
150

Interval Parsing Grammars for File Format Parsing

JIALUN ZHANG, Pennsylvania State University, USA
GREG MORRISETT, Cornell University, USA
GANG TAN, Pennsylvania State University, USA

File formats specify how data is encoded for persistent storage. They cannot be formalized as context-free

grammars since their specifications include context-sensitive patterns such as the random access pattern and

the type-length-value pattern. We propose a new grammar mechanism called Interval Parsing Grammars

(IPGs) for file format specifications. An IPG attaches to every nonterminal/terminal an interval, which specifies

the range of input the nonterminal/terminal consumes. By connecting intervals and attributes, the context-

sensitive patterns in file formats can be well handled. In this paper, we formalize IPGs’ syntax as well as its

semantics, and its semantics naturally leads to a parser generator that generates a recursive-descent parser

from an IPG. In general, IPGs are declarative, modular, and enable termination checking. We have used IPGs

to specify a number of file formats including ZIP, ELF, GIF, PE, and part of PDF; we have also evaluated the

performance of the generated parsers.

CCS Concepts: • Software and its engineering→ Context specific languages; Parsers.

Additional Key Words and Phrases: File Formats, Context-sensitive Grammars

ACM Reference Format:
Jialun Zhang, Greg Morrisett, and Gang Tan. 2023. Interval Parsing Grammars for File Format Parsing. Proc.
ACM Program. Lang. 7, PLDI, Article 150 (June 2023), 26 pages. https://doi.org/10.1145/3591264

1 INTRODUCTION
A file format is a standard way to specify how data is encoded for persistent storage. Many file

formats have been designed, e.g., GIF for images, ELF for binary executables, ZIP for archive

files. To convert files in these formats to an in-memory form for further processing, we need

to develop parsers based on format specifications. Most file format specifications are written in

natural languages. Due to the imprecision and underspecification of natural languages, different

interpretations may lead to semantic discrepancies between different parsers for the same file

format. Such discrepancies can be exploited by attackers. For example, ZIP files that are prefixed by

random garbage can still be extracted by unzip but fail to be recognized by a parser that conforms

to the format specification [Jana and Shmatikov 2012].

Specifying file formats by formal grammars is a good first step towards the goal of eliminating the

discrepancies. A formal grammar is a precise representation of a format specification, eliminating

imprecision. Moreover, a parser can be automatically generated from a grammar, avoiding incorrect

implementations. A successful example is context-free grammars (CFGs) in specifying the syntax

of programming languages. Also, CFGs enable highly automated parser generation in parser

frameworks such as YACC and ANTLR [Parr et al. 2014].

Authors’ addresses: Jialun Zhang, Pennsylvania State University, USA, jjz5354@psu.edu; Greg Morrisett, Cornell University,

USA, jgm19@cornell.edu; Gang Tan, Pennsylvania State University, USA, gtan@psu.edu.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,

contact the owner/author(s).

© 2023 Copyright held by the owner/author(s).

2475-1421/2023/6-ART150

https://doi.org/10.1145/3591264

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 150. Publication date: June 2023.

https://doi.org/10.1145/3591264
https://doi.org/10.1145/3591264

150:2 Jialun Zhang, Greg Morrisett, and Gang Tan

However, file formats have context-sensitive patterns that cannot be described by CFGs. One

notable pattern is the random access pattern, which requires a parser to jump to an offset given by a

previously parsed number. For instance, in the ELF format, a header is at the beginning of an ELF

file and an offset is stored in the header telling the start offset of the file’s section header table. A

parser needs to first parse the header, then use that offset to find the section header table. Another

common pattern is the type-length-value pattern, which starts with a fixed-size type description and

a fixed-size length, followed by a value field that should be parsed according to the type and with

the length. These kinds of context sensitivity are essential to file formats and cannot be specified

by CFGs.

To accommodate these common patterns that go beyond CFGs, data-dependent grammars [Fisher

and Gruber 2005; Fisher et al. 2006; Jim et al. 2010; Mundkur et al. 2020; Ramananandro et al. 2019]

and data-description languages [Back 2002; Bangert and Zeldovich 2014; Hmelnov and Mikhailov

2019; Kaitai 2015] allow certain forms of dependencies in file-format specifications. However,

data-dependent grammars assume the left-to-right parsing order and are not expressive enough

for random access, which can move the parsing position backward. Data-description languages

handle random access in an imperative way, which leads to nontermination and modularity issues.

A detailed analysis of their limitations can be found in the related-work section (section 6).

To specify the syntax and parsing-related semantics of file formats while addressing the short-

comings of previous research, we propose Interval Parsing Grammars (IPGs). An IPG has a similar

syntax as a context-free grammar with attributes [Knuth 1968], but each nonterminal/terminal is

annotated with an interval, which is a pair of expressions that evaluate to integers. The interval

specifies the range of input that should be used for parsing according to the rule of the nontermi-

nal/terminal. Moreover, attributes can be used in the intervals so that we can direct the parsing

using previously parsed data. Using the random access pattern as an example, the offset in the

header can be parsed and stored in an attribute and later used in an interval for the section header

table. In general, an IPG can be used to automatically generate a recursive descent parser and each

nonterminal is a subparser with input specified by its interval. The dependence between different

parts of a file format can be expressed as the dependence between attributes and between attributes

and intervals.

To the best of our knowledge, IPGs support all syntactic and parsing-based properties in common

file formats and can reduce discrepancies between a file format specification and an implementation,

as well as discrepancies between different implementations. However, we note that there are

additional semantic properties that may be imposed by a file format. For instance, the SVG (Scalable

Vector Graphics) format requires that objects in an SVG file should not have cycles via the href
attributes of those objects [W3C 2018]. These semantic properties can be validated by a separate

pass [Kumar et al. 2023] after parsing and is out of the scope of this paper.

In general, our paper makes the following contributions:

• We propose IPGs to specify file formats. We formalize the syntax and semantics of IPGs

and implement a parser generator that generates a recursive descent parser from an IPG.

We further propose a termination checking algorithm that checks if the parsing of an IPG

terminates.

• For evaluation, we use IPGs to develop parsers for common file formats, and show that

the context-sensitive patterns in file formats can be well handled. We further compare the

performance of our parsers with hand-written parsers and parsers developed in related tools

and show that our method achieves competitive performance.

The remaining sections are organized as follows. First, section 2 introduces features of IPGs

using concrete examples. Second, section 3 formally defines the syntax and semantics of IPGs. After

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 150. Publication date: June 2023.

Interval Parsing Grammars for File Format Parsing 150:3

S → A[0, 2] B[EOI − 2, EOI]
A → "aa"[0, 2]
B → "bb"[0, 2]

Fig. 1. The first example.

introducing IPGs, we do a case study on specifying real file formats in section 4. Then we propose a

termination checking algorithm for IPGs in section 5. In section 6, we compare existing works with

IPGs and show how their problems are solved by IPGs. Finally, we evaluate IPGs in the parsing of

different file formats in section 7.

2 IPG OVERVIEW
An Interval Parsing Grammar (IPG) is similar to a Context-Free Grammar (CFG) with a few design

changes. The most important change is that intervals are assigned to nonterminals and terminal

strings to specify the ranges of input they should describe. In addition, we borrow the idea of

attributes from attribute grammars [Knuth 1968]. By using attribute values in intervals, IPGs enable

the parsing to be dependent on previously parsed data. In this section, we use some toy examples

to show the basic mechanisms of IPGs and how they specify some common patterns in file formats.

Also, using these examples, we show the differences between IPGs and CFGs, and why those

patterns cannot be described by CFGs.

The First Example. The toy example in Figure 1 shows how intervals work in IPGs. S is the start
nonterminal that receives the entire input. In the rule of S (the first line), nonterminals A and B have

assigned intervals. Term A[0, 2] means that the grammar rule of nonterminal 𝐴 should describe a

slice of the input string received by S from index 0 to index 2 (with 2 not included). Symbol EOI
is End-Of-Input, i.e., the length of the input received by the current nonterminal (the one on the

left-hand side of the rule). Therefore, B[EOI − 2, EOI] means that the rule of 𝐵 should describe

the last two characters of the input to S. The rule of A checks if the first two characters match the

terminal string "aa". The rule of B is similar. In summary, this grammar accepts any string in the

form of "aa...bb".
This example shows one difference between IPGs and CFGs. In CFGs, when there is a concatena-

tion of two nonterminals𝐴𝐵, the input described by 𝐵 starts right after where𝐴 finishes. In contrast,

IPGs specify the input range by assigning intervals to nonterminals, allowing nonterminals to

describe strings that are specific slices of the input.

Random Access Pattern. In the last example, EOI is introduced to specify a position relative to the

end of the input. However, this is often not enough in file formats. One prevalent pattern in file

formats is the random access pattern, which includes an offset somewhere in the file and directs the

parser to move the parsing position to that offset. As an example, The Executable and Linkable

Format [ELF 1995] has a fixed-size header at the beginning, which contains an offset pointing

to the section table. The section table then has an array of offsets pointing to the beginnings of

sections. Following these offsets, an ELF parser can find all the sections. This process involves

random accesses that direct the parser to jump to different parts of the input file. To handle random

accesses, IPGs adopt the idea of attributes and allow the use of attribute values in intervals.

For illustration, suppose a toy file format starts with an 8-byte header. Inside the header, there are

two 4-byte numbers that tell the starting offset and the size of some data in the file. This format can

be specified by the IPG in Figure 2. For simplicity, we omit the rules for Int and Data and assume

that Int specifies an integer and the value of the integer is stored in the attribute Int .val. The IPG

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 150. Publication date: June 2023.

150:4 Jialun Zhang, Greg Morrisett, and Gang Tan

S → H[0, 8] Data[H .offset,H .offset + H .length]
H → Int[0, 4] {offset=Int .val}

Int[4, 8] {length=Int .val}

Fig. 2. Random access pattern.

Int → Int[0, EOI − 1] Digit[EOI − 1, EOI]
{val=2 ∗ Int .val + Digit .val}

/ Digit[0, 1] {val=Digit .val}
Digit → "0"[0, 1] {val=0}

/ "1"[0, 1] {val=1}

Fig. 3. Binary number parser.

rule for S in Figure 2 uses H[0, 8] on the first 8 bytes of the input for describing the header. In the

rule for H , the first integer is stored as attribute H .offset and the second as attribute H .length. Back
to the rule of S, the information in the header is used to locate Data, which starts at H .offset and
ends at H .offset + H .length.

This example shows how to store parsing results as attributes and use attribute values in intervals.

In this way, the previously parsed data can direct the following parsing, which is context-sensitive

and beyond the ability of CFGs. Even data-dependent grammars [Jim et al. 2010] cannot express

the random access pattern because they cannot express dependencies between control (the parsing

position) and data.

Parser for a Binary Number. Figure 3 presents an IPG for describing Ints used in the last example; it

accepts a string representing a binary number and also computes the attribute Int .val as the value
of that binary number. Note that alternatives in IPGs are separated by slashes, which are biased
choices as in PEGs [Ford 2004a]. If an earlier alternative succeeds, later alternatives will not be tried;

as a result, ambiguity is eliminated. In this example, when Int receives the entire input, it tries the
first alternative. In this alternative, it recursively tries Int on the entire input except for the last

byte, indicated by the interval [0, EOI − 1]. The recursion ends when the length of the local input

is 0 and the interval computation fails since [0, EOI − 1] = [0,−1]—an invalid interval
1
. Then the

second alternative of Int is also tried and failed because the interval [0, 1] exceeds the range of

the input. In this case, the parser falls back to the previous level with the input interval [0, 1] and

tries the second alternative of Int , which accepts only one character by Digit. The attributes in
this example are used to compute the integer values; their definitions are straightforward.

The example shows how to specify a repetitive pattern by recursion in IPGs. It shares a similar

pattern as CFGs. Actually, if we remove intervals and attributes and change the biased choice to

the unbiased choice, we get a CFG defining the language (0|1)+. However, due to left recursion in

the resulting CFG, a simple recursive descent parser would not work for this CFG. But it is not the

case for the IPG, because each time Int is invoked during parsing, its given input is shorter and

the left recursion stops when the length of the input is 1. With a similar kind of reasoning, we can

statically prove the parsing termination of many IPGs.

1[0, 0] is still valid because we need it to represent empty intervals for the empty string.

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 150. Publication date: June 2023.

Interval Parsing Grammars for File Format Parsing 150:5

S → "1"[0, 1] O[1, EOI] "stop"[O.end, EOI]
O → "0"[0, 1] O[1, EOI]

/ "0"[0, 1]

Fig. 4. Example showing special attributes.

Grammar 𝐺 ::= 𝑅1 . . . 𝑅𝑛
Rule 𝑅 ::= A→ alt1/. . . /alt𝑛
Alternative alt ::= tm1 . . . tm𝑛

Term tm ::= A[𝑒𝑙 , 𝑒𝑟] | s[𝑒𝑙 , 𝑒𝑟] | {id=𝑒} | ⟨𝑒⟩
| for id=𝑒1 to 𝑒2 do A[𝑒𝑙 , 𝑒𝑟]

Expr 𝑒 ::= n | 𝑒1 bop 𝑒2 | 𝑒1?𝑒2:𝑒3 | ref
Binary Op bop ::= + | − | ∗ | / | = | > | < | ∧ | ∨
Reference ref ::= id | A.id | A(e).id | EOI | A.start | A.end

Fig. 5. Core IPG language syntax; 𝐴 and 𝐵 for nonterminals; 𝑠 for terminal strings; id for attributes.

Special Attributes. As we have shown, IPGs add an interval for each nonterminal and terminal

string. However, sometimes we want the input of a nonterminal 𝐵 starts right after where the

parsing of𝐴 ends, with the parsing of𝐴 consuming an arbitrary-length input. Such behavior can be

well captured by a CFG rule like 𝑆 → 𝐴𝐵. To allow this flexibility, we introduce a special attribute

end to emulate this CFG-like parsing behavior. Intuitively, A.end means one plus the offset of the

right-most character touched by the parsing of𝐴. For example, Figure 4 specifies a parser that feeds

𝑂 with the entire input except for the first character and the parsing of 𝑂 touches only a prefix

of the interval [1, EOI]. After input is consumed by 𝑂 , a terminal "stop" immediately follows.

Consequently, the parser accepts any string in the form of "10...0stop". In the same spirit, start
is defined as the offset of the left-most character touched by the parsing of a nonterminal. We

formally describe the computation of these two special attributes in section 3.

To summarize, with attributes and intervals, IPGs allow the user to control how the parsing

position moves and express dependencies between different parts of the input. These abilities are

required by many file formats but are out of the capability of CFGs.

3 IPG SYNTAX AND SEMANTICS
We start by formalizing the syntax and semantics of a core IPG language, before briefly discussing

other features such as auto-completion of intervals in the full IPG language.

3.1 Core Language Syntax
The syntax of the core IPG language is defined in Figure 5, where we use metasymbols 𝐴 and 𝐵 for

nonterminals, id for attribute names, and 𝑠 for terminal strings. A grammar 𝐺 consists of one or

more rules. Each rule 𝑅 has a nonterminal on the left-hand side and an ordered list of alternatives

separated by slashes (biased choice). We assume there is exactly one rule for each nonterminal.

Each alternative in a rule is a list of terms. The first three kinds of terms (nonterminals with

intervals, terminal strings with intervals, and attribute definitions) have been discussed in section 2.

Note that a terminal string can be an empty string (𝜖). In addition, ⟨𝑒⟩ represents a predicate with a

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 150. Publication date: June 2023.

150:6 Jialun Zhang, Greg Morrisett, and Gang Tan

1 𝑆 → H[0, 4] {size=4}
2 for 𝑖=0 to H .num do A[4 + size ∗ 𝑖, 4 + size ∗ (𝑖 + 1)]
3 {a0=A(0).val}
4 ⟨ 𝑎0>0 ∧ 𝑎0<10 ⟩
5 𝐻 → Int[0, 4] {num=Int .val}
6 𝐴 → Int[0, 4] {val=Int .val}

Fig. 6. An IPG example.

boolean formula 𝑒 , which fails if 𝑒 evaluates to false. An example is at Line 4 in Figure 6; it checks if

the attribute 𝑎0 falls between 0 and 10. The last kind “for id=𝑒1 to 𝑒2 do A[𝑒𝑙 , 𝑒𝑟]” is an array term,

which accepts a sequence of array elements, with each element specified by A[𝑒𝑙 , 𝑒𝑟]; expressions
𝑒𝑙 and 𝑒𝑟 may contain occurrences of loop variable id, which ranges from 𝑒1 to 𝑒2 − 1. Note that

when 𝑒2’s value is less than or equal to 𝑒1’s value, the for-loop for an array term does not run; it

imposes no constraints and accepts any string. Line 2 in Figure 6 gives an example of an array,

which repeats A for H .num times; the length of each repeat is of length size.
An expression is for expressing the computation of attribute values and intervals. An expression

can be a natural number n, a binary operation over two expressions, a ternary conditional expression
(𝑒1?𝑒2:𝑒3), or an attribute reference. An attribute reference ref is a reference to the value of an

attribute. There are six forms. When used without prefixing a nonterminal (the first case), it refers

to an attribute in the same alternative of a rule (e.g., size at line 2 in Figure 6), or a loop variable in

the current context (e.g., i at line 2 in Figure 6). The second case A.id refers to the attribute id of a

nonterminal 𝐴 in the same alternative of a rule. At line 2 in Figure 6, H .num provides an example

of this case. The third case (A(e).id) refers to the attribute of an array element, which is used at

line 3 in Figure 6 to refer to an attribute of the first element of the array. The rest three cases are

special attributes End-Of-Input (EOI), start, and end. Their usage has been shown in section 2. All

expressions in our language evaluate to integers. It would be a straightforward extension to add

more types of expressions and introduce a type system. For example, boolean attributes could be

introduced to be used as the conditions of if-then-else expressions.

3.2 Attribute Checking
IPG attribute checking ensures two properties: (1) every attribute reference refers to a properly

defined attribute, and (2) there are no circular definitions among attributes.

The first property is checked straightforwardly in two steps. In the first step, for a nonterminal

A, the attribute checker collects a set of defined attributes for A; we write def (A) for the set. This is
performed by collecting what attributes are defined in the IPG rule for A. Recall that the rule may

have multiple alternatives; def (A) is the set of attributes that are defined in all alternatives. In the

second step, the checker checks that every attribute reference in the grammar refers to a defined

attribute. Particularly, if the reference is of the form B.id or B(e).id, it ensures id ∈ def (B); if the
reference is of the form id and it appears in the rule for nonterminal A, it ensures id ∈ def (A).

For the second property of no circularity in attribute definitions, let us first inspect an example.

Suppose a rule for a nonterminal𝐴 has an alternative “B1[0, B2 .a] B2[a1, EOI] {a1=2}”. It introduces
for 𝐴 an attribute a1, used as the left interval of 𝐵2, and defines 𝐵1’s right interval as the attribute

value of a for 𝐵2; here we assume that the rule for 𝐵2 (not shown) defines an attribute a. This
flexibility of what attributes can be used in attribute and interval definitions allows patterns such

as backward parsing. However, this can lead to circular dependencies. To avoid that, attribute

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 150. Publication date: June 2023.

Interval Parsing Grammars for File Format Parsing 150:7

checking builds a dependency graph for each alternative and rejects IPGs that have an alternative

whose dependency graph is not a DAG (directed acyclic graph).

In detail, for an alternative, we define its dependency graph as 𝐺 = (𝑉 , 𝐸), where 𝑉 is the set of

terms in this alternative. When a term 𝑡1 contains a reference to an attribute of another term 𝑡2 in

the alternative, we add an edge 𝑡1 → 𝑡2 into the graph. For the previous example, the dependency

graph is𝐺 = ({𝐵1, 𝐵2, a1}, {𝐵2 → a1, 𝐵1 → 𝐵2}). Since it is a DAG, the dependencies are acceptable.
Given the dependency graph of an alternative, our parser generator further reorders terms in the

alternative by the dependency graph’s topological order. For the example, the reordered alternative

is “{a1=2} B2[a1, EOI] B1[0, B2 .a]”. In the following discussion about parsing semantics, we assume

all alternatives have already been reordered by the aforementioned procedure.

3.3 Core Language Parsing Semantics
In this section, we formalize the parsing semantics of IPGs. The semantics is similar to recursive

descent parsing for a CFG, but with a couple of important differences. First, IPGs use biased

choice, which means that alternatives in a rule are tried sequentially and the parsing stops at the

first successful alternative. Second, for terminals and nonterminals, their assigned intervals are

computed first and subparsers can inspect only the local input confined by those intervals.

For notation, we write
−→𝑚 as a sequence of𝑚-s, where𝑚 can be an arbitrary entity (e.g., terms).

We write Y as the empty sequence and overload “·” for both adding an element to a sequence (𝑚1 ·−→𝑚)

and sequence concatenation (
−→𝑚1 · −→𝑚2). When formalizing the parsing semantics of IPGs, we treat

the right-hand side of a rule as a sequence of alternatives, written as

−→
alt, and each alternative as a

sequence of terms, written as
−→tm. We also use 𝐸 for an environment that maps from attribute IDs to

values. We write {𝑖𝑑 ↦→ 𝑣} for the environment only with the map from id to 𝑣 and 𝐸 [id ↦→ 𝑣] for
the environment that adds to 𝐸 the map from id to 𝑣 .

Parsing an input string according to an IPG grammar produces either Fail or a parse tree, defined

as follows:

Parse tree Tr ::= Node(𝐴, 𝐸,−→Tr) | Array(−→Tr) | Leaf (𝑠)

Tree “Node(𝐴, 𝐸,−→Tr)” has nonterminal 𝐴 as the root and

−→
Tr as the sequence of child parse trees,

and 𝐸 is an environment that records attribute values for 𝐴’s attributes. Tree Array(−→Tr) represents
the result of parsing an array and the parse trees of array elements are

−→
Tr . Finally, Leaf (𝑠) is the

parse tree for matching a terminal string 𝑠 .

We formalize IPG parsing semantics as a big-step relation, with judgments listed in Figure 7 and

rules listed in Figure 8. The rule for “𝑠 ⊢ 𝐴 ⇓ 𝑅” looks up 𝐴’s rule in input grammar 𝐺 and then

performs parsing according to 𝐴’s alternatives
−→
alt. The rules for “𝑠, 𝐴 ⊢ −→

alt ⇓ 𝑅” implement the

biased choice semantics: it checks if parsing according to the first alternative succeeds; if so, it

succeeds with the result of the first alternative; otherwise, it tries the rest.

The rules for “𝑠, 𝐴, 𝐸,
−→
Tr ⊢ −→tm ⇓ 𝑅” are more complex because terms that appear later may use

attributes defined in earlier terms. Therefore, it is necessary to pass the current environment for 𝐴

and parse trees

−→
Tr of earlier terms as parameters. For example, the rule A-Seq1 passes the current

environment 𝐸 to the first term tm1, then passes the updated term 𝐸1 and the resulting parse trees

−→
Tr · Tr1 to the rest of the terms.

The rules for “𝑠, 𝐴, 𝐸,
−→
Tr ⊢ tm ⇓ 𝐸′, 𝑅tm” processes individual terms. In these rules, we write

𝜎 (𝐸,−→Tr, 𝑒) for the result of evaluating 𝑒 under environment 𝐸 and parse trees

−→
Tr; note 𝑒 can use

attributes in 𝐸 as well as those that appear in the environments of the root nodes of

−→
Tr . Most rules

are self explanatory and we explain only a couple next.

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 150. Publication date: June 2023.

150:8 Jialun Zhang, Greg Morrisett, and Gang Tan

𝑠 ⊢ 𝐴 ⇓ 𝑅 parsing input 𝑠 according to nonterminal 𝐴’s rule produces result 𝑅.

𝑠, 𝐴 ⊢ −→alt ⇓ 𝑅 parsing input 𝑠 according to alternatives

−→
alt produces result 𝑅, assum-

ing

−→
alt is part of 𝐴’s rule.

𝑠, 𝐴, 𝐸,
−→
Tr ⊢ −→tm ⇓ 𝑅 parsing input 𝑠 according to a sequence of terms

−→tm produces result 𝑅,

assuming
−→tm belong to an alternative of 𝐴 and can use attributes in 𝐸

and

−→
Tr .

𝑠, 𝐴, 𝐸,
−→
Tr ⊢ tm ⇓ 𝐸′, 𝑅tm similar to the last one, except for a single term and the result includes

the updated environment 𝐸′
.

Fig. 7. Judgments for IPG parsing semantics.

The rule T-Ter matches a terminal string 𝑠1 with interval [𝑒𝑙 , 𝑒𝑟]. It first evaluates 𝑒𝑙 and 𝑒𝑟
to get the interval [𝑙, 𝑟], checks if the interval falls in the range of the input, and, if it is, checks

if the input string from 𝑙 to 𝑙 + |𝑠1 | − 1 matches 𝑠1; if either of the checks fails, failure is raised.

Furthermore, since parsing by this rule touches the input from 𝑙 to 𝑙 + |𝑠1 | − 1 (or touches nothing

if 𝑠1 = 𝜖), it updates the environment’s start and end attributes (or keeps the same environment if

𝑠1 = 𝜖) with the following definition:

updStartEnd(𝐸, 𝑙, 𝑟, 𝑏) =
{

𝐸 [start ↦→𝑚𝑖𝑛(𝐸 [start], 𝑙), end ↦→𝑚𝑎𝑥 (𝐸 [end], 𝑟)], if 𝑏 holds;

𝐸, otherwise.

The rule T-NTSucc matches a nonterminal B with an interval. It is similar to T-Ter, except for a

few differences. First, the substring of input from 𝑙 to 𝑟 − 1 is parsed by the grammar rule of B.
Second, B’s start and end are adjusted by adding 𝑙 , to switch from relative offsets within s[𝑙, 𝑟]
to offsets within 𝑠 . Using Figure 4 as a example, given input "1000stop", in the first rule, after

the parsing of O[1, EOI], O.end = 3; it needs to be adjusted to add 1 to become 4. Therefore the

parsing of "stop"[𝑂.end, EOI] starts at the correct offset 4. Finally, to deal with the corner case

when the parsing of B does not touch any input, the environment is updated only if 𝐵’s end value

is not zero; this is formalized with the updStartEnd as in the T-Ter case. Rules for Array(−→Tr) are
straightforward and are left to the appendix in this paper’s Arxiv version [?].
The parsing semantics in Figure 8 is formalized as an interpreter for IPGs. Since the rules are

syntax directed according to IPG syntax, we can reformulate it as a parser generator, which is how

our IPG parser generator is implemented. Essentially, we define a generator for each syntactic

category: GenNT is the generator for nonterminals, GenAlts is the generator for a sequence

of alternatives, etc. Then the rules in Figure 8 can be converted to generator definitions. E.g.,

GenNT(𝐴) = _𝑠. GenAlts(−→alt, 𝐴, 𝑠), if 𝐴 =
−→
alt is the rule for 𝐴. This process is straightforward and

we omit the details. Furthermore, adopting the memoization idea from PEG parsing [Ford 2004a],

the resulting parser’s time complexity is 𝑂 (𝑛2) for the core IPG language, where 𝑛 is the length of

the input. The generated parser remembers the parsing result of S[𝑙, 𝑟] (i.e., a slice of input 𝑆 from 𝑙

to 𝑟) with some start nonterminal; in this way, next time when the parser tries to parse S[𝑙, 𝑟] with

the same start nonterminal, the result can be retrieved from the memoization table. As a result,

assuming the grammar size is constant, the generated parser’s time complexity is 𝑂 (𝑛2).
To further evaluate the idea of specifying intervals in parsing, we also implemented a parser

combinator library based on this idea in OCaml. The detail of this library can be found in the

appendix of the Arxiv version [?].

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 150. Publication date: June 2023.

Interval Parsing Grammars for File Format Parsing 150:9

𝑠 ⊢ 𝐴 ⇓ 𝑅

(𝐴 → −→
alt) ∈ rules(𝐺) 𝑠, 𝐴 ⊢ −→alt ⇓ 𝑅

𝑠 ⊢ 𝐴 ⇓ 𝑅
(G-NT)

𝑠, 𝐴 ⊢ −→alt ⇓ 𝑅

𝑠,𝐴, {EOI ↦→ |𝑠 |, start ↦→ |𝑠 |, end ↦→ 0}, Y ⊢ alt1 ⇓ Tr

𝑠, 𝐴 ⊢ alt1 ·
−→
alt ⇓ Tr

(R-AltSucc)

𝑠, 𝐴 ⊢ Y ⇓ Fail

(R-Emp)

𝑠, 𝐴, {EOI ↦→ |𝑠 |, start ↦→ |𝑠 |, end ↦→ 0}, Y ⊢ alt1 ⇓ Fail 𝑠, 𝐴 ⊢ −→alt ⇓ 𝑅

𝑠,𝐴 ⊢ alt1 ·
−→
alt ⇓ 𝑅

(R-AltFail)

𝑠, 𝐴, 𝐸,
−→
Tr ⊢ −→tm ⇓ 𝑅

𝑠,𝐴, 𝐸,
−→
Tr ⊢ tm1 ⇓ 𝐸1, Tr1

𝑠, 𝐴, 𝐸1,
−→
Tr · Tr1 ⊢

−→tm ⇓ 𝑅

𝑠,𝐴, 𝐸,
−→
Tr ⊢ tm1 ·

−→tm ⇓ 𝑅
(A-Seq1)

𝑠, 𝐴, 𝐸,
−→
Tr ⊢ tm1 ⇓ 𝐸1, Y

𝑠, 𝐴, 𝐸1,
−→
Tr ⊢ −→tm ⇓ 𝑅

𝑠,𝐴, 𝐸,
−→
Tr ⊢ tm1 ·

−→tm ⇓ 𝑅
(A-Seq2)

𝑠, 𝐴, 𝐸,
−→
Tr ⊢ Y ⇓ Node(𝐴, 𝐸,−→Tr)

(A-Emp)

𝑠, 𝐴, 𝐸,
−→
Tr ⊢ tm1 ⇓ 𝐸, Fail

𝑠, 𝐴, 𝐸,
−→
Tr ⊢ tm1 ·

−→tm ⇓ Fail

(A-Fail)

𝑠, 𝐴, 𝐸,
−→
Tr ⊢ tm ⇓ 𝐸′, 𝑅tm

𝜎 (𝐸,−→Tr, 𝑒𝑙) = 𝑙 𝜎 (𝐸,−→Tr, 𝑒𝑟) = 𝑟

0 ≤ 𝑙 ≤ 𝑟 ≤ |𝑠 | 𝑟 − 𝑙 ≥ |𝑠1 | 𝑠[𝑙, 𝑙 + |𝑠1 |] = 𝑠1

𝑠, 𝐴, 𝐸,
−→
Tr ⊢ 𝑠1[𝑒𝑙 , 𝑒𝑟] ⇓ updStartEnd(𝐸, 𝑙, 𝑟, 𝑠1 ≠ 𝜖), Leaf (𝑠1)

(T-Ter)

𝜎 (𝐸,−→Tr, 𝑒𝑙) = 𝑙 𝜎 (𝐸,−→Tr, 𝑒𝑟) = 𝑟 0 ≤ 𝑙 ≤ 𝑟 ≤ |𝑠 | 𝑠[𝑙, 𝑟] ⊢ 𝐵 ⇓ Node(𝐵, 𝐸𝐵,
−−→
Tr𝐵)

𝑠, 𝐴, 𝐸,
−→
Tr ⊢ B[𝑒𝑙 , 𝑒𝑟] ⇓ updStartEnd(𝐸, 𝑙 + 𝐸𝐵 [start], 𝑙 + 𝐸𝐵 [end], 𝐸𝐵 [end] ≠ 0),

Node(𝐵, 𝐸𝐵 [start ↦→ 𝑙 + 𝐸𝐵 [start], end ↦→ 𝑙 + 𝐸𝐵 [end]],
−−→
Tr𝐵)

(T-NTSucc)

𝜎 (𝐸,−→Tr, 𝑒) = 𝑣

𝑠, 𝐴, 𝐸,
−→
Tr ⊢ {id=𝑒} ⇓ 𝐸 [id ↦→ 𝑣], Y

(T-Attr)

𝜎 (𝐸,−→Tr, 𝑒) ≠ 0

𝑠, 𝐴, 𝐸,
−→
Tr ⊢ ⟨𝑒⟩ ⇓ 𝐸, Y

(T-Pred)

𝜎 (𝐸,−→Tr, 𝑒𝑙) = 𝑙 𝜎 (𝐸,−→Tr, 𝑒𝑟) = 𝑟 ¬(0 ≤ 𝑙 < 𝑟 ≤ |𝑠 |) ∨ 𝑠[𝑙, 𝑟] ⊢ 𝐵 ⇓ Fail

𝑠, 𝐴, 𝐸,
−→
Tr ⊢ B[𝑒𝑙 , 𝑒𝑟] ⇓ 𝐸, Fail

(T-NTFail)

𝜎 (𝐸,−→Tr, 𝑒𝑙) = 𝑙 𝜎 (𝐸,−→Tr, 𝑒𝑟) = 𝑟

¬(0 ≤ 𝑙 ≤ 𝑟 ≤ |𝑠 |) ∨ 𝑟 − 𝑙 < |𝑠1 |
∨ 𝑠[𝑙, 𝑙 + |𝑠1 |] ≠ 𝑠1

𝑠, 𝐴, 𝐸,
−→
Tr ⊢ s1[𝑒𝑙 , 𝑒𝑟] ⇓ 𝐸, Fail

(T-TerFail)

𝜎 (𝐸,−→Tr, 𝑒) = 0

𝑠, 𝐴, 𝐸,
−→
Tr ⊢ ⟨𝑒⟩ ⇓ 𝐸, Fail

(T-PredFail)

Fig. 8. IPG parsing semantics.

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 150. Publication date: June 2023.

150:10 Jialun Zhang, Greg Morrisett, and Gang Tan

3.4 Full IPG Language
We describe additional features we implement in the full IPG language; they are useful for describing

various file formats.

Implicit Intervals. Writing IPGs becomes tedious when we must specify intervals for every nonter-

minal and terminal string. With the special attribute end, we can simplify the writing of IPGs by

omitting some obvious intervals. We have implemented an auto-completion feature that fills out

missing intervals. For example,

S → "magic" A B[10]

can be completed as

S → "magic"[0, 5] A[5, EOI] B[A.end,A.end + 10].

For an alternative with a sequence of terms, auto completion scans from left to right and infers

the missing intervals of a term based on its last term. For a nonterminal, if both endpoints of its

interval are missing, the left endpoint is inferred to be the end of the last term if it is a nonterminal

(e.g., A.end as B’s left endpoint), or the right endpoint of the last term if it is a terminal string (e.g., 5

as A’s left endpoint). And the right endpoint is EOI (e.g., EOI as A’s right endpoint). If there is only
one expression between the parentheses, it is viewed as the length of the interval; the inference of

the left endpoint is the same as the previous case, but the right endpoint is completed as the left

endpoint plus the given length (e.g., 𝐴.end + 10). For a terminal string, since its length is known,

we need to infer only the left endpoint, which is treated the same as the nonterminal case; its right

endpoint will be the left endpoint plus the length of the string. One special case is for the left-most

term, its left endpoint is inferred as 0 if it is missing.

Local Rules. Recall that one constraint of IPGs is that an attribute reference in an alternative of a

rule can refer to only those attributes defined in the alternative. This constraint can sometimes

result in grammar rules that are not easy to read. For convenience, we introduce where clauses to

let users define local rules. As a toy example,

S → A B[A.val, EOI] C[B.val, EOI]

can be rewritten as

S → A D[0, EOI] where D → B[A.val, EOI] C[B.val, EOI].

Note that we cannot simply create another rule for D because B depends on A.val. But inside the
local rule of D defined after where, A.val is still visible. With local rules, one complicated alternative

can be written in a more readable way. Readers may refer to the ELF format in section 4 for a more

practical example.

Switch Terms. The type-length-value pattern, common in file formats, has a type description and a

length, followed by data of that type and length. As an example, the EtherType field in an Ethernet

frame tells the length of the following data (when ≤ 1500) or represents the type of the protocol in

use (when ≥ 1536). Different subparsers should be chosen depending on the type information.

To specify such a behavior, we introduce switch terms. The syntax of a switch term is

switch(𝑒1:A1[𝑒𝑙1 , 𝑒𝑟1] / . . . / 𝑒𝑛:An[𝑒𝑙𝑛 , 𝑒𝑟𝑛] / An+1[𝑒𝑙𝑛+1 , 𝑒𝑟𝑛+1]).

It has 𝑛+1 choices separated by slashes. Each of the first 𝑛 choices has a condition and a nonterminal

with an interval. The semantics is similar to a switch statement in C. The choices are executed

from left to right; if one of the conditions succeeds, then the corresponding nonterminal is used as

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 150. Publication date: June 2023.

Interval Parsing Grammars for File Format Parsing 150:11

the data description and the remaining choices are skipped. If all conditions fail, the default choice

is used. Back to the EtherType example, with a switch term, a possible implementation can be

switch(ethertype ≤ 1500:EtherType[𝑒𝑡ℎ𝑒𝑟𝑡𝑦𝑝𝑒] / ethertype ≥ 1536 : . . . / Fail[1, 0]),
which either uses ethertype as a length, or chooses different subparsers based on the value of

ethertype. The default branch must fail because of its always-invalid interval. Note that switch

terms are a syntactic sugar and can be implemented with a combination of predicates and biased

choices.

Existentials. Sometimes it is useful to refer to an attribute of a particular element in an array, while

only knowing that element satisfies some constraint. We introduce existentials ∃id .𝑒1?𝑒2:𝑒3 for
that, where id is a loop variable identifier, 𝑒1 is a condition on an array reference, and 𝑒2 and 𝑒3 are

two expressions. Operationally, this expression loops over the referred array and stops at the first

element that evaluates 𝑒1 to true. If it finds one, loop variable id is set to that element’s index and

the evaluation goes to 𝑒2, which may use id; if no element satisfying 𝑒1 is found, the evaluation

evaluates 𝑒3. For example, suppose there is an array for 𝑖=0 to 10 do Num[𝑖, 𝑖 + 1]; also Num has

an attribute val, Num(0).val = 1 and Num(1).val = 0. Then ∃ 𝑗 .Num(𝑗) = 0? 𝑗:0 evaluates to 1.

Blackbox Parsers. Another nice property provided by IPGs is modularity, which means legacy

parsers can be reused as black boxes by passing them local input buffers specified by intervals. For

example, in a GIF parser, once it determines where the compressed image data is, it can invoke an

existing decompression algorithm to decode the code by passing it the input within the interval

of the code area. By using an interval, the parser can control what can be seen by an external

parser. A concrete example of blackbox parsers will be shown in section 7, which implements a

decompressor for ZIP formats by calling decompression functions from zlib.

3.5 Relation between IPGs and CFGs
First of all, IPGs ⊈ CFGs because the language {𝑎𝑛𝑏𝑛𝑐𝑛 |𝑛 > 0} is not in CFGs but in IPGs. It can be

specified by the following grammar.

S → ⟨EOI mod 3 = 0⟩ {n=EOI/3} A[0, 𝑛] B[𝑛, 2𝑛] C[2𝑛, 3𝑛]
A → "a"[0, 1] A[1, EOI] / "a"[0, 1]
B → "b"[0, 1] B[1, EOI] / "b"[0, 1]
C → "c"[0, 1] C[1, EOI] / "c"[0, 1]

The relation between CFGs and IPGs is open because of IPGs’ use of biased choice; this is similar

to the open problem of the relationship between CFGs and PEGs. However, if we replaced biased

choice in IPGs with unbiased choice, we could prove that CFGs ⊆ IPGs. Intuitively, given a CFG,

we can perform the implicit interval completion mentioned in section 3.4 to infer intervals for it

and get an equivalent IPG.

4 CASE STUDIES
To show how IPGs can be used in practice, we present IPG specifications of some file formats in

this section. File formats generally are in two main categories: directory-based and chunk-based.

Directory-based formats resemble file systems and involve a large degree of random access. They

often have a fixed-size header at a fixed location such as the start or the end of the file. The header

contains an offset pointing to a table, which contains an array of offsets pointing to different pieces

of data. Starting from the header, the parser can collect all data following those offsets. As examples,

ELF, ZIP and OLE fall into this category. A file in a chunk-based format consists of a list of data

chunks, and each chunk has a fixed-size header telling the type and length of it; i.e., a chunk follows

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 150. Publication date: June 2023.

150:12 Jialun Zhang, Greg Morrisett, and Gang Tan

H

SH 1

. . .

SH 2 SH n

.dynamic

.data

.

rodata

.

(a)

1 ELF → H[128]
2 for 𝑖=0 to H .num do SH[H .ofs + 𝑖 ∗ H .sz,H .ofs + (𝑖 + 1) ∗ H .sz]
3 for 𝑖=1 to H .num do Sec[SH(i).ofs, SH [i] .ofs + SH [i] .sz]
4 where Sec → switch(SH [i] .type = 6:DynSec / OtherSec)
5 H → "0x7fELF" . . .

6 Int[40, 48] {ofs=Int .val} . . .

7 Int[58, 60] {sz=Int .val}
8 Int[60, 62] {num=Int .val} . . .

9 SH → . . . Int[24, 32] {ofs=Int .val}
10 Int[32, 40] {sz=Int .val} . . .

11 DynSec → for 𝑖=0 to EOI/16 do DynSecEntry[16 ∗ 𝑖, 16 ∗ (𝑖 + 1)]

(b)

Fig. 9. (a) The structure of an ELF file (arrows indicate offset pointers; H and SH are abbreviations for Header
and Section Header, respectively). (b) Snippets of an IPG for the ELF format.

the type-length-value pattern. With the type information, the parser chooses the corresponding

way to consume the following data of the specified length. After one data chunk is parsed, the

same process repeats for the following chunks until the end of the file. Typically image formats

adopt this design, including PNG, JPG and GIF.

In this section, we use ELF, GIF and PDF as examples. ELF and GIF are representatives of directory-

based and chunk-based formats, respectively. PDF is picked because it is the most complicated

format to our knowledge, which requires some unusual parser behaviors. We did not implement a

full PDF parser due to its complexity, but a functional subset to show how IPGs can support some

interesting features.

4.1 ELF
The Executable and Linkable Format [ELF 1995] is a format for executable files and object code and

is prevalent on Unix-like operating systems such as Linux and OpenBSD, and mobile operating

systems like Android. The general structure of ELF files is shown in Figure 9a. There are two views

of an ELF file: the program view and the section view. Here we focus the discussion on the section

view since the program view can be dealt with similarly.

In the section view, an ELF file starts with a fixed-size header, ends with a section header table,

and contains many sections in between. The top-level rule starting at line 1 in Figure 9b shows

these three structures. It starts with the header H , which contains the number of section headers

(H .num), the starting offset of the section header table (H .ofs) and the size of each section header

(H .sz). It ends with a section header table, containing a number of fixed-size section headers (line 4).

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 150. Publication date: June 2023.

Interval Parsing Grammars for File Format Parsing 150:13

Each section header contains a starting offset (SH(i).ofs) and the size of the corresponding section

(SH(i).sz). Finally, sections are specified according to their types, offsets, and sizes. Notice that the

switch term is used here to decide which nonterminal to use for the specific section according to

its section type in the section header.

The detail of the ELF header H is shown starting at line 5 of Figure 9b, which is similar to a C

struct, containing a magic number and a list of integer fields. The section header SH is specified in

the same way, as shown starting at line 11 of Figure 9b.

For sections, the ELF format has some pre-defined section types. For simplicity, we show only

one of them: the dynamic section at line 4 of Figure 9b. If the type of a section (SH(i).type) is 6, it is
parsed with DynSec; otherwise, it is parsed by OtherSec, which accepts any input as raw bytes. For

a single dynamic section, DynSec is a list of DynSecEntry as shown at line 15, which is a fixed-size

structure and has a similar pattern to SH . We omit its detail.

To summarize, the ELF format involves a large degree of random access. Its parser needs to jump

from the header to the section header table, then from the section headers inside the table to the

corresponding sections. As we have shown, such behaviors can be well captured by IPGs using

intervals, attributes, and arrays.

4.2 GIF
The Graphics Interchange Format (GIF) is widely used to store bitmap images because of its

animation support. We use GIF as an example to show how to use IPGs to specify chunk-based

formats. To save space, we do not show the full specification but a subset; the rest is similar.

Top-level Rule. GIF starts with a string telling its version to be "GIF89a" or "GIF97a", followed by a

block called the Logical Screen Descriptor (LSD), which contains global information including the

global color table. After LSD, there is a series of blocks of different types. The number of blocks is

unknown until all of them are parsed. Finally, a magic number marks the end of the file. Therefore,

the global structure of GIF can be described as follows:

GIF → Header[6] LSD Blocks Trailer

Logical Screen Descriptor. The LSD contains some fixed-size numbers at the beginning and a color

table optionally after them. To simplify the presentation, we show only the flag that indicates

the existence of a global color table. If the flag is set, the switch term accepts a global color table;

otherwise, the empty string is expected.

LSD → num[1]
{flag=num.val ≫ 8}
{size=3 ∗ (2 ≪ (𝑓 𝑙𝑎𝑔&7))}
switch(flag = 1:GlobalColorTable[size] / Empty[0, 1])

Block List. The block list is defined recursively by the following rule.

𝐵𝑙𝑜𝑐𝑘𝑠 → Block Blocks / Block

The first alternative accepts a Block with other Blocks that start right after the previous one. The
recursion ends when it reaches the end of the file, where Block would fail, leading to the failure

of both alternatives. Then the parser backtracks to the last Blocks and tries its second alternative,

which succeeds and ends the recursion. Similar specifications occur for other chunk-based formats

such as PNG and JPEG. The IPGs of different types of blocks are similar to LSD; we omit their

discussion.

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 150. Publication date: June 2023.

150:14 Jialun Zhang, Greg Morrisett, and Gang Tan

4.3 PDF
PDF is a more complicated format. Our IPG grammar for PDF does not support full PDF parsing

but focuses on how some interesting features in PDF are supported. As a result, the parser gen-

erated from our IPG PDF grammar can parse simple PDF files. Two major features of PDF are

not implemented: incremental updates and PDF linearization; we believe that they can also be

implemented in the IPG framework since they use variants of the random access pattern. There are

also semantic properties in the PDF specification that go beyond syntax (e.g., the PDF page tree

inheritance property [Adobe 2008]), which cannot be captured by IPGs.

In general, a PDF file contains many PDF objects and an offset table that lists pointers to those

PDF objects. The parser of a PDF file starts at the end of the file to get an offset number, which is

the starting offset of the offset table. Then following the offsets in the table, the parser can reach all

PDF objects.

Backward Parsing. PDF has two special parsing patterns. The first one is backward parsing. To

parse the offset number at the end of a PDF file, the parser needs to scan backward from the end of

the file because the length of the offset is unknown. That is, only where the offset ends are known

but not where it starts. One can achieve a backward version of Num by the following IPG, which

shows our grammar mechanism’s flexibility.

bNum → bNum[EOI − 1] Digit[1]
{v=bNum.v ∗ 10 + Digit .v}

/ Digit[EOI − 1, EOI] {v=Digit .v}
Digit → "0" {v=0} / "1" {v=1} . . . / "9" {v=9}

Two-pass Parsing. The second special pattern is two-pass parsing. Simply speaking, sometimes the

length of a PDF object is unknown and stored in another object’s header. Therefore, the parser

needs to first scan all object headers to get length fields, and then parse all objects again with all

lengths known. This pattern can be specified in IPGs because intervals can overlap with each other

to let the parser parse the same area more than once.

S → H[8]
for 𝑖=0 to H .num do SH[H .ofs + 8 ∗ 𝑖,H .ofs + 8 ∗ (𝑖 + 1)]
for 𝑖=0 to H .num do OH[SH(i).ofs, SH(i).ofs + 8]
for 𝑖=0 to H .num do Obj[SH(i).ofs, SH(i).ofs + ∃ 𝑗 .OH(j).link = 𝑖?OH(j).len: − 1]

In this example, the parser first gets the starting offsets of all objects as SH(i).ofs and parses

fixed-size object header OH . Then in the interval of Obj, we use an existential to find the object

header OH(j) that satisfies OH(j).link = 𝑖 , which stores the length of Obj(i) as OH(j).len. Finally,
the parser can complete the parsing of Obj after knowing their lengths. This example shows that

IPGs allow the parser to solve this kind of data dependency across objects with multiple-pass

parsing.

5 TERMINATION CHECKING
One advantage of using intervals in our design is that it enables termination checking, which

would be difficult in a design where the users were allowed to change the current parsing position

arbitrarily. According to IPG parsing semantics, if an IPG parser does not terminate, intuitively

there must be a nonterminal whose rule can recursively generate itself; additionally, the intervals

must be nondecreasing alongside the generation process. For example,

A → B[0, EOI] / s[0, 1];B → A[0, EOI] / s[0, 1]
obviously does not terminate since the parser iterates between A and B with the same interval.

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 150. Publication date: June 2023.

Interval Parsing Grammars for File Format Parsing 150:15

Based on this intuition, we design a static termination checking algorithm. If the input IPG con-

tains blackbox parsers, we assume that those blackbox parsers always terminate; their termination

checking is delegated to programmers. Then the basic algorithm checks if intervals decrease on

all possible paths (with a slight extension, discussed later, to make it less conservative). At a high

level, the basic algorithm takes an IPG and conducts the following steps: (1) build a nonterminal

dependency graph, (2) enumerate all elementary cycles (defined below) in the graph, and (3) perform

symbolic checking on each elementary cycle to ensure termination when IPG parsing follows the

cycle of nonterminals during parsing. We next explain the details of these steps.

First, for an input IPG, the algorithm builds a nonterminal dependency graph. It is a directed

graph (𝑉 , 𝐸), where 𝑉 is the set of nonterminals in the grammar and 𝐸 contains an edge from A to

B labeled with symbolic intervals [𝑒𝑙 , 𝑒𝑟], if B[𝑒𝑙 , 𝑒𝑟] appears in the rule of 𝐴. Note that there may

be multiple edges between two nonterminals.

Second, the algorithm enumerates all elementary cycles in the nonterminal dependency graph.

An elementary cycle is of the form 𝐴0

(𝑒𝑙
0
,𝑒𝑟

0
)

−−−−−−→ 𝐴1

(𝑒𝑙
1
,𝑒𝑟

1
)

−−−−−−→ ...
(𝑒𝑙𝑛−1 ,𝑒𝑟𝑛−1)−−−−−−−−−−→ 𝐴𝑛

(𝑒𝑙𝑛 ,𝑒𝑟𝑛)−−−−−−−→ 𝐴0, where

𝐴0 ≠ 𝐴1 ≠ ... ≠ 𝐴𝑛 . All elementary cycles can be enumerated via depth-first search, or through a

more efficient search algorithm [Johnson 1975].

Finally, for each elementary cycle of the above form, the algorithm invokes an SMT solver (we

use Z3 [De Moura and Bjørner 2008]) to check if intervals on the cycle always decrease. Note that

intervals larger than [0, 𝐸𝑂𝐼] such as [0, 𝐸𝑂𝐼 +1] are invalid and make the parser stop immediately.

Therefore, a non-decreasing cycle must keep looping on the same interval [0, 𝐸𝑂𝐼]. As a result, we
need to check if the following formula is satisfiable

(𝑒𝑙0 = 0) ∧ (𝑒𝑟0 = EOI) ∧ . . . ∧ (𝑒𝑙𝑛 = 0) ∧ (𝑒𝑟𝑛 = EOI).
If it is unsatisfiable, the intervals decrease when IPG parsing follows the nonterminals in the cycle

and the cycle passes the test. If every elementary cycle passes this test, the termination checking

algorithm deems that IPG parsing according to the input grammar always terminates; otherwise, it

thinks IPG parsing may not terminate. We prove the following theorem and leave its proof to the

appendix in the Arxiv version [?].

Theorem 5.1. If static termination checking succeeds for an IPG with a start nonterminal 𝐴0, for
any input string 𝑠 , parsing with “𝑠 ⊢ 𝐴0 ⇓ 𝑅” terminates with some result 𝑅.

The basic termination checking algorithm is conservative. We describe a slight extension for the

special end attribute. Recall that in the GIF format we have a rule

𝐵𝑙𝑜𝑐𝑘𝑠 → Block[0, EOI] Blocks[Block.end, EOI].

If Block.end is treated as a normal attribute, then this rule cannot pass the termination checking

because Block.end can be 0. In our extended termination checking, if the rule of a nonterminal 𝐴

consumes at least one terminal (which can be checked by a syntactic check), we add a conjunctive

clause A.end > 0 to the formula sent to the SMT solver. This is the case for Block.end in the above

example, which ensures the termination of interval parsing for GIF.

6 RELATEDWORK
In this section, we first discuss the origins of some of the IPG’s ideas, then compare existing efforts

on specifying data dependence and parsing file formats with the IPG.

6.1 Formal Grammars
Generating parsers from declarative grammars has been researched for decades and the most

widely-used grammar is Context-Free Grammars (CFGs). Some techniques focus on accepting

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 150. Publication date: June 2023.

150:16 Jialun Zhang, Greg Morrisett, and Gang Tan

FAILURE: We can't go back to parse secs!
simplified_elf = { o=num } { offset=string2int(o) } skip(offset) sec_hdrs secs
skip(n) = ([n > 0] CHAR8 {n = n - 1})* [n = 0]
secs = ...
sec_hdrs = ...
num = digit digit*
digit = 0 | 1

Fig. 10. Attempt to use YAKKER to specify ELF.

any CFGs, including Earley parsing, GLL, and GLR, among others. There are also techniques that

restrict CFGs in various ways to cope with issues such as ambiguity, including LL(k), LL(*), LR(k),

SLR, and LALR [Aho et al. 1986]. However, CFGs cannot capture dependencies required in file

format specifications, such as the random access pattern and the type-length-value pattern.

Main design choices of our IPG framework include recursive descent parsing, a biased-choice

operator, attributes, and intervals. We next briefly relate these design choices to prior work. First, we

note that traditional recursive descent parsing does not allow left recursive grammars. In contrast,

our IPGs allow left recursion as long as there are no cycles with non-decreasing intervals (see

section 5 about termination checking). Second, our IPGs rely on a biased-choice operator to resolve

ambiguity, similar to Parsing-Expression Grammars (PEGs [Ford 2004b]). PEGs have difficulty

in specifying file formats, same as CFGs. PEGs can specify the reverse length-value pattern in a

complicated way [Lucas et al. 2021], but whether they can specify the length-value pattern remains

unknown, let alone the random access pattern.

Third, IPGs rely on attributes for propagating dependencies. Attribute grammars were originally

proposed by Knuth [1968] for modeling programming language semantics. An attribute grammar

specifies how attributes are computed for terminals/nonterminals based on attributes of neighboring

nodes in a parse tree, so that information can flow across the parse tree. Attributes provide a

mechanism for context sensitivity in a CFG. IPGs support synthesized attributes; the value of a
synthesized attribute of a node in a parse tree is computed from the values of the attributes of

the node’s children in the tree (i.e, through bottom-up propagation). Attributes in conventional

attribute grammars do not affect the parsing process as attributes can in theory be computed after

a parse tree is constructed. By using attributes in intervals, our IPGs’ attributes can directly affect

the parsing process, which is required by many file formats.

6.2 Comparison with Other Data-Description Languages
Data-dependent grammars can capture dependencies in input data. For example, PADS [Fisher and

Gruber 2005; Fisher et al. 2006] is a dependently typed data-description language that allows later

parsing to depend on values produced earlier. Yakker [Jim et al. 2010] formalized the translation of

data-dependent grammars to data-dependent automata, with an Earley-style parsing algorithm.

Some format description languages like Parsley [Mundkur et al. 2020] and EverParse [Ramananan-

dro et al. 2019] allow limited forms of data dependencies (e.g., the type-length-value pattern).

Finally, attribute grammars by Underwood [2012] for binary file formats use attributes in predicates

to indicate the number of repetitions, similar to Yakker’s dependent fields.

However, data-dependent grammars cannot fully capture patterns in file formats. They are

fundamentally limited by their assumption of the left-to-right parsing order. To be specific, consider

the attempt of using Yakker [Jim et al. 2010] to specify a simplified ELF format as shown in Figure 10.

The first line is the top-level rule that first parses a 0-1 string o and converts it to a number offset.

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 150. Publication date: June 2023.

Interval Parsing Grammars for File Format Parsing 150:17

Then skip(offset) is used to skip that length of the input, followed by sec_hdrs, whose detail is
omitted. However, there is no way to specify secs because that part of the input has already been

skipped and the parsing in Yakker cannot go backward. Another example is the backward parsing

in the PDF format in section 4, which is also out of the ability of data-dependent grammars.

Another line of work is the declarative data formats tools such as Kaitai Struct [Kaitai 2015],

Nail [Bangert and Zeldovich 2014], DataScript [Back 2002] and FlexT [Hmelnov and Mikhailov

2019], designed to describe binary formats. To accommodate the random access pattern, they

provide labels for each structure to indicate its starting offset in the file. This is in spirit similar to

the use of a seek operator, which allows the parser to move the parsing position to an arbitrary

user-specified position.

seq:
- id: name
type: subparser

types:
subparser:
seq:
- id: offset
type: u1

instances:
jump:
io: _root._io
pos: offset
type: subparser

(a) Seeking in Kaitai Struct.

S → num[0, 1] S[num.val, EOI]
num → {v=𝑏𝑡𝑜𝑖 [0, EOI]}

(b) An IPG equivalent to Figure 11a.

seq:
- id: name

type: epsilon
repeat: eos

types:
epsilon: {}

(c) Repeating epsilon in Kaitai Struct.

S → ""[0, 0] S[0, EOI]

(d) Repeating epsilon in IPGs.

Fig. 11. Nontermination examples in Kaitai Struct and their counterparts in IPGs.

Although the seek operator enhances expressiveness, it falls short in other aspects because of

its imperative nature (the seek operator is similar to a goto in a program). We use Kaitai Struct as

an example. First, it would be difficult to check termination if the parsing position can be moved

arbitrarily through a seek operator. The Kaitai Struct snippet in Figure 11a generates a parser that

calls the subparser, which is defined to consume an unsigned 1-byte integer u1with the field name

offset. And there is another construct called jump in the definition of subparser. It redirects the
current input stream to the global input stream by io: _root._io, then moves the parsing pointer

to offset, and finally calls subparser again. If the given input is "0", then the generated parser

will keep consuming the first byte then moving back to it until the stack overflows. For comparison,

we list the equivalent IPG in Figure 11b. where btoi is the specialized function for integer parsing

as explained in section 7. It is easy to see its nontermination since num.val can be 0.

Another nontermination example is in Figure 11c, which specifies a parser that repeats the
subparser epsilon until the eos (end of the stream). However, the subparser epsilon consumes

nothing ({}); so it keeps parsing an empty string until running out of memory. On the contrary,

using intervals as the IPG shown in Figure 11d, one can immediately tell its nontermination since

[0, EOI] is always the same interval.

Furthermore, the seek operator breaks modularity and therefore reduces the readability of

specification. Take ELF in section 4 as an example. To achieve random accessing from an ELF header

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 150. Publication date: June 2023.

150:18 Jialun Zhang, Greg Morrisett, and Gang Tan

to its sections, Kaitai uses the jump pattern in Figure 11a, It essentially uses gotos, which breaks

modularity and makes it hard to reason about the specification. Instead, the IPG encapsulates each

component in its own rule while expressing their dependency in the form of attribute referencing

between different nonterminals in the same alternative.

We believe that IPGs reduce programmers’ cognitive workload when reading and writing gram-

mars, in comparison with imperative-style tools such as Kaitai. For reading, since an IPG expresses

a tree structure where dependencies occur only between siblings, it enables readers to understand

the whole grammar in a top-down fashion. In contrast, in Kaitai it is often the case that readers

need to read through the whole specification because of its imperative nature. The reasoning

process during reading is like following imperative instructions step by step in mind; before going

through the entire process it is difficult to understand individual components. For writing, the

experience of writing IPGs (functional style) and Kaitai specifications (imperative style) varies

from person to person. However, when converting an informal specification into a formal one, the

programmer typically goes through the process by trial and error, which means that he/she needs

to read through all that has been written to check if it matches the informal specification. In this

case, we think the advantage of IPGs being easier to read would be beneficial.

7 IMPLEMENTATION AND EVALUATION
We implemented in OCaml an IPG parser generator (publicly available at [Zhang et al. 2023]),

which generates C++ recursive descent parsers in a standard way [Aho et al. 1986]. Every nonter-

minal is translated to a C++ function, which checks terminal strings and calls functions for other

nonterminals according to its rule. We specialized the parser for integers as a special function btoi
to replace the inefficient Int implementation that we have shown in previous examples, since it is

frequently called in practice.

We already compared IPGs with other tools in terms of expressiveness in section 4 and section 6.

For additional comparison in terms of the specification size and the performance of the generated

parsers, we compared IPGs with Kaitai Struct [Kaitai 2015] and Nail [Bangert and Zeldovich 2014].

Kaitai Struct is a popular tool for parsing file formats and has been used to parse over 150 formats.

Nail mainly focuses on network packet formats and generates efficient parsers. We compared IPGs

against Nail only on network packet formats since Nail does not support general file formats. The

parsers generated by Kaitai Struct and Nail are in C++ and C, respectively. We do not include other

data description languages such as PADS and P4 during comparison since our work focuses on file

format parsing, which is generally not supported by these tools as we have shown in section 6.

Furthermore, we examined the effectiveness of implicit intervals by checking how many interval

annotations can be inferred and omitted.

During evaluation, we used IPGs to specify a number of popular file formats (ZIP, GIF, PE
1
,

ELF, and part of PDF) and network packet formats (IPv4+UDP and DNS). Notice that we specified

only the syntax and the parsing-related semantics of these formats but not other semantics like

file validation. For example, checksums are commonly used in network packet formats for data

integrity. Although they can be specified in IPGs through predicates, we do not include them in

the specifications of network packet formats because they do not affect the parsing process and

can be checked through a separate validation pass. The IPG grammars of all these formats passed

termination checking, with less than 20ms for termination checking because these grammars had

no more than five elementary cycles.

Specification Sizes. We show lines of code for formats under evaluation by Kaitai Struct and IPGs

in Table 1. While this metric is not perfect for evaluating programmer effort, to the best of our

1
PE stands for Portable Executable, the standard binary format on Windows.

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 150. Publication date: June 2023.

Interval Parsing Grammars for File Format Parsing 150:19

Table 1. Lines of format specifications.

ZIP GIF PE ELF PDF IPv4+UDP DNS

IPG 102 61 109 96 108 22 34

Kaitai 256 163 223 244 N/A 69 105

Nail N/A N/A N/A N/A N/A 26+29 39+60

Table 2. Number of Intervals and Implicit Intervals in IPG Specifications.

ZIP GIF PE ELF PDF IPv4+UDP DNS

Intervals 87 55 97 82 241 17 28

Implicit Intervals 14+55 20+26 4+81 5+48 116+83 1+14 4+14

knowledge, there are no alternative low-cost metrics. In general, having fewer lines of code at least

means that the specification is more compact.

Nail has only limited features and relies on an extension written in C to support patterns like the

type-length-value pattern. So we show Nail’s line of code in the form of 𝑎 +𝑏, where 𝑎 is the line of

code in Nail and 𝑏 is the line of code in C. Further, we compared with Nail only on network packet

formats since it would require a large amount of hand-written C code to support complicated file

formats, which deviates from our intention of this comparison. Finally, Kaitai Struct did not come

with a PDF specification; so we did not compare with it on the PDF format.

Kaitai Struct has more lines of specifications than IPGs mainly for two reasons: (1) A Kaitai Struct

specification is similar to the declaration of C structs; when a format has the random access pattern

or recursion such as labels in DNS packets, Kaitai Struct needs lengthy imperative annotations like

the example in Figure 11a; (2) Kaitai Struct uses line breaks to separate fields (similar to Python); so

the total number of lines becomes larger.

We use the ZIP decompressor as a concrete example. Linux’s unzip implementation has its main

routines in a file that has 1,600 lines of C code, which parses the metadata and calls decompression

methods in other files. By using IPGs, we achieved the same functionality in 102 lines of IPG code,

calling a blackbox parser that calls zlib for decompression in about 70 lines of C code as mentioned

in section 3.4.

Effectiveness of Implicit Intervals. We show the effectiveness of implicit intervals in Table 2. In the

first line, we show the total number of intervals used in an IPG grammar; the second line shows

how many intervals are eliminated by implicit intervals in the form of 𝑎 + 𝑏, where 𝑎 is the number

of intervals that are fully eliminated, and 𝑏 is the number of intervals that include only a length.

Overall, 27.0% of intervals can be fully eliminated and 52.9% of intervals need only the length

specification. This shows implicit intervals’ effectiveness in reducing developer burdens.

In practice, we find that implicit intervals are mainly useful in two cases. The first case is the

CFG-like behavior where we have a sequence of nonterminals or terminals that appear one after

another. With implicit intervals, we do not need to write end repeatedly. For the second case, many

formats start with magic numbers, which are terminal strings at the beginning of alternatives.

Their intervals can be inferred by auto completion.

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 150. Publication date: June 2023.

150:20 Jialun Zhang, Greg Morrisett, and Gang Tan

(a) unzip (b) parsing time of unzip

(c) readelf -h -S –dyn-syms (d) parsing time of readelf

Fig. 12. Performance comparison with hand-written parsers.

(a) ZIP (b) GIF (c) PE

(d) ELF (e) DNS (f) IPv4+UDP

Fig. 13. Parsing Time for Different Formats.

Performance. To evaluate the performance of generated parsers against handwritten parsers, we

modified two open-source Linux utilities, readelf and unzip, by replacing their parsing compo-

nents with parsers generated from our IPG grammars. The end-to-end running time and parsing

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 150. Publication date: June 2023.

Interval Parsing Grammars for File Format Parsing 150:21

(a) DNS (b) IPv4+UDP

Fig. 14. Heap Memory Consumption for Packet Parsing

time results are in Figure 12. In the unzip case, the end-to-end time includes time spent on parsing

the file, decompression and writing files. In the readelf case, it includes parsing the file, validat-
ing data, and printing results. To isolate the parsing time of readelf and unzip, we manually

identified the components that belong to the parsing, measured their runtime times, and summed

them up. As handwritten tools such as readelf and unzip tightly mix parsing and the following

processing steps, our isolation of parsing time might be an underapproximation. The results show

that the hand-written parsers are much faster but using IPGs does not downgrade the end-to-end

performance because the parsing time is a small part of these two applications. The parsing time

performance gap might be due to the fact that the hand-written parsers directly map file data to C

struct fields, allowing them to benefit from sequential disk I/O. We leave this optimization for IPG

parsers to future work.

We also evaluated the performance of parsers generated from IPGs with parsers generated from

Kaitai Struct. We developed parsers for ELF, PE, ZIP, and GIF through parser generation via IPGs

and Kaitai Struct specifications. For IPv4+UDP and DNS, we also included parser generation via

Nail. We evaluated all parsers on various sizes of sample files (in the ZIP case, different numbers of

compressed files). For PE and ELF, samples are executable files for real applications on Windows

and Linux respectively. GIF samples are pictures collected from the Internet. ZIP samples archive

different numbers of copies of the same file. IPv4+UDP and DNS samples are real network packets

captured by a packet analyzer on our machine. In all these cases, we measured only the parsing

time, which is the running time of the parse function provided by these tools. Also, to exclude disk

I/O time, we read the entire file into memory before the timer starts. The average parsing running

times for 1000 runs are shown in Figure 13 as well as the variance. The test machine has an Intel

i7-9700 CPU and 32 GB memory.

The performance result is shown in Figure 13. For network packets, Nail implements arena-based

memory management to avoid performance impact from calling malloc. In both network packet

formats, IPGs achieve better running time after adopting the same mechanism.

For other file formats, IPGs have similar performance as Kaitai Struct on GIF and PE cases (shown

in Figure 13b and Figure 13c respectively). For ZIP, as Figure 13a shows, Kaitai Struct performs

much worse than IPGs because its implementation consumes the archived file data to move the

input position to the next section, while IPGs generate a zero-copy parser that just skips archived

file data. To the best of our knowledge, there is no option to let Kaitai Struct generate zero-copy

parsers. On the other hand, for decompression after parsing, using the IPG-generated parser we

would still need to read the compressed data into memory, while using the Kaitai Struct parser

the compressed data would already be resident in memory; therefore the parsing performance

difference between IPGs and Kaitai Struct is only part of the story. For ELF parsing, the IPG parser

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 150. Publication date: June 2023.

150:22 Jialun Zhang, Greg Morrisett, and Gang Tan

has similar performance to the Kaitai Struct parser for small and medium-sized files. For the largest

test file (over 25MB), the IPG parser performs much worse because parsing symbol names requires

deep recursion in the IPG parser, which could be eliminated by introducing the Kleene-star operator

into IPGs. We leave this as a future optimization.

To validate the correctness of IPG parsers, in the unzip case, the decompressed files were

manually checked. In the readelf case, the output of the modified readelf with our IPG parser

was compared with the output of the original readelf. In other formats’ cases, the output parse

tree was compared with Kaitai Struct’s.

For packet parsing, using Valgrind we also measured the amount of heap memory consumption

in comparison with Nail. The results are shown in Figure 14; they show that IPG parsers consume

less memory than Nail parsers for both dns and ipv4+UDP.

8 CONCLUSION AND FUTUREWORK
Interval Parsing Grammars provide a declarative and hierarchical way of expressing the syntax and

parsing-related semantics of file formats. With attributes and intervals, IPGs allow the specification

of data dependence as well as the dependence between control and data. Moreover, parser termina-

tion checking becomes possible. To further utilize the idea of intervals, an interval-based, monadic

parser combinator library is proposed. Using these techniques, IPGs can support many file formats.

We believe that the declarative nature of IPGs enables its metatheory to be fully mechanized in

an interactive theorem prover such as Coq so that we can get verified IPG parsers with correctness

and termination guarantees. For correctness, we can prove that the generated parser for an IPG

recognizes the same set of strings and builds the same parse trees as a denotational semantics of

the IPG dictates. The functional nature of IPGs makes defining the denotational semantics and

proving correctness much easier. Further, although this paper focuses on the parsing of file formats,

to achieve the goal of formalized format specifications, there are more semantic constraints besides

the parsing behaviors discussed in this paper, ranging from simple value restrictions to more

complicated constraints on data structures generated by parsing. We can combine IPGs with a

recently proposed declarative language for checking semantic constraints [Kumar et al. 2023].

Another interesting direction is to automatically generate a file generator from the given grammar,

which turns the internal representation produced by the parser back to a file. This idea has been

explored by Nail [Bangert and Zeldovich 2014]. To support this feature, IPGs can be extended with

reverse attribute computation that specifies how an attribute is computed in the reverse direction

of parsing. With attributes computed, intervals are known and writing terminals back to the file

according to their intervals is straightforward. Finally, while our parser generator generates only

recursive descent parsers, it would be interesting to explore the support of stream parsers. We

can first have an analysis that determines if it is possible to generate a stream parser from an IPG:

within each production rule, it checks if the attribute dependency is only from left to right. After

this analysis, a stream parser can be generated to parse in a bottom-up way. We plan to explore

these directions in future work.

ACKNOWLEDGMENTS
We thank anonymous reviewers and our shepherd, Francois Gauthier, for in-depth comments on

earlier versions of the paper. Also, we would like to thank the artifact evaluation committee for

numerous comments that greatly improved the artifact. This research is supported by DARPA

under Grant No. HR0011-19-C-0073 and NSF under Grant No. FMiTF-1918396.

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 150. Publication date: June 2023.

Interval Parsing Grammars for File Format Parsing 150:23

ARTIFACTS
The code and evaluation results are available on Zenodo [Zhang et al. 2023]. To reproduce the

result or reuse the implementation, please follow the instructions in its README file.

REFERENCES
Adobe 2008. Document managementPortable Document 493 FormatPart 1: PDF 1.7.

Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. 1986. Compilers: Principles, Techniques, and Tools. Addison-Wesley, Reading,

MA.

Godmar Back. 2002. Datascript – A specification and scripting language for binary data. In Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), Vol. 2487. Springer Verlag,
66–77. https://doi.org/10.1007/3-540-45821-2_4

Julian Bangert and Nickolai Zeldovich. 2014. Nail: A practical tool for parsing and generating data formats. In USENIX
Symposium on Operating Systems Design and Implementation (OSDI). 615–628.

Leonardo De Moura and Nikolaj Bjørner. 2008. Z3: An efficient SMT solver. In International conference on Tools and
Algorithms for the Construction and Analysis of Systems. Springer, 337–340.

ELF 1995. Executable and Linking Format (ELF) Specification. Version 1.2.

Kathleen Fisher and Robert Gruber. 2005. PADS: a domain-specific language for processing ad hoc data. In ACM Conference
on Programming Language Design and Implementation (PLDI). ACM Press, New York, NY, USA, 295–304.

Kathleen Fisher, Yitzhak Mandelbaum, and David Walker. 2006. The next 700 data description languages. In ACM Symposium
on Principles of Programming Languages (POPL). ACM Press, New York, NY, USA, 2–15.

Bryan Ford. 2004a. Parsing expression grammars: A recognition-based syntactic foundation. Conference Record of the
Annual ACM Symposium on Principles of Programming Languages 31 (2004), 111–122.

Bryan Ford. 2004b. Parsing Expression Grammars: A Recognition-based Syntactic Foundation. In ACM Symposium on
Principles of Programming Languages (POPL). 111–122.

Alexei Hmelnov Hmelnov and Andrei Mikhailov. 2019. Generation of Code for Reading Data from the Declarative File

Format Specifications Written in Language FlexT. Proceedings - 2018 Ivannikov Isp Ras Open Conference, ISPRAS 2018
(2019), 23–30. https://doi.org/10.1109/ISPRAS.2018.00011

Graham Hutton and Erik Meijer. 1998. Monadic Parsing in Haskell. Journal of Functional Programming 8, 4 (1998), 437–444.

Suman Jana and Vitaly Shmatikov. 2012. Abusing file processing in malware detectors for fun and profit. In 2012 IEEE
Symposium on Security and Privacy. IEEE, 80–94.

Trevor Jim, Yitzhak Mandelbaum, and David Walker. 2010. Semantics and Algorithms for Data-dependent Grammars.

(2010), 417–430.

Donald B. Johnson. 1975. Finding All the Elementary Circuits of a Directed Graph. SIAM J. Comput. 4, 1 (1975), 77–84.
Kaitai 2015. Kaitai Struct User Guide. https://doc.kaitai.io/user_guide.html

Donald E. Knuth. 1968. Semantics of context-free languages. Mathematical Systems Theory 2, 2 (1968), 127–145.

Ashish Kumar, Bill Harris, and Gang Tan. 2023. DISV: Domain Independent Semantic Validation of Data Files. In 2023 IEEE
Security and Privacy Workshops (SPW). IEEE.

Zephyr S Lucas, Joanna Y Liu, Prashant Anantharaman, and Sean W Smith. 2021. Parsing PEGs with Length Fields in

Software and Hardware. In 2021 IEEE Security and Privacy Workshops (SPW). 128–133.
Prashanth Mundkur, Linda Briesemeister, Natarajan Shankar, Prashant Anantharaman, Sameed Ali, Zephyr Lucas, and

Sean W. Smith. 2020. Research Report: The Parsley Data Format Definition Language. In 6th Workshop on Language-
Theoretic Security (LangSec). 300–307.

Terence Parr, Sam Harwell, and Kathleen Fisher. 2014. Adaptive LL(*) parsing: the power of dynamic analysis. In ACM
Conference on Object-Oriented Programming, Systems, Languages, and Applications (OOPSLA). 579–598.

Tahina Ramananandro, Antoine Delignat-Lavaud, Cédric Fournet, Nikhil Swamy, Tej Chajed, Nadim Kobeissi, and Jonathan

Protzenko. 2019. EverParse: Verified Secure Zero-Copy Parsers for Authenticated Message Formats. In Usenix Security
Symposium. 1465–1482.

William Underwood. 2012. Grammar-Based Specification and Parsing of Binary File Formats. International Journal of Digital
Curation 7, 1 (2012), 95–106. https://doi.org/10.2218/ijdc.v7i1.217

W3C. 2018. Scalable Vector Graphics (SVG) 2. https://www.w3.org/TR/SVG2/.

Jialun Zhang, Greg Morrisett, and Gang Tan. 2023. Interval Parsing Grammars for File Format Parsing. https://doi.org/10.

5281/zenodo.7811236

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 150. Publication date: June 2023.

https://doi.org/10.1007/3-540-45821-2_4
https://doi.org/10.1109/ISPRAS.2018.00011
https://doc.kaitai.io/user_guide.html
https://doi.org/10.2218/ijdc.v7i1.217
https://www.w3.org/TR/SVG2/
https://doi.org/10.5281/zenodo.7811236
https://doi.org/10.5281/zenodo.7811236

150:24 Jialun Zhang, Greg Morrisett, and Gang Tan

𝑠, 𝐴, 𝐸,
−→
Tr ⊢ tm ⇓ 𝐸, 𝑅tm

𝜎 (𝐸,−→Tr, 𝑒1) = 𝑖 𝜎 (𝐸,−→Tr, 𝑒2) = 𝑗

∀𝑖 ≤ 𝑘 < 𝑗,

𝜎 (𝐸 [id ↦→ 𝑘],−→Tr, 𝑒𝑙) = 𝑙 𝜎 (𝐸 [id ↦→ 𝑘],−→Tr, 𝑒𝑟) = 𝑟 𝑠 [𝑙, 𝑟] ⊢ 𝐵 ⇓ Node
k
(𝐵, 𝐸𝑘 ,

−−→
Tr𝑘)

𝑠, 𝐴, 𝐸,
−→
Tr ⊢ for id=𝑒1 to 𝑒2 do B[𝑒𝑙 , 𝑒𝑟] ⇓

updStartEnd(. . . (updStartEnd(𝐸, 𝑙 + 𝐸𝑖 [start], 𝑙 + 𝐸𝑖 [end], 𝐸𝑖 [end] ≠ 0), . . .),
𝑙 + 𝐸 𝑗−1 [start], 𝑙 + 𝐸 𝑗−1 [end], 𝐸 𝑗−1 [end] ≠ 0),

Array(Node(𝐵, 𝐸𝑖 [start ↦→ 𝑙 + 𝐸𝑖 [start]), end ↦→ 𝑙 + 𝐸𝑖 [end])],
−→
Tr𝑖) · . . . ·

Node(𝐵, 𝐸 𝑗−1 [start ↦→ 𝑙 + 𝐸 𝑗−1 [start]), end ↦→ 𝑙 + 𝐸 𝑗−1 [end])],
−−−−→
Tr 𝑗−1))

(T-ArraySucc)

𝜎 (𝐸,−→Tr, 𝑒1) = 𝑖 𝜎 (𝐸,−→Tr, 𝑒2) = 𝑗

∃𝑘, 𝑖 ≤ 𝑘 < 𝑗

𝜎 (𝐸 [id ↦→ 𝑘],−→Tr, 𝑒𝑙) = 𝑙 𝜎 (𝐸 [id ↦→ 𝑘],−→Tr, 𝑒𝑟) = 𝑟 ¬(0 ≤ 𝑙 < 𝑟 ≤ |𝑠 |) ∨ 𝑠 [𝑙, 𝑟] ⊢ 𝐵 ⇓ Fail

𝑠, 𝐴, 𝐸,
−→
Tr ⊢ for id=𝑒1 to 𝑒2 do B[𝑒𝑙 , 𝑒𝑟] ⇓ 𝐸, Fail

(T-ArrayFail)

Fig. 15. Full IPG parsing semantics.

A APPENDIX
Theorem A.1. If static termination checking succeeds for an IPG with start nonterminal 𝐴0, for

any input string 𝑠 , parsing with “𝑠 ⊢ 𝐴0 ⇓ 𝑅” terminates with some result 𝑅.

Proof. We define parse(𝑠, 𝐴) = 𝑅 if “𝑠 ⊢ 𝐴 ⇓ 𝑅” according to the rules in Figure 8. Inspecting

those rules, we know parse(𝑠, 𝐴) performs a call to parse(𝑠′, 𝐵) only when B[𝑒𝑙 , 𝑒𝑟] appears in the

IPG grammar rule of 𝐴, in which case by construction the edge with label (𝑒𝑙 , 𝑒𝑟) from 𝐴 to 𝐵

appears in the dependency graph. Therefore, any call to parse(−,−) is faithfully modeled in the

dependency graph.

Starting from nonterminal 𝐴0, suppose a parse(−,−) call chain is 𝐴1, 𝐴2, etc. Suppose there are

𝑛 nonterminals in the grammar. Then when the call chain depth is at most 𝑛, we encounter the

first elementary cycle (if there is any). Suppose the cycle is 𝐴𝑖 → . . . → 𝐴 𝑗 → 𝐴𝑖 . Because of static

termination checking, we know when 𝐴𝑖 is visited the second time, the input string size is at least

one less. With the same argument, from the second visit to 𝐴𝑖 , with the call chain depth at most 𝑛,

we encounter another elementary cycle (if there is any), which also decreases the input string size

by at least one. Therefore, the depth of any parse(−,−) call chain during parsing is bounded by

𝑛 ∗ |𝑠 |. Coupled with the fact that parsing a nonterminal results in a finite number of direct calls to

parse(−,−), we can derive that IPG parsing terminates for 𝑠 . □

A.1 Full Parsing Semantics
Figure 15 is the full formalism of IPG’s parsing semantics. Only those rules that are different from

the short version are listed.

A.2 Interval Parser Combinators
Parser combinators provide another popular way of implementing parsers. A parser combina-

tor library provides some basic parsers (e.g., a parser that parses a single character) and some

combinators (e.g., a choice operator), and the user can construct a complete parser using these

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 150. Publication date: June 2023.

Interval Parsing Grammars for File Format Parsing 150:25

type state = int * int * int
type 'a parser =

string -> state -> ('a * state) option
let return (v:'a) : 'a parser =

fun inp s -> Some (v,s)
let bind (m: 'a parser) (f: 'a -> 'b parser)

: 'b parser = fun inp s ->
match m inp s with
| Some (v,s1) -> f v inp s1
| None -> None

let (>>=) = bind

let getInterval: (int*int) parser =
fun inp (l,r,c) -> Some ((l,r),(l,r,c))

let setInterval (l:int) (r:int): unit parser
= fun inp _ ->

if l < r then Some ((),(l,r,l))
else None

let getPos: int parser = fun _ (l,r,c)
-> Some (c,(l,r,c))

let setPos (c:int) : unit parser =
fun inp (l,r,_) -> Some ((), (l,r,c))

Fig. 16. Monadic Parser Combinators.

building blocks. Compared with the parser generator approach, it is less declarative since how

parser combinators are combined is expressed in a general-purpose programming language. On

the other hand, a file format can involve arbitrarily complex parsing behaviors. Parser combinators

enable users to write expressive parsers to cover these behaviors in a general-purpose programming

language.

We present an interval-based parser-combinator library in Figure 16. It is written in OCaml, but

the same design can be adopted by other programming languages. As many other parser combinator

libraries, this library is implemented in a monadic style [Hutton and Meijer 1998]. A parser of type

'a takes a string and a state as input and, if parsing succeeds, produces a value of type 'a and an

output state; if parsing fails, None is returned. The internal state of the monad is a triple (l,r,c),
where l and r are the left and right endpoints of the interval assigned to the parser and c is the
current parsing position. The return/bind combinators are similar to traditional parser combinators.

Figure 16 also presents a set of basic combinators for manipulating the internal state of a

parser. getInterval/setInterval gets/sets the interval, i.e., l and r in the monad state. Similarly,

getPos/setPos gets/sets the current parsing position, i.e., c in the monad state. However, these

combinators operate directly on the absolute offsets of the global input and do not match IPG’s

parsing semantics, where an interval uses offsets relative to the current local input. Therefore,

these combinators should not be used by users and the library provides other combinators on top

of them as the user interface. Some example combinators follow:

let eoi =
getInterval >>= fun (l,r) ->
return (r-l)

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 150. Publication date: June 2023.

150:26 Jialun Zhang, Greg Morrisett, and Gang Tan

let localIntervalP p (l,r) =
getInterval >>= fun (l_g,r_g) ->
if 0<=l && r<=r_g-l_g then

setInterval (l_g+l) (l_g+r) $$
p >>= fun v ->
setInterval l_g r_g $$
setPos (l_g+r) $$
return v

else fail
let (%) = localIntervalP

eoi returns the end-of-input as a relative offset, which is the length of the local input. Combinator

“%” runs parser p in a local interval [l,r], where l and r are relative offsets regarding the current

local interval; the semantics of this combinator matches the IPG semantics. Internally, the definition

of “%” first gets the current interval [l_g,r_g], checks if the new interval is in the range of the

current interval, calls parser p on the new interval, recovers the old interval, and finally returns

the result of the parser. In the definition, $$ sequences two parsers and ignores the value returned

by the first one; its definition is straightforward and omitted. As an example of using eoi and %,
“𝑎[3, 𝐸𝑂𝐼]” in an IPG can be written as “eoi >>= fun ed -> a % (3, ed)”.

There are more combinators including biased choice /, sequence $, array arr, etc. Their semantics

and implementation are straightforward; so we omit their definitions.

An Example. Consider the previous binary number parser in Figure 3, We can write a parser with

the same functionality using parser combinators.

let intP = fix (fun intp ->
eoi >>= fun eoi ->
intp % (0, eoi-1) >>= fun iv ->
digitP % (eoi-1, eoi) >>= fun dv ->
return (iv * 2 + dv)
/ (digitP % (0,1) >>= fun dv ->
return dv))

let digitP = charP '0' % (0, 1)
/ charP '1' % (0, 1)

let charP (ch:char): char parser =
fun inp (l,r,c) ->
if (l<=c && c<r && inp.[c]=ch) then

Some (ch, (l,r,c+1))
else None

This example shows features in IPGs can be mapped to combinators; e.g., attributes are bound

with their names using the bind operator >>=; intervals are assigned to subparsers using %. In this

way, we have implemented all case studies in section 4 through our parser combinator library.

Received 2022-11-10; accepted 2023-03-31

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 150. Publication date: June 2023.

	Abstract
	1 Introduction
	2 IPG Overview
	3 IPG Syntax and Semantics
	3.1 Core Language Syntax
	3.2 Attribute Checking
	3.3 Core Language Parsing Semantics
	3.4 Full IPG Language
	3.5 Relation between IPGs and CFGs

	4 Case Studies
	4.1 ELF
	4.2 GIF
	4.3 PDF

	5 Termination Checking
	6 Related Work
	6.1 Formal Grammars
	6.2 Comparison with Other Data-Description Languages

	7 Implementation and Evaluation
	8 Conclusion and Future Work
	Acknowledgments
	References
	A Appendix
	A.1 Full Parsing Semantics
	A.2 Interval Parser Combinators

