
MECHANISMS FOR COMPILE-TIME ENFORCEMENT OF SECURITY

ABSTRACT

This paper discusses featu]-es of a ~ecure systems

programming language designed and implemented at

IBM’s Watson Research Lab. Two features of the lan-
guage design ~-crc instrumental in permitting securi-

ty to be enforced with minimum run-t ime ~ost : (1)

Larguage co~lstrucls (e.g. polr, ter ~,ariabl+s I uhich

could result in ali asing were removed from the pro-

grammer’s direct control aad replaced by higher lev-
el primitive types; and (2) traditional strong type

checking was enhanced with typestate checking, a new
mechanism m which the compiler guarantees that for

all execution paths, th~ sequence of operations on

each variable obeys a finite state gramm,~r associ-
ated with that variable’s type. Examples are given

to illustrate the application of rhese mechanisms.

INTRODUCTION

A system is secure if every program’s behavior

depends only on its code and its inputs in a manner
defined by the programming language semantics. A
system is insecure If certain program executions can
cause other programs not to behave according to the

defined semantics. For example, a system which

claims to support independent “virtual machines” IS
insecure If under particular conditions, a program
running In one virtual machine can overwrite data
belonging to another virtual machine.

It is potentially easier to provide security for a
semantics defln~d in terms of a high-level language,

because compilers can detect and reject illegal pro-
gra&s before they go into execution, and because
compilers can avoid generating certain unusual exe-
cut ion seaue.nces tthich otherwise uould have to be

Permission tocopywithout feeallorpart of this material ls granted
provided that the copies are not made ordistributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
Permission of the Association for Computing Machinery. To copy
otherwise nrto republish, requires a fee and/or specific permission.

anticipated by a run-time security mechanism. Fur -
thermore, compile-time protection can extend to
units as small as a single module, whereas such fine

granularity 1s Impractical for assembly level pro-
gramming, at least on machines with conventional
architectures ,

Enforcement of security has been a goal of a number

of high-level Iangufiges and proposals, ([DAH 70],

[POP 77], [AYB 76], [EGG bl]), and its desirability

has been emphasized by a nlmber of writers ([HOA

81]). Howev[:r> existing colmpiled languages still
suffer from one or more of tile following shortcom-

ings :

. There are illegal programs which cannot be
detected by the compiler and which if executed

may violate security. Examples include “error,e-
OUS” programs in ADA (T)!), the use of undiscrim -
inated type unions in PASCAL, the derefercncing
of uninitialized pointers in most languages.

● In some languages, constructs which are diffi-

cult to implement both securely and cheaply are

omitted, even though these constructs can be
useful in systems programming. (e g. procedure
variables ii-L ADA , explicit deallocation in
ALGOL-68, dynamic creation of process, dynaln’ic

r,onnectlon of lnterproccss communications
ports) ;

. Certain secure language features either require
extra execution time ove,rhead or special hard-

ware (e.g. garbage collection, message passing
by data copying, checks for dereferencing null
pointers, or for dangling references).

The mechanisms proposed In this paper to deal with
these problems include:

. The design of a set of abstract types which
eliminate direct manipulation of pointers while

providing all the useful functions supported by
proper use of pointers.

. Augmenting type-checking w~th typestate check-
=, a static ver~ficatlon that a variable is in
the appropriate state to perform an operation on
it. These two mechanisms will be discussed
together, since neither appears to be useful for
security r+,ithout the other.

@ 1983 ACM0-89791-090-7/83/001 /0276 $00.75

276

Permission to make digital or hard copies of part or all of this work or
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers, or to redistribute to lists, requires prior
specific permission and/or a fee.
© 1983 ACM 0-89791-090-7…$5.00

The concepts discussed in this paper are taken from

the programming language NIL, w}lich Ilas been
designed and implemented at IBN’s T.J. Watson

Research Center and is being used to develop proto-
types for communications subsystems and distributed

operating systems. NIL’s design objectives include

(1) information hiding, (2) support for concurrency,

(3) feasibility of secure implementations with mini-

mal run-time cost, (4) cfiicient implementation on a

wide range of machine architectures, (5) conceal merit
of the underlying operating system by st]pport. ing
process creation , access control , and modl]le inter-
connection as language prjmitivcs. NIL is more ful-
ly described in [NIL 82], [PAR 81], [P,U? 8?], [HAL
82], [PAR 83].

BY contrast, the “ri~strllcti~-t: scrld” semantics allows
flexibility in LILC choice of im;,lementation. A very

efficient implementation, on a uniprocessor imple-
ments a message variable as a pointer to a block of

storage containing: (1) the data fields, and (2) a

chain pointer used when the message is cnqueued on a

port. The allocate operation initializes the pointer

by obtaining storage from a heap or a quickcell
list. Access. to sc:lectcd comI,olLcILts involves deref -
erencing the pointer. Sending and reccit,ing involt,e
updating tl:e chaitl poiILtcr fields without physically
copying any data.

TYPESTATE

HIDING POINTERS: EXAMPLE
DEFINITION AND EXAMPLE

The NIL approach to secllrity can be illustrated by
studying the design of the message type

constructor,

The message type constructor defines individual mes-
sage types. Each message type consists of a number

of fields, which may themselves be of any type.
Fields in messogcs may be named using the standard

selected componen I notation. In this respect, NIL

messages are just like records in PASCAL, ADA, or

ALGOL-68. However, in these other languages, the

user builds records dynamically by using pointers.

The pointer has a different name from the record
itself and may be assigned to other pointer vari-
ables, thereby introducing potential aliasing within
a process, or sharing of data between processes. In

NIL, messages may likewise be built dynamically, but
no pointer is visible to the programmer. It is guar-
anteed that no two message variables reference the
same data. The following operations are applicable

to NIL message variables:

allocate obtains resources for an empty message

receive dequeues a message sent from another proc-

ess over a @ (another NIL type
constructor) .

send FIFO-enqueues a message to another process

via a port.

discard disposes of an empty message

It is not permitted to read or update fields of a
message after it has been sent. This rule (“de-

structive” sending), was deliberately chosen over an

alternative eemantics of send in which the sender
could retain access to the message data. A language

taking an alternative viewpoint must define either

(1) that the sender keeps an independent copy of the
data, or (2) that both sender and receiver share the

message. Both definitions are unattractive: The
first alternative requires that send copy the mes-

sage, which on most hardware will be needlessly
expensive. In addition, if the language hos vari-
ables of types for which copying is not supported,
these variables could not be passed in messages.

The second alternative involves the introduction of
shared data, and the dangar that both sender and

receiver may choose to discard the same message.

The above definition of message semantics makes
sense only if the above operations are performed in

a particular sequence. For example: a field may not
be written until the message has been allocated; a

field may not been read until it has been written; a
message once sent may not be read, written, or sent

again, etc. It is undesirable to attempt to define
the results of ocher orders of execution of the

operations, such as send of an already sent message

or update of a field in a message which has already

been sent. In fact, the suggested “efficient”

implementation of send will fail in the event that
the seine message is sent twice.

In NIL, @estate rules explicitly define the legal

operation sequences. Conformity to the typestate
rules is checked at compile time as follows: For
every type in the language, there is a finite-state

grammar (called a typestate grammar) which defines
the valid operation sequences on variables of that

tyIJe. The states of SUCI) a grammar are called its

9QS!lE Eve]-y variable has a typcstate which

ma>- vary fj-om statement t.o statement within the pro-

gram. The typestate of each variable is required to
be a program invariant at each statement. I,, itially

the typestate is l.1’ISITiALIZELl. Typcstatcs of suc-
cessive statements can be determined hy applying tile
rules of the typestatc grammar to the program, If

the typestate on entry to a statement A is known,

thea the typestate on entry to statement B imme-

diately following A can be determined by applying
the typestate transition for the operation associ-
ated with statement A. If two statements have the ‘
same successor, then the statements must yield iden-
tical types tates for all variables. A program is
illegal i.f either (1) it contains a statement con-
taining an operation which is not permitted in the

typestate known to hold on entry to that statement,
or (2) some pair of statements S1 and S2 yield dis-
tinct typestate ouLcomes but have the identical suc-

cessor statement.

For example, Figure 1 illustrates the typestate

grammar for a typical message type containing two
scalar fields, F1 and F2. The typestates are UNINI-
TIALIZED, EMPTY, F1 INIT, F2 INIT, and ALL INIT. The
state transitions are labeled with operations on a
sample message variable N and its fields M.Fl and

277

A
R/U/ M.F1 II I II

R/WW2-ascard M.F2 ‘nit discard M.F1 ‘nit “F’

RAN M.F1 F1 INIT F2 INIT

discard M.FI
init M.F1 init M.F2

discard M.F2
send M

~<: ‘~> >

rec ~ive M

EMPTY

discard M aiiocate M

UNINITIALIZED

Figure 1, Representative Typestate Diagram: This typical typestate
~ diagram shows the transitions possible for a variable M of

a message type containing two fields, Fl, and F2, each of
scalar type (e.g. integer or string),

M.F2. For example, a message must be ALL INIT before

it is sent, and the send operation changes the
typestate to UNINITIALIZED. Typestate transitions

,.

Porttype is port type of Mestype;
associated with exception outcomes of operations are ?lestype is message type
not shown on this diagram, but are discussed in a (Fl: Charstring,
subsequent section. It should be noted that discard F2: integer);
operations are provided for the scalar fields F1 and
F2 as well as for message M, even though in a typical

. . .

declare
implementation space for F1 and F2 is preallocated (A_message: Mestype,
with the message, and these “discard” operations A_port: Porttype sender);
generate no code. The abstract operations exist in

order to permit greater implementation flexibility,
. . .

allocate A message;
and to provide a useful model of process

termination,
A_message~Fl = “kLell O”;

which will be discussed in a later sec-
t ion,

A_message. F2 = 5;
send A_message to A port;

I

The definition of a sample message type, a sample
!..

port type, and the code which declares message and Figure 2. Typical
port variables and WUP1OYS a valid .aquenca of oper -

message type correctly
used: The above

ations is illustrated in Figure 2. Examples of
program segment

illegal sequences are illustrated in Figure 3. In
the particular representation of messages discussed
earlier, these illegal sequences, if not explicitly
excluded, would result in the dereferencing of unin-
itialized pointers. unreclaimed storage, dan.zling
references , or damaged free space lists, each of
which can cause a security breach or a failure to
reclaim resources \iit’n other choices of implemen-
tations of the operations, the effects of the ille-

gal sequences may be different.

defines a message type, a port type,

and objects Of those two defined
types . The segment code allocates
the message variables, assigns its
two fields, and sends the message off
to another process. It is assumed
that the port variable has been
itself initialized earlier in the
program.

278

Segment (1)
..----..---

allocate A mw, sa:c;

A_message~Fl = “hclloi’;

A message.F’2 = 5;—
send A mssoge to :_l, OI-I ;

discard–~ message;—

Segment (2)
---------a-

llocate A mcsstige;—
allocate A mcss:,~c;-.

Segment (3)

allocate A_message;

A_message. F2 = length (A_message. Fl);
send A_message to A_port;

Figure 3, Illegal uses of
variables: These

message
examples

illustrate program segments which,
though not violating any strong
typing rules, misuse the message type

by executing operations in the wrong
order. In the absence of typestate
checking, execution of these
segments could cause program crashes
in typical implementations, Segment
(1) discards a message which ia in
use in another process. Segment (2)
overlays a pointer and hence produces
an unreclaimable message, Segment
(3) accesses an uninitialized
string, which If strings are
implemented with pointers to the
heap, may cause a program check.

—

RATIONALE FOR INVARIANCE OF TYPESTATES

NIL enforces security at compile time by:

●

✎

In

Forbidding all direct access to pointers, and
supporting access to dynamic data only through
the message types (and other secure data types).

Requiring that the typestate of all variables be
known as an invariant associated with each
statement in th~ program, and guaranteeing that
operations are Issued only from correct
typestates.

order for typestates to be program invariants,
whenever two-or more branches of a program converge,
the typestates immediately prior to the join must be

the same. Programs which, for example, initialize a

variable in the then branch of a conditional state-
ment and fail to initialize that variable in the else
branch, are illegal.

Although security could be guaranteed by run-time
checking of typestate, the choice to check typestate
at compile time has several advantages:

. It rejects at compile time programs whose erro-
neous code might not otherwise be detected until
they had been widely distributed and used as
components of a critical application.

. It avoids the space and time overheads associ-

ated with storing, checking, and updating

typestate information.

● It rejects certain pzograms with dubious prOgram

structures

The last point bears additional rilscusslon, 5iUce It

reflects thL, NIL dc>ignrl-s’ bias that so ftwtire reli-

ability can he gainc:d LY rc:stl-i~~ing ‘he set ‘f prO -
grams Khicb a programmer is permitted tO write.

consider the program segment in Flgurc 4 xllich would

be rejected as illegal under the tYPestate ‘invar-

iance rule, even though a clever compiler might be
able tO pro~.e that no typcstate vi Olati Oll cnuld ever——
occur. This progrlm create~ a half-inltiali~cd mes-
sage w-benever x bas the \-alue 2, and creates no mes-

sage otherwise. The p.ths then Join (making the

message’s typestate ambiguous and therefore illegal

according to NIL) . Some time later, the

half-initialized message is processed, provided it

is known to exist, which is determined by checking

whether X has the value 2.

,..
ifX=2

then
allocate A mc55age;

,J_message-.Fl = “hello”;

end if;

,------ middle part of program

if~=2

then
A_messagt:.F2 = ~;
send A_message to A_port;

end if;

Figure 4. Program with ambiguoua

typQstate: Assuming the middle Part

is kell-i~chaved, this prografi] will

ne~,er execute an operation from an

illegal ~ype~tatc. liuwever, It will

still be rejected by NIL’s strict
interpretation Of the invariance

rule. It is the designers’

contention that the excluslon of such
programs does no harm and could even

encourage better program

structuring.

It is our contention that thcr~ 1S always a clearer
way to wrltc this. program, Winch b-ill provide better
guidance to someone tryurg to mOdify it, and which
will be typestate correct.

Under one interpretation of the program, it is

intended to execute the second then clause whenever
the first then clause was execllted. Since in this

case, the middle part cannot possibly alter the mes-
sage, it would be safer to combine the two if blocks
into a single test. The middle part can either be

executed after the if block, or could be enclosed in
a subroutine invoked from both branches. As cur-

rently written, it would be fatal to modify the val-

ue of X from within the middle part. (A programmer

wishing to insert X = X + 1 into the middle part, and
to replace the second test by if X = 3 deserves, in
our opinion, to have his or her program rejected by
even the smartest compiler.)

279

On zl,e other halrl, if the midrile. part of the program .
contains

If c]ecnrlp oper~tions such as discard could
code which conditionally re-al locates or themselves

conditionally discards the message, updating the
raise exceptions , therl there is a

value of X to reflect its choice, then the program–
danger of an infinite rr:gr(ess of exception han-
dlers,

mer xould do well to replace the message by a variant
since each handler k,ould require another

(discrimir,ated union) variable, in which one ~ase of
handler to deal with the possible failure of one

the variant contains a mrssage and the other is ern~-
of its cleanl]p ‘actions

ty , The program theu reads more clearly, since tile

programmer’s test is explicitly askiag whether the
message exists, rather than asking some other ques-

tion whose answer is presumed to correlate with the

existeace of the message.

By replacing direct use of pointers by indirect use

via the type construct or-s mess~~, table, and others

not discussed here, ond by enforcing typestate
invariance, securit~- can be maintained h itliout

impacting program cffi.ciclncy 01- I-e.affability.

PARTIAL ORDERINGS ON TYPESTATES

‘The interaction bet{;ecn Lhc invariance rule and
!iIL’s treacmcr,t of cx..copt ion !Iandlil!g and program

termination lead to the additional requirement of a

partial ordering relation on types tate transition

graphs .

Consider the program fragment shown in Figure 5.
The clause beginning with on (I)epletion) receives

control whenever the excep~ion collditiun named

Depletion is raised within the begin block. The

Depletion exceptioa is r~ised whenever storage is

no’t available to perform the allocate operation.

When Depletion is raised, the message remains in
typestate UNINITIALIZED rather than making the tran-

sition to EMPTY,

Since typestate must be a compile-time invariant,
the program fragment under discussion would be ille-
gal if exceptions generated direct branches to the

exception handler. A typestate ambiguity would

occur since on the branch from statement [1] mes$age
M is UNIN ITIAI, IZED and on the branch from statement
[2] message M is ALL INIT.

This ambiguity could be eliminated by providing a

separate exception handler for statement [2]. This
exception handler would discard variable J, the
fields of M, and M itself, and then reraise the

Depletion exception. There are several difficulties

with such a proposal:

● In a language with abstract semantics, nearly
every statement has the possibility of raising
an exception, even though in some implementa-
tions the exception will never be raised. For

example, the semantics of striugs is flexible
enough to permit implementations in which large
string values are allocated dynamically from the
heap,, rather than being preallocated. In such
implementations , string assignment could raise
Depletion. Requiring separate begin blocks to

contain the cleanup actions associated with

every possible exception could cause the code to
become so clat~ered with excepticn handlers that
the maiu path throagh tl)e program] could become
obscured

Both of the above protJIQms are solved by distirl-

guishing between “higher” and “lower” typestates.

Intuitively, moving to higher typestates commits

machine resources and mot,ing to lower typestates
releases resources. The typestate graphs for all

possible types can be partially ordered, with UNINI-

TIAI, IZED a anique state lower than all other

types tates In Figure 1, the typQstates cioser to

the top of thp page ore the “higher” typcstatcs. The

orderilng is exploited in the following way:

● Guaranteed Downhill Operations: Between any

pair of types tates A and B such that A is higher
than B, there exists a sequence of one or more

operations to convert an object in typestate A

to typestate B. These operations do not require
additional operands, may never raise exceptions,

and may never deadlock.

● Greatest Lower Bound: Two or more statements

may generate control transfers to the same
exception handler even though some variable has

different typestates in the exception-raising
statements . The typestate used on entry to the

exception handler will be the highest value
which is lower than or equal to the typestates
at the exception-raising statements. Typestate

lowering OperatiQns (called typestate

coercions) are inserted automatically between
the exception-raising and the

exception-handling statements whenever neces-

sary to make the typestates agree.

I =“3;

begin

allocata :!; --- statement [1]
J=5;

21.F1 = “i]el]o”;
?~,F~ = 3.

allocate ;; --- statement [2]
N.FI = M.F1 II M.F1;

N.F2 = ?l.F2 + 10;
send !I to A port;

send x to A port;
on (Depletion~

call Print (“insufficient storage”);
end begin;

Figure 5, Program with exception
handler: Statements [1] and [2] can
Lott, raise the Gepletion exception,
,and srnrl contl-ol to the Depletion
handier at [3]. Makiag the
types tates invariant at handler [3]
would require inserting additional
“cleanup” code associated with
statement [2]. This example
motivates the automatic gel~eration
of “downhill” types tate coercions on
entry to exception handlers.

—

280

In the language subset of our examples (only mes-
sages and scalars) , the ordering rules arc very sim-
ple. The typestate of a scalar is either
UNINITIALIZED or INITIALIZED. The typestate of a
message is either UNINITIALIZED or it is ALLOCATED
(tS(l), ts(2), . ..). where ts(i) is the typestate of
the i-th field. (In the example, the states called
mnemonically EMPTY. F1 INIT, F2 INIT, and ALL INIT

would be called r~spectively #.LLOCATED (USIKi-TIAL-
IZED, UNINITIALIZEII), AL1,OCATED (TNTTIALIZED. UNIN-
ITIALIZED), ALLOCATED (USI!ilTIALIZED, INITIAI,l ZED),
and .4LLOCAT’ELJ[I NI”TI AL1 ZED , lNITIALIZEDj) The
ordering, of scalars is simply that L!NIX IT IAL,IZELI is

lower than INITIALIZED. For m~ssages, typestate A
is lower than or’ equal co B if:

● A is UNINITIALIZED or

● ~ is ALLOC.4TED(tsa(l), tsa(2), . ..). B is ALLO-

CATED(tsb(l), tsb(2), . ..). and for all i,

tsa(i) is lo~{er than cr equal to tsb(ij.

The discard operation serves as the coercion opera-
tion.

In our example of Figure 5, the typestate at the

handler for Depletion will have variables J and M

LNINITIAL12ED. klleil control is ~ransferred from
statement [2], the. coercions necessary to discard J,

M.F1, }l. F2, al,d l’lf~ill bc gsmerated automatically.

Program termination in NIL involves coercing all

declared variables to typestate UNINITIALIZED.
These coercions can all be generated by the
compiler. The usual hazards involved in generating
cleanup code do not exist in NIL: Since no aliases
can be generated, the programmer cannot deallocate
storage which is being referenced elsewhere under a

different” name. The programmer may not generate
unretrievable storage by deallocating storage con-
taining a pointer, since the types tate rules guaran-
tee that messages may not be discarded until all the

fields have been discarded. Any field implemented
by a pointer (e.g. a long string, or another

message) will automatically be discarded first if
the containing message is coerced to UNINITIALIZED.

There is no need for an implementation to rely on a
garbage collector.

Implementations do have to be careful, however, that
“downhill” coercions never raise exceptions --- for

example, if discard is implemented by a call to a
FREEMAIN service, some provision has to be made to
avoid failing due to ovQrflow of the call stack, for
instance, by using the message itself to hold any

temporary storage required by FREENAIN.

When a process is terminated, all its variables are
coerced to UNINITIALIZED after the process has exe-

cuted its last wishes. The semantics of this
~oercion depends upon the type --- messages are

uninitialized and d~scardad, message ports are

unbound after discarding any waiting messages, ren-
dezvous calls are wturned to their caller, proc-

esses are terminated. As a result of this

semantics, the programmer CarL ~-nO~ that canceling a
process will guarantee to return its resources with-

in a finite Lime, and that nO “black holes” (inac-

cessible data} or “wbi~e holes” (active

uncancelable processes) are possible within a NIL
system.

OTHER TYPES

Although typestate checking was illustrated using

NIL’s message and scalar types, similar ideas are

carried out in all the type constructors.

—

TABLES

For example, the table type constructor ie an——
abstraction for homogeneous collections of arbitrary

size --- usually implemented in conventional lan-

guages with arrays when the a maximum fixed bound
can be determined, and with lists or trees using
pointers otherwise. Once again, in NIL the pointers

are hidden and access is only permitted through
table operations.

The following operations are supported on tables:
insertion and deletion of rows, and read-only and
read-write access to rows, (Table operations other

than those operating a row at a time are not dis-
cussed in this paper,) The typestate grammar for

rows in tables is shown in Figure 6.

The insertion sequence proceeds as follows:

1.

2.

3.

An allocate operation is issued specifying key

attributes, if called for by the table type
definition. If the key does not duplicate an

existing key in the table, and if storage

depletion does not occur, then the row variable
becomes DETACHED EMPTY. The non-key fields

become uninitialized but writable.

Non-key fields are initialized until the row

becomes DETACHED FULL.

An insert operatior places the row into the
table. The fields of the row are now nO longer

a~cessible, and the row variable itself is UN~N -

ITIALIZED. TO access the data, a retrieval

Oper~tiOIL is reqllired.

Deleting a row follrxcs the reverse sequence: the

row is first “detached”, then the data in the row is

discarded, and finally the row is itself discarded.

There are two ways of accessing data without detach-
ing it from the table: find with the read option

——

causes tho data in the row with the selected key to

become readable as the value of the row fields.

Find for update causes the selected data to be read-
able or writable but not deletable. After examining
or updating the data, the programmer issues the lose

operation. After this operation, the data remains

in the table, but is no longer accessible via the row
variable, which becomes again UNINITIALIZED. T&70
new typestates: CONSTANT (read-only permitted), and
PERNANENT (read or write only permitted), apply to
fields in row variables.

Under certain circumstances a run-time check is
required to avoid alias ing. KO two distinct row

variables may access the same table item unless both
row variables are inspecting for read-only. The

compiler’s typestate analysis can determine when
such a check is needed. The example in Figure 7
illustrates one of the rare cases in which a
run-time check must be generated. The check is

281

lose

) UNINITIALIZED

[DETACHED FULL

Read I?.F1

--. =

.-

I

R

allocate R

IR

“1

Figure 6. Typestate grammar for Rows in Tables : Possible
transitions are shown for a row variable R having a single

scalar field Fl, The upward bend in the transition for
insert indicates that an exception may be raised by’ this

operation, whereas the operations shown by arrows pointing
directly downward are “downhill ~oercions!t and may not
fail

required on the find R2 operation, since another row
of the same table has a typestate other than UNINI-

TIALIZED at the time of a find for update. In a tyP-
ical implementation, RI and R2 will be implemented
aS pOinters or as array s~lbs~rlPt~, and the run. time
check involves merely checking for equality of the

pointers or subscripts.

declare
T Tabletype;

RI row in T;

R2 row in T;

I: integer;
J: integer;

.
GetInputs(I, J);
find RI in T key(I);
find R2 in T key[J) update;
R2.F1 = R2.F1 + RI.F1;

Print (R1. Fl);
lose RI;
lose R2;

Figure 7. Potential Aliasing: Because RI is

INSPECTING when the find operation is
performed on R2 for update, a

run-time check will be needed to
insure that RI and R2 do not refer to
tile same row. In the absence of such

a check, modifications to R2. F1 could
(in some implementations) change the
value of variable R1.F1.

VARIANTS

Variants are collections of fields partitioned into
disjoint sets calle,d ~ases, The types tate ~ramlnar.— __
for a typical variant containing two casea, Red and
Blue, each with one field named RI and B1 respec-
tively, is shown in Figure 8.

The case is known at compile time and is part of the

types tate under two circumstances: (I) during the

initialization of tile variant fields following arl
expljcit allocation eithpr to the Red or Blue cose;

(2) In the Red or Blue branch outcome of a select
operation ~thicll queries the current state, ‘TWO 0th-
er tYPestateS exist: ~~I\IT1.AT,IZED, in which the
variant has no case, and INITIALIZED, in which the
case is pert of the t-alu(l, b,]t is not kr,owIl at com-

pile time, Feitber the RI nor the B1 field may be

accessed from this types tate.

PROCEDURE CALLS

Typestate interacts with procedure call semantics in
the following ways:

282

CTED (RED)

~w

SELECTED (BL LJE) R/W V.B I

end select V
outcome (red) outcomo (blue)

,Tgg..

end select V

detach V

setvariant V setvariant V

/ —

R/W ‘V%l FULL(BL UE)

H
V.RI hit ~.Rl discard V.B1 init V.B1

i

TY (RED)

o
discard Vallocate V (red) discard V allocate V (blue)

Figure 8. Typestate Grammar for Variants: This graph illustrates

the permissible operations on a variable V of a variant

type, containing the cases RED and BLUE. The RED case
contains a field V. RI, and the BLUE case a field V.R2.

.

.

●

Procedure call ports (entry variables) may be
discolmected dynamically o~lcl reconnected to oth-
er procedures of con forrngble type. Tracking
each port as either t}-pestate UNINITIALIZED or
INITIALIZED makes it possible to insure that
uninitialized call ports will not be called.

Each procedure type definition must contain not
only the types of each formal parameter, but

also the typestate of each parameter on entry,

and on normal and exception returns from the
-procedure. This specification is useful for
documentation, and is essential to permit the
compiler to track typestate changes resulting

from calling a procedure.

Typestate information on interfaces helps the
compiler to guarantee that procedure calls do
not introduce aliasing. (As a result of the
complete elimination of alias ing, either call by
reference or call by value-result are valid
implementations of the semantics.) Two actual
param~ters with ov~rlapping names (e.g. M and
M.A) may not both be passed in the same proce-

dure call unless both formal parameters expect
CONSTANT typestate.

RELATED WORK

Other authors have used finite-state models to rep-
resent the sequencing constraints inherent in the

semsntics of a type (For example: path

express ions ([CAH 74]), access path constraints

[[CON 79], [KIE 79])). Khat is different in NIL is

that each primitive data type is defined so that the

typestate can be a compi le time invariant.

Typestates are program assertions which are simple
enough that thQy can be automatically generated and
proved invariant by a compiler, and yet powerful

enough that proving them is adequate to avOid the
!1erroneous” programs which lead to insecurity.

The notion of partial orderings and “downhill opa -
at ions” appears to be unique to NIL, It has been of

enormous practical value in guaranteeing that

aborted or cancelled processes clean UP their Pri-
vate resources, including any processes which they
may themselves own.

283

RE~~REN~Es

STATUS

A full set of type constructors is available in NIL

to meet the general needs of systems programming. A
compiler is available for VN/370, and an interpreter

design to produce compact code for microprocessor
environments is under development.

Prototype systems are being coded in NIL. The

application areas to which NIL appears particularly
well-suited include:

● “open” layered systems, such as communications

systems, in which users of a system may be

expected to add their own versions of certain

layers, such as screen formatting, protocol con-

version, or link control, and in which it is

desired to protect vendor-supplied layers from

errors in user-supplied layers.

. Highly portable subsystems in which NIL’s abili-
ty to conceal the underlying data structures and
the underlying operating system is very useful.

ACKNOWLEDGEMENTS

Francis Parr collaborated with the author in the

original effort to turn NIL from a set of concepts

into a viable lanryage. Wilhelm Burger, ?like
Conner, Nagui Halim, and John Pershing contributed

to the subsequent design Effort leading to ths cur-

rent tiIL language, Shau]a Yemini reviewed the
drafts of this paper and contributed significant

stylistic and teCILniCal imprc.., ements , as k-en as
valuable critiques of our]anguage design effort.

[AMB 761

[CAM 741

[CON 79]

[DAH 70]

[EGG 81]

[HAL 82]

[HOA 81]

[KIE 79]

[NIL 82]

[pAR 81]

[PAR 82]

[PAR 83]

[POP 77]

Ambler, A.L., Good, D.I., Burger, W.F.

“Report on the Language Gypsy”.

ICSCA-CW-1, IIIC L’niversity of Texas at

Austin. 1976.

The specification of process
s:;llchroniz~tion b>- path expressions Lec-
t]~re !iotes in Com~ccr Science 16, NeW

York, 1974,

“Process Synchronization by Behavior Con-
trollers”, Ph. D. thesis, University of

Texas at Austin, December 1979.

Dahl, O. -J., Myhrbaug, B., and Nygaard,
-.
h .) “SI!lbLA-67 Common Base Language”,

Norwegian Computing Center, Oslo, Norway,
1970.

Eggert, P. R,, Detecting Software Errors
Before Execution, UCLA Computer Science
Department, Report No. CSD-8104O2, April
1981,

FIalim, N., and Pershing, J., “A New Lan-
guage for Writing Portable and Secure Sys-
tems”, IBN Research Report RC 9650

Hoare, C. A. R,, “The Emperor’s old
clothes”, rQprinted in Comm. ACM, vol. 24,

PP. 75-83, February 1981.

Kieburtz, R., and Silberschatz, A, , “Ac-
cess-Right Expressions”, University of
Texas, Technical Report, 1979.

NIL Rcicrence Manual, IBY T. J. Watson
Research Laboratory, internal document,

Parr, F. N., and Strom, R. E., “Portable,
Secure, Comnmnications Software”. FrO -._
ceedings, Internatiollal Conference on
Communications, Denver, _&e, 1981, also

IBM Research Report RC 8875.

Parr, F. N., and Strom, R, E,, “NIL: A
Programming Language for Software Archi-

tecture”, Proc, IEEE 6th International
Conference on Software Engineering,

Tokyo, expanded version also available as
IBM Research Report RC 9227.

Parr, F. N., and Strom, R. E., “A Righ
Level Langllage for Distributed Systems
programming”, to ,lppear in IBM sy~t~ms
~ournal, special issue on communication,
1983.

popek, G. J., Horning, J. J., Lamps on, B.
h’. , Xi.tchcll, J. G., and London, R, L,
“Notes on the design of EUCLID”, Proc, ACN
Conf. On Language Design for Reliable
Software, March, 1977,

284

