new analyses, is not just useful,
but necessary.

Lastly, the idea that image analysis depends greatly on the details of the
experiment means that entire categories of metadata are not being captured
appropriately. None of the existing systems are built around the fundamental
idea that to be truly useful, an image must not just consist of pixels. Rather, it
should be the union of the actual image data along with all of its experimental
metadata. Scientific knowledge is not just the results of an experiment, but the
synthesis of the results into an understanding of the experimental subject. To be
understood in their proper context, experimental details must be recorded at the
time of image acquisition, and then maintained with the image and its analysis
results for its entire life.

All of these problems surface not only during the actual experimentation and
analysis portions of the biologist’s workflow. They also can severely inhibit the
ability for real scientific results to be published. Proprietary image formats
greatly reduce the number of people who can actually view, let alone validate
and reproduce, the data used to make the scientific claims. This problem is

14

compounded by the difficulty in keeping the metadata associated with their
appropriate images. This can result in incorrect images being used in a
publication, and also prevents a complete operational record of the analysis
results from being retained.

1.1 Open Microscopy Environment
The Open Microscopy Environment (OME)1 is being developed to answer these
problems. The main components of the OME system are:

1. a standardized five-dimensional file format;

2. a data model and XML specification for storing all image metadata
together;

3. a workflow-based user interface for collecting, analyzing, and visualizing
images.

These three components, which will be released under an open-source license,
provide a solution to the problems presented above. The standardized file
format would eliminate the difficulties in sharing images by providing a general
transfer format that would be readable by all imaging applications. The data
model would provide a single, consistent location for all of the metadata
associated with an image, whether it was entered by the user or generated as a
result of an analysis routine. It would also provide all of the information
necessary to reconstruct the operational record of every analysis result.

The initial alpha version of OME, released in December 2001 by Ilya Goldberg in
the Sorger Lab at MIT, developed the data model and XML specification, and
showed the power of tightly coupling image data and metadata. Jason
Swedlow’s lab at the Wellcome Biocentre Trust used this OME release to analyze

1 http://www.openmicroscopy.org/

15

the movement of intra-nuclear organelles (Cajal bodies) and find results that
were not obvious and would not have been easy to obtain using existing
conventional tools [5].

However, this initial version also highlighted the difficulty in designing a robust
analysis system that met all of the OME goals and would also help assuage the
problems mentioned previously. The system provided the user with a series of
analysis routines, and made it possible to run the routines against the datasets
that had been collected. The results from those routines were placed in database
tables, becoming just as coupled to the original image as metadata that had been
captured at image import. Using standard SQL queries, biologists could ask
meaningful questions about the data and get useful answers. However, it was
still difficult to add new analyses to the system, and the record of the analyses
performed was incomplete.

1.2 Towards a new analysis system
The purpose of this thesis project is to expand the existing analysis system to
better support the aims of the OME project. The specific goals of the new
analysis system include the following:

1. It would support a more modular notion of analysis design.

2. It would need to be easy to add new modules to the analysis system, and
easy to chain modules together to execute as a whole.

3. It would need to gather a sufficient amount of information as to provide a
complete operational record of the analyses that were performed against a
dataset.

4. The operational record would have to be easily accessed via simple
queries.

5. It would need to be open-ended enough to allow future refinements to
support such features as parallel and distributed computation.

17

CHAPTER 2
Design overview

2.1 Modular analysis design
The most visible change to the OME analysis system is the focus on modular
analysis design. The existing version of OME provides the means for analysis
routines to be executed against a set of images, but these routines are still
monolithic in nature. The ability to make small changes to the way an analysis
worked required changing the code of the routine, and in order to have all of the
variations available to be executed, copies of the routine had to be made.

In the new system, the fundamentally modular design is much more obvious to
the user. The routines known to the analysis system are intended to be small and
relatively atomic; they do not, by themselves, necessarily calculate anything that
is scientifically useful. Instead, they must be pieced together into analysis chains
in order to perform a meaningful computation. This construction of analysis
chains from modular pieces is fundamental to the new analysis system.

To support the notion of building analysis chains, there had to be a set of rules
determining which modules could link to each other in a chain. To this end, I
formalized a notion of semantic OME data types. Every piece of metadata in the
OME database, whether provided by the user or an analysis routine, belongs to
exactly one semantic data type. Modules are then pieced together using data-
dependency links; the outputs of one module are fed in as the inputs to the next.
The concept of semantic data types supports this well. It provides the necessary
safeguards that prevent the wrong kind of data from being presented as input to

18

an analysis module, and also imposes a qualitative relationship between the
modules in an analysis chain.

Figure 1 – Conceptual workflow

The ability to add modules to the system has been extended, as well. The idea of
language independence has always been key to OME; the system has been
designed so that every module that can access the OME database can interact
seamlessly with each other. Instead of the conceptual workflow in which the
acquisition, analysis, and visualization steps relate to each other as in Figure 1,
OME uses the database as a communications medium (Figure 2), allowing each
piece to be developed independently of each other, in any language, and by
anyone. This language-independence extends to the routines used by the
analysis system. The new analysis system, however, eases the use of these
language-independent features by factoring out much of that logic. This is done
through the use of analysis handlers, which bridge the gap between the analysis
engine and the various analysis modules. In this way, new analysis modules can
be written in the biologist’s language of choice without having to develop their
own database access layer.

19

Figure 2 – Database as a communications medium

Analysis design in the context of a scientific experiment is usually an iterative
process. The scientist starts with the data, and a preliminary understanding of
which routines would provide useful insights. The results of these initial
analyses can then lead to a refinement of the analysis routine itself, and even
suggest completely new avenues of investigation. The use of analysis chains
makes it much simpler to perform this kind of iterative exploration of the data
and derived information.

The ability to reuse the results of an analysis are especially important in the
context of iterative design, especially when each individual analysis can be
computationally expensive. When a user changes a small portion of an analysis
chain, the analysis engine should be smart enough to recalculate only those
portions of the chain which were affected by the change. To do otherwise would
incur unreasonable penalties in both storage and execution time. The OME
analysis engine is able to take this result reuse one step further, and recognize the
possibilities for reuse across different analysis chains as well.

20

Finally, while the logical structure imposed by a chain-based approach to
analysis design is helpful by itself, the analysis engine must support the
automated execution of an entire chain to be truly useful. This execution
algorithm must take into account not only the underlying structure of the
analysis chain, but also the requirements of each analysis module. Complicating
this is the language-independence of the OME analysis modules; the execution
algorithm ends up being responsible for ensuring that communication between
the modules happens in a defined and consistent manner.

2.2 Operational record
In keeping with the importance of image metadata mentioned above, the OME
analysis system strives to maintain essential information about each analysis
result generated for an image. For each calculated result, the engine stores not
only the data itself, but a full operational record of the derivation of the data.
This helps to provide, at least in part, a more qualitative meaning for each result,
rather than just its quantitative contents.

The largest part of this operational record takes the form of the data dependency
graph used to generate each analysis result. Every result is produced as the
output of some analysis module. This module might require inputs in order to
complete its computation; in this case, the module’s results are dependent on the
outputs of its predecessor modules. These predecessor modules will also have
dependencies based on their inputs; this process can be carried all the way back
to modules which declare no inputs, forming a data dependency graph for the
original result. Each analysis result has one of these data dependency trees; the
tree encodes all of the pieces of information used to calculate the result.

When searching a large data dependency tree, it is often difficult to find and
select a specific set of results. The SQL standard does not support querying tree-
based structures; to find the appropriate information, the biologist must use non-
standard query statements or a specialized tool. To support the ability to retrieve
this information with simpler queries, the analysis system subdivides the trees

21

into linear paths. In this way, the scientist can focus on a small portion of an
analysis chain at a time, and can retrieve all of the results in that portion without
having to include the data dependencies into the query. These paths are
described in more detail in section 3.3 (page 29).

2.3 Support for future refinements
Most of the improvements to the analysis system were built on top of the
analysis logic that was part of the initial version of OME. This proved to be
invaluable to the research groups that were already using OME in their
experiments. In creating the new analysis system, we made sure to design the
architecture in such a way to allow future improvements to be made in this
incremental fashion as well.

First, we hope to include support in the future for more generalized analysis
chains. In the current system, an analysis chain must be a directed acyclic graph
(DAG). While this restriction makes much of the code of the analysis engine
simpler, it eliminates several classic design patterns as possibilities in an analysis
chains. The most conspicuous of these is looping; while loops can easily be built
into the logic of an individual analysis module, any loop in an analysis chain
would violate the acyclic constraint of the system. Eliminating this constraint
would greatly increase the expressive power of an analysis chain.

Second, the modular makeup of the analysis chains also lends itself well to a
parallel-processing implementation of the execution algorithm. The analysis
modules in a chain cleanly separate the logic of the overall analysis into pieces
which could be delegated to different processors. The execution algorithm at the
heart of the analysis system does not currently take advantage of any parallel
computation abilities of the underlying computer. However, this behavior can
be added later with relatively little effort.

The same argument applies to a distributed model of computation, as well.
Instead of delegating each module off to a different processor, the modules could
be delegated to different machines entirely. The behavior of the two models is

22

basically the same, but each has its own benefits. In the distributed case, each
module would have the entire resources of a computer workstation available; in
the parallel case, many resources, most notably memory, would have to be
shared. Of course, the distributed scheme is more complicated to implement,
since the delegation routines would have to ensure that each machine has access
to the image data and metadata. In the parallel case, this is provided by the
operating system. Either way, the distributed case presents another interesting
area of future research for the analysis system.

Closely related to the distributed computation model is an application services
approach to analysis writing. In the distributed case, all of the modules exist
locally, where “locally” is defined to include all of the machines eligible for
executing a distributed module. The application services model would similarly
execute modules on remote machines, but in this case, the modules themselves
reside on another computer entirely, completely outside the realm of the local
OME installation. In the case of a research group or company that writes
analysis modules for public use, this would greatly ease the process of
distributing code and updates. It also better allows intellectual property to be
protected, by preventing the source code from having to be released. While the
OME core is itself open-source, we have strived to include the ability to
incorporate proprietary third-party code without violating licensing agreements
or intellectual property. An application services model would easily support
this.

Of the three models of computation, the application services approach is the
closest to being implemented in the current version of the analysis system, since
it would require no changes to the underlying execution algorithm or data
structures. As described later in section 4.4, the engine uses analysis handlers to
factor out some of the database communications logic. The initial purpose of this
was to aid in using existing analysis routines without having to write a database
access wrapper; the analysis handlers basically serve this function in a
generalized way. However, they can also be used equivalently to support a

23

calling an analysis routine remotely, using a Standardized Object Access Protocol
(SOAP) method call or something similar.

25

CHAPTER 3
Database schema details

3.1 Data types and attributes
The fundamental piece of information on which analysis modules operate is
called an attribute. Attributes can be used to store low-level information about an
image, such as its dimensions or pixel intensity statistics, and can also be used to
store more derivative, high-level information, such as the number of cells in an
image, and the percentage of those cells that can be considered apoptotic.

Further, OME attributes are strongly typed; every attribute belongs to exactly
one data type. These data types do not match the traditional, storage-based
notion of computer data types. Rather, OME data types are semantic in nature.
In a standard programming language, an analysis routine could be declared as
outputting a list of integer 3-tuples. In OME, however, the corresponding
analysis module would be declared to output a list of centroids. Since the notion
of a centroid includes some notion of its storage requirements, no descriptive
power is lost by using semantic data types.

Finally, attributes are not restricted to describing single images. Rather, they
have a property called granularity that determines whether an attribute describes
a single image, a subset of a single image, or a collection of images. For instance,
the mean intensity of the pixels in an image is considered an image attribute. A
module could also calculate the mean intensity across multiple images in a
dataset; this would be considered a dataset attribute. It is important to note that

26

these two attributes are considered to be of different semantic data types, even
though they both describe mean pixel intensities.

In terms of the underlying database schema, the data type determines in which
database table an attribute resides. Every data type has its own table in the
database; every attribute of that data type is a row in the corresponding table.
The primary keys used in the attribute tables are expected to remain unique
across all data types; i.e., two attributes may not have the same ID, even if they
have different types and reside in different database tables.

The selection of data types is not fixed; rather, it is fully expected to grow to
incorporate new data types as outside modules are included into the analysis
system. This means the analysis engine needs to know which data types are
defined in the system at any given time. Therefore, a set of reflection tables
(DATATYPES, Figure 24, page 66, and DATATYPE_COLUMNS, Figure 25, page 67) is
included to capture this information. Each data type has a row in the DATATYPES
table that specifies the database table for the data type, a short description, and
the data type’s granularity. Further, each column in the data type’s table has a
row in the DATATYPE_COLUMNS table. This row contains the name of the database
column, a short description, and a reference property, similar in nature to the
SQL REFERENCES clause.

In terms of the higher-level analysis design, the data types provide the
mechanism for linking modules together into chains. An output of one module
can only be linked to the input of another if the two have matching data types.
The fact that OME data types are semantic in nature gives this requirement extra
power; instead of merely requiring a superficial storage-based correspondence
between connected modules in a chain, the analysis engine enforces a qualitative
relationship between the data being passed between modules.

Merely stating that OME data types are semantic in nature leaves unanswered an
important question. What (or who) actually defines what a semantic data type
represents? The example given above is the centroid; at first glance, it seems

27

relatively simple to define what a centroid is. However, to be scientifically
useful, the definition of a centroid needs to be more than “center of mass”, or
“weighted average of the pixel coordinates.” Equally important is the exact
algorithm used to calculate the position of the centroid. As an example, the
specification for the Java language is very mathematically precise when defining
even simple operations such as multiplication, so as to guarantee exact
reproducibility [6]. Similar precision is necessary in defining the meanings of
each semantic data type used by OME, especially if analysis results are to be
used in the context of scientific research.

However, providing this level of precision raises two problems. First, it would
be cumbersome and inflexible to define each semantic data type this precisely,
and even more so to allow for the appropriate level of precision in defining new
data types not included in the base OME installation. Further, the Java operators
mentioned above are defined precisely via an English prose description in a
language specification. This information is not readily available in a
representation that a computer can interpret and verify; indeed, such a
representation does not even exist, nor is the verification of the specification a
solvable problem. Thus, it is impossible to simultaneously provide this level of
detail in describing OME semantic data types and allow for the verification of
those descriptions and the extension of the set of available data types.

The second problem involves one of the reasons for incorporating a modular
approach to analysis in the first place. One of the goals of OME’s analysis system
is to allow a scientist to explore how incremental changes to the analysis chains
affect the results. These incremental changes not only include minor adjustments
to various input parameters, but the ability to use different modules at various
points in the chain to investigate different analysis algorithms. To extend the
running example, a scientist might wish to see how different methods of finding
a centroid, each of which gives different locations, yields different final results.
By providing an extremely precise definition of “centroid,” the analysis system
would prohibit this kind of investigation.

28

This leaves us with a conundrum: we must be precise enough to provide useful
semantic data types (a centroid is more than just a location), leave enough
flexibility to allow meaningful variations in how a module calculates its results (a
centroid can be calculated in more than one way), and still record enough detail
about what actually happened to maintain a reasonable operational record of the
analysis (in the end, we need to know which particular centroid algorithm was
used). Our solution is to give each data type a general description (a centroid is
the weighted average of the coordinates) that any algorithm must comply with.
This provides a first-order definition which can be used to provide meaningful
connections between analysis modules, and leaves open the possibility of using
different algorithms to calculate the result, as long as that result falls into the
broad category specified by the definition.

To maintain the operational record, the full description of a particular attribute
must not only include the data type and values; for true completeness, it must
provide the tree of analyses which were used to produce the result. This would
specify, via the description of the analysis modules, which particular algorithm
was used to produce the result, and further, would specify which algorithms
were used to produce every attribute on the result’s data dependency tree.

3.2 Analysis modules
The fundamental computation step in the analysis engine is the analysis module.
Analysis modules are not meant to perform computations that are scientifically
useful in and of themselves. Instead, modules are intended to perform a useful,
atomic subset of a full analysis. The user can then piece together multiple
modules to create and perform an actual analysis.

Each analysis module known to the system is defined by a row in the PROGRAMS
table (Figure 29, page 68). This table specifies the name of the module as seen to
the user and a short description, in addition to the location of the module’s code.
The modules can also be categorized, to allow the user to be presented with a
more organized list of available modules. Lastly, a placeholder field is provided

29

to modules to specify their own user interface for the collection of input
parameters. This functionality is not currently implemented, but the analysis
engine has hooks to allow this to be added later without affecting large portions
of the code.

Each module also specifies its formal inputs and outputs, which are stored in the
FORMAL_INPUTS (Figure 27, page 67) and FORMAL_OUTPUTS (Figure 28, page 68)
tables. Each input and output has a name, a short description, and a data type.
The data type is specified as a reference into the DATATYPE_COLUMNS table rather
than the DATATYPES table; this is to allow different fields of an attribute to be
populated by different analysis modules. Internally, all data links in an analysis
chain must maintain this column-based granularity; however, a user interface
can try to collapse the data links into groups based on the data type table to
eliminate clutter.

When the analysis engine executes an analysis module, every formal input is
guaranteed to be given a value. It is possible, however, for some of the inputs to
be assigned the null value. It is up to the analysis module to check that the
inputs that are presented have acceptable values, and to raise an error otherwise.
The module, however, does not have to provide values for every output; the
analysis engine will assume a null value for any output not provided.

3.3 Analysis chains
As mentioned above, analysis modules must be pieced together into analysis
chains before they can be executed against a set of images. An analysis chain is
defined as a directed acyclic graph (DAG), where the nodes of the graph are
instances of particular analysis modules, and the edges of the graph are the data
dependency links (or data links) between the modules. The data types of the
inputs and outputs of the modules determine which data links are valid; an
output of one module can be connected to the input of another if and only if they
have equivalent data types.

30

Two nodes of the graph are said to be connected by a module link if there is any
data link connecting them. (In other words, the module links specify the general
connectedness of the nodes in the chain; the data links specify precisely which
inputs and outputs are used in each connection.) The nodes in the chain that
contain no incoming module links are root nodes, while the nodes that contain no
outgoing module links are leaf nodes. The module links also define the module
paths in an analysis chain. The module paths of a graph are all of the possible
paths along module links from each root node to each leaf node.

The distinction between data links, module links, and module paths are
illustrated below.

Figure 3 – Data links

Figure 4 – Module links

31

Figure 5 – Module paths

Since every input is guaranteed to have a value when presented to an analysis
module, the data links in a graph divide the set of inputs into two disjoint
subsets, known as the bound inputs and the free inputs. The bound inputs are
those with incoming data links providing them with a value; the free inputs are
all others. Upon executing an analysis chain, the user must provide a value for
each free input in order for the guarantee to be met. The specification of an
analysis chain can include default values for all of the free inputs to eliminate
some of the burden from the user at execution time.

The structure of an analysis chain is encoded in the ANALYSIS_VIEWS (Figure 32,
page 69), ANALYSIS_VIEW_NODES (Figure 31, page 69), and ANALYSIS_VIEW_LINKS
(Figure 30, page 69) tables. The chain itself has an owner and a name, in addition
to a LOCKED column. Once an analysis chain has been executed against a dataset,
it is prevented from being modified, to allow a snapshot of the analysis execution
to be reconstructed later. The nodes table contains a list of module nodes in the
chain; each row contains a mapping between a node and the analysis module of
which it is an instance. The links table contains a list of all of the data links in the
chain; the list of module links can be easily derived from the data links. Each
data link is defined in terms of not only which nodes it connects; but also
specifically which output and input are connected. In order for a chain to be
well-formed, the FROM_NODE and FROM_OUTPUT columns must link to the same
analysis module, as must the TO_NODE and TO_INPUT columns.

32

3.4 Analysis executions
Each analysis chain can be executed against multiple datasets multiple times.
This process is called an analysis chain execution (or analysis execution for short). In
order to maintain a complete record of every analysis run, each of these
executions is treated as a distinct object in the database. The
ANALYSIS_EXECUTIONS table (Figure 36, page 71) contains one row for each of
them.

Every time an analysis module is executed with a specific set of parameters,
known as an analysis module execution (to distinguish it from an analysis chain
execution), an entry is recorded in the ANALYSES table (Figure 35, page 70). This
module execution is run either against a dataset or a specific image within the
dataset; this dataset-dependence is property discussed in more detail in section
4.3. The attributes used as inputs and generated as outputs are known as the
analysis module execution’s actual inputs and outputs. The actual inputs and
outputs are stored as a mapping between an analysis module execution, a formal
input, and an attribute, and are kept in the ACTUAL_INPUTS (Figure 33, page 69)
and ACTUAL_OUTPUTS (Figure 34, page 70) tables.

If, during a later execution, a module needs to be executed against an image, and
an existing analysis has already calculated the appropriate value, it will be
reused. In this way, each entry in the ANALYSES table can possibly belong to more
than one analysis chain or analysis execution. Further, within an analysis chain,
a node can belong to more than one module path. The ANALYSIS_PATH_MAP table
(Figure 37, page 71) provides this three-way map between analysis executions,
analysis module executions, and module paths.

33

CHAPTER 4
Analysis chain execution algorithm

At the heart of the analysis subsystem is the algorithm which executes an
analysis chain against a dataset. This algorithm has several responsibilities;
foremost is to ensure that the modules are executed in the correct order and that
the results are collected and recorded in the OME database. In addition to
recording the actual analysis results, it must also record all of the details of the
underlying computations performed, to provide a operational record for future
study. Finally, it must deal with error handling in a robust way. The algorithm
is presented in its entirety in Figure 39 (page 93); the following sections describe
its major components.

4.1 Finite state machine
The main body of the algorithm works using a finite state machine (FSM) that
every node must pass through completely during the execution of an analysis
chain. The FSM used in the algorithm is presented in Figure 6. By using an FSM
in this manner, the execution algorithm can look at each node in a completely
localized manner; the only constraints on whether a node can progress further
through the FSM is the state of its immediate predecessors in the analysis chain.

34

Figure 6 – Analysis algorithm finite state machine

Armed with this FSM, the execution algorithm is fairly straightforward. It uses a
fixed-point algorithm that tries to move each node as far through the FSM as
possible during each iteration. Once every node is in state 5, the execution of the
chain is complete. The algorithm can also become “stuck,” whereby not every
node is in state 5, and yet, no node is able to progress further through the FSM.
If this occurs, one of two possibilities exists: 1) A node generated an error during
computation, or 2) the chain was malformed.

Of course, both of these error conditions can be checked before execution of the
modules commences. This is desirable, especially in the case of a malformed
chain, because it presents the user with a chance to fix small errors in the analysis
chain before starting the potentially expensive computation steps involved in
executing the chain. Execution does not actually proceed until there is a
reasonable assurance on the part of the analysis subsystem that the computation
can complete successfully.

The fixed-point algorithm can examine nodes in any order during each iteration.
The nodes are still guaranteed to be executed in the proper order, even though
the nodes are examined locally, since state 1 of the FSM inductively prevents a

35

node from being executed before its predecessors have run. However, a future
improvement could be made by ordering the nodes in a predetermined fashion,
so we could decrease the number of times a node is tested and found unable to
progress through the FSM. This would limit the amount of time the execution
algorithm would spend in the fixed-point loop. The fact that the analysis chains
are DAG’s would make this ordering simple; it is merely a topological sort of the
nodes in the chain. This ordering could be calculated quickly, and would
provide a reduction in the running time of the fixed-point loop.

4.2 Calculating module paths
In addition to the logic described above for executing the analysis modules in the
proper order, the execution algorithm needs to calculate the module paths of the
analysis chain. Since the analysis chains are DAG’s, this is a fairly simple
calculation, which ends up dramatically reducing the complexity of the SQL
queries needed to investigate certain kinds of relationships between analysis
results.

To calculate the module paths, the algorithm starts by creating a single path for
each root node in the chain. It then repeatedly takes each path it has found so
far, looks at the node at the end of the path, and extends the path with that
node’s successors. If the tail node has no successors, then it is a complete module
path for the analysis chain. If it has more than one successor, the path is
duplicated so that there is one copy extended by each of the successors. When
none of the paths can be extended any more, the algorithm has found all of the
module paths. Once all of the module paths have been found, the algorithm
creates rows in the ANALYSIS_PATHS table and stores them in an internal data
structure for when the results are written to the database.

4.3 Reusing analysis results
One substantial optimization that the analysis engine provides is the ability to
reuse analysis results when possible. This is especially useful when creating

36

several analysis chains that differ only in the modules near the end of the chain;
the running time of the root modules is amortized across all of the chains.

To determine whether the results of an analysis can be reused, we must define
another property of the analysis modules, called dataset-dependence. If a module
is dataset-dependent (or equivalently, per-dataset), then its outputs depend in
some way on the dataset as a whole. Usually, these modules calculate some sort
of statistic about the entire dataset, or use such a statistic as an input parameter.
In this case, the results of the module can only be reused when the module is run
on the exact same dataset; otherwise, the engine cannot guarantee that the
calculations performed on an image would yield the same results.

On the other hand, in a module which is dataset-independent (or equivalently,
per-image), the calculations performed on an image are completely independent
of which other images are in the dataset. In this case, even if a module is run
later on a different dataset, those images which were analyzed previously can
still be skipped.

In a more formal sense, the dataset-dependence of a module can be defined
inductively. Any module which declares an input or output with dataset
granularity is initially defined to be dataset-dependent. The dataset-dependency
of these modules can be determined at design time. Modules with only image
and feature inputs and outputs, however, cannot have their dataset-dependence
determined until runtime, since in this case, the property is determined by which
other modules it is connected to. If any of a module’s predecessors are per-
dataset, then it, too is per-dataset. Otherwise, it is per-image.

Thus, dataset-dependence is a viral property; if a module is per-dataset, all of its
successors in an analysis chain must be assumed to be per-dataset, as well.
Luckily, the modules which are most likely to benefit from analysis reuse, those
towards the root of an analysis chain, are exactly those which are most likely to
retain their dataset-independence, and therefore be eligible for analysis reuse.
Obviously, a per-image module is much better suited to analysis reuse.

37

In terms of the execution algorithm, we have to determine the dataset-
dependence of each module in the chain before we can decide whether to reuse
results. One solution is to recursively search the analysis chain, and all of the
modules that each input in the chain depends on, searching for a per-dataset
module. If one were found, then the module in question would also be per-
dataset. If not, it would be per-image.

However, to reduce the amount of time spent searching through the data
dependency tree, we can calculate this property inductively. To do so, we use
the DEPENDENCY column in the ANALYSES table (which exists precisely for this
purpose), and calculate the dataset-dependency of a module as one step in
executing it. This means we must wait to calculate the dataset-dependency until
the module is ready to be executed. In other words, we wait until all of its
predecessor nodes have finished and are in state 5 of the FSM. This ensures that
the dataset-dependencies of its immediate predecessors have also been
calculated, and that we only need to check these immediate predecessors to
determine the current module’s dataset-dependency. This inductive solution
greatly reduces the amount of tree searching required to determine a module’s
dataset dependency, at the cost of storing the dependency of each execution of a
module.

Once we have determined the dataset-dependency of a module, we can search
the OME database for an execution of the module that would be eligible for
reuse. A module’s results can be reused if the module was run on the same
image (or dataset, in the case of per-dataset modules), with equivalent inputs,
including the user-adjustable free inputs. We use shallow equality, rather than
deep equality, to determine whether the inputs to two executions of a module are
equivalent. In the case of the attribute tables in the OME database, using shallow
equality means that in order for the inputs to the module to be considered
equivalent, they must refer to the exact same row in the attribute table. Referring
to distinct rows with identical contents is not sufficient.

38

It was deemed inappropriate to design a method of testing for deep equality, in
which duplicate rows in the attribute table would also be considered equivalent.
Shallow equality only allows reuse when the attributes in question were
calculated by the same series of analysis modules, with identical inputs. Shallow
equality better represents the true meaning of a semantic data type, which is not
fully expressed without knowledge of the specific analyses that produced the
data. Deep equality would blur this distinction, allowing attributes which had
the same value to be considered equal, even if they were calculated in a wildly
different manner.

With this notion of shallow equality, the test for reuse eligibility is fairly simple.
The execution algorithm puts together an input tag, which is a string that
succinctly encapsulates the necessary information about the module execution:
the image or dataset on which the module was run, and the attributes used as
inputs to the analysis. This tag is essentially a hash value of the analysis module
and its inputs. Since the module’s predecessors in the analysis chain have
finished executing, the inputs are known. The algorithm calculates the current
input tag based on this information, and then checks the database to see if an
execution of the same module exists with the same input tag. If so, that
execution’s results are reused. This test must be performed at a different point in
the execution algorithm depending on whether the module is per-dataset or per-
image.

Note than in the case of analysis reuse, the module is not executed again, and
therefore no new entry is created in the ANALYSES table. It is this fact that requires
the ANALYSIS_PATH_MAP to be a three-way mapping. It not only encodes which
module paths a module execution belongs to, but also encodes which module
executions were used in each chain execution. The reuse of results makes this
second mapping many-to-many. In the naïve approach, where each module is
executed every time, the mapping would only be one-to-many.

39

4.4 Analysis handlers
The definition of analysis modules given in section 3.2 is only half-complete.
Each analysis module has a contract to meet to correctly interact with the
analysis system. The module is supposed to read inputs from the database,
perform appropriate calculations, and write outputs back to the database.
However, the analysis module itself is only responsible for meeting half of that
contract. The modules will inevitably reuse the code to read inputs from and
write outputs to the database. Further, this is exactly the code that we wish to
prevent the casual scientist from having to write when creating new analysis
modules.

To get around this, the analysis system uses the idea of an analysis handler. The
handler factors out the logic of connecting to the database and meeting the
analysis module contract. We provide the OME::Analysis::Handler module
(Figure 40, page 95), which is an interface that defines the methods used by the
analysis engine to specify and provide the attributes used as actual inputs to the
module. For every way in which an analysis module can interact with the
analysis engine, there is a separate handler implementing the interface. Since the
number of possible analysis modules is much larger than the number of
languages the modules are written in and calling conventions they will meet, this
factorization is quite beneficial.

At this point, we have written three handlers. One is a Perl handler (Figure 42,
page 101), which is a completely transparent handler that allows modules
written against a Perl analysis interface (Figure 41, page 98) to connect to the
analysis engine directly. The other two (Figure 43, page 105, and Figure 44, page
112) are command-line interface (CLI) handlers, which allow existing command-
line tools to be incorporated as analysis modules. The command-line interfaces
are currently coupled tightly to our test modules (described in chapter 5); work is
in progress on an XML specification to generalize the translation of OME
attributes in the database into text-based inputs and outputs, which can be
placed in arbitrary positions on the command line or on standard in and

40

standard out. We also plan to develop a Standardized Object Access Protocol
(SOAP) handler, which would allow an application-services idiom to be applied
to the routines used by the analysis system.

4.5 Code status
The next release of the OME system is still in development; as such, relatively
minor changes can be made to the analysis system before the next release. As
currently implemented, the analysis system described in this thesis forms a stable
base on which to build these minor improvements and refinements. It supports
the division of analysis routines into small modules, the execution of chains of
these modules, and the reuse of previous analysis results. Our initial test cases of
this base analysis system are presented in chapter 5. We are currently adding
more analysis handlers to support more legacy analysis modules, and are
developing several more advanced test cases.

41

CHAPTER 5
Test cases

To test the analysis engine, I incorporated three command-line utilities into OME
as analysis modules. The first was a program known as findSpots, which was
written by Ilya Goldberg as part of the previous OME version. This program
was intended to be the main test-bed; it performs a useful calculation against
imported images, and cleanly illustrates several important aspects of the engine:
It segments images into features and calculates related feature attributes for each,
and therefore demonstrates the various granularities of attributes available to
modules. Further, it depends on previous analysis results in order to function,
making it a good test case for the ordering and input propagation portions of the
execution algorithm.

For the findSpots program to function, it needs intensity statistics for each XYZ
stack in the five-dimensional image. This functionality is not included in the
findSpots program itself; since these two operations are fundamentally different
aspects of a larger analysis algorithm, they are implemented in two separate
modules. This means that a module that calculates these statistics is needed for a
chain involving findSpots to execute. To provide the statistics, I used a program
called OME_Image_XYZ_stats, also written by Ilya Goldberg.

The final utility included in the testing suite was a modified version of the stack
statistic routine. This new version, called OME_Image_XY_stats, was changed to
calculate the intensity statistics on a per-plane basis.

42

Figure 7 – Simple test analysis chain

These three modules were assembled into two analysis chains. The first, shown
in Figure 7, is quite simple. There are no data dependency links, so executing it
against a dataset should only take one iteration through the algorithm’s fixed-
point loop.

The second chain, shown in Figure 8, is more interesting, though still rather
simple. The appropriate outputs of OME_Image_XYZ_stats are connected to the
respective inputs of findSpots. Because of these data links, the FSM in the
execution algorithm should not allow findSpots to execute until after
OME_Image_XYZ_stats has completed.

43

Figure 8 – Test analysis chain with links

5.1 Preparing the database
Before the analysis engine can execute these chains against a dataset, three things
must be initialized in the database: First, the routines must be registered with
the analysis engine by making the appropriate entries in the PROGRAMS,
FORMAL_INPUTS, and FORMAL_OUTPUTS tables. Second, the chains must be created
and placed into the A N A L Y S I S _ V I E W S , A N A L Y S I S _ V I E W _ N O D E S , and
ANALYSIS_VIEW_LINKS tables. Finally, at least one test image must be imported
into OME (using an existing image import routine). These three steps are
performed by a series of Perl scripts:

1. OME::Tests::AnalysisEngine::CreateProgram (Figure 45, page 123)

2. OME::Tests::AnalysisEngine::CreateView (Figure 46, page 128)

3. OME::Tests::ImportTest (Figure 47, page 131)

44

For testing, we used an image from Jason Swedlow’s Cajal body experiment (see
page 15) [5]. The output from these scripts is fairly straightforward:

OME Test Case - Create programs

Please login to OME:
Username? dcreager
Password?

Great, you're in.

Finding datatypes...
 XYZ_IMAGE_INFO (2)
 XY_IMAGE_INFO (3)
 FEATURES (8)
 TIMEPOINT (11)
 THRESHOLD (14)
 LOCATION (9)
 EXTENT (13)
 SIGNAL (10)
Creating programs...
 Plane statistics (3)
 Wave (7)
 Time (8)
 Z (9)
 Min (10)
 Max (11)
 Mean (12)
 GeoMean (13)
 Sigma (14)
 Stack statistics (4)
 Wave (15)
 Time (16)
 Min (17)
 Max (18)
 Mean (19)
 GeoMean (20)
 Sigma (21)
 Centroid_x (22)
 Centroid_y (23)
 Centroid_z (24)
 Find spots (5)
 Wavelength (2)
 Timepoint (3)
 Minimum (4)
 Maximum (5)

45

 Mean (6)
 Geometric mean (7)
 Sigma (8)
 Timepoint (25)
 Threshold (26)
 X (27)
 Y (28)
 Z (29)
 Volume (30)
 Perimeter (31)
 Surface area (32)
 Form factor (33)
 Wavelength (34)
 Integral (35)
 Centroid X (36)
 Centroid Y (37)
 Centroid Z (38)
 Mean (39)
 Geometric Mean (40)
 Spots (41)

Figure 9 – CreateProgram output

OME Test Case - Create views

Please login to OME:
Username? dcreager
Password?

Great, you're in.

Finding programs...
Stack statistics (4)
Plane statistics (3)
Find spots (5)
Image import chain...
 Image import analyses (3)
 Node 1 Stack statistics (4)
 Node 2 Plane statistics (5)
Find spots chain...
 Find spots (4)
 Node 1 Stack statistics (6)
 Node 2 Find spots (7)
 Link [Node 1.Wavelength]->[Node 2.Wavelength]
 Link [Node 1.Timepoint]->[Node 2.Timepoint]
 Link [Node 1.Minimum]->[Node 2.Minimum]

46

 Link [Node 1.Maximum]->[Node 2.Maximum]
 Link [Node 1.Mean]->[Node 2.Mean]
 Link [Node 1.Geometric mean]->[Node 2.Geometric mean]
 Link [Node 1.Sigma]->[Node 2.Sigma]

Figure 10 – CreateView output

OME Test Case - Image Import

Please login to OME:
Username? dcreager
Password?

Great, you're in.

- Creating a new project...
Image is DV format
Times: 44, waves:1, zs: 20, rows: 256, cols: 256, sections: 880
output to /OME/repository/1-coilinSA5_4.ori
- Importing files into new project 'ImportTest2 project'... new image
id = 1
did import
done.

Figure 11 – ImportTest output

Two things are readily apparent from the analysis chains and the need for these
scripts. First, any user interface used for creating and viewing analysis chains
must perform the data link collapsing described in section 3.2. Many of the
attribute tables will contain multiple columns; displaying each column as an
input, output, or data link is more often than not redundant and cluttered. This
is not done in Figure 8; it would be much cleaner (if less correct) if the links were
collapsed.

Second, a tool for “importing” new analysis modules is needed. For simple test
cases, a script such as CreateProgram is acceptable. Further, if the set of modules
available to the user was to remain fixed after OME installation, then a script
similar to CreateProgram could be part of the installation process. However, this
is not the case, and requiring module designers to include specialized install

47

scripts seems redundant when the way the information is entered into the
database tables is extremely consistent. The XML specification described in
section 4.4 would be a great aid to this tool. A generalized installation utility
could easily be written around this specification, allowing the module designer
to develop an XML document describing the module rather than a complete
installation script.

 5.2 Executing the no-link chain
Once the database is initialized properly, we can test the execution algorithm.
This is done with the OME::Tests::AnalysisEngine::ExecuteView script (Figure
48, page 132), which executes a chain against a dataset, both of which are
specified on the command line. Executing the simple chain (Figure 7) against the
Cajal image, we see the following output:

OME Test Case - Execute view

Please login to OME:
Username? dcreager
Password?

Great, you're in.

Setup
 Creating ANALYSIS_EXECUTION table entry
 Plane statistics
 Loading module /OME/bin/OME_Image_XY_stats via handler
 OME::Analysis::CLIHandler
 Sorting input links by granularity
 Sorting outputs by granularity
 I Sigma
 I GeoMean
 I Mean
 I Max
 I Min
 I Z
 I Time
 I Wave
 Stack statistics
 Loading module /OME/bin/OME_Image_XYZ_stats via handler
 OME::Analysis::CLIHandler

48

 Sorting input links by granularity
 Sorting outputs by granularity
 I Centroid_z
 I Centroid_y
 I Centroid_x
 I Sigma
 I GeoMean
 I Mean
 I Max
 I Min
 I Time
 I Wave
 Building data paths
 Found root node 5
 Found root node 4
Round 1...
 Executing Plane statistics (I)
 startDataset
 Precalculate dataset
 Image coilinSA5_4
 Param I 1 d i f
 Creating ANALYSIS entry
 startImage
 /OME/bin/OME_Image_XY_stats
 Path=/OME/repository/1-coilinSA5_4.ori
 Dims=256,256,20,1,44,2
 Precalculate image
 Calculate feature
 Feature outputs
 Postcalculate image
 Image outputs
 Actual output Wave
 Actual output Time
 Actual output Z
 Actual output Min
 Actual output Max
 Actual output Mean
 Actual output GeoMean
 Actual output Sigma
 Postcalculate dataset
 Dataset outputs
 Marking state
 Executing Stack statistics (I)
 startDataset
 Precalculate dataset
 Image coilinSA5_4
 Param I 1 d i f

49

 Creating ANALYSIS entry
 startImage
 /OME/bin/OME_Image_XYZ_stats
 Path=/OME/repository/1-coilinSA5_4.ori
 Dims=256,256,20,1,44,2
 Precalculate image
 Calculate feature
 Feature outputs
 Postcalculate image
 Image outputs
 Actual output Wave
 Actual output Time
 Actual output Min
 Actual output Max
 Actual output Mean
 Actual output GeoMean
 Actual output Sigma
 Actual output Centroid_x
 Actual output Centroid_y
 Actual output Centroid_z
 Postcalculate dataset
 Dataset outputs
 Marking state
Round 2...
 Plane statistics already completed
 Stack statistics already completed

Timing:
 Total: 102 wallclock secs (23.91 usr + 2.72 sys = 26.63 CPU)

Figure 12 – Executing the no-link chain

As expected, both modules are executed during the first round of the fixed-point
loop. Because of the column granularity of the data links and the size of the
image (20 Z sections for each of 44 time points), the Stack Statistics program
generates 440 entries in the ACTUAL_OUTPUTS table, while the Plane Statistics
program generates 7,040 entries.

5.3 Attribute reuse #1: executing the no-link chain again
Our next test is to execute the exact same chain again. The attribute reuse
portion of the algorithm should prevent the modules from being executed again;
rather, the existing results will be reused. New entries will be made in the

50

ANALYSIS_EXECUTIONS and ANALYSIS_PATH_MAP tables, but the 7,480 entries in the
ACTUAL_OUTPUTS table will not be duplicated.

OME Test Case - Execute view

Please login to OME:
Username? dcreager
Password?

Great, you're in.

Setup
 Creating ANALYSIS_EXECUTION table entry
 Plane statistics
 Loading module /OME/bin/OME_Image_XY_stats via handler
 OME::Analysis::CLIHandler
 Sorting input links by granularity
 Sorting outputs by granularity
 I Sigma
 I GeoMean
 I Mean
 I Max
 I Min
 I Z
 I Time
 I Wave
 Stack statistics
 Loading module /OME/bin/OME_Image_XYZ_stats via handler
 OME::Analysis::CLIHandler
 Sorting input links by granularity
 Sorting outputs by granularity
 I Centroid_z
 I Centroid_y
 I Centroid_x
 I Sigma
 I GeoMean
 I Mean
 I Max
 I Min
 I Time
 I Wave
 Building data paths
 Found root node 5
 Found root node 4
Round 1...

51

 Executing Plane statistics (I)
 startDataset
 Precalculate dataset
 Image coilinSA5_4
 Param I 1 d i f
 Found I 1 d i f
 Found reusable analysis
 Postcalculate dataset
 Dataset outputs
 Marking state
 Executing Stack statistics (I)
 startDataset
 Precalculate dataset
 Image coilinSA5_4
 Param I 1 d i f
 Found I 1 d i f
 Found reusable analysis
 Postcalculate dataset
 Dataset outputs
 Marking state
Round 2...
 Plane statistics already completed
 Stack statistics already completed

Timing:
 Total: 47 wallclock secs (27.00 usr + 1.98 sys = 28.98 CPU)

Figure 13 – Attribute reuse #1: executing the no-link chain again

The execution algorithm was able to find the existing results from both modules
and reuse them. The execution time was only cut in half, mostly due to the
amount of time necessary to load the previous results into the engine’s internal
state.

5.4 Attribute reuse #2: executing the linked chain
The third test case involves the findSpots chain. It is also a good example of
analysis reuse across chains; the first node in this chain has already been
calculated in the first test case. The execution algorithm should detect this and
reuse the results.

52

OME Test Case - Execute view

Please login to OME:
Username? dcreager
Password?

Great, you're in.

Setup
 Creating ANALYSIS_EXECUTION table entry
 Find spots
 Loading module /OME/bin/findSpotsOME via handler
 OME::Analysis::FindSpotsHandler
 Sorting input links by granularity
 I Sigma
 I Geometric mean
 I Mean
 I Maximum
 I Minimum
 I Timepoint
 I Wavelength
 Sorting outputs by granularity
 I Spots
 F Geometric Mean
 F Mean
 F Centroid Z
 F Centroid Y
 F Centroid X
 F Integral
 F Wavelength
 F Form factor
 F Surface area
 F Perimeter
 F Volume
 F Z
 F Y
 F X
 F Threshold
 F Timepoint
 Stack statistics
 Loading module /OME/bin/OME_Image_XYZ_stats via handler
 OME::Analysis::CLIHandler
 Sorting input links by granularity
 Sorting outputs by granularity
 I Centroid_z
 I Centroid_y

53

 I Centroid_x
 I Sigma
 I GeoMean
 I Mean
 I Max
 I Min
 I Time
 I Wave
 Building data paths
 Found root node 6
 Extending 6 with 7
Round 1...
 Skipping Find spots
 Executing Stack statistics (I)
 startDataset
 Precalculate dataset
 Image coilinSA5_4
 Param I 1 d i f
 Found I 1 d i f
 Found reusable analysis
 Postcalculate dataset
 Dataset outputs
 Marking state
Round 2...
 Executing Find spots (I)
 startDataset
 Precalculate dataset
 Image coilinSA5_4
 Param I 1 d i 2(927 928 929 930 931 932 933 934 935 936 937 938
939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955
956 957 958 959 960 961 962 963 964 965 966 967 968 969 970) 3(927
928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944
945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961
962 963 964 965 966 967 968 969 970) 4(927 928 929 930 931 932 933
934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950
951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967
968 969 970) 5(927 928 929 930 931 932 933 934 935 936 937 938 939
940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956
957 958 959 960 961 962 963 964 965 966 967 968 969 970) 6(927 928
929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945
946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962
963 964 965 966 967 968 969 970) 7(927 928 929 930 931 932 933 934
935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951
952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968
969 970) 8(927 928 929 930 931 932 933 934 935 936 937 938 939 940
941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957
958 959 960 961 962 963 964 965 966 967 968 969 970) f

54

 Creating ANALYSIS entry
 startImage
 /OME/bin/findSpotsOME /OME/repository/1-coilinSA5_4.ori 0
 gmean4.5s 10 -db -tt -th -c 0 -i 0 -m 0 -g 0 -ms 0 -gs 0 –mc
 -v -sa -per -ff
 Precalculate image
 Calculate feature
 Feature outputs
 Postcalculate image
 Image outputs
 Actual output Spots
 Postcalculate dataset
 Dataset outputs
 Marking state
 Stack statistics already completed
Round 3...
 Find spots already completed
 Stack statistics already completed

Timing:
 Total: 110 wallclock secs (32.80 usr 3.28 sys + 15.95 cusr 0.63
csys = 52.66 CPU)

Figure 14 – Attribute reuse #2: executing the linked chain

The findSpots program locates 448 spots in the Cajal image, and records 7,616
entries in the ACTUAL_OUTPUTS table (including the spots themselves).

5.5 Attribute reuse #3: executing the linked chain again
The final test is to execute the findSpots chain one more time, to verify that its
results are reused, too.

OME Test Case - Execute view

Please login to OME:
Username? dcreager
Password?

Great, you're in.

Setup
 Creating ANALYSIS_EXECUTION table entry
 Find spots

55

 Loading module /OME/bin/findSpotsOME via handler
 OME::Analysis::FindSpotsHandler
 Sorting input links by granularity
 I Sigma
 I Geometric mean
 I Mean
 I Maximum
 I Minimum
 I Timepoint
 I Wavelength
 Sorting outputs by granularity
 I Spots
 F Geometric Mean
 F Mean
 F Centroid Z
 F Centroid Y
 F Centroid X
 F Integral
 F Wavelength
 F Form factor
 F Surface area
 F Perimeter
 F Volume
 F Z
 F Y
 F X
 F Threshold
 F Timepoint
 Stack statistics
 Loading module /OME/bin/OME_Image_XYZ_stats via handler
 OME::Analysis::CLIHandler
 Sorting input links by granularity
 Sorting outputs by granularity
 I Centroid_z
 I Centroid_y
 I Centroid_x
 I Sigma
 I GeoMean
 I Mean
 I Max
 I Min
 I Time
 I Wave
 Building data paths
 Found root node 6
 Extending 6 with 7
Round 1...

56

 Skipping Find spots
 Executing Stack statistics (I)
 startDataset
 Precalculate dataset
 Image coilinSA5_4
 Param I 1 d i f
 Found I 1 d i f
 Found reusable analysis
 Postcalculate dataset
 Dataset outputs
 Marking state
Round 2...
 Executing Find spots (I)
 startDataset
 Precalculate dataset
 Image coilinSA5_4
 Param I 1 d i 2(927 928 929 930 931 932 933 934 935 936 937 938
939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955
956 957 958 959 960 961 962 963 964 965 966 967 968 969 970) 3(927
928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944
945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961
962 963 964 965 966 967 968 969 970) 4(927 928 929 930 931 932 933
934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950
951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967
968 969 970) 5(927 928 929 930 931 932 933 934 935 936 937 938 939
940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956
957 958 959 960 961 962 963 964 965 966 967 968 969 970) 6(927 928
929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945
946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962
963 964 965 966 967 968 969 970) 7(927 928 929 930 931 932 933 934
935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951
952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968
969 970) 8(927 928 929 930 931 932 933 934 935 936 937 938 939 940
941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957
958 959 960 961 962 963 964 965 966 967 968 969 970) f
 Found I 1 d i 2(927 928 929 930 931 932 933 934 935 936 937 938
939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955
956 957 958 959 960 961 962 963 964 965 966 967 968 969 970) 3(927
928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944
945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961
962 963 964 965 966 967 968 969 970) 4(927 928 929 930 931 932 933
934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950
951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967
968 969 970) 5(927 928 929 930 931 932 933 934 935 936 937 938 939
940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956
957 958 959 960 961 962 963 964 965 966 967 968 969 970) 6(927 928
929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945

57

946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962
963 964 965 966 967 968 969 970) 7(927 928 929 930 931 932 933 934
935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951
952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968
969 970) 8(927 928 929 930 931 932 933 934 935 936 937 938 939 940
941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957
958 959 960 961 962 963 964 965 966 967 968 969 970) f
 Found reusable analysis
 Postcalculate dataset
 Dataset outputs
 Marking state
 Stack statistics already completed
Round 3...
 Find spots already completed
 Stack statistics already completed

Timing:
 Total: 68 wallclock secs (38.09 usr + 2.73 sys = 40.82 CPU)

Figure 15 – Attribute reuse #3: executing the linked chain again

The output from this test yields a good example of the input tag used to search
for analyses to reuse. The line beginning with “Param I 1 d i” represents the
input for the current analysis module, whereas the line beginning with “Found I
1 d i” represents the same input tag being found in the database, signaling a
module whose results can be reused.

59

CHAPTER 6
Conclusion

The existing image acquisition tools for optical microscopy are extremely robust,
useful, well-designed and well-tested applications. However, their lack of
interoperability and extensibility often limits their usefulness. By defining
several open standards with the cooperation of the industrial imaging
community, the OME project hopes to provide the means for these programs to
communicate with each other gracefully, allowing the scientist to use the unique
advantages of each to its fullest potential.

The new analysis system represents a step forward in supporting these goals.
The modular architecture allows the scientist to design analyses in a logical,
incremental fashion. Using the database as the communications layer allows
new modules to be developed easily in a variety of programming languages, and
further, allows existing legacy routines to be easily incorporated with no change.

Most importantly, the OME analysis system deems paramount the importance of
preserving the operational record of an analysis in addition to the results. Only
with this record can the full meaning of each result be fully appreciated. The
close association of the microscope images with the analysis results and their
corresponding operational records ensures that nothing in this web of
information slips away.

60

6.1 Future plans
The design of the analysis system leaves open the possibility for future
extensions being added easily. Most of these anticipated extensions involve
increasing the computational power of the execution algorithm by distributing
the analysis workload. The two main possibilities along these lines are the
distributed and parallel models of computation. Though the logistics of
delegating the work differ between the two models, implementing either on top
of the current analysis engine would proceed along the same lines. The
delegation logic would be closely localized to the area of the execution algorithm
which passes control to each analysis module; the rest of the algorithm and the
underlying database schema would remain unchanged.

Further extensions can also be made to the underlying graph structure used by
the analysis engine. Removing the acyclic constraint on analysis chains would
greatly increase the expressive power of the analyses that the engine could
handle. However, it would also require a substantial reworking of the execution
algorithm itself, which makes many assumptions based on the DAG constraint.

Lastly, we hope to automate the process of including modules and their
corresponding semantic data types into the OME database. We are currently
developing an XML schema which will describe modules to be incorporated into
the system, in addition to the semantic types on which they operate. We plan to
develop a tool that will take these descriptions and extend the attribute tables in
the OME database to include any new semantic types in the module definitions.
Using this tool, it would be possible to “bootstrap” a large portion of the core
OME database from the descriptions of the modules provided in the default
OME toolbox.

61

References

[1] Abramowitz, M. Fluorescence Microscopy: The Essentials. Olympus
America, Inc., New York, 1993.

[2] Herman, B. Fluorescence Microscopy. 2e, BIOS Scientific Publishers Ltd.,
Oxford, U.K., 1998.

[3] Rost, F. W. D. Fluorescence Microscopy (2 volumes). Cambridge University
Press, New York, 1992.

[4] Sluder, G., and Wolf, D. E. (eds.). Methods in Cell Biology, Vol. 56: Video
Microscopy. Academic Press, New York, 1998.

[5] Platani, M., Goldberg, I., Lamond, A. I., and Swedlow, J. R. (2002). “Cajal
body dynamics and association with chromatin are ATP-dependent.”
Nature Cell Biology 4, 502-508.

[6] Gosling, J., Joy, B., Steele, G., and Bracha, G. (2000). The Java Language
Specification. http://java.sun.com/docs/books/jls/second_edition/-
html/j.title.doc.html .

63

APPENDIX A
Source code - SQL

A.1 Preexisting OME tables
The tables in this section existed in the OME schema before the development of
the new analysis engine. There are other tables in the schema than those below;
only those relevant to the analysis engine and referenced in this document are
included.

CREATE SEQUENCE DATASET_SEQ;
CREATE TABLE DATASETS (
 DATASET_ID OID DEFAULT nextval('DATASET_SEQ') PRIMARY KEY,
 NAME VARCHAR(256) NOT NULL,
 OWNER_ID OID NOT NULL REFERENCES EXPERIMENTERS
 DEFERRABLE INITIALLY DEFERRED,
 GROUP_ID OID REFERENCES GROUPS
 DEFERRABLE INITIALLY DEFERRED,
 DESCRIPTION TEXT,
 LOCKED BOOLEAN NOT NULL DEFAULT FALSE
);

Figure 16 – DATASETS table

CREATE TABLE IMAGE_DATASET_MAP (
 IMAGE_ID OID NOT NULL REFERENCES IMAGES
 DEFERRABLE INITIALLY DEFERRED,
 DATASET_ID OID NOT NULL REFERENCES DATASETS
 DEFERRABLE INITIALLY DEFERRED,
 PRIMARY KEY (IMAGE_ID, DATASET_ID)
);

Figure 17 – IMAGE_DATASET_MAP table

64

CREATE SEQUENCE IMAGE_SEQ;
CREATE TABLE IMAGES (
 IMAGE_ID OID DEFAULT nextval('IMAGE_SEQ')
 PRIMARY KEY,
 IMAGE_GUID VARCHAR(256),
 NAME VARCHAR(256) NOT NULL,
 FILE_SHA1 CHAR (40),
 DISPLAY_SETTINGS OID REFERENCES
 DEFERRABLE INITIALLY DEFERRED,
 DESCRIPTION TEXT,
 INSTRUMENT_ID OID REFERENCES INSTRUMENTS
 DEFERRABLE INITIALLY DEFERRED,
 LENS_ID VARCHAR(30),
 EXPERIMENTER_ID OID NOT NULL REFERENCES EXPERIMENTERS
 DEFERRABLE INITIALLY DEFERRED,
 GROUP_ID OID REFERENCES GROUPS,
 CREATED TIMESTAMP NOT NULL,
 INSERTED TIMESTAMP NOT NULL,
 IMAGE_TYPE OID,
 REPOSITORY_ID OID NOT NULL REFERENCES REPOSITORIES
 DEFERRABLE INITIALLY DEFERRED,
 PATH VARCHAR(256) NOT NULL
);

Figure 18 – IMAGES table

CREATE SEQUENCE REPOSITORY_SEQ;
CREATE TABLE REPOSITORIES (
 REPOSITORY_ID OID DEFAULT nextval('REPOSITORY_SEQ')
 PRIMARY KEY,
 PATH VARCHAR(256) NOT NULL UNIQUE
);

Figure 19 – REPOSITORIES table

A.2 Preexisting OME attribute tables
The tables in this section existed in the OME schema before the development of
the new analysis engine, but were modified to conform to the new attribute table
pattern.

CREATE TABLE IMAGE_DIMENSIONS (
 ATTRIBUTE_ID OID DEFAULT nextval('ATTRIBUTE_SEQ') PRIMARY KEY,

65

 IMAGE_ID OID NOT NULL REFERENCES IMAGES
 DEFERRABLE INITIALLY DEFERRED,
 SIZE_X INTEGER,
 SIZE_Y INTEGER,
 SIZE_Z INTEGER,
 NUM_WAVES INTEGER,
 NUM_TIMES INTEGER,
 BITS_PER_PIXEL SMALLINT,
 PIXEL_SIZE_X FLOAT4,
 PIXEL_SIZE_Y FLOAT4,
 PIXEL_SIZE_Z FLOAT4,
 WAVE_INCREMENT FLOAT4,
 TIME_INCREMENT FLOAT4
);

Figure 20 – IMAGE_DIMENSIONS table

CREATE TABLE IMAGE_WAVELENGTHS (
 ATTRIBUTE_ID OID DEFAULT NEXTVAL('ATTRIBUTE_SEQ') PRIMARY KEY,
 IMAGE_ID OID REFERENCES IMAGES
 DEFERRABLE INITIALLY DEFERRED,
 WAVENUMBER INTEGER,
 EX_WAVELENGTH INTEGER,
 EM_WAVELENGTH INTEGER,
 ND_FILTER FLOAT,
 FLUOR VARCHAR(32)
);

Figure 21 – IMAGE_WAVELENGTHS table

CREATE TABLE XY_IMAGE_INFO (
 ATTRIBUTE_ID OID DEFAULT NEXTVAL('ATTRIBUTE_SEQ') PRIMARY KEY,
 IMAGE_ID OID NOT NULL REFERENCES IMAGES
 DEFERRABLE INITIALLY DEFERRED,
 WAVENUMBER INTEGER,
 TIMEPOINT INTEGER,
 ZSECTION INTEGER,
 DELTATIME FLOAT,
 EXPTIME FLOAT,
 STAGE_X FLOAT,
 STAGE_Y FLOAT,
 STAGE_Z FLOAT,
 MIN INTEGER,
 MAX INTEGER,
 MEAN FLOAT4,

66

 GEOMEAN FLOAT4,
 SIGMA FLOAT4
);

Figure 22 – XY_IMAGE_INFO table

CREATE TABLE XYZ_IMAGE_INFO (
 ATTRIBUTE_ID OID DEFAULT nextval('ATTRIBUTE_SEQ') PRIMARY KEY,
 IMAGE_ID OID NOT NULL REFERENCES IMAGES
 DEFERRABLE INITIALLY DEFERRED,
 WAVENUMBER INTEGER,
 TIMEPOINT INTEGER,
 DELTATIME FLOAT,
 MIN INTEGER,
 MAX INTEGER,
 MEAN FLOAT4,
 GEOMEAN FLOAT4,
 SIGMA FLOAT4,
 CENTROID_X FLOAT4,
 CENTROID_Y FLOAT4,
 CENTROID_Z FLOAT4
);

Figure 23 – XYZ_IMAGE_INFO table

A.3 Data types and attributes

CREATE SEQUENCE DATATYPE_SEQ;
CREATE TABLE DATATYPES (
 DATATYPE_ID OID DEFAULT nextval('DATATYPE_SEQ') PRIMARY KEY,
 ATTRIBUTE_TYPE CHAR(1) NOT NULL
 CHECK (ATTRIBUTE_TYPE IN ('D','I','F')),
 TABLE_NAME VARCHAR(64) NOT NULL,
 DESCRIPTION TEXT
);

Figure 24 – DATATYPES table

CREATE SEQUENCE DATATYPE_COLUMN_SEQ;
CREATE TABLE DATATYPE_COLUMNS (
 DATATYPE_COLUMN_ID OID DEFAULT nextval('DATATYPE_COLUMN_SEQ')
 PRIMARY KEY,
 DATATYPE_ID OID NOT NULL REFERENCES DATATYPES
 DEFERRABLE INITIALLY DEFERRED,

67

 COLUMN_NAME VARCHAR(256) NOT NULL,
 REFERENCE_TYPE VARCHAR(256)
);

Figure 25 – DATATYPE_COLUMNS table

CREATE TABLE FEATURES (
 ATTRIBUTE_ID OID DEFAULT NEXTVAL('ATTRIBUTE_SEQ') PRIMARY KEY,
 IMAGE_ID OID REFERENCES IMAGES
 DEFERRABLE INITIALLY DEFERRED
);

Figure 26 – FEATURES table

A.4 Analysis modules

CREATE SEQUENCE FORMAL_INPUT_SEQ;
CREATE TABLE FORMAL_INPUTS (
 FORMAL_INPUT_ID OID DEFAULT nextval('FORMAL_INPUT_SEQ') PRIMARY
KEY,
 PROGRAM_ID OID NOT NULL REFERENCES PROGRAMS DEFERRABLE
INITIALLY DEFERRED,
 NAME VARCHAR(64) NOT NULL,
 DESCRIPTION TEXT,
 COLUMN_TYPE OID NOT NULL REFERENCES DATATYPE_COLUMNS DEFERRABLE
INITIALLY DEFERRED,
 LOOKUP_TABLE_ID OID REFERENCES LOOKUP_TABLES,
 UNIQUE (PROGRAM_ID,NAME)
);

Figure 27 – FORMAL_INPUTS table

68

CREATE SEQUENCE FORMAL_OUTPUT_SEQ;
CREATE TABLE FORMAL_OUTPUTS (
 FORMAL_OUTPUT_ID OID DEFAULT nextval('FORMAL_OUTPUT_SEQ') PRIMARY
KEY,
 PROGRAM_ID OID NOT NULL REFERENCES PROGRAMS DEFERRABLE
INITIALLY DEFERRED,
 NAME VARCHAR(64) NOT NULL,
 DESCRIPTION TEXT,
 COLUMN_TYPE OID NOT NULL REFERENCES DATATYPE_COLUMNS
DEFERRABLE INITIALLY DEFERRED,
 UNIQUE (PROGRAM_ID,NAME)
);

Figure 28 – FORMAL_OUTPUTS table

CREATE SEQUENCE PROGRAM_SEQ;
CREATE TABLE PROGRAMS (
 PROGRAM_ID OID DEFAULT NEXTVAL('PROGRAM_SEQ') PRIMARY KEY,
 PROGRAM_NAME VARCHAR(64) NOT NULL,
 DESCRIPTION TEXT,
 LOCATION VARCHAR(128) NOT NULL,
 MODULE_TYPE VARCHAR(128) NOT NULL,
 CATEGORY VARCHAR(32) NOT NULL,
 VISUAL_DESIGN TEXT
);

Figure 29 – PROGRAMS table

A.5 Analysis chains

CREATE SEQUENCE ANALYSIS_VIEW_LINKS_SEQ;
CREATE TABLE ANALYSIS_VIEW_LINKS (
 ANALYSIS_VIEW_LINK_ID OID DEFAULT
 nextval('ANALYSIS_VIEW_LINKS_SEQ')
 PRIMARY KEY,
 ANALYSIS_VIEW_ID OID NOT NULL REFERENCES ANALYSIS_VIEWS
 DEFERRABLE INITIALLY DEFERRED,
 FROM_NODE OID NOT NULL REFERENCES ANALYSIS_VIEW_NODES
 DEFERRABLE INITIALLY DEFERRED,
 FROM_OUTPUT OID NOT NULL REFERENCES FORMAL_OUTPUTS
 DEFERRABLE INITIALLY DEFERRED,
 TO_NODE OID NOT NULL REFERENCES ANALYSIS_VIEW_NODES
 DEFERRABLE INITIALLY DEFERRED,
 TO_INPUT OID NOT NULL REFERENCES FORMAL_INPUTS

69

 DEFERRABLE INITIALLY DEFERRED
);

Figure 30 – ANALYSIS_VIEW_LINKS table

CREATE SEQUENCE ANALYSIS_VIEW_NODES_SEQ;
CREATE TABLE ANALYSIS_VIEW_NODES (
 ANALYSIS_VIEW_NODE_ID OID
 DEFAULT nextval('ANALYSIS_VIEW_NODES_SEQ')
 PRIMARY KEY,
 ANALYSIS_VIEW_ID OID NOT NULL REFERENCES ANALYSIS_VIEWS
 DEFERRABLE INITIALLY DEFERRED,
 PROGRAM_ID OID NOT NULL REFERENCES PROGRAMS
 DEFERRABLE INITIALLY DEFERRED
);

Figure 31 – ANALYSIS_VIEW_NODES table

CREATE SEQUENCE ANALYSIS_VIEW_SEQ;
CREATE TABLE ANALYSIS_VIEWS (
 ANALYSIS_VIEW_ID OID DEFAULT nextval('ANALYSIS_VIEW_SEQ')
 PRIMARY KEY,
 OWNER OID NOT NULL REFERENCES EXPERIMENTERS
 DEFERRABLE INITIALLY DEFERRED,
 NAME VARCHAR(64) NOT NULL,
 DESCRIPTION TEXT
);

Figure 32 – ANALYSIS_VIEWS table

A.6 Analysis executions

CREATE SEQUENCE ACTUAL_INPUT_SEQ;
CREATE TABLE ACTUAL_INPUTS (
 ACTUAL_INPUT_ID OID DEFAULT nextval('ACTUAL_INPUT_SEQ')
 PRIMARY KEY,
 ANALYSIS_ID OID NOT NULL REFERENCES ANALYSES
 DEFERRABLE INITIALLY DEFERRED,
 FORMAL_INPUT_ID OID NOT NULL REFERENCES FORMAL_INPUTS
 DEFERRABLE INITIALLY DEFERRED,
 ATTRIBUTE_ID OID NOT NULL
);

Figure 33 – ACTUAL_INPUTS table

70

CREATE SEQUENCE ACTUAL_OUTPUT_SEQ;
CREATE TABLE ACTUAL_OUTPUTS (
 ACTUAL_OUTPUT_ID OID DEFAULT nextval('ACTUAL_OUTPUT_SEQ')
 PRIMARY KEY,
 ANALYSIS_ID OID NOT NULL REFERENCES ANALYSES
 DEFERRABLE INITIALLY DEFERRED,
 FORMAL_OUTPUT_ID OID NOT NULL REFERENCES FORMAL_OUTPUTS
 DEFERRABLE INITIALLY DEFERRED,
 ATTRIBUTE_ID OID NOT NULL
);

Figure 34 – ACTUAL_OUTPUTS table

CREATE SEQUENCE ANALYSIS_SEQ;
CREATE TABLE ANALYSES (
 ANALYSIS_ID OID DEFAULT nextval ('ANALYSIS_SEQ') PRIMARY KEY,
 DEPENDENCE CHAR(1) NOT NULL
 CHECK (DEPENDENCE IN ('D','I')),
 DATASET_ID OID REFERENCES DATASETS
 DEFERRABLE INITIALLY DEFERRED,
 IMAGE_ID OID REFERENCES IMAGES
 DEFERRABLE INITIALLY DEFERRED,
 TIMESTAMP TIMESTAMP DEFAULT CURRENT_TIMESTAMP,
 STATUS VARCHAR(16),
 CHECK
 (((DEPENDENCE = 'D') AND
 (DATASET_ID IS NOT NULL) AND (IMAGE_ID IS NULL)) OR
 ((DEPENDENCE = 'I') AND
 (DATASET_ID IS NULL) AND (IMAGE_ID IS NOT NULL)))
);

Figure 35 – ANALYSES table

CREATE SEQUENCE ANALYSIS_EXECUTION_SEQ;
CREATE TABLE ANALYSIS_EXECUTIONS (
 ANALYSIS_EXECUTION_ID OID
 DEFAULT nextval('ANALYSIS_EXECUTION_SEQ')
 PRIMARY KEY,
 ANALYSIS_VIEW_ID OID NOT NULL REFERENCES ANALYSIS_VIEWS
 DEFERRABLE INITIALLY DEFERRED,
 DATASET_ID OID NOT NULL REFERENCES DATASETS
 DEFERRABLE INITIALLY DEFERRED,
 EXPERIMENTER_ID OID NOT NULL REFERENCES EXPERIMENTERS
 DEFERRABLE INITIALLY DEFERRED,

71

 TIMESTAMP TIMESTAMP DEFAULT CURRENT_TIMESTAMP
);

Figure 36 – ANALYSIS_EXECUTIONS table

CREATE TABLE ANALYSIS_PATH_MAP (
 PATH_ID OID NOT NULL,
 PATH_ORDER INTEGER NOT NULL,
 ANALYSIS_ID OID NOT NULL REFERENCES ANALYSES
 DEFERRABLE INITIALLY DEFERRED,
 ANALYSIS_EXECUTION_ID OID NOT NULL REFERENCES ANALYSIS_EXECUTIONS
 DEFERRABLE INITIALLY DEFERRED,
 PRIMARY KEY (PATH_ID, ANALYSIS_ID, ANALYSIS_EXECUTION_ID)
);

Figure 37 – ANALYSIS_PATH_MAP table

CREATE SEQUENCE ANALYSIS_PATH_SEQ;
CREATE TABLE ANALYSIS_PATHS (
 PATH_ID OID DEFAULT nextval('ANALYSIS_PATH_SEQ') PRIMARY KEY,
 PATH_LENGTH INTEGER NOT NULL
);

Figure 38 – ANALYSIS_PATHS table

73

APPENDIX B
Source code - Perl

B.1 Analysis executions

package OME::Tasks::AnalysisEngine;

use strict;
our $VERSION = '1.0';

use OME::Factory;
use OME::DBObject;
use OME::Dataset;
use OME::Image;
use OME::Program;
use OME::Analysis;
use OME::AnalysisView;
use OME::AnalysisPath;
use OME::AnalysisExecution;

For now assume the module type is the Perl class of the
module handler.

sub findModuleHandler {
 return shift;
}

{

 # We'll need several shared variables for these internal
 # functions. They are defined here.

 # The user's database session.
 my $session;

 # The database factory used to create new database objects and to

74

 # find existing ones.
 my $factory;

 # The analysis view being executed.
 my $analysis_view;

 # The hash of the user-specified input parameters.
 my $input_parameters;

 # The dataset the chain is being executed against.
 my $dataset;

 # A list of nodes in the analysis view.
 my @nodes;

 # A hash of nodes keyed by node ID.
 my %nodes;

 # The instantiated program modules for each analyis node.
 my %node_modules;

 # The current state of each node.
 use constant INPUT_STATE => 1;
 use constant FINISHED_STATE => 2;
 my %node_states;

 # The input and output links for each node.
 # $input_links{$nodeID}->{$granularity} = $analysis_link
 # $output_links{$nodeID}->{$granularity} = $analysis_link
 my %input_links;
 my %output_links;

 # The ANALYSIS_EXECUTION entry for this chain execution.
 my $analysis_execution;

 # The dataset-dependence of each node.
 # $dependence{$nodeID} = [D,I]
 my %dependence;

 # The ANALYSES for each node.
 # $perdataset_analyses{$nodeID} = $analysis
 # $perimage_analyses{$nodeID}->{$imageID} = $analysis
 my %perdataset_analysis;
 my %perimage_analysis;

 # The outputs generated by each node
 # $dataset_outputs{$nodeID}->

75

 # {$formal_outputID} = $attribute
 # $image_outputs{$nodeID}->{$formal_outputID}->
 # {$imageID} = $attribute
 # $feature_outputs{$nodeID}->{$formal_outputID}->
 # {$imageID}->{$featureID} = $attribute
 my (%dataset_outputs, %image_outputs, %feature_outputs);

 # Whether or not we need another round in the fixed-point loop.
 my $continue;

 # Which of those rounds we are in.
 my $round;

 # The node which was most recently executed.
 my $last_node;

 # The following variables are only valid within the per-node loop.
 # They refer to the module currently being examined/executed.
 my ($curr_node, $curr_nodeID);
 my ($curr_module, $curr_inputs, $curr_outputs);
 my (@curr_dataset_inputs, @curr_image_inputs, @curr_feature_inputs);
 my (@curr_dataset_outputs, @curr_image_outputs,
 @curr_feature_outputs);
 my ($curr_image, $curr_imageID);

 # The list of data paths found.
 my @data_paths;

 # The data paths to which each node belongs.
 my %data_paths;

 # This routine prepares the all of the internal variables for each
 # node in the chain. It loads in the appropriate module handler,
 # and initializes it with the module's location, and sets up the
 # [dataset,image,feature]_[inputs,outputs] hashes with the input
 # and output links of the module. Currently, all outputs are
 # added to the hashes, regardless of whether or not they are
 # linked to anything. However, only those inputs which are
 # connected are pushed into their hashes. *** This is where I
 # will add support for user parameters; the inputs without links
 # will look for their values in the $input_attributes parameter,
 # and push those values into the hash accordingly.
 sub __initializeNode {
 my $program = $curr_node->program();
 my $module_type = $program->module_type();
 my $location = $program->location();

76

 $nodes{$curr_nodeID} = $curr_node;

 print STDERR " " . $program->program_name() . "\n";

 print STDERR
 " Loading module $location via handler $module_type\n";
 my $handler = findModuleHandler($module_type);
 eval "require $handler";
 my $module = $handler->new($location, $factory, $program);
 $node_modules{$curr_nodeID} = $module;

 print STDERR " Sorting input links by granularity\n";

 $input_links{$curr_nodeID}->{D} = [];
 $input_links{$curr_nodeID}->{I} = [];
 $input_links{$curr_nodeID}->{F} = [];

 # this pushes only linked inputs
 my @inputs = $curr_node->input_links();
 foreach my $input (@inputs) {
 my $attribute_type =
 $input->to_input()->column_type()->datatype()
 ->attribute_type();
 push @{$input_links{$curr_nodeID}->{$attribute_type}}, $input;
 print STDERR " $attribute_type "
 . $input->to_input()->name() . "\n";
 }

 print STDERR " Sorting outputs by granularity\n";

 $output_links{$curr_nodeID}->{D} = [];
 $output_links{$curr_nodeID}->{I} = [];
 $output_links{$curr_nodeID}->{F} = [];

 my @outputs = $program->outputs();
 foreach my $output (@outputs) {
 my $attribute_type =
 $output->column_type()->datatype()->attribute_type();
 push @{$output_links{$curr_nodeID}->{$attribute_type}}, $output;
 print STDERR " $attribute_type " . $output->name() . "\n";
 }

 $node_states{$curr_nodeID} = INPUT_STATE;
 }

 # Returns true if a node has no predecessors.
 sub __rootNode {

77

 my ($node) = @_;
 foreach my $granularity ('D', 'I', 'F') {
 my $inputs = $input_links{$node->id()}->{$granularity};
 return 0 if (scalar(@$inputs) > 0);
 }
 return 1;
 }

 # Returns a list of successor nodes to a node.
 sub __successors {
 my ($nodeID) = @_;
 my (@succ, %succ);
 my $outputs = $nodes{$nodeID}->output_links();
 while (my $output = $outputs->next()) {
 my $succ_nodeID = $output->to_node()->id();
 if ($succ{$succ_nodeID} != 1) {
 push @succ, $succ_nodeID;
 $succ{$succ_nodeID} = 1;
 }
 }
 return \@succ;
 }

 sub __buildDataPaths {
 print STDERR " Building data paths\n";

 # A data path is represented by a list of node ID's, starting
 # with a root node and ending with a leaf node.

 # First, we create paths for each root node in the chain
 foreach my $node (@nodes) {
 if (__rootNode($node)) {
 print STDERR " Found root node " . $node->id() . "\n";
 my $path = [$node->id()];
 push @data_paths, $path;
 }
 }

 # Then, we iteratively extend each path until it reaches a
 # leaf node. If at any point, it branches, we create
 # duplicates so that there is one path per branch-point.
 my $continue = 1;
 while ($continue) {
 $continue = 0;
 my @new_paths;
 while (my $data_path = shift (@data_paths)) {
 my $end_nodeID = $data_path->[$#$data_path];

78

 my $successors = __successors($end_nodeID);
 my $num_successors = scalar(@$successors);

 if ($num_successors == 0) {
 push @new_paths, $data_path;
 } elsif ($num_successors == 1) {
 print STDERR " Extending "
 . join (':', @$data_path)
 . " with "
 . $successors->[0] . "\n";
 push @$data_path, $successors->[0];
 push @new_paths, $data_path;
 $continue = 1;
 } else {
 foreach my $successor (@$successors) {

 # make a copy
 my $new_path = [@$data_path];
 print STDERR " Extending "
 . join (':', @$new_path)
 . " with "
 . $successor . "\n";
 push @$new_path, $successor;
 push @new_paths, $new_path;
 }
 $continue = 1;
 }
 }

 @data_paths = @new_paths;
 }

 foreach my $data_path_list (@data_paths) {
 my $data_path =
 $factory->newObject("OME::AnalysisPath",
 {path_length => scalar(@$data_path_list)});
 my $data_pathID = $data_path->id();

 my $order = 0;
 foreach my $nodeID (@$data_path_list) {
 my $path_entry = {
 path => $data_path,
 path_order => $order
 };
 push @{$data_paths{$nodeID}}, $path_entry;
 $order++;
 }

79

 }
 }

 # Returns the correct ANALYSIS entry for the current node. Takes
 # into account the dataset-dependence of the node; if it is a
 # per-image node, it finds the ANALYSIS entry for the current
 # image.
 sub __getAnalysis {
 my ($nodeID) = @_;

 if ($dependence{$nodeID} eq 'D') {
 return $perdataset_analysis{$nodeID};
 } else {
 return $perimage_analysis{$nodeID}->{$curr_imageID};
 }
 }

 # Creates ACTUAL_INPUT entries in the database for a node's input
 # link and a list of attributes.
 sub __createActualInputs {
 my ($input, $attribute_list) = @_;
 my $formal_input = $input->to_input();

 foreach my $attribute (@$attribute_list) {
 my $actual_input_data = {
 analysis => __getAnalysis($curr_nodeID),
 formal_input => $formal_input,
 attribute_id => $attribute->id()
 };
 my $actual_input =
 $factory->newObject("OME::Analysis::ActualInput",
 $actual_input_data);
 }
 }

 # Creates ACTUAL_OUTPUT entries in the database for a formal
 # output and a list of attributes.
 sub __createActualOutputs {
 my ($output, $attribute_list) = @_;
 my $formal_output = $output;

 foreach my $attribute (@$attribute_list) {
 my $actual_output_data = {
 analysis => __getAnalysis($curr_nodeID),
 formal_output => $formal_output,
 attribute_id => $attribute->id()
 };

80

 my $actual_output =
 $factory->newObject("OME::Analysis::ActualOutput",
 $actual_output_data);
 }
 }

 # If any of the predecessors has not finished, then this
 # node is not ready to run.
 sub __testModulePredecessors {
 my $ready = 1;
 TEST_PRED:
 foreach my $granularity ('D', 'I', 'F') {
 my $inputs = $input_links{$curr_nodeID}->{$granularity};
 foreach my $input (@$inputs) {
 my $pred_node = $input->from_node();
 if ($node_states{$pred_node->id()} < FINISHED_STATE) {
 $ready = 0;
 last TEST_PRED;
 }
 }
 }

 return $ready;
 }

 # Determines whether the current node is a per-dataset or
 # per-image module. If a module takes in any dataset inputs, or
 # outputs any dataset outputs, or if any of its immediate
 # predecessors nodes are per-dataset, then it as per-dataset.
 # Otherwise, it is per-image. This notion of dataset-dependency
 # comes in to play later when determine whether or not a module's
 # results can be reused.
 sub __determineDependence {
 if (scalar(@curr_dataset_inputs) > 0) {
 $dependence{$curr_nodeID} = 'D';
 return;
 }

 if (scalar(@curr_dataset_outputs) > 0) {
 $dependence{$curr_nodeID} = 'D';
 return;
 }

 foreach my $granularity ('D', 'I', 'F') {
 my $inputs = $input_links{$curr_nodeID}->{$granularity};
 foreach my $input (@$inputs) {
 my $pred_node = $input->from_node();

81

 if ($dependence{$pred_node->id()} eq 'D') {
 $dependence{$curr_nodeID} = 'D';
 return;
 }
 }
 }

 $dependence{$curr_nodeID} = 'I';
 }

 # The following routines are used to check to see if we need to
 # execute the current module, or if it can be reused.
 #
 # We allow results to be reused if the "input tag" of the current
 # module's state is equal to the input tag of a previous execution
 # of the same module. The input tag is a string that captures the
 # essence of a module's input. It records: whether the module was
 # run in a per-dataset manner, or a per-image manner; which
 # dataset or image (respectively) it was run against; and the
 # attribute ID's presented to the module as input.

 # This routine calculates the input tag of the current module.
 # This routine will not get called unless a module is ready to be
 # executed, which means that the results of the predecessor
 # modules are available. It is the attribute ID's of these
 # results that are encoded into the input tag.
 sub __calculateCurrentInputTag {
 my $paramString;

 if ($dependence{$curr_nodeID} eq 'D') {
 $paramString = "D " . $dataset->id() . " ";
 } else {
 $paramString = "I " . $curr_imageID . " ";
 }

 $paramString .= "d ";
 foreach my $input (@curr_dataset_inputs) {
 my $formal_input = $input->to_input();
 my $formal_output = $input->from_output();
 my $pred_node = $input->from_node();
 $paramString .= $formal_input->id() . "(";
 my $attribute_list =
 $dataset_outputs{$pred_node->id()}->{$formal_output->id()};
 if (ref($attribute_list) ne 'ARRAY') {
 $attribute_list = [$attribute_list];
 }
 foreach my $attribute (sort { $a->id() <=> $b->id() }

82

 @$attribute_list)
 {
 $paramString .= $attribute->id() . " ";
 }
 $paramString .= ") ";
 }

 $paramString .= "i ";
 foreach my $input (@curr_image_inputs) {
 my $formal_input = $input->to_input();
 my $formal_output = $input->from_output();
 my $pred_node = $input->from_node();
 $paramString .= $formal_input->id() . "(";
 my $attribute_hash =
 $image_outputs{$pred_node->id()}->{$formal_output->id()};
 my @attribute_list;

 if ($dependence{$curr_nodeID} eq 'D') {
 foreach my $imageID (keys %$attribute_hash) {
 push @attribute_list, @{$attribute_hash->{$imageID}};
 }
 } else {
 push @attribute_list, @{$attribute_hash->{$curr_imageID}};
 }

 foreach
 my $attribute (sort { $a->id() <=> $b->id() } @attribute_list)
 {
 $paramString .= $attribute->id() . " ";
 }
 $paramString .= ") ";
 }

 $paramString .= "f ";
 foreach my $input (@curr_feature_inputs) {
 my $formal_input = $input->to_input();
 my $formal_output = $input->from_output();
 my $pred_node = $input->from_node();
 $paramString .= $formal_input->id() . "(";
 my $attribute_hash =
 $feature_outputs{$pred_node->id()}->{$formal_output->id()};
 my @attribute_list;

 if ($dependence{$curr_nodeID} eq 'D') {
 foreach my $imageID (keys %$attribute_hash) {
 my $feature_hash = $attribute_hash->{$imageID};
 foreach my $featureID (keys %$feature_hash) {

83

 push @attribute_list, @{$feature_hash->{$featureID}};
 }
 }
 } else {
 my $feature_hash = $attribute_hash->{$curr_imageID};
 foreach my $featureID (keys %$feature_hash) {
 push @attribute_list, @{$feature_hash->{$featureID}};
 }
 }

 foreach
 my $attribute (sort { $a->id() <=> $b->id() } @attribute_list)
 {
 $paramString .= $attribute->id() . " ";
 }
 $paramString .= ") ";
 }

 return $paramString;
 }

 # This routine calculates the input tag of a previous analysis.
 # All of the appropriate elements of the tag can be retrieved from
 # the ANALYSES and ACTUAL_INPUTS tables.
 sub __calculatePastInputTag {
 my ($past_analysis) = @_;
 my $past_paramString;

 if ($past_analysis->dependence() eq 'D') {
 $past_paramString =
 "D " . $past_analysis->dataset()->id() . " ";
 } else {
 $past_paramString = "I " . $past_analysis->image()->id() . " ";
 }

 my @all_actuals = $past_analysis->inputs();
 my %actuals;
 foreach my $actual (@all_actuals) {
 my $formal_input = $actual->formal_input();
 push @{$actuals{$formal_input->id()}}, $actual;
 }

 foreach my $formal_inputID (keys %actuals) {
 my @sorted =
 sort { $a->attribute_id() <=> $b->attribute_id() }
 @{$actuals{$formal_inputID}};
 $actuals{$formal_inputID} = \@sorted;

84

 }

 $past_paramString .= "d ";
 foreach my $input (@curr_dataset_inputs) {
 my $formal_input = $input->to_input();
 $past_paramString .= $formal_input->id() . "(";
 my $actuals = $actuals{$formal_input->id()};

 foreach my $actual (@$actuals) {
 $past_paramString .= $actual->attribute_id() . " ";
 }
 $past_paramString .= ") ";
 }

 $past_paramString .= "i ";
 foreach my $input (@curr_image_inputs) {
 my $formal_input = $input->to_input();
 $past_paramString .= $formal_input->id() . "(";
 my $actuals = $actuals{$formal_input->id()};

 foreach my $actual (@$actuals) {
 $past_paramString .= $actual->attribute_id() . " ";
 }
 $past_paramString .= ") ";
 }

 $past_paramString .= "f ";
 foreach my $input (@curr_feature_inputs) {
 my $formal_input = $input->to_input();
 $past_paramString .= $formal_input->id() . "(";
 my $actuals = $actuals{$formal_input->id()};

 foreach my $actual (@$actuals) {
 $past_paramString .= $actual->attribute_id() . " ";
 }
 $past_paramString .= ") ";
 }

 return $past_paramString;
 }

 # This routine performs the actual reuse of results. It does not
 # create new entries in ANALYSES, ACTUAL_INPUTS, or
 # ACTUAL_OUTPUTS, since the module is not actually run again.
 # Rather, it updates the internal state of the fixed-point loop to
 # include the already-calculated results, and (will soon add) the
 # appropriate mappings to the ANALYSIS_PATH_MAP table.

85

 sub __copyPastResults {
 my ($matched_analysis) = @_;

 my @all_outputs = $matched_analysis->outputs();
 my %actuals;
 foreach my $actual_output (@all_outputs) {
 my $formal_output = $actual_output->formal_output();
 my $datatype = $formal_output->column_type()->datatype();
 my $pkg = $datatype->requireAttributePackage();
 my $attribute =
 $factory->loadObject($pkg, $actual_output->attribute_id());

 push @{$actuals{$actual_output->formal_output()->id()}},
 $attribute;
 }

 foreach my $formal_output (@curr_dataset_outputs) {
 my $attribute_list = $actuals{$formal_output->id()};

 $dataset_outputs{$curr_nodeID}->{$formal_output->id()} =
 $attribute_list;
 }

 foreach my $formal_output (@curr_image_outputs) {
 my $attribute_list = $actuals{$formal_output->id()};

 foreach my $attribute (@$attribute_list) {
 my $image = $attribute->image_id();
 push @{$image_outputs{$curr_nodeID}->{$formal_output->id()}
 ->{$image->id()}}, $attribute;
 }
 }

 foreach my $formal_output (@curr_feature_outputs) {
 my $attribute_list = $actuals{$formal_output->id()};

 foreach my $attribute (@$attribute_list) {
 my $feature = $attribute->feature();
 my $image = $feature->image();
 push @{$feature_outputs{$curr_nodeID}->{$formal_output->id()}
 ->{$image->id()}->{$feature->id()}}, $attribute;
 }
 }
 }

 # Updates the hash of ANALYSIS entries. Takes into account the
 # dataset-dependency of the current module.

86

 sub __assignAnalysis {
 my ($analysis) = @_;
 if ($dependence{$curr_nodeID} eq 'D') {
 $perdataset_analysis{$curr_nodeID} = $analysis;
 } else {
 $perimage_analysis{$curr_nodeID}->{$curr_imageID} = $analysis;
 }
 foreach my $data_path_entry (@{$data_paths{$curr_nodeID}}) {
 my $path_map = $factory->newObject(
 "OME::AnalysisPath::Map",
 {
 path => $data_path_entry->{path},
 path_order => $data_path_entry->{path_order},
 analysis => $analysis,
 analysis_execution => $analysis_execution
 }
);
 }
 }

 # This routine performs the check that determines whether results
 # can be reused, using the methods described above.
 sub __checkPastResults {
 my $paramString = __calculateCurrentInputTag();
 my $space = ($dependence{$curr_nodeID} eq 'D') ? '' : ' ';
 print STDERR "$space Param $paramString\n";

 my $match = 0;
 my $matched_analysis;
 my @past_analyses =
 OME::Analysis->search(
 program_id => $curr_node->program()->id());

 FIND_MATCH:
 foreach my $past_analysis (@past_analyses) {
 my $past_paramString = __calculatePastInputTag($past_analysis);
 print STDERR "$space Found $past_paramString\n";

 if ($past_paramString eq $paramString) {
 $match = 1;
 $matched_analysis = $past_analysis;
 last FIND_MATCH;
 }
 }

 if ($match) {
 print STDERR "$space Found reusable analysis\n";

87

 __copyPastResults($matched_analysis);
 __assignAnalysis($matched_analysis);
 }

 return $match;
 }

 # The main body of the analysis engine. Its purpose is to execute
 # a prebuilt analysis chain against a dataset, reusing results if
 # possible.
 sub executeAnalysisView {
 ($session, $analysis_view, $input_parameters, $dataset) = @_;
 $factory = $session->Factory();

 # all nodes
 @nodes = $analysis_view->nodes();

 print STDERR "Setup\n";

 print STDERR " Creating ANALYSIS_EXECUTION table entry\n";

 $analysis_execution = $factory->newObject(
 "OME::AnalysisExecution",
 {
 analysis_view => $analysis_view,
 dataset => $dataset,
 experimenter => $session->User()
 }
);

 # initialize all of the nodes
 foreach my $node (@nodes) {
 $curr_node = $node;
 $curr_nodeID = $curr_node->id();
 __initializeNode();
 }

 # Build the data paths.
 __buildDataPaths();

 $continue = 1;
 $round = 0;

 while ($continue) {
 $continue = 0;
 $round++;
 print STDERR "Round $round...\n";

88

 # Look for input_nodes that are ready to run (i.e., whose
 # predecessor nodes have been completed).
 ANALYSIS_LOOP:
 foreach my $node (@nodes) {
 $curr_node = $node;
 $curr_nodeID = $curr_node->id();

 # Go ahead and skip if we've completed this module.
 if ($node_states{$curr_nodeID} > INPUT_STATE) {
 print STDERR " "
 . $curr_node->program()->program_name()
 . " already completed\n";
 next ANALYSIS_LOOP;
 }

 if (!__testModulePredecessors()) {
 print STDERR " Skipping "
 . $curr_node->program()->program_name() . "\n";
 next ANALYSIS_LOOP;
 }

 $curr_module = $node_modules{$curr_nodeID};
 $curr_inputs = $input_links{$curr_nodeID};
 $curr_outputs = $output_links{$curr_nodeID};

 @curr_dataset_inputs =
 sort { $a->to_input()->id() <=> $b->to_input()->id() }
 @{$curr_inputs->{D}};
 @curr_image_inputs =
 sort { $a->to_input()->id() <=> $b->to_input()->id() }
 @{$curr_inputs->{I}};
 @curr_feature_inputs =
 sort { $a->to_input()->id() <=> $b->to_input()->id() }
 @{$curr_inputs->{F}};

 @curr_dataset_outputs =
 sort { $a->id() <=> $b->id() } @{$curr_outputs->{D}};
 @curr_image_outputs =
 sort { $a->id() <=> $b->id() } @{$curr_outputs->{I}};
 @curr_feature_outputs =
 sort { $a->id() <=> $b->id() } @{$curr_outputs->{F}};

 $last_node = $curr_node;

 __determineDependence();

89

 if ($dependence{$curr_nodeID} eq 'D') {
 if (__checkPastResults()) {
 print STDERR " Marking state\n";
 $node_states{$curr_nodeID} = FINISHED_STATE;
 $continue = 1;
 next ANALYSIS_LOOP;
 }
 }

 print STDERR " Executing "
 . $curr_node->program()->program_name() . " ("
 . $dependence{$curr_nodeID} . ")\n";

 # Execute away.
 if ($dependence{$curr_nodeID} eq 'D') {
 print STDERR " Creating ANALYSIS entry\n";
 my $analysis = $factory->newObject(
 "OME::Analysis",
 {
 program => $curr_node->program(),
 dependence => 'D',
 dataset => $dataset,
 image => undef,
 timestamp => 'now',
 status => 'RUNNING'
 }
);
 __assignAnalysis($analysis);
 }

 print STDERR " startDataset\n";
 $curr_module->startDataset($dataset);

 # Collect and present the dataset inputs
 my %dataset_hash;
 foreach my $input (@curr_dataset_inputs) {
 my $formal_input = $input->to_input();
 my $formal_output = $input->from_output();
 my $pred_node = $input->from_node();
 my $attribute_list =
 $dataset_outputs{$pred_node->id()}->{$formal_output->id()
 };
 if (ref($attribute_list) ne 'ARRAY') {
 $attribute_list = [$attribute_list];
 }
 __createActualInputs($input, $attribute_list);

90

 $dataset_hash{$formal_input->name()} = $attribute_list;
 }
 $curr_module->datasetInputs(\%dataset_hash);

 print STDERR " Precalculate dataset\n";
 $curr_module->precalculateDataset();

 my $image_maps = $dataset->image_links();
 IMAGE_LOOP:
 while (my $image_map = $image_maps->next()) {

 # Collect and present the image inputs
 $curr_image = $image_map->image();
 $curr_imageID = $curr_image->id();

 print STDERR " Image " . $curr_image->name() . "\n";

 if ($dependence{$curr_nodeID} eq 'I') {
 if (__checkPastResults()) {
 next IMAGE_LOOP;
 }

 print STDERR " Creating ANALYSIS entry\n";
 my $analysis = $factory->newObject(
 "OME::Analysis",
 {
 program => $curr_node->program(),
 dependence => 'I',
 dataset => undef,
 image => $curr_image,
 timestamp => 'now',
 status => 'RUNNING'
 }
);
 __assignAnalysis($analysis);
 }

 print STDERR " startImage\n";
 $curr_module->startImage($curr_image);

 my %image_hash;

 foreach my $input (@curr_image_inputs) {
 my $formal_input = $input->to_input();
 my $formal_output = $input->from_output();
 my $pred_node = $input->from_node();
 my $attribute_list =

91

 $image_outputs{$pred_node->id()}->{$formal_output->id()}
 ->{$curr_imageID};
 if (ref($attribute_list) ne 'ARRAY') {
 $attribute_list = [$attribute_list];
 }
 __createActualInputs($input, $attribute_list);

 $image_hash{$formal_input->name()} = $attribute_list;
 }

 $curr_module->imageInputs(\%image_hash);

 print STDERR " Precalculate image\n";
 $curr_module->precalculateImage();

 # Collect and present the feature inputs.

 #print STDERR " startFeature ".$feature->id()."\n";
 #$curr_module->startFeature($feature);

 my %feature_hash;

 foreach my $input (@curr_feature_inputs) {
 my $formal_input = $input->to_input();
 my $formal_output = $input->from_output();
 my $pred_node = $input->from_node();
 my $attribute_hash =
 $feature_outputs{$pred_node->id()}
 ->{$formal_output->id()}->{$curr_imageID};
 foreach my $feature_id (keys %$attribute_hash) {
 my $attribute_list = $attribute_hash->{$feature_id};

 if (ref($attribute_list) ne 'ARRAY') {
 $attribute_list = [$attribute_list];
 }
 __createActualInputs($input, $attribute_list);
 }

 $feature_hash{$formal_input->name()} = $attribute_hash;
 }

 $curr_module->featureInputs(\%feature_hash);

 print STDERR " Calculate feature\n";
 $curr_module->calculateFeature();

 # Collect and process the feature outputs

92

 my $feature_attributes =
 $curr_module->collectFeatureOutputs();

 print STDERR " Feature outputs\n";
 foreach my $output (@curr_feature_outputs) {
 my $formal_output = $output;
 my $attribute_hash =
 $feature_attributes->{$formal_output->name()};
 foreach my $feature_id (keys %$attribute_hash) {
 my $attribute_list = $attribute_hash->{$feature_id};
 if (ref($attribute_list) ne 'ARRAY') {
 $attribute_list = [$attribute_list];
 }
 __createActualOutputs($output, $attribute_list);
 }
 $feature_outputs{$curr_nodeID}->{$formal_output->id()}
 ->{$curr_imageID} = $attribute_hash;
 }

 # Collect and process the image outputs
 print STDERR " Postcalculate image\n";
 $curr_module->postcalculateImage();

 my $image_attributes = $curr_module->collectImageOutputs();

 print STDERR " Image outputs\n";
 foreach my $output (@curr_image_outputs) {
 my $formal_output = $output;
 my $attribute_list =
 $image_attributes->{$formal_output->name()};
 if (ref($attribute_list) ne 'ARRAY') {
 $attribute_list = [$attribute_list];
 }
 __createActualOutputs($output, $attribute_list);
 $image_outputs{$curr_nodeID}->{$formal_output->id()}
 ->{$curr_imageID} = $attribute_list;
 }

 $curr_module->finishImage($curr_image);
 } # foreach $curr_image

 # Collect and process the dataset outputs
 print STDERR " Postcalculate dataset\n";
 $curr_module->postcalculateDataset();

 my $dataset_attributes =

93

 $curr_module->collectDatasetOutputs();

 print STDERR " Dataset outputs\n";
 foreach my $output (@curr_dataset_outputs) {
 my $formal_output = $output;
 my $attribute_list =
 $dataset_attributes->{$formal_output->name()};
 if (ref($attribute_list) ne 'ARRAY') {
 $attribute_list = [$attribute_list];
 }
 __createActualOutputs($output, $attribute_list);
 $dataset_outputs{$curr_nodeID}->{$formal_output->id()} =
 $attribute_list;
 }

 $curr_module->finishDataset($dataset);

 # Mark this node as finished, and flag that we need
 # another fixed point iteration.

 print STDERR " Marking state\n";
 $node_states{$curr_nodeID} = FINISHED_STATE;
 $continue = 1;
 } # ANALYSIS_LOOP - foreach $curr_node
 } # while ($continue)

 $last_node->dbi_commit();
 }

}

1;

Figure 39 – OME::Tasks::AnalysisEngine module

B.2 Analysis handlers
The following Perl modules are associated with the OME analysis handlers.

B.2.1 Handler interface
This is the interface to which each analysis handler must conform.

package OME::Analysis::Handler;

94

use strict;
our $VERSION = '1.0';

use fields qw(_location _factory _program);

sub new {
 my ($proto, $location, $factory, $program) = @_;
 my $class = ref($proto) || $proto;

 my $self = {};
 $self->{_location} = $location;
 $self->{_factory} = $factory;
 $self->{_program} = $program;

 bless $self, $class;
 return $self;
}

sub startDataset {
 my ($self, $dataset) = @_;
}

sub datasetInputs {
 my ($self, $inputHash) = @_;
}

sub precalculateDataset() {
 my ($self) = @_;
}

sub startImage {
 my ($self, $image) = @_;
}

sub imageInputs {
 my ($self, $inputHash) = @_;
}

sub precalculateImage() {
 my ($self) = @_;
}

sub startFeature {
 my ($self, $feature) = @_;
}

sub featureInputs {

95

 my ($self, $inputHash) = @_;
}

sub calculateFeature {
 my ($self) = @_;
}

sub collectFeatureOutputs {
 my ($self) = @_;
 return {};
}

sub finishFeature {
 my ($self) = @_;
}

sub postcalculateImage() {
 my ($self) = @_;
}

sub collectImageOutputs {
 my ($self) = @_;
 return {};
}

sub finishImage {
 my ($self) = @_;
}

sub postcalculateDataset {
 my ($self) = @_;
}

sub collectDatasetOutputs {
 my ($self) = @_;
 return {};
}

sub finishDataset {
 my ($self) = @_;
}

1;

Figure 40 – OME::Analysis::Handler module

96

B.2.2 Perl handler
The following modules are used for analysis modules written directly in Perl.
The code for the analysis routine itself should be a subclass of the OME::
Analysis::PerlAnalysis class (Figure 41), and should use the OME::Analysis::
PerlHandler class (Figure 42) as is for its analysis handler.

package OME::Analysis::PerlAnalysis;

use strict;
our $VERSION = '1.0';

use fields qw(_factory
 _currentDataset _currentImage _currentFeature
 _datasetInputs _imageInputs _featureInputs
 _datasetOutputs _imageOutputs _featureOutputs);

sub new {
 my ($proto, $factory) = @_;
 my $class = ref($proto) || $proto;

 my $self = {};

 $self->{_factory} = $factory;

 $self->{_currentDataset} = undef;
 $self->{_datasetInputs} = undef;
 $self->{_datasetOutputs} = undef;

 $self->{_currentImage} = undef;
 $self->{_imageInputs} = undef;
 $self->{_imageOutputs} = undef;

 $self->{_currentFeature} = undef;
 $self->{_featureInputs} = undef;
 $self->{_featureOutputs} = undef;

 bless $self, $class;
 return $self;
}

sub startDataset {
 my ($self, $dataset) = @_;
 $self->{_currentDataset} = $dataset;

97

}

sub datasetInputs {
 my ($self, $inputHash) = @_;
 $self->{_datasetInputs} = $inputHash;
}

sub precalculateDataset {
 my ($self) = @_;
}

sub startImage {
 my ($self, $image) = @_;
 $self->{_currentImage} = $image;
}

sub imageInputs {
 my ($self, $inputHash) = @_;
 $self->{_imageInputs} = $inputHash;
}

sub precalculateImage {
 my ($self) = @_;
}

sub startFeature {
 my ($self, $feature) = @_;
 $self->{_currentFeature} = $feature;
}

sub featureInputs {
 my ($self, $inputHash) = @_;
 $self->{_featureInputs} = $inputHash;
}

sub calculateFeature {
 my ($self) = @_;
}

sub collectFeatureOutputs {
 my ($self) = @_;
 return $self->{_featureOutputs};
}

sub finishFeature {
 my ($self) = @_;
 $self->{_currentFeature} = undef;

98

 $self->{_featureInputs} = undef;
 $self->{_featureOutputs} = undef;
}

sub postcalculateImage {
 my ($self) = @_;
}

sub collectImageOutputs {
 my ($self) = @_;
 return $self->{_imageOutputs};
}

sub finishImage {
 my ($self) = @_;
 $self->{_currentImage} = undef;
 $self->{_imageInputs} = undef;
 $self->{_imageOutputs} = undef;
}

sub postcalculateDataset {
 my ($self) = @_;
}

sub collectDatasetOutputs {
 my ($self) = @_;
 return $self->{_datasetOutputs};
}

sub finishDataset {
 my ($self) = @_;
 $self->{_currentDataset} = undef;
 $self->{_datasetInputs} = undef;
 $self->{_datasetOutputs} = undef;
}

1;

Figure 41 – OME::Analysis::PerlAnalysis module

package OME::Analysis::PerlHandler;

use strict;
our $VERSION = '1.0';

use base qw(OME::Analysis::Handler);

99

use fields qw(_instance);

sub new {
 my ($proto, $location, $factory, $program) = @_;
 my $class = ref($proto) || $proto;

 my $self = $class->SUPER::new($location, $factory, $program);
 eval "require $location";
 $self->{_instance} = $location->new($factory);

 bless $self, $class;
 return $self;
}

sub startDataset {
 my ($self, $dataset) = @_;
 return $self->{_instance}->startDataset($dataset);
}

sub datasetInputs {
 my ($self, $inputHash) = @_;
 return $self->{_instance}->datasetInputs($inputHash);
}

sub precalculateDataset {
 my ($self) = @_;
 return $self->{_instance}->precalculateDataset();
}

sub startImage {
 my ($self, $image) = @_;
 return $self->{_instance}->startImage($image);
}

sub imageInputs {
 my ($self, $inputHash) = @_;
 return $self->{_instance}->imageInputs($inputHash);
}

sub precalculateImage {
 my ($self) = @_;
 return $self->{_instance}->precalculateImage();
}

sub startFeature {
 my ($self, $feature) = @_;

100

 return $self->{_instance}->startFeature($feature);
}

sub featureInputs {
 my ($self, $inputHash) = @_;
 return $self->{_instance}->featureInputs($inputHash);
}

sub calculateFeature {
 my ($self) = @_;
 return $self->{_instance}->calculateFeature();
}

sub collectFeatureOutputs {
 my ($self) = @_;
 return $self->{_instance}->collectFeatureOutputs();
}

sub finishFeature {
 my ($self) = @_;
 return $self->{_instance}->finishFeature();
}

sub postcalculateImage {
 my ($self) = @_;
 return $self->{_instance}->postcalculateImage();
}

sub collectImageOutputs {
 my ($self) = @_;
 return $self->{_instance}->collectImageOutputs();
}

sub finishImage {
 my ($self) = @_;
 return $self->{_instance}->finishImage();
}

sub postcalculateDataset {
 my ($self) = @_;
 return $self->{_instance}->postcalculateDataset();
}

sub collectDatasetOutputs {
 my ($self) = @_;
 return $self->{_instance}->collectDatasetOutputs();
}

101

sub finishDataset {
 my ($self) = @_;
 return $self->{_instance}->finishDataset();
}

1;

Figure 42 – OME::Analysis::PerlHandler module

B.2.3 Command-line handlers
The following classes are used to integrate existing command-line programs into
OME as analysis modules. Currently, a separate handler had to be written for
each analysis. Another solution would have been to write separate analysis
“wrappers” for each utility; these wrappers would have been defined as
subclasses of OME::Analysis::PerlAnalysis (Figure 41) rather than
OME::Analysis::Handler (Figure 40), but would otherwise have remained
basically the same.

package OME::Analysis::CLIHandler;

use strict;
our $VERSION = '1.0';

use IO::File;

use base qw(OME::Analysis::Handler);

use fields qw(_outputHandle _currentImage);

sub new {
 my ($proto, $location, $factory, $program) = @_;
 my $class = ref($proto) || $proto;

 my $self = $class->SUPER::new($location, $factory, $program);

 bless $self, $class;
 return $self;
}

sub startDataset {

102

 my ($self, $dataset) = @_;
}

sub datasetInputs {
 my ($self, $inputHash) = @_;
}

sub precalculateDataset {
 my ($self) = @_;
}

sub startImage {
 my ($self, $image) = @_;

 my $dims = $image->Dimensions();

 my $dimString = "Dims="
 . $dims->size_x() . ","
 . $dims->size_y() . ","
 . $dims->size_z() . ","
 . $dims->num_waves() . ","
 . $dims->num_times() . ","
 . $dims->bits_per_pixel() / 8;

 my $pathString = "Path=" . $image->getFullPath();

 my $output = new IO::File;
 my $location = $self->{_location};
 open $output, "$location $pathString $dimString |"
 or die "Cannot open analysis program";

 print STDERR " $location $pathString $dimString\n";

 $self->{_outputHandle} = $output;
 $self->{_currentImage} = $image;
}

sub imageInputs {
 my ($self, $inputHash) = @_;
}

sub precalculateImage {
 my ($self) = @_;
}

sub startFeature {
 my ($self, $feature) = @_;

103

}

sub featureInputs {
 my ($self, $inputHash) = @_;
}

sub calculateFeature {
 my ($self) = @_;
}

sub collectFeatureOutputs {
 my ($self) = @_;
 return {};
}

sub finishFeature {
 my ($self) = @_;
}

sub postcalculateImage {
 my ($self) = @_;
}

sub collectImageOutputs {
 my ($self) = @_;
 my $output = $self->{_outputHandle};
 my $program = $self->{_program};
 my $image = $self->{_currentImage};
 my $factory = $self->{_factory};

 my $headerString = <$output>;
 chomp $headerString;
 my @headers = split ("\t", $headerString);

 my %outputs;
 my @outputs = $program->outputs();
 foreach my $formal_output (@outputs) {

 #print STDERR " - ".$formal_output->name()."\n";
 $outputs{$formal_output->name()} = $formal_output;
 }

 my %imageOutputs;
 my @attributes;

 while (my $input = <$output>) {
 chomp $input;

104

 my @data = split ("\t", $input);
 my $count = 0;
 my %attributes;
 foreach my $datum (@data) {
 my $output_name = $headers[$count];

 my $formal_output = $outputs{$output_name};
 my $column_type = $formal_output->column_type();
 my $column_name = lc($column_type->column_name());
 my $datatype = $column_type->datatype();
 my $attribute;
 if (exists $attributes{$datatype->id()}) {
 $attribute = $attributes{$datatype->id()};
 } else {
 my $pkg = $datatype->requireAttributePackage();
 $attribute =
 $factory->newObject($pkg, {image_id => $image->id()});

 # so we can find it later
 $attributes{$datatype->id()} = $attribute;

 # so we can commit it later
 push @attributes, $attribute;
 }

 $attribute->set($column_name, $datum);
 push @{$imageOutputs{$formal_output->name()}}, $attribute;
 $count++;
 }
 }

 foreach my $attribute (@attributes) {
 $attribute->commit();
 }

 return \%imageOutputs;
}

sub finishImage {
 my ($self) = @_;
}

sub postcalculateDataset {
 my ($self) = @_;
}

sub collectDatasetOutputs {

105

 my ($self) = @_;
 return {};
}

sub finishDataset {
 my ($self) = @_;
}

1;

Figure 43 – OME::Analysis::CLIHandler module

package OME::Analysis::FindSpotsHandler;

use strict;
our $VERSION = '1.0';

use IO::File;
use OME::Analysis::CLIHandler;

use base qw(OME::Analysis::CLIHandler);

use fields qw(_options _inputHandle _outputHandle _errorHandle
 _inputFile _outputFile _errorFile _features _cmdLine);

sub new {
 my ($proto, $location, $factory, $program) = @_;
 my $class = ref($proto) || $proto;

 my $self = $class->SUPER::new($location, $factory, $program);

 $self->{_options} =
 "0 gmean4.5s 10 -db -tt -th -c 0 -i 0 -m 0 -g 0 ".
 "-ms 0 -gs 0 -mc -v -sa -per -ff";

 bless $self, $class;
 return $self;
}

sub startImage {
 my ($self, $image) = @_;

 my $path = $image->getFullPath();
 my $location = $self->{_location};
 my $options = $self->{_options};
 my $cmdLine = "$location $path $options";

106

 my ($input, $output, $error, $pid);
 my $session = $self->{_factory}->Session();
 my $inputFile =
 $session->getTemporaryFilename("findSpots", "stdin");
 my $outputFile =
 $session->getTemporaryFilename("findSpots", "stdout");
 my $errorFile =
 $session->getTemporaryFilename("findSpots", "stderr");

 $input = new IO::File;
 $output = new IO::File;
 $error = new IO::File;
 open $input, "> $inputFile";

 print STDERR " $location $path $options\n";

 $self->{_inputHandle} = $input;
 $self->{_outputHandle} = $output;
 $self->{_errorHandle} = $error;
 $self->{_inputFile} = $inputFile;
 $self->{_outputFile} = $outputFile;
 $self->{_errorFile} = $errorFile;
 $self->{_currentImage} = $image;
 $self->{_cmdLine} = $cmdLine;
}

sub imageInputs {
 my ($self, $inputHash) = @_;

 my $input = $self->{_inputHandle};

 my $image = $self->{_currentImage};
 my $dims = $image->Dimensions();
 my $dimString = "Dims="
 . $dims->size_x() . ","
 . $dims->size_y() . ","
 . $dims->size_z() . ","
 . $dims->num_waves() . ","
 . $dims->num_times();

 print $input "$dimString\nWaveStats=\n";

 my $attribute_list = $inputHash->{Wavelength};
 my %wave_stats;
 foreach my $attribute (@$attribute_list) {
 my @stats = (

107

 $attribute->wavenumber(), $attribute->wavenumber(),
 $attribute->timepoint(), $attribute->min(),
 $attribute->max(), $attribute->mean(),
 $attribute->geomean(), $attribute->sigma()
);
 my $wave_stat = join (',', @stats);
 $wave_stats{$attribute->timepoint()}->{$attribute->wavenumber()} =
 $wave_stat;

 #print STDERR " $wave_stat\n";
 #print $input "$wave_stat\n";
 }

 foreach my $time (sort { $a <=> $b } (keys %wave_stats)) {
 my $stats = $wave_stats{$time};
 foreach my $wave (sort { $a <=> $b } (keys %$stats)) {
 my $wave_stat = $stats->{$wave};
 print STDERR " $wave_stat\n";
 print $input "$wave_stat\n";
 }
 }

 close $input;

 my $cmdLine = $self->{_cmdLine};
 system("$cmdLine < "
 . $self->{_inputFile} . " > "
 . $self->{_outputFile} . " 2> "
 . $self->{_errorFile});

 open $self->{_outputHandle}, "< " . $self->{_outputFile};
 open $self->{_errorHandle}, "< " . $self->{_errorFile};

 $self->{_features} = [];
}

sub precalculateImage {
 my ($self) = @_;
}

sub startFeature {
 my ($self, $feature) = @_;
}

sub featureInputs {
 my ($self, $inputHash) = @_;
}

108

sub calculateFeature {
 my ($self) = @_;
}

sub collectFeatureOutputs {
 my ($self) = @_;
 my $factory = $self->{_factory};

 my %feature_outputs;
 my $output = $self->{_outputHandle};

 my $headers = <$output>;
 chomp $headers;
 my @headers;
 foreach my $header (split ("\t", $headers)) {
 $header =~ s/^\s+//;
 $header =~ s/\s+$//;
 push @headers, $header;
 }

 my $image = $self->{_currentImage};

 my $wavelength_rex = qr/^([cimg])\[([0-9]+)\]([XYZ])?$/;

 my $spotCount = 0;
 print STDERR " ";
 while (my $line = <$output>) {
 chomp $line;
 my @data;
 foreach my $datum (split ("\t", $line)) {
 $datum =~ s/^\s+//;
 $datum =~ s/\s+$//;
 push @data, $datum;
 }

 my $feature = $factory->newAttribute(
 'FEATURES',
 {
 image_id => $image->id(),
 name => "Spot" . $spotCount++
 }
);
 my $featureID = $feature->id();
 my $timepointData = {feature_id => $featureID};
 my $thresholdData = {feature_id => $featureID};
 my $locationData = {feature_id => $featureID};

109

 my $extentData = {feature_id => $featureID};
 my %signalData;

 my $i = 0;
 foreach my $datum (@data) {
 my $header = $headers[$i++];

 #print STDERR ".";
 $datum = undef if ($datum eq 'inf');
 if ($header eq "t") {
 $timepointData->{timepoint} = $datum;
 } elsif ($header eq "Thresh.") {
 $thresholdData->{threshold} = $datum;
 } elsif ($header eq "mean X") {
 $locationData->{x} = $datum;
 } elsif ($header eq "mean Y") {
 $locationData->{y} = $datum;
 } elsif ($header eq "mean Z") {
 $locationData->{z} = $datum;
 } elsif ($header eq "volume") {
 $extentData->{volume} = $datum;
 } elsif ($header eq "Surf. Area") {
 $extentData->{surface_area} = $datum;
 } elsif ($header eq "perimiter") {
 $extentData->{perimiter} = $datum;
 } elsif ($header eq "Form Factor") {
 $extentData->{form_factor} = $datum;
 } elsif ($header =~ /$wavelength_rex/) {
 my $c1 = $1;
 my $wavelength = $2;
 my $c2 = $3;

 #print STDERR " '$c1' '$wavelength' '$c2'";

 my $signalData;
 if (!exists $signalData{$wavelength}) {
 $signalData = {
 feature_id => $featureID,
 wavelength => $wavelength
 };
 $signalData{$wavelength} = $signalData;
 } else {
 $signalData = $signalData{$wavelength};
 }

 if (($c1 eq "c") && ($c2 eq "X")) {
 $signalData->{centroid_x} = $datum;

110

 } elsif (($c1 eq "c") && ($c2 eq "Y")) {
 $signalData->{centroid_y} = $datum;
 } elsif (($c1 eq "c") && ($c2 eq "Z")) {
 $signalData->{centroid_z} = $datum;
 } elsif ($c1 eq "i") {
 $signalData->{integral} = $datum;
 } elsif ($c1 eq "m") {
 $signalData->{mean} = $datum;
 } elsif ($c1 eq "g") {
 $signalData->{geomean} = $datum;
 }
 } else {

 #print STDERR "?";
 }
 } # foreach datum

 my $timepoint =
 $factory->newAttribute('TIMEPOINT', $timepointData);
 my $threshold =
 $factory->newAttribute('THRESHOLD', $thresholdData);
 my $location = $factory->newAttribute('LOCATION', $locationData);
 my $extent = $factory->newAttribute('EXTENT', $extentData);

 my @signals;
 foreach my $signalData (values %signalData) {
 push @signals, $factory->newAttribute('SIGNAL', $signalData);
 }

 # Save the image attribute for later
 push @{$self->{_features}}, $feature;

 # Return the feature attributes
 $feature_outputs{'Timepoint'}->{$featureID} = $timepoint;
 $feature_outputs{'Threshold'}->{$featureID} = $threshold;
 $feature_outputs{'X'}->{$featureID} = $location;
 $feature_outputs{'Y'}->{$featureID} = $location;
 $feature_outputs{'Z'}->{$featureID} = $location;
 $feature_outputs{'Volume'}->{$featureID} = $extent;
 $feature_outputs{'Perimeter'}->{$featureID} = $extent;
 $feature_outputs{'Surface area'}->{$featureID} = $extent;
 $feature_outputs{'Form factor'}->{$featureID} = $extent;
 $feature_outputs{'Wavelength'}->{$featureID} = [@signals];
 $feature_outputs{'Integral'}->{$featureID} = [@signals];
 $feature_outputs{'Centroid X'}->{$featureID} = [@signals];
 $feature_outputs{'Centroid Y'}->{$featureID} = [@signals];
 $feature_outputs{'Centroid Z'}->{$featureID} = [@signals];

111

 $feature_outputs{'Mean'}->{$featureID} = [@signals];
 $feature_outputs{'Geometric Mean'}->{$featureID} = [@signals];

 print STDERR "*$spotCount";
 }
 print STDERR "\n";
 print STDERR "*** " . $feature_outputs{'Timepoint'} . "\n";

 #print STDERR "*** ".join(',',@{$feature_outputs{'Timepoint'}})."\n";

 close $self->{_outputHandle};
 close $self->{_errorHandle};

 return \%feature_outputs;
}

sub finishFeature {
 my ($self) = @_;
}

sub postcalculateImage {
 my ($self) = @_;
}

sub collectImageOutputs {
 my ($self) = @_;
 my $image = $self->{_currentImage};
 my $factory = $self->{_factory};
 my $features = $self->{_features};

 return {Spots => $features};
}

sub finishImage {
 my ($self) = @_;
}

sub postcalculateDataset {
 my ($self) = @_;
}

sub collectDatasetOutputs {
 my ($self) = @_;
 return {};
}

sub finishDataset {

112

 my ($self) = @_;
}

1;

Figure 44 – OME::Analysis::FindSpotsHandler module

B.3 Test cases
The following Perl scripts are used to initialize the database prior to testing the
analysis engine.

#!/usr/bin/perl -w
OME/Tests/AnalysisEngine/CreateProgram.pl

use OME::Session;
use OME::SessionManager;
use OME::Program;
use OME::DataType;
use Term::ReadKey;

print "\nOME Test Case - Create programs\n";
print "-------------------------------\n";

if (scalar(@ARGV) != 0) {
 print "Usage: CreateProgram\n\n";
 exit -1;
}

print "Please login to OME:\n";

print "Username? ";
ReadMode(1);
my $username = ReadLine(0);
chomp($username);

print "Password? ";
ReadMode(2);
my $password = ReadLine(0);
chomp($password);
print "\n";
ReadMode(1);

my $manager = OME::SessionManager->new();
my $session = $manager->createSession($username, $password);

113

if (!defined $session) {
 print "That username/password does not seem to be valid.\nBye.\n\n";
 exit -1;
}

print "Great, you're in.\n\n";

my $factory = $session->Factory();
$factory->Debug(0);

print "Finding datatypes...\n";

my $xyzImageInfo = OME::DataType->findByTable('XYZ_IMAGE_INFO');
print " "
 . $xyzImageInfo->table_name() . " ("
 . $xyzImageInfo->id() . ")\n";

my $xyImageInfo = OME::DataType->findByTable('XY_IMAGE_INFO');
print " "
 . $xyImageInfo->table_name() . " ("
 . $xyImageInfo->id() . ")\n";

my $features = OME::DataType->findByTable('FEATURES');
print " " . $features->table_name() . " (" . $features->id() . ")\n";

my $timepoint = OME::DataType->findByTable('TIMEPOINT');
print " "
 . $timepoint->table_name() . " ("
 . $timepoint->id() . ")\n";

my $threshold = OME::DataType->findByTable('THRESHOLD');
print " "
 . $threshold->table_name() . " ("
 . $threshold->id() . ")\n";

my $location = OME::DataType->findByTable('LOCATION');
print " " . $location->table_name() . " (" . $location->id() . ")\n";

my $extent = OME::DataType->findByTable('EXTENT');
print " " . $extent->table_name() . " (" . $extent->id() . ")\n";

my $signal = OME::DataType->findByTable('SIGNAL');
print " " . $signal->table_name() . " (" . $signal->id() . ")\n";

print "Creating programs...\n";

114

my ($input, $output);

my $calcXyInfo = $factory->newObject(
 "OME::Program",
 {
 program_name => 'Plane statistics',
 description => 'Calculate pixel statistics for each XY plane',
 category => 'Statistics',
 module_type => 'OME::Analysis::CLIHandler',
 location => '/OME/bin/OME_Image_XY_stats'
 }
);
print " "
 . $calcXyInfo->program_name() . " ("
 . $calcXyInfo->id() . ")\n";

$output = $factory->newObject(
 "OME::Program::FormalOutput",
 {
 program => $calcXyInfo,
 name => 'Wave',
 column_type => $xyImageInfo->findColumnByName('WAVENUMBER')
 }
);
print " " . $output->name() . " (" . $output->id() . ")\n";

$output = $factory->newObject(
 "OME::Program::FormalOutput",
 {
 program => $calcXyInfo,
 name => 'Time',
 column_type => $xyImageInfo->findColumnByName('TIMEPOINT')
 }
);
print " " . $output->name() . " (" . $output->id() . ")\n";

$output = $factory->newObject(
 "OME::Program::FormalOutput",
 {
 program => $calcXyInfo,
 name => 'Z',
 column_type => $xyImageInfo->findColumnByName('ZSECTION')
 }
);
print " " . $output->name() . " (" . $output->id() . ")\n";

$output = $factory->newObject(

115

 "OME::Program::FormalOutput",
 {
 program => $calcXyInfo,
 name => 'Min',
 column_type => $xyImageInfo->findColumnByName('MIN')
 }
);
print " " . $output->name() . " (" . $output->id() . ")\n";

$output = $factory->newObject(
 "OME::Program::FormalOutput",
 {
 program => $calcXyInfo,
 name => 'Max',
 column_type => $xyImageInfo->findColumnByName('MAX')
 }
);
print " " . $output->name() . " (" . $output->id() . ")\n";

$output = $factory->newObject(
 "OME::Program::FormalOutput",
 {
 program => $calcXyInfo,
 name => 'Mean',
 column_type => $xyImageInfo->findColumnByName('MEAN')
 }
);
print " " . $output->name() . " (" . $output->id() . ")\n";

$output = $factory->newObject(
 "OME::Program::FormalOutput",
 {
 program => $calcXyInfo,
 name => 'GeoMean',
 column_type => $xyImageInfo->findColumnByName('GEOMEAN')
 }
);
print " " . $output->name() . " (" . $output->id() . ")\n";

$output = $factory->newObject(
 "OME::Program::FormalOutput",
 {
 program => $calcXyInfo,
 name => 'Sigma',
 column_type => $xyImageInfo->findColumnByName('SIGMA')
 }
);

116

print " " . $output->name() . " (" . $output->id() . ")\n";

my $calcXyzInfo = $factory->newObject(
 "OME::Program",
 {
 program_name => 'Stack statistics',
 description => 'Calculate pixel statistics for each XYZ stack',
 category => 'Statistics',
 module_type => 'OME::Analysis::CLIHandler',
 location => '/OME/bin/OME_Image_XYZ_stats'
 }
);
print " "
 . $calcXyzInfo->program_name() . " ("
 . $calcXyzInfo->id() . ")\n";

$output = $factory->newObject(
 "OME::Program::FormalOutput",
 {
 program => $calcXyzInfo,
 name => 'Wave',
 column_type => $xyzImageInfo->findColumnByName('WAVENUMBER')
 }
);
print " " . $output->name() . " (" . $output->id() . ")\n";

$output = $factory->newObject(
 "OME::Program::FormalOutput",
 {
 program => $calcXyzInfo,
 name => 'Time',
 column_type => $xyzImageInfo->findColumnByName('TIMEPOINT')
 }
);
print " " . $output->name() . " (" . $output->id() . ")\n";

$output = $factory->newObject(
 "OME::Program::FormalOutput",
 {
 program => $calcXyzInfo,
 name => 'Min',
 column_type => $xyzImageInfo->findColumnByName('MIN')
 }
);
print " " . $output->name() . " (" . $output->id() . ")\n";

$output = $factory->newObject(

117

 "OME::Program::FormalOutput",
 {
 program => $calcXyzInfo,
 name => 'Max',
 column_type => $xyzImageInfo->findColumnByName('MAX')
 }
);
print " " . $output->name() . " (" . $output->id() . ")\n";

$output = $factory->newObject(
 "OME::Program::FormalOutput",
 {
 program => $calcXyzInfo,
 name => 'Mean',
 column_type => $xyzImageInfo->findColumnByName('MEAN')
 }
);
print " " . $output->name() . " (" . $output->id() . ")\n";

$output = $factory->newObject(
 "OME::Program::FormalOutput",
 {
 program => $calcXyzInfo,
 name => 'GeoMean',
 column_type => $xyzImageInfo->findColumnByName('GEOMEAN')
 }
);
print " " . $output->name() . " (" . $output->id() . ")\n";

$output = $factory->newObject(
 "OME::Program::FormalOutput",
 {
 program => $calcXyzInfo,
 name => 'Sigma',
 column_type => $xyzImageInfo->findColumnByName('SIGMA')
 }
);
print " " . $output->name() . " (" . $output->id() . ")\n";

$output = $factory->newObject(
 "OME::Program::FormalOutput",
 {
 program => $calcXyzInfo,
 name => 'Centroid_x',
 column_type => $xyzImageInfo->findColumnByName('CENTROID_X')
 }
);

118

print " " . $output->name() . " (" . $output->id() . ")\n";

$output = $factory->newObject(
 "OME::Program::FormalOutput",
 {
 program => $calcXyzInfo,
 name => 'Centroid_y',
 column_type => $xyzImageInfo->findColumnByName('CENTROID_Y')
 }
);
print " " . $output->name() . " (" . $output->id() . ")\n";

$output = $factory->newObject(
 "OME::Program::FormalOutput",
 {
 program => $calcXyzInfo,
 name => 'Centroid_z',
 column_type => $xyzImageInfo->findColumnByName('CENTROID_Z')
 }
);
print " " . $output->name() . " (" . $output->id() . ")\n";

my $findSpots = $factory->newObject(
 "OME::Program",
 {
 program_name => 'Find spots',
 description => 'Find spots in the image',
 category => 'Segmentation',
 module_type => 'OME::Analysis::FindSpotsHandler',
 location => '/OME/bin/findSpotsOME'
 }
);
print " "
 . $findSpots->program_name() . " ("
 . $findSpots->id() . ")\n";

$input = $factory->newObject(
 "OME::Program::FormalInput",
 {
 program => $findSpots,
 name => 'Wavelength',
 column_type => $xyzImageInfo->findColumnByName('WAVENUMBER')
 }
);
print " " . $input->name() . " (" . $input->id() . ")\n";

$input = $factory->newObject(

119

 "OME::Program::FormalInput",
 {
 program => $findSpots,
 name => 'Timepoint',
 column_type => $xyzImageInfo->findColumnByName('TIMEPOINT')
 }
);
print " " . $input->name() . " (" . $input->id() . ")\n";

$input = $factory->newObject(
 "OME::Program::FormalInput",
 {
 program => $findSpots,
 name => 'Minimum',
 column_type => $xyzImageInfo->findColumnByName('MIN')
 }
);
print " " . $input->name() . " (" . $input->id() . ")\n";

$input = $factory->newObject(
 "OME::Program::FormalInput",
 {
 program => $findSpots,
 name => 'Maximum',
 column_type => $xyzImageInfo->findColumnByName('MAX')
 }
);
print " " . $input->name() . " (" . $input->id() . ")\n";

$input = $factory->newObject(
 "OME::Program::FormalInput",
 {
 program => $findSpots,
 name => 'Mean',
 column_type => $xyzImageInfo->findColumnByName('MEAN')
 }
);
print " " . $input->name() . " (" . $input->id() . ")\n";

$input = $factory->newObject(
 "OME::Program::FormalInput",
 {
 program => $findSpots,
 name => 'Geometric mean',
 column_type => $xyzImageInfo->findColumnByName('GEOMEAN')
 }
);

120

print " " . $input->name() . " (" . $input->id() . ")\n";

$input = $factory->newObject(
 "OME::Program::FormalInput",
 {
 program => $findSpots,
 name => 'Sigma',
 column_type => $xyzImageInfo->findColumnByName('SIGMA')
 }
);
print " " . $input->name() . " (" . $input->id() . ")\n";

$output = $factory->newObject(
 "OME::Program::FormalOutput",
 {
 program => $findSpots,
 name => 'Timepoint',
 column_type => $timepoint->findColumnByName('TIMEPOINT')
 }
);
print " " . $output->name() . " (" . $output->id() . ")\n";

$output = $factory->newObject(
 "OME::Program::FormalOutput",
 {
 program => $findSpots,
 name => 'Threshold',
 column_type => $threshold->findColumnByName('THRESHOLD')
 }
);
print " " . $output->name() . " (" . $output->id() . ")\n";

$output = $factory->newObject(
 "OME::Program::FormalOutput",
 {
 program => $findSpots,
 name => 'X',
 column_type => $location->findColumnByName('X')
 }
);
print " " . $output->name() . " (" . $output->id() . ")\n";

$output = $factory->newObject(
 "OME::Program::FormalOutput",
 {
 program => $findSpots,
 name => 'Y',

121

 column_type => $location->findColumnByName('Y')
 }
);
print " " . $output->name() . " (" . $output->id() . ")\n";

$output = $factory->newObject(
 "OME::Program::FormalOutput",
 {
 program => $findSpots,
 name => 'Z',
 column_type => $location->findColumnByName('Z')
 }
);
print " " . $output->name() . " (" . $output->id() . ")\n";

$output = $factory->newObject(
 "OME::Program::FormalOutput",
 {
 program => $findSpots,
 name => 'Volume',
 column_type => $extent->findColumnByName('VOLUME')
 }
);
print " " . $output->name() . " (" . $output->id() . ")\n";

$output = $factory->newObject(
 "OME::Program::FormalOutput",
 {
 program => $findSpots,
 name => 'Perimeter',
 column_type => $extent->findColumnByName('PERIMITER')
 }
);
print " " . $output->name() . " (" . $output->id() . ")\n";

$output = $factory->newObject(
 "OME::Program::FormalOutput",
 {
 program => $findSpots,
 name => 'Surface area',
 column_type => $extent->findColumnByName('SURFACE_AREA')
 }
);
print " " . $output->name() . " (" . $output->id() . ")\n";

$output = $factory->newObject(
 "OME::Program::FormalOutput",

122

 {
 program => $findSpots,
 name => 'Form factor',
 column_type => $extent->findColumnByName('FORM_FACTOR')
 }
);
print " " . $output->name() . " (" . $output->id() . ")\n";

$output = $factory->newObject(
 "OME::Program::FormalOutput",
 {
 program => $findSpots,
 name => 'Wavelength',
 column_type => $signal->findColumnByName('WAVELENGTH')
 }
);
print " " . $output->name() . " (" . $output->id() . ")\n";

$output = $factory->newObject(
 "OME::Program::FormalOutput",
 {
 program => $findSpots,
 name => 'Integral',
 column_type => $signal->findColumnByName('INTEGRAL')
 }
);
print " " . $output->name() . " (" . $output->id() . ")\n";

$output = $factory->newObject(
 "OME::Program::FormalOutput",
 {
 program => $findSpots,
 name => 'Centroid X',
 column_type => $signal->findColumnByName('CENTROID_X')
 }
);
print " " . $output->name() . " (" . $output->id() . ")\n";

$output = $factory->newObject(
 "OME::Program::FormalOutput",
 {
 program => $findSpots,
 name => 'Centroid Y',
 column_type => $signal->findColumnByName('CENTROID_Y')
 }
);
print " " . $output->name() . " (" . $output->id() . ")\n";

123

$output = $factory->newObject(
 "OME::Program::FormalOutput",
 {
 program => $findSpots,
 name => 'Centroid Z',
 column_type => $signal->findColumnByName('CENTROID_Z')
 }
);
print " " . $output->name() . " (" . $output->id() . ")\n";

$output = $factory->newObject(
 "OME::Program::FormalOutput",
 {
 program => $findSpots,
 name => 'Mean',
 column_type => $signal->findColumnByName('MEAN')
 }
);
print " " . $output->name() . " (" . $output->id() . ")\n";

$output = $factory->newObject(
 "OME::Program::FormalOutput",
 {
 program => $findSpots,
 name => 'Geometric Mean',
 column_type => $signal->findColumnByName('GEOMEAN')
 }
);
print " " . $output->name() . " (" . $output->id() . ")\n";

$output = $factory->newObject(
 "OME::Program::FormalOutput",
 {
 program => $findSpots,
 name => 'Spots',
 column_type => $features->findColumnByName('NAME')
 }
);
print " " . $output->name() . " (" . $output->id() . ")\n";

$output->dbi_commit();

1;

Figure 45 – OME::Tests::AnalysisEngine::CreateProgram script

124

#!/usr/bin/perl –w
OME/Tests/AnalysisEngine/CreateView.pl

use OME::Session;
use OME::SessionManager;
use OME::AnalysisView;
use Term::ReadKey;

print "\nOME Test Case - Create views\n";
print "----------------------------\n";

if (scalar(@ARGV) != 0) {
 print "Usage: CreateView\n\n";
 exit -1;
}

print "Please login to OME:\n";

print "Username? ";
ReadMode(1);
my $username = ReadLine(0);
chomp($username);

print "Password? ";
ReadMode(2);
my $password = ReadLine(0);
chomp($password);
print "\n";
ReadMode(1);

my $manager = OME::SessionManager->new();
my $session = $manager->createSession($username, $password);

if (!defined $session) {
 print "That username/password does not seem to be valid.\nBye.\n\n";
 exit -1;
}

print "Great, you're in.\n\n";

my $factory = $session->Factory();
$factory->Debug(0);

my ($node1, $node2, $link);

print "Finding programs...\n";

125

my $calcXyzInfo = OME::Program->findByName('Stack statistics');
print $calcXyzInfo->program_name() . " ("
 . $calcXyzInfo->id() . ")\n";

my $calcXyInfo = OME::Program->findByName('Plane statistics');
print $calcXyInfo->program_name() . " (" . $calcXyInfo->id() . ")\n";

my $findSpots = OME::Program->findByName('Find spots');
print $findSpots->program_name() . " (" . $findSpots->id() . ")\n";

print "Image import chain...\n";

my $view = $factory->newObject(
 "OME::AnalysisView",
 {
 owner => $session->User(),
 name => "Image import analyses"
 }
);
die "Bad view" if !defined $view;
print " " . $view->name() . " (" . $view->id() . ")\n";

$node1 = $factory->newObject(
 "OME::AnalysisView::Node",
 {
 analysis_view => $view,
 program => $calcXyzInfo
 }
);
print " Node 1 "
 . $node1->program()->program_name() . " ("
 . $node1->id() . ")\n";

$node1 = $factory->newObject(
 "OME::AnalysisView::Node",
 {
 analysis_view => $view,
 program => $calcXyInfo
 }
);
print " Node 2 "
 . $node1->program()->program_name() . " ("
 . $node1->id() . ")\n";

print "Find spots chain...\n";

126

my $view = $factory->newObject(
 "OME::AnalysisView",
 {
 owner => $session->User(),
 name => "Find spots"
 }
);
die "Bad view" if !defined $view;
print " " . $view->name() . " (" . $view->id() . ")\n";

$node1 = $factory->newObject(
 "OME::AnalysisView::Node",
 {
 analysis_view => $view,
 program => $calcXyzInfo
 }
);
print " Node 1 "
 . $node1->program()->program_name() . " ("
 . $node1->id() . ")\n";

$node2 = $factory->newObject(
 "OME::AnalysisView::Node",
 {
 analysis_view => $view,
 program => $findSpots
 }
);
print " Node 2 "
 . $node2->program()->program_name() . " ("
 . $node2->id() . ")\n";

$link = $factory->newObject(
 "OME::AnalysisView::Link",
 {
 analysis_view => $view,
 from_node => $node1,
 from_output => $node1->program()->findOutputByName('Wave'),
 to_node => $node2,
 to_input => $node2->program()->findInputByName('Wavelength')
 }
);
print " Link [Node 1.Wavelength]->[Node 2.Wavelength]\n";

$link = $factory->newObject(
 "OME::AnalysisView::Link",
 {

127

 analysis_view => $view,
 from_node => $node1,
 from_output => $node1->program()->findOutputByName('Time'),
 to_node => $node2,
 to_input => $node2->program()->findInputByName('Timepoint')
 }
);
print " Link [Node 1.Timepoint]->[Node 2.Timepoint]\n";

$link = $factory->newObject(
 "OME::AnalysisView::Link",
 {
 analysis_view => $view,
 from_node => $node1,
 from_output => $node1->program()->findOutputByName('Min'),
 to_node => $node2,
 to_input => $node2->program()->findInputByName('Minimum')
 }
);
print " Link [Node 1.Minimum]->[Node 2.Minimum]\n";

$link = $factory->newObject(
 "OME::AnalysisView::Link",
 {
 analysis_view => $view,
 from_node => $node1,
 from_output => $node1->program()->findOutputByName('Max'),
 to_node => $node2,
 to_input => $node2->program()->findInputByName('Maximum')
 }
);
print " Link [Node 1.Maximum]->[Node 2.Maximum]\n";

$link = $factory->newObject(
 "OME::AnalysisView::Link",
 {
 analysis_view => $view,
 from_node => $node1,
 from_output => $node1->program()->findOutputByName('Mean'),
 to_node => $node2,
 to_input => $node2->program()->findInputByName('Mean')
 }
);
print " Link [Node 1.Mean]->[Node 2.Mean]\n";

$link = $factory->newObject(
 "OME::AnalysisView::Link",

128

 {
 analysis_view => $view,
 from_node => $node1,
 from_output => $node1->program()->findOutputByName('GeoMean'),
 to_node => $node2,
 to_input => $node2->program()->findInputByName('Geometric mean')
 }
);
print " Link [Node 1.Geometric mean]->[Node 2.Geometric mean]\n";

$link = $factory->newObject(
 "OME::AnalysisView::Link",
 {
 analysis_view => $view,
 from_node => $node1,
 from_output => $node1->program()->findOutputByName('Sigma'),
 to_node => $node2,
 to_input => $node2->program()->findInputByName('Sigma')
 }
);
print " Link [Node 1.Sigma]->[Node 2.Sigma]\n";

$link->dbi_commit();

1;

Figure 46 – OME::Tests::AnalysisEngine::CreateView script

The OME::Tests::ImportTest script was created jointly by the author, Ilya
Goldberg, and Brian Hughes.

#!/usr/bin/perl -w
OME/Tests/ImportTest.pl

use OME::Image;
use OME::Dataset;
use OME::Project;
use OME::Session;
use OME::SessionManager;
use OME::Tasks::ImageTasks;
use OME::Project;
use Term::ReadKey;

print "\nOME Test Case - Image Import\n";
print "----------------------------\n";

129

if (scalar(@ARGV) == 0) {
 print "Usage: ImportTest dataset_name [file list]\n\n";
 exit -1;
}

print "Please login to OME:\n";

print "Username? ";
ReadMode(1);
my $username = ReadLine(0);
chomp($username);

print "Password? ";
ReadMode(2);
my $password = ReadLine(0);
chomp($password);
print "\n";
ReadMode(1);

my $manager = OME::SessionManager->new();
my $session = $manager->createSession($username, $password);

if (!defined $session) {
 print "That username/password does not seem to be valid.\nBye.\n\n";
 exit -1;
}

print "Great, you're in.\n\n";

my $projectName = "ImportTest2 project";
my $projectDesc =
 "This project was created by the ImportTest test case.";
my $projectUser = $session->User();
my $projectGroup;
my $status = 1;
my $age;
my $data;
my $project;
my $project_id;
my @projects;

See if this project already defined. If not, create it.

@projects = OME::Project->search(name => $projectName);
if (scalar @projects > 0) {
 $project = $projects[0]; # it exists, retrieve it from the DB

130

 $project_id = $project->ID();
 $project =
 $session->Factory()->loadObject("OME::Project", $project_id);
 $status = 0
 unless defined $project;
 $age = "old";
} else { # otherwise create it
 print STDERR "- Creating a new project...\n";
 $age = "new";
 $projectGroup = $projectUser->group()->ID();
 $data = {
 name => $projectName,
 description => $projectDesc,
 owner_id => $projectUser->ID(),
 group_id => $projectGroup
 };
 $project = $session->Factory()->newObject("OME::Project", $data);
 if (!defined $project) {
 $status = 0;
 print " failed to create new project $projectName.\n";
 } else {
 $project->writeObject();
 }
}

Die if we don't have a project object at this juncture.
die "Project undefined\n" unless defined $project;

Now, get a dataset.
The dataset name on the command line either matches an existing
unlocked dataset owned by the current user,
or is the name of a new dataset.
Either way, we must associate the dataset with the current project.

my $datasetName = shift; # from @ARGV
my $datasetIter = OME::Dataset->search3(
 name => $datasetName,
 owner_id => $projectUser->ID(),
 locked => 'false'
);
my $dataset = $project->addDataset($datasetIter->next())
 if defined $datasetIter;
$dataset = $project->newDataset($datasetName) unless defined $dataset;

die if we still don't have a dataset object.
die "Dataset undefined\n" unless defined $dataset;

131

$session->project($project);
$session->dataset($dataset);
$session->writeObject();
print "- Importing files into $age project '$projectName'... ";
OME::Tasks::ImageTasks::importFiles($session, $dataset, \@ARGV);
print "done.\n";

exit 0;

Figure 47 – OME::Tests::ImportTest script

#!/usr/bin/perl –w
OME/Tests/AnalysisEngine/ExecuteView.pl

use OME::Session;
use OME::SessionManager;
use OME::AnalysisView;
use OME::Dataset;
use OME::Tasks::AnalysisEngine;
use Term::ReadKey;

print "\nOME Test Case - Execute view\n";
print "----------------------------\n";

if (scalar(@ARGV) != 2) {
 print "Usage: ExecuteView <view id> <dataset id>\n\n";
 exit -1;
}

my $viewID = $ARGV[0];
my $datasetID = $ARGV[1];

print "Please login to OME:\n";

print "Username? ";
ReadMode(1);
my $username = ReadLine(0);
chomp($username);

print "Password? ";
ReadMode(2);
my $password = ReadLine(0);
chomp($password);
print "\n";
ReadMode(1);

132

my $manager = OME::SessionManager->new();
my $session = $manager->createSession($username, $password);

if (!defined $session) {
 print "That username/password does not seem to be valid.\nBye.\n\n";
 exit -1;
}

print "Great, you're in.\n\n";

my $factory = $session->Factory();
$factory->Debug(0);

my $view = $factory->loadObject("OME::AnalysisView", $viewID);
my $dataset = $factory->loadObject("OME::Dataset", $datasetID);

OME::Tasks::AnalysisEngine::executeAnalysisView($session, $view, {},
 $dataset);

1;

Figure 48 – OME::Tests::AnalysisEngine::ExecuteView script

