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Abstract

In this paper we introduce the notion of map, which is a notation for the set of occurrences of a symbol
in a syntactic expression such as a formula or a λ term. We use binary trees over 0 and 1 as maps, but some
well-formedness conditions are required. We develop a representation of lambda terms using maps. The
representation is concrete (inductively definable in HOL or Constructive Type Theory) and canonical (one
representative per λ term). We define substitution for our map representation, and prove the representation
is in substitution preserving isomorphism with both nominal logic λ terms and de Bruijn nameless terms.
These proofs are mechanically checked in Isabelle/HOL and Minlog respectively.

The map representation has good properties. Substitution does not require adjustment of binding
information: neither α conversion of the body being substituted into, nor de Bruijn lifting of the term being
implanted. We have a natural proof of the substitution lemma of λ calculus that requires no fresh names, or
index manipulation.

Using the notion of map we study conventional raw λ syntax. E.g. we give, and prove correct, a decision
procedure for α equivalence of raw λ terms that does not require fresh names.

We conclude with a definition of β reduction for map terms, some discussion on the limitations of our
current work, and suggestions for future work.
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1. Introduction

In this paper we introduce the notion of map which is a generalization of the notion of
occurrence of a symbol in syntactic expressions such as formulas or λ terms. We use binary trees
over 0 and 1 as maps. For example, consider a λ term (xz)(yz) in which each of the symbols x and
y occurs once and the symbol z occurs twice; we use (10)(00), (00)(10) and (01)(01) to represent
the occurrences of the symbols x, y and z respectively. The bound positions are represented only
by a constant � (called box). We will write (omitting some parentheses for readability)

(10 00)\(00 10)\(01 01)\(�� ��)

for the S combinator λxyz. (xz)(yz). � may also occur unbound. Free variables may still occur
in terms, e.g. the informal term λz.(xz) is written as 01\(x �), but there are no bound names or
de Bruijn indices.

Some well-formedness conditions will be required (Sections 2 and 3). Since we want a
canonical representation (one notation per lambda term), although λx x . x is accepted as a correct
notation for a lambda term, we will not accept 1\1\� as a correct notation. Also, consider the
substitution of (� �) for the position 10 (the first �) in 01\(� �); we get 01\((� �) �) which
does not match the intuition hinted at above because 0 is not a position in (� �). For this reason
we identify the map (0 0) with the map 0, as discussed in Section 2.

1.1. Three abstraction mechanisms

In this paper we study three abstraction mechanisms and the three associated representations
of lambda terms: Λ of raw λ terms [2], L of map λ-expressions and D of de Bruijn-
expressions [5], generated by the following grammar:

K , L ∈ Λ ::= x | � | app(K , L) | lam(x, K )

M, N ∈ L ::= x | � | app(M, N ) | mask(m, M) (where m | M)

D, E ∈ D ::= x | � | app(D, E) | i | bind(D)

x ∈ X The type of atoms or parameters
i ∈ I The type of natural numbers, used as indices

m ∈ M The type of maps.

The three abstraction mechanisms of these three representations are:

Lambda abstraction This is abstraction by parameters, and is realized by the constructor lam

(λ) in Λ. Quotienting by α equivalence is needed to make this mechanism work.
The information about binding is shared between binding occurrences and bound
occurrences (as shared names), and substitution may require adjusting both binding
occurrences and bound occurrences of the base term (α-conversion).

Mask-abstraction This is abstraction by maps, and is realized by the constructor mask in L. (We
write m\M for mask(m, M).) For this representation to work, mask must be guarded by
a simultaneously defined relation, written m | M , which is explained in Section 3. The
information about binding is carried only at the binding occurrences (as maps). It will
be seen that substitution does not require any adjustment of binding information.

Bind-abstraction This is abstraction by indices, and is realized by the constructor bind in D. The
information about binding is carried only at the bound occurrences (as indices pointing
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to the binding point). Substitution requires adjustment of the implanted term (de Bruijn
lifting).

The three types, Λ, L and D all have parameters x ∈ X and � (box) as atomic objects, and
have the constructor app in common. (See Remark 2 for further comment on the use of unbound
� in mask-abstraction.)

We will compare these three types through maps. Our strategy is to use L as the main type
by which the types Λ and D are analyzed. The main results of the paper will show that Λ
quotiented by the α equivalence relation, and the datatype D, are both isomorphic to L. Here,
by an isomorphism we mean a bijection which respects constants, application and substitution.

1.2. Some properties of L

The datatype L enjoys good properties. First, the closed expressions in L (possibly containing
unbound �) are constructed from a finite set of elements, whereas the traditional approach
requires an infinite set of variables even to represent all closed terms. For example, to construct
the S combinator λxyz. (xz)(yz), one must first construct (xz)(yz) containing three distinct free
variables. In our approach S = (10 00)\(00 10)\(01 01)\(�� ��), can be constructed from the
expression (�� ��) by abstracting the three maps (01 01), (00 10), and (10 00). (Our language
of maps is infinite.) Also note that we can compute the three maps from λxyz. (xz)(yz), but
cannot recover the three variables x, y, z from our representation of the S combinator since, in
the traditional approach, there are infinitely many α-equivalent representations of S. Of course
de Bruijn nameless terms have these properties too.

A property that distinguishes L from D is the structural induction principle for L terms.
de Bruijn nameless terms, as a concrete datatype, have a structural induction principle, but it
does not capture the intended reading of the concrete structure as representing binding. A classic
example of the use of term induction is the proof of the substitution lemma. For de Bruijn terms,
this lemma is proved by structural induction, but with tricky lemmas about adjustment of indexes.
Even worse, for named representations like nominal logic, a proof of the substitution lemma
requires choosing a fresh name and α converting. In Lemma 2 we give a proof by structural
induction over L terms and equational reasoning; no name or index adjustment is required.

1.3. Formal development

Much of the work in this paper is formalized and mechanically checked in
Isabelle/HOL/Nominal [23] and/or in Minlog [21]. Section 4.5 outlines a formal development
of the adequacy of the representation L with respect to lambda terms in Nominal Isabelle;
i.e. an isomorphism that respects substitution. Naturally this proof had to be done using
Isabelle. Section 5 describes a proof of adequacy of the representation L with respect
to lambda terms in de Bruijn nameless notation. This proof is formalized in Minlog,
due to expertise and preferences of the authors. The proof developments are available
online from http://homepages.inf.ed.ac.uk/rpollack/export/SatoPollackSchwichtenbergSakurai-
isabelle.tgz,SatoPollackSchwichtenbergSakurai-minlog.tgz.

2. The types X, I and M

In this section we introduce the datatype M of maps which will be used throughout the paper.
We also mention the type X of parameters and the type of natural numbers, I, used as indices.

http://homepages.inf.ed.ac.uk/rpollack/export/SatoPollackSchwichtenbergSakurai-isabelle.tgz,SatoPollackSchwichtenbergSakurai-minlog.tgz
http://homepages.inf.ed.ac.uk/rpollack/export/SatoPollackSchwichtenbergSakurai-isabelle.tgz,SatoPollackSchwichtenbergSakurai-minlog.tgz
http://homepages.inf.ed.ac.uk/rpollack/export/SatoPollackSchwichtenbergSakurai-isabelle.tgz,SatoPollackSchwichtenbergSakurai-minlog.tgz


1076 M. Sato et al. / Indagationes Mathematicae 24 (2013) 1073–1104

Fig. 1. The datatype M.

We use i, j, k as metavariables ranging over I. We reserve and use the box symbol � as a special
constant denoting a hole to be filled with other expressions.

Fix a countably infinite set of atoms X for global (free) variables (also called parameters),
and assume only that equality between parameters is decidable. We use x, y, z, as metavariables
ranging over parameters. We adopt the polymorphic notation x ♯Σ from nominal logic.1 In our
map representation (as in well known representations such as locally nameless [1]) there is no
“binding” in the nominal sense, and x ♯Σ means parameter x literally does not occur in structure
Σ of whatever type.

2.1. The datatype M of maps

The type M of maps will be used to realize the abstraction mechanism in our target domain
L. One can obtain the domain M from the domain of Lisp symbolic expressions (binary trees)
generated from the two atoms 0 and 1, by making the identification cons(0, 0) = 0. This kind of
symbolic expression with the property cons(0, 0) = 0 was introduced by the first author of this
paper in Sato–Hagiya [18] and Sato [16].

In order to formalize M as a datatype (Fig. 1) we introduce an auxiliary datatype M+ of
non-zero maps. We can also represent M by the following unambiguous context-free grammar.

M ::= zero | m+

m+, n+
∈ M+

::= one | inl(m+) | inr(m+) | cons(m+, n+).

Notational convention 1. We use m, n, p etc. as metavariables ranging over maps. We write
0 for zero and 1 for one. In the formal development we occasionally must pay attention to the
difference between M and M+, but we suppress it in the rest of this paper.

As a general notational convention, throughout the paper we use sans-serif font for constructor
functions and slant font for non-constructor functions. For example, in Fig. 1, the first five rules
are all constructor rules which are used to construct new objects, while the last rule incl is a
non-constructor rule used to include already constructed non-zero maps as elements in M.

An important function mapp : M × M → M is defined as follows.

mapp(m, n) :=


0 if m = n = 0,

inl(m) if m ≠ 0 and n = 0,

inr(n) if m = 0 and n ≠ 0,

cons(m, n) if m ≠ 0 and n ≠ 0.

1 In our nominal Isabelle formalization we use the same type of nominal atoms for X and for the names in nominal
lambda terms; ♯ is the Isabelle nominal freshness relation.
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Fig. 2. Simultaneous inductive definition of the type L and the divisibility relation | ⊆ M × L.

It is easily seen that mapp is injective. We write (m n) and also mn for mapp(m, n). Moreover,
we write (m n p) for ((m n) p) and mnp for (mn)p. For example, (0 0 0) = ((0 0) 0) = (0 0)0 =

00 = 0.
We define the orthogonality relation ⊥ on M by the following inductive definition:

m ⊥ 0 0 ⊥ n
m ⊥ n m′

⊥ n′

mm′
⊥ nn′

Note that ⊥ is symmetric, and 0 ⊥ n for every map n. We can easily verify that if 1 ⊥ m, then
m = 0.

3. The datatype L of lambda expressions

Our target domain L of map λ-expressions (or, simply, lambda expressions) is defined by the
rules in Fig. 2. In this definition, we use maps in the rule which constructs lambda expressions
mask(m, M) ∈ L, called abstracts. In this rule, there is a third premise m | M (read m divides
M) which allows the construction of an abstract m\M from m and M only when this divisibility
condition is satisfied.

We can also define L by the following grammar.

M, N ∈ L ::= x | � | app(M, N ) | mask(m, M) (m | M).

This grammar is not context-free since mask(m, M) is accepted only if m | M . The grammar is
however unambiguous and the syntactic objects defined by the grammar correspond bijectively
to lambda expressions inductively defined in Fig. 2. Thus, the principle of ‘what you see is what
you get’ applies to lambda expressions.

Remark 1. The rules of Fig. 2 do not fit the usual notion of “simultaneous inductive definition”
since L occurs in the type of divisibility, although L is being defined simultaneously with divis-
ibility. This kind of definition is called inductive–inductive definition (Forsberg and Setzer [7]).
Since divisibility can also be viewed as a Boolean-valued function defined by recursion over L,
Fig. 2 could be reformulated as a simultaneous inductive–recursive definition (Dybjer [6]).

Further, since the relation m | M is decidable, one can consider a formalization where the
constructor mask only takes the first two arguments, and the third (proof) argument is irrelevant.

Since we do not use a formal proof tool that supports inductive–inductive or inductive–
recursive definition, we give a conventional definition (Section 3.1) of L as a subset (predicate)
of a datatype of symbolic expressions.

Notational convention 2. We use M, N , P as metavariables ranging over lambda expressions.
We write (M N ) and also M N for app(M, N ). We write (m\M) and also m\M for mask(m, M).
A lambda expression of the form mask(m, M) is called an abstract. We use A, B as metavariables
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Fig. 3. Inductive definition of the datatype S.

Fig. 4. Definitions of ML ⊆ M × S (written · | ·) and L ⊆ S.

ranging over abstracts, and write A for the subset of L consisting of all the abstracts.

3.1. The datatype S and embedding of L in S

In the definition of L above, we used an auxiliary divisibility relation |, defining L and |

by simultaneous inductive–inductive definition. This approach is foundationally nice, since no
extra objects are involved in the construction of L from the types M and X. However, in order
to formalize our ideas in a mechanical proof system, we now take another route to define the
domain L. In this approach, we first define a datatype S of symbolic-expressions, as shown in
Fig. 3. We will then realize L within S by defining a subset L of S which is isomorphic to L.

Unlike mask : M × L → L (Fig. 2) which is partial, smask is a total binary operation on maps
and symbolic-expressions. Every symbolic-expression is uniquely generated from �, X and M
by finitely many applications of sapp and smask.

Notational convention 3. We use S, T as metavariables ranging over S. We write (S T ) and also
ST for sapp(S, T ). We write (m\S) and also m\S for smask(m, S).

Now we inductively define a relation ML ⊆ M × S, written · | ·, and then a subset L of
“well-formed” elements of S, as shown in Fig. 4. We call the elements of L symbolic lambda
expressions, and use M, N , P as metavariables ranging over symbolic lambda expressions.
Relations L and ML are not simultaneously defined; ML is completely defined on its own, and
carries all the information that is interesting:

• m | S means “S is well-formed and m is a position of unbound boxes in S”,
• 0 | S means “S is well-formed”.

We show the definition of L in Fig. 4 in order to point out the relationship with the definition
of L.

Definition 1 (Abstracts in L). A symbolic lambda expression is called an abstract if it is of the
form m\M . (Recall this implies m | M .) Metavariables A, B, C range over abstracts, and we
write A for the set of abstracts in L.

Definition 2 (Hole Filling and Instantiation). We write Mm[P] for fill(M, m, P), the result of
filling the boxes (holes) in M specified by map m with P . Mm[P] is defined only if m | M . We
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write A▽P for the result of instantiating abstract A with P .

fill : L × M × L → L

�1[P] := P
�0[P] := �
x0[P] := x

(M N )(m n)[P] := (Mm[P] Nn[P]) if m | M and n | N
(n\N )m[P] := n\(Nm[P]) if m | (n\N )

▽ : A × L → L

(m\M)▽P := Mm[P].

To see why the last equation defining fill is well formed and correct, note that m ⊥ n, so n has
0 in every position bound by m (where copies of P will be implanted). Thus n | Nm[P], and n
does not capture any positions in implanted copies of P .

Hole filling respects the definition of L:

m | M ∧ 0 | N H⇒ 0 | Mm[N ].

Hole filling is a homomorphism, going under a binder without the need to adjust the abstractor
(as needed with nominal logic and raw λ syntax) or the object being implanted (as needed with
de Bruijn index representation).

3.2. The use of parameters in L

Parameters are necessary to express open terms. In conventional presentations of binding,
parameters can become bound, and can be substituted for [1,2,4,13,14,23]. These cited works
differ in degree of formality, and in the mechanism of binding and substitution, but all use names
in some way.

We define functions map and skeleton in Definition 3, showing how parameters can be used in
our representation L. map : X×L → M computes the map of all the occurrences of a parameter in
a symbolic lambda term; skel : X × L → L replaces all occurrences of a parameter in a symbolic
lambda term with �. Together map and skel are used to abstract a parameter from a symbolic
lambda term, and to define substitution for a parameter (Definition 4). The use of map and skel
to represent abstracts goes back to [18,16,17], but the map part is greatly simplified in this paper.

Definition 3 (Map and Skeleton). We write Mx for map(x, M), and M x for skel(x, M).

map : X × L → M skel : X × L → L

yx :=


1 if x = y,

0 if x ≠ y.
yx

:=


� if x = y,

y if x ≠ y.

�x := 0 �x
:= �

(M N )x := (Mx Nx ) (M N )x
:= (M x N x )

(m\M)x := Mx (m\M)x
:= m\M x .

It is easy to see that (1) Mx | M x and that (2) Mx = 0 if and only if M x
= M . (See also Propo-

sition 4.)
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Definition 4 (Lambda Abstraction and Substitution).
lam : X × L → A subst : L × X × L → L

lam(x, M) := Mx\M x M{x\N } := lam(x, M)▽N .

Unlike mask (Figs. 2 and 4), lam is not injective (e.g. lam(x, x) = lam(y, y)), but we have:

lam(x, M) = lam(x, N ) H⇒ M = N .

Remark 2. Now we can draw a comparison between the mask abstraction of our representation,
and the abstraction of various local representations [1,11,14] that may illuminate the rôle
of unbound boxes. For example consider the locally nameless representation [1]. The two
constructors of well-formed lambda terms from smaller well-formed terms are application and
abstraction. Application just puts two well-formed terms next to each other, and this construction
is shared by the two representations.

More interestingly, abstraction takes a well-formed lambda term and some information about
what is to be abstracted from it. In mask abstraction, this “information about what is to be
abstracted” is exactly a map, and abstraction is just putting a map and a well-formed lambda
term next to each other. This requires that “well-formed” allows the presence of unbound boxes.
However in well-formed locally nameless terms, unbound indices are not allowed (this would
negate the point of locally nameless terms, namely that they are “index closed” so do not require
de Bruijn lifting for manipulations such as substitution). Abstraction of a locally nameless term
is not placing an abstractor, λ, next to a well formed term, t , but requires replacing a free name
in t (that is to be bound) by the appropriate index to be bound by an outermost λ.

We could, if desired, remove unbound boxes from the notion of well-formed mask terms,
using a function such as lam of Definition 4 that replaces a free name by boxes, similarly to the
abstraction of [1,11,14], but we would lose the name-free aspect of mask terms, and they would
behave very much like the local representations [1,11,14].

Conversely, could we modify a local representation such as [1,11,14] to be name-free by
allowing some other constants (analogous to unbound �) in well-formed terms? The answer
seems to be no, as all the cited local representations depend on having no free local names.

“Abstraction” is not a symmetrical operation: the body of the abstraction should be a well-
formed term, but the abstractor is some other kind of information. Our bind abstraction is the
only approach we know that uses this “other kind of information” in the abstractor to completely
specify what is to be abstracted, rather than sharing it between the body and the abstractor (e.g.
nominal representation) or putting it entirely in the body (e.g. de Bruijn representation). That is
why we can define abstraction without having to modify the body.

We can prove the following equations about substitution.

Proposition 1.

y{x\P} =


P if x = y,

y if x ≠ y.

�{x\P} = �
(M N ){x\P} = (M{x\P} N {x\P})

(m\M){x\P} = m\(M{x\P}) if m | M

lam(y, M){x\P} = lam(y, M) if x = y or x ♯ M
lam(y, M){x\P} = lam(y, M{x\P}) if x ≠ y and y ♯ P

lam(y, M) = lam(z, M{x\z}) if z ♯ M.
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Fig. 5. Definition of the datatype Λ.

To see why the fourth equation is well formed, note that since m | M , if x occurs in M then the
corresponding positions in m must be 0. Thus the right hand side is well formed and does not
capture any positions in P .

The first four equations of Proposition 1 show how to completely evaluate any L term
containing a substitution. Unlike the last three equations (which are often used in the standard
definition of substitution on λ terms), the first four rules have no freshness side condition. Thus,
in our system, substitutions can be eliminated without α-conversion.2 As an example we mention
the usual substitution lemma.

Lemma 2 (Substitution Lemma). If x ≠ y and x ♯ P, then

M{x\N }{y\P} = M{y\P}{x\N {y\P}}.

Proof. By induction on M ∈ L, using Proposition 1 to compute the substitution operation
without choosing fresh names. The two side conditions of the lemma are used only in the
parameter case; the interesting case of abstraction is proved by equational reasoning using the
induction hypothesis. �

Compare this proof with that given in Urban [23] for informal α-equated lambda terms: when
M = λz.M ′ we must assume z ♯ (x, y, N , P). In the same paper Urban shows a formal proof
of the proposition for nominal lambda terms that is automated and slick, but still proceeds by
choosing a sufficiently fresh variable in the abstraction case.

We conclude this section by giving a lemma which will be used in the proof of Theorem 16.

Lemma 3. Suppose z ≠ x, Pz = 0, Mz = Nz and M z
{x\P} = N z . Then M{x\P} = N.

Proof. By induction on M . �

4. The datatype Λ of raw λ terms

We define the set Λ of raw λ terms as a datatype constructed by the rules in Fig. 5. We can
also define Λ as the language characterized by the following context-free grammar.

K , L ∈ Λ ::= x | � | app(K , L) | lam(x, K )

x ∈ X.

Notational convention 4. We use J, K , L as metavariables ranging over raw λ terms. We write
(K L) and also K L for app(K , L).

2 Other representations have this same property [11,1,14].
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As observed by Pitts and Gabbay [8,13], the notion of equivariance plays a key role in
studying the datatype Λ. We quickly review the notion here. Let GX be the group of finite
permutations on X. Suppose that GX acts on two sets U and V and let f : U → V . The
map f is said to be an equivariant map if f commutes with all π ∈ GX and u ∈ U , namely,
f (uπ ) = f (u)π where we write (−)π for the action of π on (−). We will also write x//y for
the permutation which (only) swaps x and y. We can naturally define the group action of GX on
all the objects we introduce in this paper including, in particular, objects in Λ, L and D. Then
all the functions and relations we introduce have the equivariance property. Formally this must
be proved for particular functions and relations for which it is required, but the essential reason
why this holds is that we define functions etc. without mentioning any particular atom, relying
only on the fact that the equality relation on X is decidable and that X contains infinitely many
parameters. For example, the constructors app and lam for the datatype Λ are equivariant maps.

Definition 5 (Free Parameters). We define the set FP(K ) of free parameters in K as follows.

FP(x) := {x}

FP(�) := {}

FP(K L) := FP(K ) ∪ FP(L)

FP(lam(x, K )) := FP(K ) \ {x}.

We mean Λ to be pure (inductively defined) syntax. Thus x ♯ K implies x ∉ FP(K ) but the
converse is not true in general.

4.1. Map/skeleton functions on Λ

Definition 6 (Map and Skeleton). We define two functions map and skel, reminiscent of
Definition 3. We write Kx for map(x, K ), and K x for skel(x, K ).

map : X × Λ → M skel : X × Λ → Λ

yx :=


1 if x = y,

0 if x ≠ y
yx

:=


� if x = y,

y if x ≠ y.

�x := 0 �x
:= �

(K L)x := (Kx Lx ) (K L)x
:= (K x Lx )

lam(y, K )x :=


0 if x = y,

Kx if x ≠ y
lam(y, K )x

:=


lam(y, K ) if x = y,

lam(y, K x ) if x ≠ y.

We can characterize the relation x ∈ FP(K ) using map and skeleton.

Proposition 4 (Freshness). x ∉ FP(K ) ⇐⇒ Kx = 0 ⇐⇒ K x
= K .

Lemma 5 (Simple Properties of map and skel).

1. (K x )y
= (K y)x .

2. If x ≠ y then (K x )y = K y .
3. (K x )x

= K x and (K x )x = 0.

4.2. α equivalence

Definition 7 (α Equivalence). We define the α equivalence relation, =α , using the map/skeleton
functions (Definition 6) as shown in Fig. 6.
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Fig. 6. Definition of the α equivalence relation.

It is easy to see that =α is a decidable equivalence relation. It is interesting that we can
decide α equivalence of raw syntax without any renaming. For example, we can show that
lam(x, lam(y, yx)) =α lam(y, lam(x, xy)) as follows.

01 = 01

10 = 10

� =α � � =α �

�� =α ��

lam(y, y�) =α lam(x, x�)

lam(x, lam(y, yx)) =α lam(y, lam(x, xy))

Of course a similar end can be accomplished by translation to de Bruijn nameless representation,
but we can do this staying in raw lambda terms (with the special constant �).

The following lemma establishes the congruence of =α , i.e. the constructors app and lam are
well-defined on =α equivalence classes.

Lemma 6. Suppose K =α L. Then:
1. K z

=α L z and Kz = L z ,
2. lam(z, K ) =α lam(z, L).

Proof. Show 1 by induction on the derivation of K =α L; 2 follows from 1. �

In the rest of this subsection we outline a proof that =α is equivalent to a standard definition
of α equivalence. The reader may be interested in papers giving other relations deciding α

equivalence without renaming [22,10,12,20,9]. The discussion of α equivalence in Section 2
of [9] is especially interesting.

The following relation ∼ is introduced in Gabbay and Pitts [8]:

x ∼ x � ∼ �
K ∼ K ′ L ∼ L ′

(K L) ∼ (K ′ L ′)

K x//z
∼ L y//z z ♯ {x, y, K , L}

lam(x, K ) ∼ lam(y, L)

Proposition 2.2 in [8] proves that ∼ coincides with a standard definition of α equivalence; here
we show that =α coincides with ∼. Our proof is formalized in Isabelle/HOL. Although the
algorithm of Fig. 6 does not use fresh variables, our proof of correctness does. The tricky proofs
of Lemmas 8 and 10 are detailed in an Appendix.

Lemma 7. 1. If z ♯ K and y ∉ {x, z} then (K x//z)y
= (K y)x//z .

2. If z ♯ K and y ∉ {x, z} then (K x//z)y = (K x )y .
3. If z ♯ K then (K x//z)z

= (K x )x//z and (K x//z)z = Kx .
4. If z ♯ K then (K x//z)x

= K x//z and (K x//z)x = 0.

Lemma 8. If z ♯ {x, y, K , L} then K x//z
=α L y//z

H⇒ K x
=α L y and Kx = L y .

Proposition 9. K ∼ L H⇒ K =α L.

Lemma 10. If z ♯ {x, y, K , L} then K x
∼ L y and Kx = L y H⇒ K x//z

∼ L y//z .
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Fig. 7. Definition of the substitution relation.

Proposition 11. K =α L H⇒ K ∼ L.

4.3. Substitution

It is well-known that a choice function on names is required to define the substitution
operation canonically on raw λ terms, due to the possibility of parameter capture. Here, we
define substitution up to α equivalence, not as an operation but as a 4-ary relation.

Definition 8 (Substitution). We define Subst ⊆ Λ × X × Λ × Λ as shown in Fig. 7. We write
K {x\J } → L for (J, x, K , L) ∈ Subst.

We wish to show that the substitution relation enjoys the expected properties (Proposition 14
and Theorem 16). In the proofs below we will sometimes induct on the size of a derivation D
asserting that a substitution relation holds, and we will write |D| for the size of the derivation.
We will also use induction on the size of a raw lambda term K (a lambda expression M), and we
will write |K | (|M |) for the size of K (M , respectively).

We first prepare the following two lemmas.

Lemma 12. y ∉ FP(K ) H⇒ ∃L . lam(x, K ) =α lam(y, L) and |K | = |L|.

Proof. See the Appendix. �

Lemma 13. If z ∉ {x} ∪ FP(J ) and D proves K {x\J } → L, then (1) Kz = L z and (2) we can
construct a derivation D′ such that |D′

| = |D| and D′ proves K z
{x\J } → L z .

Proof. By induction on D using Proposition 4 in the base case. �

Proposition 14 (Properties of Substitution).
1. (Existence) ∃L . K {x\J } → L.
2. (Uniqueness)

(K {x\J } → L ∧ J =α J ′
∧ K =α K ′

∧ K ′
{x\J ′

} → L ′) H⇒ L =α L ′.

3. (Congruence)

(K {x\J } → L ∧ J =α J ′
∧ K =α K ′

∧ L =α L ′) H⇒ K ′
{x\J ′

} → L ′.

Proof. In this proof, we call the last rule of Fig. 7 the α-cut-rule.
Proof of 1. By induction on |K |. The crucial case is for lam: given lam(z, K ), the goal is to

find L such that lam(z, K ){x\J } → L .
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We can take z′ such that z′
∉ FP(K ) and z′

∉ {x} ∪ FP(J ). By Lemma 12, there
exists K ′ such that lam(z, K ) =α lam(z′, K ′) and |K | = |K ′

|. By IH, there exists L ′ such that
K ′

{x\J } → L ′. Therefore, we have lam(z′, K ′){x\J } → lam(z′, L ′). By α-cut-rule, we have
lam(z, K ){x\J } → lam(z′, L ′).

Proof of 2. We prove this case by inspecting two derivations: D which proves the judgment
K {x\J } → L and D′ which proves K ′

{x\J ′
} → L ′. Use double induction on |D| and |D′

|.
We classify the cases by the last rules of the derivations D and D′.

(1) One or both of the last rules are α-cut-rules: This case is reduced to other cases by considering
the premise of the α-cut-rule.
(2) Both of the rules are lam-rules: Let

z ∉ {x} ∪ FP(J ) K {x\J } → L
lam(z, K ){x\J } → lam(z, L)

z′
∉ {x} ∪ FP(J ′) K ′

{x\J ′
} → L ′

lam(z′, K ′){x\J ′
} → lam(z′, L ′)

be the last rules of each derivation. Since lam(z, K ) =α lam(z′, K ′), we have K z
=α K ′z′

and
Kz = K ′

z′ . By the premise of each rule and Lemma 13, we have K z
{x\J } → L z , Kz = L z ,

K ′z′

{x\J ′
} → L ′z′

, and K ′

z′ = L ′

z′ . Since K z
=α K ′z′

, we have L z
=α L ′z′

by IH. We also have
L z = L ′

z′ from Kz = K ′

z′ , Kz = L z , and K ′

z′ = L ′

z′ . Therefore, we have lam(z, L) =α lam(z′, L ′).
(3) Other cases: Easy.

Proof of 3. Clear from α-cut-rule. �

4.4. Interpretation of raw λ terms in L

Definition 9 (Denotation). We define a function [[·]] : Λ → L as follows. (Recall lam from
Definition 4.)

[[x]] := x
[[�]] := �

[[(K L)]] := ([[K ]] [[L]])

[[lam(x, K )]] := lam(x, [[K ]]).

We say that [[K ]] is the denotation of K in L; i.e. a raw λ term K is a name denoting the λ term
[[K ]]. Thus, our view is that elements of L correspond bijectively to ideal λ terms, while, for
example, lam(x, x) and lam(y, y) are two different names of the same λ term, 1\�.

Theorem 16 below shows that L adequately represents the structure of Λ modulo α

equivalence. In particular, the third claim of the theorem shows that the substitution relation
in Λ is represented by the substitution operation in L. We first prepare the following lemma.

Lemma 15 (Preservation of Map and Commutation of Skel with [[−]]).

1. [[K ]]x = Kx .
2. [[K ]]

x
= [[K x

]].

Proof. By induction on K . �

Theorem 16 (Properties of Denotation).

1. M ∈ L H⇒ ∃K ∈ Λ. [[K ]] = M.
2. K =α L ⇐⇒ [[K ]] = [[L]].
3. K {x\J } → L ⇐⇒ [[K ]]{x\[[J ]]} = [[L]].
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Proof. Proof of 1. By induction on |M |. Consider the case where M = n\N . Choose a z such that
z ∉ FP(N ) and fill N with z at n. Since Nn[z] is of the same size as N , we have IH for it, namely,
we have K such that [[K ]] = Nn[z]. Then we have [[lam(z, K )]] = [[K ]]z \ [[K ]]

z
= n\N = M .

Proof of 2. By induction on |K |. We use IH and Lemma 15 in the case where K = lam(x, K ′)

and L = lam(y, L ′) for both directions.
Proof of 3. (H⇒) By induction on |D| where D proves K {x\J } → L . We consider the case

where D is of the form:

z ∉ {x} ∪ FP(J ) D′

lam(z, K ){x\J } → lam(z, L)

and D′ proves K {x\J } → L . Then, by Lemma 13, we have (1) Kz = L z and (2) D′′ such
that |D′′

| = |D′
| and D′′ proves K z

{x\J } → L z . Since |D′′
| = |D′

| < |D|, we have IH
for D′′, namely, [[K z

]]{x\[[J ]]} = [[L z
]]. Now, our goal in this case is: [[lam(z, K )]]{x\[[J ]]} =

[[lam(z, L)]]. We can achieve the goal as follows.

[[lam(z, K )]]{x\[[J ]]} = ([[K ]]z \ [[K ]]
z){x\[[J ]]} by Definition 9

= Kz\([[K
z
]]{x\[[J ]]}) by Proposition 1 and Lemma 15

= L z\[[L
z
]] by (1) and IH

= [[L ]]z \ [[L]]
z by Lemma 15

= [[lam(z, L)]] by Definition 9.

(⇐H) By induction on |K |. The interesting case is where K = lam(y1, K1). In this case L
must be of the form lam(z1, L1), and we have

[[lam(y1, K1)]]{x\[[J ]]} = [[lam(z1, L1)]]

by assumption. Choose a parameter z such that z ∉ {x} ∪ FP(J K1L1). Then, by Lemma 12, we
can find K2 and L2 such that |K1| = |K2|,

(1) lam(y1, K1) =α lam(z, K2) and (2) lam(z1, L1) =α lam(z, L2).

Then, using (1) and (2), the assumption can be rewritten to

[[lam(z, K2)]]{x\[[J ]]} = [[lam(z, L2)]].

By simplifying this, we have

(K2)z\([[(K2)
z
]]{x\[[J ]]}) = (L2)z\[[(L2)

z
]].

Hence, [[(K2)
z
]]{x\[[J ]]} = [[(L2)

z
]]. From this, by Lemma 3, we have

[[K2]]{x\[[J ]]} = [[L2]].

Then, since |K2| < |lam(z, K2)| = |lam(y1, K1)|, by IH, we have a derivation D which proves
K2{x\J } → L2. Using D, we can construct the following derivation which achieves our goal in
this case.

lam(x1, K1) =α lam(z, K2) J =α J D1 lam(z, L2) =α lam(y1, L1)

lam(x1, K1){x\J } → lam(y1, L1) ,

where D1 is:

z ∉ {x} ∪ FP(J ) D
lam(z, K2){x\J } → lam(z, L2). �
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It is to be noted that we proved Theorem 16 without using Proposition 14, and that we can use this
theorem to give an alternative proof of Proposition 14. In fact, it is easy to see that Proposition 14
follows from Theorem 16.

4.5. Formalized correctness of the representation L w.r.t. nominal Isabelle

Theorem 16 can be read as the correctness of L if you believe that Λ, =α and Subst are a
correct representation of raw λ syntax and α equivalence. Now we outline a direct proof that L

is in substitution preserving isomorphism with the nominal representation of λ terms in Urban’s
nominal package for Isabelle/HOL [23]. We have formalized this proof in Isabelle/HOL.

Consider a proof of the first claim in Theorem 16. We define an inverse of denote:

⌊·⌋ : L → Λ
⌊x⌋ := x
⌊�⌋ := �

⌊(M1 M2)⌋ := (⌊M1⌋ ⌊M2⌋)

⌊m\M⌋ := lam(x, ⌊Mm[x]⌋) if x ♯ M .

In the last rule, to get a name for m\M , we fill hole m in M with a fresh parameter x , recursively
compute a name for that term (which is smaller than m\M), then abstract x in the raw language.
These equations define a function only if there is a canonical way to choose x ♯ M (which is
slightly more than we originally assumed about X). Even if we satisfy that requirement (e.g.
take X to be totally ordered), ⌊·⌋ is only a right inverse of [[·]], since [[·]] is not injective due to
α-variance in Λ.

However, if we switch our view from raw lambda terms to nominal lambda terms, then we can
prove that ⌊·⌋ is a well defined function with the given equations, that it is a two-sided inverse to
[[·]], and that this bijection preserves substitution (recall Definitions 2 and 4):

[[K {x\J }]] = fill([[K ]]x , [[K ]]
x , [[J ]]) = lam(x, [[K ]])▽[[J ]] = [[K ]]{x\[[J ]]}. (1)

We prove Eq. (1) by induction on K . In the abstraction case where K = λy.K ′ we must assume
y ♯ (x, J ).

5. The datatype D of de Bruijn expressions

In this section we introduce the datatype D of de Bruijn expressions. Since we wish to relate
D with L, we will construct a larger domain SD of symbolic expressions which contains both L
and D naturally, and study the structure of SD.

We have formally checked all the lemmata, propositions and theorems in this section in
Minlog.

5.1. The datatype SD and its subset LD

The datatype SD is defined inductively as shown in Fig. 8. We call an element in SD an
SD-expression.

Notational convention 5. We use X, Y, Z as metavariables ranging over SD-expressions. We
write (X Y ) and also XY for sdapp(X, Y ). We will write m\X for sdmask(m, X), and write [X ]

for sdbind(X).
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Fig. 8. Definition of the datatype SD.

We define the mask degree md(X), the bind degree bd(X), and the abstraction degree ad(X)

of an SD-expression:

Definition 10 (Mask Degree, Bind Degree, Abstraction Degree).

md : SD → I bd : SD → I
md(X) := 0 if X ∈ X ∪ {�} ∪ I bd(X) := 0 if X ∈ X ∪ {�} ∪ I

md(XY ) := md(X) + md(Y ) bd(XY ) := bd(X) + bd(Y )

md(m\X) := md(X) + 1 bd(m\X) := bd(X)

md([X ]) := md(X) bd([X ]) := bd(X) + 1

ad(X) := md(X) + bd(X).

We also define the set FI(X) of free indices in X as follows.

FI(X) := {} if X ∈ X or X = �
FI(i) := {i}

FI(XY ) := FI(X) ∪ FI(Y )

FI(m\X) := FI(X)

FI([X ]) := {i − 1 | i ∈ FI(X) and i > 0}.

An SD-expression is index closed if FI(X) = {}.

Example 1. The abstracts constructor sdbind abstracts an index i occurring in its argument X
by counting the number k of sdbound abstracts having the occurrence of i in its scope. (We do
not count the sdmasked abstracts.) Then the occurrence of i becomes bound if k = i + 1. For
example, the S combinator lam(x, lam(y, lam(z, (xz yz)))), is represented by [[[(20 10)]]]. Using
the sdmask constructor, S is represented by (10 00)\(00 10)\(01 01)\(�� ��). Both of these
representations are LD-expressions since they are both index closed. We will see that we can
toggle between these representations by the toggle function we introduce in Definition 13.

We next define the subsets LDi (i ∈ I) of SD inductively as in Fig. 9. It is easy to see that if
X ∈ LDi and j ∈ FI(X), then j < i , and that if X ∈ LDi and i < j , then X ∈ LD j . We also note
that Li ( LDi and Di ( LDi .

We call an element in LDi an LDi -expression. Note that we first define the divisibility relation
between maps and SD-expressions. We then define the subset LD of SD by putting LD := LD0.
Note that if X ∈ LD, then X is index-closed. We call an element of LD an LD-expression.
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Fig. 9. Definitions of the divisibility relation and LD.

We single out some meaningful subsets of SD as follows.

Li := {X ∈ LDi | bd(X) = 0} (i ∈ I)
L := L0
D := {X ∈ SD | md(X) = 0}

Di := {X ∈ LDi | md(X) = 0} (i ∈ I)
D := D0.

Here, we have the following inclusion relations.

L = L0 ( L1 ( L2 · · ·

D = D0 ( D1 ( D2 · · · ( D.

We can easily see that the set L is isomorphic to the structure of the symbolic lambda expressions
we introduced in Section 3.1, since an element in L is index closed and it is constructed without
using the bind function. (Note that by identifying these isomorphic sets, by abuse of the language,
we are using the same notation L for these sets.) For this reason, we will call an element of
L a lambda expression. Similarly, the set D becomes isomorphic to the structure of the locally
nameless λ terms studied in, e.g., Aydemir et al. [1], since an element in D is index closed and
it is constructed without using the mask function. (Strictly speaking, terms in [1] do not have
�, but this is not essential.) For this reason, we will call an element of D a locally nameless de
Bruijn-expression. On the other hand, an element in D is not index closed in general, so we will
call it a de Bruijn-expression.

Remark 3. We will be only interested in the set LD and will work in it from now on. We remark
that we had to define an infinite family of sets LDi (i ∈ I) to define LD = LD0 because of
the rule bind. By the same token, even though we are only interested in LD, when we prove
properties of X ∈ LD, we usually have to generalize the properties and prove them for arbitrary
X ∈ LDi (i ∈ I).

In general, the mask degree and the bind degree of an LD-expression X can be both positive,
and this means that X has characteristics of both lambda expression and de Bruijn-expression.
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Suggested by this observation, we introduce a basic toggle function (Definition 13) which
toggles the states of all the abstraction nodes X ∈ SD. Namely if a node in X is a masking node
then it will be changed to a binding node and vice versa.

We also define the following three auxiliary functions

Out : I × M × SD → SD,

Map : I × SD → M, and
Skel : I × SD → SD

on the way. We will see that Out and Map/Skel are inverses to each other (Proposition 18.8–14).

Definition 11 (Out Function). We define Out inductively as follows. We write X i
m for

Outi (m, X). Out is a partial function, since X i
m is defined only if m | X . X i

m changes every
� in X bound by m into i + (its binding height in X).

X i
0 := X if X ∈ X ∪ {�}

j i
0 :=


j if j < i,
j + 1 otherwise.

�i
1 := i

(X Y )i
mn := (X i

m Y i
n)

(n\X)i
m := n\(X i

m)

[X ]
i
m := [X i+1

m ].

Definition 12 (Map and Skeleton). We define Map and Skel inductively as follows. We write X i
for Mapi (X), and X i for Skeli (X). Every index i + (its binding height in X) is changed into 1 by
X i and into � by X i .

X i := 0 if X ∈ X ∪ {�} X i
:= X if X ∈ X ∪ {�}

ji :=


1 if j = i,
0 otherwise.

j i
:=

 j if j < i,
� if j = i,
j − 1 if j > i .

(X Y )i := (X i Yi ) (X Y )i
:= (X i Y i )

(m\X)i := X i (m\X)i
:= m\X i

[X ]i := X i+1 [X ]
i

:= [X i+1
].

The following lemma on Map can be easily shown.

Lemma 17 (Simple Properties of Map).

1. X ∈ LDi , 1 | X H⇒ X j = 0.
2. X ∈ LDi , m | X H⇒ X j ⊥ m.

We will use the following properties of Out, Map and Skel to establish the key properties of
the toggle function. Proposition 18.13 and 14 show that Out and Skel are inverses to each other.

Proposition 18 (Properties of Out, Map and Skel).

1. X ∈ LDi , j ≤ i, m | X, n | X, m ⊥ n H⇒ m | X j
n .

2. X ∈ LDi , j ≤ i, m | X H⇒ X j
m ∈ LDi+1.
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3. m | X H⇒ X j ⊥ m.
4. m | X H⇒ m | X j .
5. X ∈ LDi+1, j ≤ i H⇒ X j

∈ LDi .
6. X ∈ LDi H⇒ X j | X j .

7. X ∈ LDi , m | X, n | X, m ⊥ n, k ≤ j H⇒ (X j
n)k

m = (X k
m)

j+1
n .

8. X ∈ LDi , m | X, k ≤ j H⇒ (X k
m) j+1 = X j .

9. X ∈ LDi , m | X, k ≤ j H⇒ (X j+1
m )k = Xk .

10. X ∈ LDi , m | X, k ≤ j H⇒ (X j+1
m )k

= (X k)
j
m .

11. X ∈ LDi , m | X, k ≤ j H⇒ (X k
m) j+1

= (X j )k
m .

12. X ∈ LDi , m | X, j ≤ i H⇒ (X j
m) j = m.

13. X ∈ LDi , m | X, j ≤ i H⇒ (X j
m) j

= X.
14. X ∈ LDi+1, j ≤ i H⇒ (X j )

j
(X j )

= X.

15. X ∈ LDi , i ≤ j H⇒ X j
= X.

16. X ∈ LDi , k ≤ j H⇒ (X k) j = X j+1.
17. X ∈ LDi , k ≤ j H⇒ (X j+1)k = Xk .
18. X ∈ LDi , k ≤ j H⇒ (X j+1)k

= (X k) j .
19. m | X H⇒ bd(X j

m) = bd(X) and md(X j
m) = md(X).

20. bd(X j ) = bd(X) and md(X j ) = md(X).

Proof. See the Appendix. �

Definition 13 (toggle Function). We define toggle : SD → SD inductively as follows. It is a
partial function since it uses the Out function. We write ⟨X⟩ for toggle(X).

⟨X⟩ := X if X ∈ X ∪ {�} ∪ I
⟨XY ⟩ := ⟨X⟩⟨Y ⟩

⟨m\X⟩ := [⟨X⟩
0
m]

⟨[X ]⟩ := ⟨X⟩0\⟨X⟩
0.

Although toggle is a partial function on SD, its restriction to LDi (i ∈ I) is total as we see
now. As toggle changes a masking node to a binding and vice versa (using Out and Skel which
are inverses to each other) and leaves an application node and an atomic node unchanged, it
is intuitively clear that we have ⟨⟨X⟩⟩ = X . However its proof is subtle because we have to
manipulate de Bruijn indices carefully while computing ⟨X⟩.

Proposition 19 (Properties of the toggle Function).

1. X ∈ LDi H⇒ ⟨X⟩ ∈ LDi .
2. X ∈ LDi , m | X H⇒ m | ⟨X⟩.
3. X ∈ LDi H⇒ bd(⟨X⟩) = md(X).
4. X ∈ LDi H⇒ md(⟨X⟩) = bd(X).
5. X ∈ LDi H⇒ ad(⟨X⟩) = ad(X).
6. X ∈ LDi , m | X H⇒ ⟨X j

m⟩ = ⟨X⟩
j
m .

7. X ∈ LDi H⇒ ⟨X⟩ j = X j .
8. X ∈ LDi H⇒ ⟨X j

⟩ = ⟨X⟩
j .

9. X ∈ LDi H⇒ ⟨⟨X⟩⟩ = X.

Proof. See the Appendix. �
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Example 2. We illustrate some instances of Proposition 19. Consider the raw lambda term
K = λx . (λy. yx)x . K can be represented in LD by the four expressions as shown in the table
below.

X md bd L? D? ⟨X⟩x ⟨X⟩y ⟨X⟩

Xa = (01 1)\(10\(� �) �) 2 0 Yes No Xb Xc Xd

Xb = [(10\(� 0) 0)] 1 1 No No Xa Xd Xc

Xc = (01 1)\([0�] �) 1 1 No No Xd Xa Xb

Xd = [([01] 0)] 0 2 No Yes Xc Xb Xa

In K , the outer abstraction is done by abstracting the parameter x and the inner by abstracting
y. In LD two abstraction functions mask and bind are available, and we can freely choose any of
these when we make abstracts. So we have four different ways of representing K in LD. The
md and bd columns show the number of times these functions are used to construct the four
representations.

In general, if a raw lambda term L has k abstracts in it, it can be represented in LD in 2k ways.
Of these only one belongs to L and another one belongs to D as can be seen in the columns ‘L?’
and ‘D?’.

The toggle function ⟨X⟩ is global in the sense that it toggles all the k abstraction nodes in
L in one shot. It is also possible to define local toggle functions which toggle only a specified
abstraction node in L . In the table above, we showed the effects of these local toggle functions
⟨X⟩x (toggles the node which corresponds to the binding node x in K ) and ⟨X⟩y (toggles the y
node) as well as the global toggle function ⟨X⟩. Since each local toggle affects only one binding
node, in case of K , the global toggle can be realized by composing the two local toggle functions
in any order. Namely, we have

⟨X⟩ = ⟨⟨X⟩x ⟩y = ⟨⟨X⟩y⟩x

as can be seen in the rightmost three columns.
We show graphical representations of these expressions in Fig. 10. In the center of the figure

we put the picture of the representation of K which is obtained by the method first introduced
by Quine [15] and later by Bourbaki [3]. The central picture is obtained from K by replacing
the binding occurrences of parameters with white circles and the bound occurrences with black
circles and at the same time connecting the corresponding bind/bound circles by the three lines
shown in the figure. Quine calls these lines bonds. It is intuitively clear that this method always
gives a correct canonical representation of any raw lambda term. But, the problem with this
approach is the difficulty of giving a formal inductive definition of the representations.

The four pictures surrounding the central picture are graphical representations of the four
expressions shown in the table. In these pictures, unlike bonds in the Quine–Bourbaki notation,
each bond has a direction either from a binding node to a bound node (left to right) or from a
bound node to a binding node (right to left). The direction of a bond shows which of mask or
bind is used to construct the abstract which correspond to the binding node of the bond. Note that
each black circle corresponds to a box in case of mask and to an index in case of bind. The figure
also shows the commutation of the two local toggle functions ⟨X⟩x and ⟨X⟩y .

5.2. Bijective correspondence between L and D

In this subsection, we will show that there is a natural bijective correspondence between L and
D which respects substitution.

We can obtain the following theorem as a corollary to Proposition 18.{3, 4, 9}.
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Fig. 10. Representations of λx . (λy. yx)x in LD and in Quine–Bourbaki notation.

Theorem 20 (Bijections Between Li and Di ).

1. toggle restricted to Li is a bijection from Li to Di .
2. toggle restricted to Di is a bijection from Di to Li .

By this theorem we see that L and D are bijectively related by the toggle function. We will now
see moreover that L and D respect the substitution operation with each other. In order to show
this, we first define the substitution function on SD as follows.

Definition 14 (Substitution on SD).

y{x\X} :=


X if x = y,

y if x ≠ y.

�{x\X} := �
(Y Z){x\X} := (Y {x\X} Z{x\X})

(m\Y ){x\X} := m\(Y {x\X})

i{x\X} := i
[Y ]{x\X} := [Y {x\X}].

Remark 4. In Section 3 we defined substitution (Definition 4) in terms of the instantiation
operation which, in turn, is defined in terms of the hole filling operation. Here, we define
substitution directly by structural recursion. We take this approach since (1) substitution defined
here restricted to L is the same as substitution defined in Definition 4 thanks to the first four
equations of Proposition 1 and (2) substitution defined here restricted to D is the same as
substitution defined in Fig. 2 of Aydemir et al. [1].

Lemma 21 (Properties of Substitution).

1. X ∈ LD, Y ∈ LDi , m | Y H⇒ Y {x\X}
k
m = Y k

m{x\X}.
2. X ∈ LD, Y ∈ LDi+1, k ≤ i H⇒ Y {x\X}k = Yk .
3. X ∈ LD, Y ∈ LDi+1, k ≤ i H⇒ Y {x\X}

k
= Y k

{x\X}.

Proof. By induction on Y . We will deal only with interesting cases.
Proof of 1. The case where Y = n\Z . We show the conclusion by assuming that Y ∈ LDi

and m | Y . In this case we have n\Z ∈ LDi , namely, Z ∈ LDi and n | Z . Also, since m | Y ,
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we have m | Z and n ⊥ m. We have to show (n\Z){x\X}
k
m = (n\Z)k

m{x\X}, or equivalently,
Z{x\X}

k
m = Z k

m{x\X}. We can show this by IH.
Proof of 2 and proof of 3 are easy. �

Using the above lemma, we can prove the following proposition.

Proposition 22 (toggle Preserves Substitution).

X ∈ LD, Y ∈ LDi H⇒ ⟨Y {x\X}⟩ = ⟨Y ⟩{x\⟨X⟩}.

Proof. Induction on Y .

• The case where Y is n\Z . In this case we have n\Z ∈ LDi , namely, Z ∈ LDi and n | Z . We
have to show ⟨(n\Z){x\X}⟩ = ⟨n\Z⟩{x\⟨X⟩}, or equivalently, ⟨Z{x\X}⟩

0
n = ⟨Z⟩

0
n{x\⟨X⟩}.

We can show this as follows.

⟨Z{x\X}⟩
0
n = ⟨Z⟩{x\⟨X⟩}

0
n by IH

= ⟨Z⟩
0
n{x\⟨X⟩} by Lemma 21.1, Proposition 19.{1, 2}.

• The case where Y is [Z ]. We have to show ⟨[Z ]{x\X}⟩ = ⟨[Z ]⟩{x\⟨X⟩}, or equivalently,

(1) ⟨Z{x\X}⟩0 = ⟨Z⟩0 and (2) ⟨Z{x\X}⟩
0

= ⟨Z⟩
0
{x\⟨X⟩}.

We have (1) as follows.

⟨Z{x\X}⟩0 = ⟨Z⟩{x\⟨X⟩}0 by IH
= ⟨Z⟩0 by Lemma 21.2.

We have (2) as follows.

⟨Z{x\X}⟩
0

= ⟨Z⟩{x\⟨X⟩}
0 by IH

= ⟨Z⟩
0
{x\⟨X⟩} by Lemma 21.3. �

As a special case of this proposition, we have the following theorem.

Theorem 23 (toggle Preserves Substitution on D and L).
1. X ∈ D, Y ∈ D H⇒ ⟨Y {x\X}⟩ = ⟨Y ⟩{x\⟨X⟩} ∈ L.
2. X ∈ L, Y ∈ L H⇒ ⟨Y {x\X}⟩ = ⟨Y ⟩{x\⟨X⟩} ∈ D.

Combining Theorem 23.1 with Theorem 20.2 we see that L correctly represents D respecting
substitution.

5.3. Commutation of toggle and β-conversion

Apart from substitution for parameters in L and in D we can also consider the respective β-
conversion rules, βL and βD. It turns out that toggle commutes with β-conversion on either side.
First we need to define instantiation on SD, to be able to even formulate βD.

Definition 15 (Instantiation on SD).

X▽ j Y := X for X = x or X = �
(X1 X2)▽ j Y := (X1▽ j Y X2▽ j Y )

(m\X)▽ j Y := X▽ j Y

i▽ j Y :=

i if i < j
Y if i = j
i − 1 if i > j .

[X ]▽ j Y := [X▽ j+1Y ].
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Clearly we need an index shift here when we move under a bind. We defined this operation on
the entire SD structure, but will only use it on the D-part.

We first show that commutation holds when we start with a βD-redex.

(⟨X⟩0\⟨X⟩
0)⟨Y ⟩ [X ]Y

⟨X⟩
0
⟨X⟩0

[⟨Y ⟩] = ⟨X ▽0 Y ⟩ X ▽0 Y

βL

toggle

βD

toggle

For the proof we need an iteration ItSkel of the skeleton function

ItSkel0(X) := X,

ItSkeli+1(X) := ItSkeli (X i )

and a lemma

⟨ItSkel j (X▽ j Y )⟩ = ⟨ItSkel j+1(X)⟩X j [⟨Y ⟩],

assuming md(X) = md(Y ) = 0 and that Y ∈ LD.
Next we show that toggle and β commute when we start with a βL-redex, i.e., from (m\X)Y .

We need to assume X, Y ∈ LD with bd(X) = bd(Y ) = 0, and m | X .

(m\X)Y [⟨X⟩
0
m]⟨Y ⟩

Xm[Y ] ⟨Xm[Y ]⟩ = ⟨X⟩
0
m ▽0 ⟨Y ⟩

βL

toggle

toggle

βD

This will follow from the previous commutative diagram when we instantiate it with X →

⟨X⟩
0
m and Y → ⟨Y ⟩. Hence we have

⟨⟨X⟩
0
m⟩

0
⟨⟨X⟩0

m ⟩0
[⟨⟨Y ⟩⟩] = ⟨⟨X⟩

0
m▽0⟨Y ⟩⟩.

Now ⟨⟨X⟩
0
m⟩

0 is the same as ⟨X⟩ by Proposition 18.13, since X ∈ LD and m | X by assumption.
Also ⟨⟨X⟩

0
m⟩0 is the same as m by Proposition 18.12, for the same reasons. Finally ⟨⟨Y ⟩⟩ is the

same as Y by Proposition 19.9. Therefore we have

⟨X⟩m[Y ] = ⟨⟨X⟩
0
m▽0⟨Y ⟩⟩.

One application of toggle gives the claim.

6. The Lβη calculus

In this section we develop the λβη calculus, Lβη, within L. The Lβη-reduction rules are shown
in Fig. 11. Using the isomorphism between L and nominal lambda calculus in Isabelle/HOL



1096 M. Sato et al. / Indagationes Mathematicae 24 (2013) 1073–1104

Fig. 11. Definition of the βη-reduction rules.

outlined in Section 4.5, it is easy to show that our Lβη-reduction agrees with reduction defined
on nominal terms.

An interesting thing about these rules is the name-free presentation of rules β and η. The
informal η rule

x ∉ FP(M)

λx . (M x) →βη M
η

requires the side condition x ∉ FP(M). This is not a question of α equivalence, and even
canonical representations, such as de Bruijn nameless terms and Sato canonical terms [14]
require this side condition in the η rule. We avoid the side condition in the map representation
since we have

lam(x, Mx) = 01\M� if x ∉ FP(M).

Note that in the informal η rule, parameter x only occurs bound: the η rule is about abstracts,
and has nothing to do with parameters. Our rule, parametric in M but not mentioning a name,
captures this observation.

In the informal β rule [2]

(λx . M) K →βη M{x\K }
β

schematic parameter x is bound on the left hand side, and free on the right hand side of the rule.
Thus, this rule must be read up to α equivalence, and we must choose a concrete α-representative
of λx . M to apply it. With the map representation we are able to write rule β in name-free form
as shown in Fig. 11.

6.1. A fly in the ointment

It is only luck that we can write rule β in name-free form (because the left hand and right hand
sides of the rule work on the same abstraction, A in Fig. 11). Many rules that we want to write are
not obviously expressible in name-free form, e.g. rule ξ in Fig. 11. (We do not exclude that new
ideas may solve this problem.) This raises two questions: why are some rules not expressible in
name-free form? And why does it matter?

6.1.1. Why don’t we write rule ξ in name-free form?
Perhaps you conjecture that the following could be used for rule ξ :

M →βη N

m\M →βη m\N
.. (2)
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Unfortunately not, as the following instance of this putative rule ξ shows:

((1\�) �) →βη �

(0 1)\((1\�) �) →βη (0 1)\�
.

In the conclusion of this “rule”, (0 1)\� is not even a well-formed L term. (The correct RHS is
1\�.)

For named λ terms the operation of substitution leaves the free names (the indicators of
positions which may still be bound) unchanged. Similarly with de Bruijn nameless terms,
substitution leaves the free indexes (as viewed from outside the term) unchanged. However with
the L representation, the indicators of positions which may still be bound do not occur in the terms
themselves; they are the maps that divide the term (maps dividing the base term, combined in a
complicated but functional way with the maps dividing the term being implanted). Further since
the shapes of terms change under substitution, it is clear that the set of indicators of positions
which may still be bound is not preserved by substitution. Thus it is impossible to have the
same map abstracted on both sides of the conclusion of a correct ξ rule, as in Eq. (2). The
excursion through names in rule ξ of Fig. 11 serves to compute the appropriate maps indicating
the positions to be bound in the conclusion of the rule. (Recall from Definition 4 that lam is a
defined function that computes an L term.) If one wants a ξ rule with a name-free conclusion it
is the following:

x ♯ (M, N ) Mm[x] →βη Nn[x]

m\M →βη n\N
. (3)

Similar to rule ξ of Fig. 11, this rule mentions a free parameter in the premise. This rule is also
reminiscent of the representations discussed in [11,1,19].

It is not only rule ξ that poses this problem for the map representation. For another naturally
occurring example that appears to require use of parameters, consider rule β of Tait/Martin–Löf
parallel reduction.

6.1.2. Why does it matter that rule ξ uses names?
One of the goals of our map representation is to avoid the need to reason by equivariance

and permutation of names that seems necessary in representations using names [11,1,19,23]. In
Lemma 2 we showed that the usual substitution lemma of λ calculus can be proved in our notation
by term induction, without the usual α-converting to fresh names. Analogously for →βη, try to
prove

M1 →βη M2 H⇒ M1{x\N } →βη M2{x\N }

by rule induction on M1 →βη M2. In the case for rule ξ , where M1 = λy. P you will need to
α-convert M1 so that y ♯ (x, N ), allowing the substitution to go under the binder so the induction
hypothesis can be used.

The problem with rule ξ is that there are (infinitely) many instances of the rule with the same
conclusion. e.g. the two instances

(1\�)x →βη x

lam(x, (1\�)x) →βη lam(x, x)

(1\�)y →βη y

lam(y, (1\�)y) →βη lam(y, y)

have equal conclusions but distinct premises. When we say “by rule induction on M1 →βη M2”
we are destructing a hypothetical derivation, and this derivation contains some α-variant of λy. P
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in the conclusion of (hypothetical uses of) rule ξ and an instance of P with free y in the premise.
But we do not know (and cannot specify) which α-variant of λy. P occurs; it is not visible in
the judgement M1 →βη M2 whose derivation we are destructing. The usual solution is to reason
locally by equivariance, or to package such reasoning in a derivable induction rule [11,1,19,23].
If we could write rule ξ in name-free form, we could avoid this digression in reasoning.

So is there a name-free rule ξ for our L representation (and similarly, name-free definitions for
other relations on L, such as Tait/Martin–Löf parallel reduction)? We conjecture this is possible,
and leave it for future work.3 Just as the name-free notion of hole filling led to a proof of
the substitution lemma without choosing fresh names (Lemma 2), we hope that a name-free
definition of β-reduction would lead to proofs by rule induction and equational reasoning only.

7. Conclusion

We have presented a canonical, name-free representation of lambda terms and proved it to
be an adequate representation with respect to both the nominal logic representation and pure de
Bruijn representation. These proofs are formalized in Isabelle/HOL and Minlog respectively. We
have used our representation as a lens to examine both raw lambda syntax and the well-known
de Bruijn nameless representation of binding.

Among the technical results of our work is a proof of the substitution lemma of lambda
calculus (Lemma 2) that proceeds by induction and pure equational reasoning, without any
renaming. We have also given a definition of α equivalence for raw λ syntax that can be decided
without any renaming.

We present a definition of βη-reduction for our representation (not quite name-free), and
discuss how it might be made name-free by future work, and what that might buy.
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Appendix. Proofs

A.1. Proofs in Section 4

Proof of Lemma 8. By induction on the size of K and L , followed by case analysis on the
derivation of K x//z

=α L y//z .Consider the case that the last rule of the derivation is the lam-rule
(other cases are easy); so let lam(z1, K )x//z

=α lam(z2, L)y//z be the conclusion of the last rule.
We have 2 × 2 cases: (x = z1 or x ≠ z1) and (y = z2 or y ≠ z2).

In the case x ≠ z1 and y ≠ z2, the last rule has the following form.

(K x//z)z1 = (L y//z)z2 (K x//z)
z1

=α (L y//z)
z2

lam(z1, K x//z) =α lam(z2, L y//z)

3 James McKinna made a interesting suggestion towards this goal.
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By the second premise and Lemma 7.1, we have (K z1)x//z
=α(L z2)y//z . By IH, we have

(K z1)x
=α(L z2)y and (K z1)x = (L z2)y . So, by Lemma 5.1, we have (K x )z1 =α(L y)z2 . On the

other hand, we have (K x )z1 = (L y)z2 by the first premise and Lemma 7.2. Therefore, we have
lam(z1, K x ) =α lam(z2, L y), that is, lam(z1, K )x

=α lam(z2, L)y . We also have lam(z1, K )x =

lam(z2, L)y by (K z1)x = (L z2)y and Lemma 5.2.
In the case x = z1 and y ≠ z2, the last rule has the following form.

(K x//z)z = (L y//z)z2 (K x//z)
z
=α (L y//z)

z2

lam(z, K x//z) =α lam(z2, L y//z)

By the second premise and Lemma 7.{1, 3}, we have (K x )x//z
=α(L z2)y//z . By IH, we have

(K x )x
=α(L z2)y and (K x )x = (L z2)y . So, by Lemma 5.{1, 3}, we have K x

=α(L y)z2 . On the
other hand, we have Kx = (L y)z2 by the first premise and Lemma 7.{2, 3}. Therefore, we have
lam(x, K ) =α lam(z2, L y), that is, lam(x, K )x

=α lam(z2, L)y . We also have lam(x, K )x = 0 =

lam(z2, L)y by (K x )x = (L z2)y and Lemma 5.{2, 3}.
Other cases are similar. �

Proof of Lemma 10. By induction on the size of K and L , followed by case analysis on the
derivation of K x

∼ L y .
(1) par-rule: Let K x

∼ L y be the conclusion of the rule. In this case, we have K x
= L y

= z′ for
some parameter z′. Then, we have K = z′, L = z′, x ≠ z′, and y ≠ z′. We also have z ≠ x and
z ≠ y, so we have K x//z

∼ z′
∼ L y//z .

(2) box-rule: Let K x
∼ L y be the conclusion of the rule. In this case, we have K x

= L y
= �.

Then, we have (K = x or K = �) and (L = y or L = �). Since Kx = L y , we have (K = x
and L = y) or (K = � and L = �). In both cases, we have K x//z

∼ L y//z .
(3) app-rule: Easy.
(4) lam-rule: Let lam(z1, K )x

∼ lam(z2, L)y be the conclusion of the rule. We have 2 × 2 cases:
(x = z1 or x ≠ z1) and (y = z2 or y ≠ z2).

In the case x ≠ z1 and y ≠ z2, the last rule has the following form.

(K x )z1//z′

∼ (L y)z2//z′

z′
∉ {z1, z2} ∪ P(K x ) ∪ P(L y)

lam(z1, K x ) ∼ lam(z2, L y)

By equivariance of ∼, we can take z′ so that z′ satisfies z′
∉ {z, x, y} and the above condition

since parameters are infinite. By the premise and Lemma 7.1, we have (K z1//z′

)x
∼ (L z2//z′

)y .
On the other hand, we have Kx = L y from lam(z1, K )x = lam(z2, L)y , so we have (K z1//z′

)x =

(L z2//z′

)y by Lemmas 5.2 and 7.2. Therefore, by IH, we have (K z1//z′

)x//z
∼ (L z2//z′

)y//z . So, by
the property of swap, we have (K x//z)z1//z′

∼ (L y//z)z2//z′

. Therefore, we have lam(z1, K x//z) ∼

lam(z2, L y//z), that is, lam(z1, K )x//z
∼ lam(z2, L)y//z .

In the case x = z1 and y ≠ z2, the last rule has the following form.

K x//z′

∼ (L y)z2//z′

z′
∉ {x, z2} ∪ P(K ) ∪ P(L y)

lam(x, K ) ∼ lam(z2, L y)

By equivariance of ∼, we can take z′ so that z′ satisfies z′
∉ {z, y} and the above condition since

parameters are infinite. By the premise and Lemma 7.{1, 4}, we have (K x//z′

)x
∼ (L z2//z′

)y . On
the other hand, we have 0 = L y from lam(x, K )x = lam(z2, L)y , so we have (K x//z′

)x = 0 =

(L z2//z′

)y by Lemmas 5.2 and 7.{2, 4}. Therefore, by IH, we have (K x//z′

)x//z
∼ (L z2//z′

)y//z . So,
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by the property of swap, we have (K x//z)z//z′

∼ (L y//z)z2//z′

. Therefore, we have lam(z, K x//z) ∼

lam(z2, L y//z), that is, lam(x, K )x//z
∼ lam(z2, L)y//z .

Other cases are similar. �

Proof of Lemma 12. By induction on |K |. The crucial case is lam-case: given lam(z, K ) and
y ∉ FP(lam(z, K )), the goal is to find L0 such that lam(x, lam(z, K )) =α lam(y, L0). We have
two cases.
(1) y ≠ z: In this case, we have y ∉ FP(K ). By IH, there exists L such that
lam(x, K ) =α lam(y, L), that is, K x

=α L y and Kx = L y . We have two subcases.
(1.1) x ≠ z: By Lemma 6.2, we have lam(z, K x ) =α lam(z, L y). So, we have lam(z, K )x

=

lam(z, K x ) =α lam(z, L y) = lam(z, L)y and lam(z, K )x = Kx = L y = lam(z, L)y . Therefore,
lam(x, lam(z, K )) =α lam(y, lam(z, L)).

(1.2) x = z: We have lam(x, K )x
= lam(x, K ) =α lam(y, L) = lam(y, L)y and lam(x, K )x

= 0 = lam(y, L)y . Therefore, lam(x, lam(z, K )) =α lam(y, lam(y, L)).
(2) y = z: We can take z′ such that z′

∉ FP(K ) ∪ {x, y}. By IH, there exists K ′ such
that lam(z, K ) =α lam(z′, K ′). Then, |K | = |K ′

| and we have y ∉ FP(K ′) from FP(K ) −

{z} = FP(K ′) − {z′
}. Therefore, by IH, there exists L such that lam(x, K ′) =α lam(y, L).

Similarly to (1.1), we have lam(x, lam(z′, K ′)) =α lam(y, lam(z′, L)). Since lam(x, lam(z, K )) =α

lam(x, lam(z′, K ′)) by Lemma 6.2, we have lam(x, lam(z, K )) =α lam(y, lam(z′, L)). �

A.2. Proofs in Section 5

Proof of Proposition 18. By induction on X . We discuss only interesting cases, and omit easy
proofs of 1, 3, 4 and 7–20.

Proof of 2. The case where X is n\Y . We have Y ∈ LDi by assumption X ∈ LDi . We also have
m | Y, n | Y , and m ⊥ n since m | n\Y . By IH, we have Y j

m ∈ LDi+1. We also have n | Y j
m by 1.

Therefore, we have n\Y j
m ∈ LDi+1, that is, (n\Y )

j
m ∈ LDi+1.

Proof of 5.

• The case X is n\Y . By computing (n\Y ) j , our goal becomes to show

(1) Y j
∈ LDi and (2) n | Y j .

We can show (1) by IH, and (2) by Proposition 18.4.
• The case X is k. By computing k j , our goal becomes to show

k ∈ LDi if k < j,
� ∈ LDi if k = j

and

k − 1 ∈ LDi if j < k

from the assumptions k < i + 1 and j < i + 1; which is easily achieved.

Proof of 6.

• The case X is n\Y ∈ LDi , that is, Y ∈ LDi and n | Y . We have to show that (n\Y ) j | (n\Y ) j ,
namely, Y j | n\Y j , which is equivalent to

(1) Y j | Y j , (2) m | Y j and (3) Y j
⊥ n.

We have (1) by IH. (2) follows from Proposition 18.4. (3) follows from Lemma 17.2.
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• The case X is k, where we have to show k j | k j . By computing k j and k j , the goal becomes

0 | k if k < j,
1 | � if k = j

and

0 | k − 1 if k > j,

which is easily achieved. �

Proof of Proposition 19. By induction on X . We give outline of proofs of interesting cases here.
Proof of 1 and 2. We prove them simultaneously by showing that:

X ∈ LDi H⇒ ⟨X⟩ ∈ LDi and ∀m. (m | X H⇒ m | ⟨X⟩).

• The case where X = n\Y ∈ LDi . In this case we have n | Y, Y ∈ LDi and, by IH, ⟨Y ⟩ ∈ LDi
and ∀m. (m | Y H⇒ m | ⟨Y ⟩), in particular, n | ⟨Y ⟩. We have to show ⟨n\Y ⟩ ∈ LDi and
∀m. (m | n\Y H⇒ m | ⟨n\Y ⟩), which are equivalent to:

(1) ⟨Y ⟩
0
n ∈ LDi+1 and (2) ∀m. (m | Y, n | Y, m ⊥ n H⇒ m | ⟨Y ⟩

0
n).

We can obtain (1) by applying Proposition 18.2, and (2) by applying Proposition 18.1. Note
that the proof of (1) shows the necessity of proving Proposition 19.1 and 2 simultaneously.

• The case where X = [Y ] ∈ LDi . In this case we have Y ∈ LDi+1 and, by IH, ⟨Y ⟩ ∈ LDi+1 and
∀m. (m | Y H⇒ m | ⟨Y ⟩), We have to show ⟨[Y ]⟩ ∈ LDi and ∀m. (m | [Y ] H⇒ m | ⟨[Y ]⟩),
which are equivalent to:

(1) ⟨Y ⟩
0

∈ LDi ,

(2) ⟨Y ⟩0 | ⟨Y ⟩
0

and

(3) ∀m. (m | Y H⇒ m | ⟨Y ⟩
0 and ⟨Y ⟩0 | ⟨Y ⟩

0 and m ⊥ ⟨Y ⟩0).

We have (1) by Proposition 18.5, (2) by Proposition 18.6 and (3) by Proposition 18.{4, 6, 2}.

Proof of 3.

• The case where X = n\Y ∈ LDi . In this case we have Y ∈ LDi , n | Y and, by IH,
bd(⟨Y ⟩) = md(Y ). We have to show bd(⟨n\Y ⟩) = md(n\Y ), which is equivalent to

bd(⟨Y ⟩
0
n) = md(Y ).

We have this by Propositions 18.19, 19.2 and IH.
• The case where X = [Y ] ∈ LDi . In this case we have Y ∈ LDi+1 and, by IH, bd(⟨Y ⟩) = md(Y ).

We have to show bd(⟨[Y ]⟩) = md([Y ]), which is equivalent to

bd(⟨Y ⟩
0) = md(Y ).

We have this by Proposition 18.20 and IH.

Proof of 4 is similar to that of 3.
Proof of 5 can be obtained by using Proposition 19.{3, 4}.
Proof of 6.
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• The case where X = n\Y ∈ LDi . In this case we have Y ∈ LDi , m | Y , n | Y, m ⊥ n. We have
to show ⟨m\Y j

n ⟩ = ⟨m\Y ⟩
j
n , or equivalently,

⟨Y j
m⟩

0
n = (⟨Y ⟩

0
n)

j+1
m .

We have this as follows.

⟨Y j
m⟩

0
n = (⟨Y ⟩

j
m)0

n by IH
= (⟨Y ⟩

0
n)

j+1
m by Proposition 18.7, using Proposition 19.{1, 2}.

• The case where X = [Y ] ∈ LDi and m | [Y ]. In this case, we have Y ∈ LDi+1 and also
m | ⟨[Y ]⟩ by Proposition 19.2, and hence have ⟨Y ⟩0 ⊥ m by Proposition 18.3. We have to
show ⟨[Y ]

j
m⟩ = ⟨[Y ]⟩

j
m , which is equivalent to

(1) ⟨Y j+1
m ⟩0 = ⟨Y ⟩0 and (2) ⟨Y j+1

m ⟩
0

= (⟨Y ⟩
0)

j
m .

We have (1) by Proposition 18.8 using Proposition 19.{1, 2}. We have (2) by Proposition 18.10
using Proposition 19.{1, 2}.

Proof of 7.

• The case where X = n\Y ∈ LDi . In this case we have Y ∈ LDi and n | Y . We have to show
⟨n\Y ⟩ j = n\Y j , or equivalently,

(⟨Y ⟩
0
n) j+1 = Y j .

We have this as follows.

(⟨Y ⟩
0
n) j+1 = ⟨Y ⟩ j by Proposition 18.8 using Proposition 19.{1, 2}

= Y j by IH.

• The case where X = [Y ] ∈ LDi . In this case, we have Y ∈ LDi+1. We have to show
⟨[Y ]⟩ j = [Y ] j , or equivalently,

⟨Y ⟩
0
j = Y j+1.

We have this as follows.

⟨Y ⟩
0
j = ⟨Y ⟩ j+1 by Proposition 18.16 using Proposition 19.1.

= Y j+1. by IH.

Proof of 8.

• The case where X = n\Y ∈ LDi . In this case we have Y ∈ LDi and n | Y . We have to show
⟨(n\Y ) j

⟩ = ⟨n\Y ⟩
j , or equivalently,

⟨Y j
⟩
0
n = (⟨Y ⟩

0
n) j+1.

We have this as follows.

⟨Y j
⟩
0
n = (⟨Y ⟩

j )0
n by IH

= (⟨Y ⟩
0
n) j+1 by Proposition 18.11 using Proposition 19.{1, 2}.

• The case where X = [Y ] ∈ LDi . In this case, we have Y ∈ LDi+1. We have to show
⟨[Y ]

j
⟩ = ⟨[Y ]⟩

j , or equivalently,

(1) ⟨Y j+1
⟩0 = ⟨Y ⟩0 and (2) ⟨Y j+1

⟩
0

= (⟨Y ⟩
0) j .

We have (1) as follows.

⟨Y j+1
⟩0 = (⟨Y ⟩

j+1)0 by IH
= ⟨Y ⟩0 by Proposition 18.17 using Proposition 19.1.
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We have (2) as follows.

⟨Y j+1
⟩
0

= (⟨Y ⟩
j+1)0 by IH

= (⟨Y ⟩
0) j by Proposition 18.18 using Proposition 19.1.

Proof of 9.

• The case where X = n\Y ∈ LDi . In this case we have Y ∈ LDi and n | Y . We have to show
⟨⟨n\Y ⟩⟩ = n\Y , or equivalently,

(1) ⟨⟨Y ⟩
0
n⟩0 = n and (2) ⟨⟨Y ⟩

0
n⟩

0
= Y.

We have (1) as follows.

⟨⟨Y ⟩
0
n⟩0 = (⟨⟨Y ⟩⟩

0
n)0 by Proposition 18.6 using Proposition 19.{1, 2}

= (Y 0
n )0 by IH

= n by Proposition 18.12.

We have (2) as follows.

⟨⟨Y ⟩
0
n⟩

0
= (⟨⟨Y ⟩⟩

0
n)0 by Proposition 18.6 using Proposition 19.{1, 2}

= (Y 0
n )0 by IH

= Y by Proposition 18.13.

• The case where X = [Y ] ∈ LDi . In this case, we have Y ∈ LDi+1. We have to show
⟨⟨[Y ]⟩⟩ = [Y ], or equivalently

⟨⟨Y ⟩
0
⟩
0
⟨Y ⟩0

= Y.

We have this as follows

⟨⟨Y ⟩
0
⟩
0
⟨Y ⟩0

= ⟨⟨Y ⟩
0
⟩
0
Y0

by Proposition 18.7
= (⟨⟨Y ⟩⟩

0)0
Y0

by Proposition 18.8 using Proposition 19.1
= (Y 0)0

Y0
by IH

= Y by Proposition 18.14. �
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