
Execution vs. Parse-Based Language Servers
Tradeoffs and Opportunities for Language-Agnostic Tooling for Dynamic Languages

Stefan Marr
s.marr@kent.ac.uk
School of Computing
University of Kent
United Kingdom

Humphrey Burchell
h.burchell@kent.ac.uk
School of Computing
University of Kent
United Kingdom

Fabio Niephaus
fabio.niephaus@oracle.com

Oracle Labs
Potsdam, Germany

Abstract
With the wide adoption of the language server protocol, the
desire to have IDE-style tooling even for niche and research
languages has exploded. The Truffle language framework
facilitates this desire by offering an almost zero-effort ap-
proach to language implementers to providing IDE features.
However, this existing approach needs to execute the code
being worked on to capture much of the information needed
for an IDE, ideally with full unit-test coverage.

To capture information more reliably and avoid the need
to execute the code being worked on, we propose a new
parse-based design for language servers. Our solution pro-
vides a language-agnostic interface for structural informa-
tion, with which we can support most common IDE features
for dynamic languages.
Comparing the two approaches, we find that our new

parse-based approach requires only a modest development
effort for each language and has only minor tradeoffs for
precision, for instance for code completion, compared to
Truffle’s execution-based approach.

Further, we show that less than 1,000 lines of code capture
enough details to provide much of the typical IDE func-
tionality, with an order of magnitude less code than ad hoc
language servers. We tested our approach for the custom
parsers of Newspeak and SOM, as well as SimpleLanguage’s
ANTLR grammar without any changes to it. Combining both
parse and execution-based approaches has the potential to
provide good and precise IDE tooling for a wide range of
languages with only small development effort. By itself, our
approach would be a good addition to the many libraries im-
plementing the language server protocol to enable low-effort
implementations of IDE features.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
DLS ’22, December 07, 2022, Auckland, New Zealand
© 2022 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 978-1-4503-9908-1/22/12. . . $15.00
https://doi.org/10.1145/3563834.3567537

CCS Concepts: • Software and its engineering→ Inte-
grated and visual development environments; Frame-
works.

Keywords: language server protocol, comparison, parse time,
execution time
ACM Reference Format:
Stefan Marr, Humphrey Burchell, and Fabio Niephaus. 2022. Ex-
ecution vs. Parse-Based Language Servers: Tradeoffs and Oppor-
tunities for Language-Agnostic Tooling for Dynamic Languages.
In Proceedings of the 18th ACM SIGPLAN International Symposium
on Dynamic Languages (DLS ’22), December 07, 2022, Auckland,
New Zealand. ACM, New York, NY, USA, 14 pages. https://doi.org
/10.1145/3563834.3567537

1 Introduction
A bit more than half a decade ago, the language server pro-
tocol (LSP)1 was proposed as a way to provide IDE features
such as code navigation, completion, and error reporting
independent of a specific IDE. In contrast to previous ap-
proaches, the LSP enables language developers to implement
such IDE features once for a language, and use the result-
ing language server in various editors and IDEs, including
Atom, Eclipse, Emacs, Visual Studio, and VIM. In the past,
one would need to implement separate plugins for each IDE.

Soon after the LSP was announced, we started wondering2
how one could utilize language implementation frameworks
such as Truffle [Würthinger et al. 2012] to not just make it
simpler to have IDE support for a language in many different
editors and IDEs with a single implementation, but simplify
the creation of such language servers by identifying the
language-agnostic parts.

Stolpe et al. [2019] built a first version of such a system for
the Truffle language framework, which was adapted and re-
leased as the GraalVM Language Server.3 Their key idea was
to utilize the instrumentation [Van de Vanter et al. 2018] and
language interoperability [Grimmer et al. 2018] features of
the Truffle framework to enable IDE features. This approach
minimized the extra effort for language implementers while
1Language Server Protocol, Microsoft, https://microsoft.github.io/language-
server-protocol/
2Can we get the IDE for free, too? , S. Marr, https://www.stefan-marr.de/
2016/08/can-we-get-the-ide-for-free-too/
3GraalVM Language Server Protocol, Oracle, https://www.graalvm.org/22.1/
tools/lsp/

1

https://orcid.org/0000-0001-9059-5180
https://orcid.org/0000-0003-4728-5819
https://orcid.org/0000-0002-3297-9730
https://doi.org/10.1145/3563834.3567537
https://doi.org/10.1145/3563834.3567537
https://doi.org/10.1145/3563834.3567537
https://microsoft.github.io/language-server-protocol/
https://microsoft.github.io/language-server-protocol/
https://www.stefan-marr.de/2016/08/can-we-get-the-ide-for-free-too/
https://www.stefan-marr.de/2016/08/can-we-get-the-ide-for-free-too/
https://www.graalvm.org/22.1/tools/lsp/
https://www.graalvm.org/22.1/tools/lsp/

DLS ’22, December 07, 2022, Auckland, New Zealand Stefan Marr, Humphrey Burchell, and Fabio Niephaus

still enabling useful tooling in IDEs. However, to minimize
the implementation effort, the approach relies solely on what
is available in a language’s runtime, and it requires that the
code that is being worked on is executable and ideally fully
covered by unit tests to retrieve all available details. In some
way, this moves some of the burden for tooling to the de-
veloper using the tools, who have to care more to produce
well-formed and well-tested code to get a rich tooling experi-
ence. Another limiting factor is that language runtimes rarely
keep information irrelevant for execution. Thus, declarative
aspects such as where classes or fields are defined, code com-
ments with documentation, or the semantics of tokens for
highlighting, may not be preserved at run time and thus
cannot be shown in an IDE using this approach.
In this paper, we explore how we can trade a little extra

effort from the language implementers for more complete
tooling for dynamic languages. Instead of relying solely on
run-time information, we will demonstrate how to design a
language server framework so that only a small amount of
information needs to be extracted as part of the parsing and
compilation step of a language implementation. We argue
that we can realize most common IDE features for an order
of magnitude less effort than ad hoc language servers.

With Stolpe et al.’s approach arguably achieving support
for the most common and perhaps highest priority IDE fea-
tures with minimal effort, we chose it as a baseline for com-
parison and will focus on the same set of IDE features. Thus,
we will discuss how to support listing symbols for instance
in an outline view, enable goto definition, referencing and
highlighting elements related to a currently selected one,
communicating syntax errors, providing help for method
signatures, as well as general support for displaying hover
information, semantic highlighting, and code completion.
The paper’s contributions are

• a design for a language-agnostic language server that
provides IDE features common for dynamic languages
based on an interface that can be used from custom
parsers, compilers, as well as parsers generated e.g. by
ANTLR, and independent of any language implemen-
tation framework;

• a detailed analysis of tradeoffs between parse and
execution-based approaches and the opportunities of
combining them;

• an implementation demonstrating our parse-based4
approach for the languages SOM, Newspeak, and Sim-
pleLanguage.

Furthermore, we find that we need less than 1,000 lines
of code to implement support for a language. Thus reaching
the goal of requiring only little more effort than the about
500 lines of code for the execution-based approach. Based
on a survey of 20 open source language servers, this is an

4When referring to parse time in this paper, we consider any type of seman-
tic analysis to be part of it.

order of magnitude less code than needed for the median ad
hoc language server (see section 7.3). A brief performance
assessment confirms that parsers not designed for IDE use
are practical, even for larger files (see section 8).

Overall, we believe our design would be a useful addition
to many libraries implementing the language server protocol,
since it enables low-effort language server implementations.

2 Background
This section reviews the language server protocol, discuss
alternative approaches such as language workbenches, and
summarizes the work by Stolpe et al. [2019].

2.1 Language Server Protocol
Announced in June 2016, the language server protocol (LSP)
has gained wide adoption in editors, IDEs, and many lan-
guage communities implemented language servers. In June
2022 at the time of writing, version 3.17 of the LSP was
current. It supports document-related events, support for
windowing features such as notifications, log messages, and
progress updates, as well as a wide range of language and
workspace-related features that are our focus.

Theworkspace features include events around file changes,
creation, renaming, deletion, and similar, but also workspace-
wide listing and resolving of language symbols.

The language-related features include classic ones: navi-
gating to a declaration or definition, finding of references,
requesting call and type hierarchies, highlighting related ele-
ments in an editor, tooltips or hover information, selection or
folding of ranges, code completion, method signature help,
diagnostic information, i.e, errors and warnings, and docu-
ment renaming and formatting. It also covers more modern
features such as code lenses, semantic highlighting, inline
values as typically displayed during debugging, and inlay
hints like parameter names of methods. Arguably, this covers
most, if not all common, features IDEs provide these days.

The protocol itself is based on JSON-RCP and consists of
requests, responses, and notifications. To be as language-
agnostic as possible, the protocol tries to communicate loca-
tion information and the information to be displayed with-
out encoding specific semantics. Thus, responses typically
contain code ranges, strings to be shown, as well as meta
information to enable an IDE to differentiate language con-
cepts, e.g., methods and fields, with different icons. Code
ranges are represented as pairs of line and column to indi-
cate start and end of a section, for instance to indicate where
an identifier is in a file. The protocol does not generally en-
code structural details, except for basic containment, e.g.,
methods belonging to a class, for an outline view. This also
means, language-specific constructs such as abstract syn-
tax trees are not exposed to the editor. Instead, for instance
semantic highlighting is realized as list of tuples that charac-
terize tokens based on offsets. Figure 1 illustrates this with

2

Execution vs. Parse-Based Language Servers DLS ’22, December 07, 2022, Auckland, New Zealand

Client Language
Server

req: doc/definition
uri: example.sl
pos:
 line: 2
 col: 5

result:
 uri: main.sl
 range:
 startLine: 12
 startCol: 20
 endLine: 12
 endCol: 24

Figure 1. Example interaction in the Language Server Pro-
tocol. The client requests the definition for a symbol at a
position in a document identified by line and column. The
server responds with a result, identifying the file where the
symbol is defined, and the range at which it is found. The
example uses pseudo code for legibility and conciseness.

an example for an interaction when an IDE users would try
to navigate to the definition of a symbol.

Very similar to the LSP is Monto [Keidel et al. 2016], which
also solves the issue that each language needed to implement
separate plugins for each IDE with a similar protocol.

2.2 Language Workbenches
Language Workbenches [Erdweg et al. 2015] aim to simplify
the creation of programming languages. Often they provide
a set of languages or tools to define new languages. This
can include a way to specify syntax, scoping rules, typing
systems, and even the full execution semantics. For example,
Rascal [Klint et al. 2009], Spoofax [Kats and Visser 2010], and
Xtext [Eysholdt and Behrens 2010] also derive IDE features
from the languages implemented in them. The IDE feature
set is similar to that of the LSP. Xtext for example directly
supports the LSP to provide these IDE features. The Rascal-
based Bacatá [Merino et al. 2020] uses the LSP to bring IDE
features to computational notebooks.
When designing a new language, some of these work-

benches can make it unnecessary to implement a language
server. Though, for language implementers that can not use
such workbenches, perhaps when building IDE support for
an existing language, other approaches such as the one pro-
posed in this paper will remain relevant.

2.3 A Language-Agnostic Design of a
Execution-Based Language Server

Since we rely on Stolpe et al. [2019]’s work, this section
briefly summarizes their approach and what a language im-
plementer needs to do to benefit from it.
Their approach to provide IDE features utilizes Truffle’s

support for instrumenting language implementations [Van de
Vanter et al. 2018] and its language interoperability facili-
ties [Grimmer et al. 2018].

The basic idea is to execute the code shown in the IDE and
obtain the necessary information about symbols, definitions,
source locations, documentation, variables, or method signa-
tures from the annotated and instrumented abstract syntax
tree as well as the run-time objects of a language, taking
inspiration from Haupt et al. [2011]. For this purpose, they
execute the code either using unit tests, or if none are avail-
able, the well-known entry points, such as main methods.
To avoid side effects, everything is executed in a sandbox.
Their sandboxing approach also provides the necessary sup-
port to execute the edited files based on their in-memory
versions. Since execution can take noticeable amounts of
time, previously harvested information will be cached.
SimpleLanguage is a small language to document how

the Truffle framework can be used. Stolpe et al. use it as a
running example. It is dynamically typed and has first-class
functions, local variables, various control structures, and
objects with dynamically added fields. Though, it does not
have any notion of classes or types.

The language server implementation uses the Truffle frame-
work to parse a file whenever the IDE sends file-open or
changed events. When parsing fails, the error is reported as
a diagnostic to the client.
While parsing, functions are collected by the framework

and tools get access to the abstract syntax tree (AST). “Func-
tions” here includes also methods, and things such as static
initializers depending on a language. The AST nodes belong-
ing to a function are language-specific. To have language-
agnostic information about their semantics, the nodes can be
tagged, which is then used for tooling. A node also encodes
the code range it originates from.

To identify for example variable declarations, AST nodes
are tagged with the DeclarationTag and the corresponding
node can implement the getNodeObject() method which
can provide additional details such as the kind of language
element declared, and any statically known types.

Function calls and similar are identified by the CallTag on
the corresponding AST nodes. The corresponding function
definitions are either identified by name, based on the con-
crete functions called at run time, or using findTopScopes(),
Truffle’s API to look for the name in global scopes. Once can-
didate objects representing for instance the functions are
found, the source position where they are defined can be
requested with Truffle’s findSourceLocation() method.
Variables are tagged with ReadVariableTag or Write-

VariableTag to identify all references to a specific variable.
Truffle keeps details on nested scopes to support debug-

gers. It can be queried with findLocalScopes() to correctly
distinguish symbols based on the language’s scoping rules.
To answer an IDE’s request for documentation and sig-

nature help, the run-time objects need to implement the
getDocumentation() and getSignature() methods. The
information is enriched with run-time type information that
can be queried using Truffle’s findMetaObject() function.

3

DLS ’22, December 07, 2022, Auckland, New Zealand Stefan Marr, Humphrey Burchell, and Fabio Niephaus

For code completion, completion candidates are deter-
mined using the scoping-related functions at the point in the
source where there request originates. To distinguish differ-
ent kinds of entities in the IDE, the language interop mecha-
nism is used to identify the entity as for instance callable or
instantiable. A language can further advice an IDE on when
code completion should be triggered by implementing the
getCompletionTriggerCharacters() method.
Code completion for object property accesses needs run-

time information. Since a file typically has a parse error when
requesting the completion, for instance after typing a dot, a
previous version is used to try to obtain a run-time object
and enumerate its members via the language interop API.
Overall, a language implementer needs to add support

for four different tags (DeclarationTag, CallTag, Read-
VariableTag, WriteVariableTag) on AST nodes, and im-
plement fourmethods (getNodeObject, getDocumentation,
getSignature, getCompletionTriggerCharacters) that are
specific to the IDE support. The other APIs have other uses
for tools such as Truffle’s debugger or language interop sup-
port. While these APIs may require substantial implemen-
tation effort, we exclude their implementation effort from
further consideration, since they are not only used for IDE
support.5 In their absence, one may want to consider our
parse-based approach to support IDE features more directly,
as discussed in the remainder of this paper.

Overall, we find that the effort needed to implement IDE-
specific support is minimal when using the approach pro-
posed by Stolpe et al. [2019].

3 A Language-Agnostic Design for a
Parse-Based Language Server

Our goal is to devise a design for a language server that keeps
the effort to gain IDE support as small as possible, while
maximizing the utility of the IDE features. Thus, we aim to
keep the increase in the implementation effort compared to
Stolpe et al.’s execution-based approach as small as possible.

3.1 Architectural Overview
Figure 2 gives a high-level overview of language servers in
the context of the language server protocol. The LSP con-
nects a language server with IDEs (see section 2.1) and is
used for instance to communicate the file content of the file
currently being edit. In the simplest form, an IDE will send
the complete content of a file. It will also send requests for
instance for code completion for which it then will receive
a result. A language server may also send notifications, for
instance to report the results of a lint tool.

While the execution-based approach requires a language’s
interpreter, tagged AST nodes, as well as the implementation
of Truffle’s debugging and interop APIs, for our parse-based

5We had them already implemented, because debugging and profiling sup-
port were more urgent for our uses.

approach, one needs only a parser that creates a collection
of structures, which encodes the relevant information for
an IDE. This collection of structures is then queried by the
language-agnostic part of the language server, whenever the
IDE requests information. Thus, a key insight here is that
the needed information can be represented with language-
agnostic structures to enable IDE services.
Though, our main focus is on the design of the API that

enables us to populate this collection of structures with min-
imal effort during parsing.

3.2 API Overview
The language-agnostic API to record the structural infor-
mation for a file is illustrated in fig. 3. It defines only two
new concepts: an element and an element id. However, it
borrows concepts such as tokens and diagnostics from the
LSP, which are indicated with the LSP prefix for type names.
The LSP’s enum types identify for instance what kind of
element it is, as defined in the protocol. The others merely
group descriptive information that is used to either locate
an element in a file or display information to the user. The
LSP types do not generally encode structure or semantics
directly (see section 2.1).
With our API, most IDE features can be directly derived

from the notion of the language element, or as the LSP calls
it, a symbol. Elements can be contained in other elements,
and have an id, name, what kind of element they are, a detail
string, a signature descriptor, an overall range of code where
its definition can be found, and the range of code that should
be selected when navigating to it, typically the name.

When parsing and analyzing an input file, the Structures
class is used to record the information. It provides methods
that record elements either in one or in two steps. This is
useful to capture the nesting of elements. Thus, at one point
the definition is started, and it is completed only later, for
instance once its closing parenthesis is parsed. The nesting
structure can then for instance be displayed in an outline
view. The single-step definition also takes a bool to indicate
whether the definition is after navigation. This enables us to
model for instance object fields.6
In addition to recording their definition, we also record

when elements are referenced. They can be referenced either
indirectly with an element id, or directly, for instance when
a class is named and the parser can directly resolve it.

Element ids encode equality classes for language concepts.
By subclassing ElementId, we distinguish different types of
elements, e.g. classes, methods, and local variables, without
introducing a notion of lookup, lexical scopes, or similar
into the API, keeping the effort of implementing the record-
ing for a new language low. While this does not provide
sufficient structure to implement concepts such as types, in

6While this approach is somewhat naive, it works well for SimpleLanguage,
Newspeak, and SOM.

4

Execution vs. Parse-Based Language Servers DLS ’22, December 07, 2022, Auckland, New Zealand

Eclipse

VSCode

NetBeans

Vim

Emacs

Language
Server

Protocol

TypeScript LS

Rust LS

Run-Time LS Parse-Time LS

Interpreter

ASTs with tags Interop

Debugger
for each language: for each language:

Parser Collection
of

Structures

communicates:
- file content
- requests, e.g. completion
- notifications, e.g. lint

…

Figure 2. High-level overview of the Execution and Parse-based Language Servers. The language server protocol connects
IDEs with language servers communicating file content, requests (e.g. for code completion), and notifications (e.g., for lint
information). The language servers are commonly specific to a language such as TypeScript or Rust. The language-agnostic
approaches differ in their key components.

ElementId

match(query: string): bool
getName(): string
hashCode(): int
equals(obj): bool

Structures

startElement(kind: LSP.KindEnum): Element
startElement(name: string, kind: LSP.KindEnum, id: ElementId,
 idRange: LSP.Range, a!erNav: bool, outerScope: int): Element
completeElement(elem: Element)
recordElement(name: string, id: ElementId, kind: LSP.KindEnum,
 range: LSP.Range, a!erNav: bool, outerScope: int)
referenceElement(elem: Element, range: LSP.Range)
referenceElement(id: ElementId, range: LSP.Range)
recordToken(range: LSP.Range, type: LSP.TokenEnum,
 modifiers: LSP.ModifiersEnum)
addDiagnostic(diag: LSP.Diagnostic)

Element

setId(id: ElementId)
setName(name: string)
setKind(kind: LSP.KindEnum)
setDetail(val: string)
setSignature(val: LSP.SigInfo)
setRange(val: LSP.Range)
setSelectionRange(val: LSP.Range)

abstract class,
to be implemented

for each distinct
language element

API provided by our framework, used when parsing and processing an input file to record the structural information

Figure 3. Overview of the API of our parse-based Language Server. These concepts are sufficient to support all common IDE
features with minimal development effort for a language implementer. Subclasses of ElementId need to be implemented for
each distinct language element. Element and Structures are provided by our framework, and are used to capture all needed
information for the language server. Types with the LSP-prefix correspond to the structures in the language server protocol,
and typically consist of source locations and string labels to be shown to the user in the IDE.

practice, it results in a highly useful developer experience for
dynamic languages. Furthermore, we assume that a parser
distinguishes different variables in some way. When it rep-
resents them as objects or a unique identifier, an element id
only needs to compare these representations to distinguish
variables correctly, too. See section 4 lst. 2 for an example.

Tokens are recorded to enable semantic highlighting. To-
kens distinguish different kinds, e.g., for a local access, a
field access, or a keyword, as well as possible modifier, such
as static, abstract, or documentation. The IDE will use this
token information for syntax highlighting. Since we can use
the semantic analysis from the language’s parser/compiler
to disambiguate for instance accesses to fields and local vari-
ables, the resulting highlighting can be more precise than
custom grammar approximations used in many editors, or

even the actual grammar, which may for instance conflated
fields and locals to a single type of Identifier.

Finally, diagnostics are additional information, warnings,
or errors to be reported to the developer. They can be syn-
tax errors preventing parsing, or even linter warnings that
identify stylistic issues or code smells.

4 Utilizing the API for SimpleLanguage
We will illustrate how our language-agnostic API can be
used to provide IDE features for SimpleLanguage. SimpleLan-
guage is a language used to document the Truffle framework
(see section 2.3). Its parsers is generated by ANTLR [Parr
2013] and its semantics are implemented using Truffle.

To utilize our design with SimpleLanguage, we forego the
existing SimpleLanguage implementation and use only its

5

DLS ’22, December 07, 2022, Auckland, New Zealand Stefan Marr, Humphrey Burchell, and Fabio Niephaus

ANTLR grammar file. Thus, we demonstrate how to use our
approach independent of Truffle and that it is general enough
to be used with the widely used ANTLR parser generator.

Structural Adaptation. The SimpleLanguage implemen-
tation and its grammar remain unchanged. This is possible
since ANTLR generates a ParseTreeListener, which pro-
vides enter and exit events for all grammar rules. This allows
us to retrieve all relevant information from the parser. To
avoid changes to any of the other generated classes and uti-
lize the grammar actions without change, we provide our
own version of the SLNodeFactory class. This class is nor-
mally used to construct Truffle nodes that represent the AST.
In our case, we replace it by a factory that captures the high-
level information already produced by the grammar actions.
We subclassed the generated SimpleLanguageParser to

adapt the parser initialization and use our custom node fac-
tory, our parse tree listener, as well as a custom error lis-
tener. The error listener merely extracts the necessary po-
sition information and adds it as a diagnostic object to the
Structures data structure.

Capturing the Language’s Structures. Our node fac-
tory overrides most methods to use the information from
the parser to record the elements and token semantics as
illustrated in lst. 1. For instance, when parsing a function
definition, first we call startElement(name, id, kind,
range) on line 4 with the lexical details extracted from the
parser. This creates a new Element to store these details,
The actions contained in SimpleLanguage’s grammar already
manage some details like adding parameters to a function
object by using the node factory. Thus, here we only need to
override its addFormalParameter()method to record an el-
ement for each parameter. Since these elements are implicitly
contained between the startElement() and endElement()
calls for the function, we do not need to handle containment
or scope explicitly.
The other methods overridden in the node factory use

recordToken(range, type, modifiers) to capture token
semantics for the semantic highlighting (see lines 9 and 14).

In SimpleLanguage, both function definition and assigning
to a name are parsed as variable definitions. Object fields are
created by assigning to an object property. To distinguish
between variable definitions and object properties, we de-
fine two subclasses of ElementId, i.e., two different equality
classes: VarId and PropertyId. Lst. 2 sketches VarId, and
PropertyId is similar, but would omit the scope. Since Sim-
pleLanguage does not have any notion of classes or types,
and because object properties can be added arbitrarily, there
is not enough structure in the language, which would benefit
from including a scope.

The node factory’s methods for creating read and assign-
ment nodes use referenceElement(id, range) to record
the referencing of variables. Note that we rely here solely
on the ElementId mechanism (see section 3.2), where our

1 class LSFactory extends SLNodeFactory {

2 @Override

3 void startFunction(Token id, Token s) {

4 currentFn = structures.startElement(

5 id.text(), new VarId(id.text()),

6 FUNCTION , id.getRange ());

7
8 paramNames = new ArrayList <>();

9 structures.recordToken(id, FUNCTION , NONE);

10 }

11
12 @Override

13 SLStatementNode createBreak(Token b) {

14 structures.recordToken(b, KEYWORD , modifier);

15 return super.createBreak(b);

16 } }

Listing 1. Capturing token and structural information in
the node factory, which is otherwise used to construct the
nodes of the SimpleLanguage AST.

1 class VarId extends ElementId {

2 public final String name;

3 public final Element scope;

4
5 public int hashCode () {

6 return Objects.hash(name , scope); }

7 public boolean equals(Object o) {

8 if (o == null || getClass () != o.getClass ()

9 || !name.equals (((VarId) o).name)) {

10 return false;

11 }

12 return scope == ((VarId) o).scope;

13 } }

Listing 2. Sketch of VarId to identify variable and function
names distinguishing them from object properties in Simple-
Language.

VarId class encodes the scope of Elements, which avoids
the need to manage lexical scopes more explicitly.

The factory method for writing to a property will record a
new element, since in SimpleLanguage writing to an object
propertymay create it dynamically. The reading of a property
will simply record a reference to an element.

The custom parse tree listener is needed since Simple-
Language’s grammar actions do not pass all relevant lex-
ical details to the node factory. For instance, we use it to
record the tokens for various keywords such as function,
if, while, and return for highlighting. Furthermore, when
leaving the grammar rule for a function, we add signature
details, based on the seen parameter names, and can trigger
the completion of the function’s element definition by calling
completeElement(elem).
This concludes a brief but representative description of

what a language implementer roughly needs to implement

6

Execution vs. Parse-Based Language Servers DLS ’22, December 07, 2022, Auckland, New Zealand

to gain IDE support based on our approach. Our implemen-
tations for Newspeak and SOM are fairly similar, the main
difference is that they subclass custom recursive descent
parsers instead of an ANTLR grammar.

5 Supporting Existing Parsers for Use in
Language Servers

One of the challenges for a language-agnostic language
server is the reliance on existing parsers and/or compilers.
For responsiveness, IDEs may prefer incremental parsers.
They may also prefer parsers that can recover from a wide
range of errors to provide feedback while editing. A naive
heuristic in a language like Java might for instance ignore all
tokens after a parse error until a statement terminating semi-
colon or a closing brace is found, and then restart parsing
from there. For common code edits, such an approach would
mean that most of a file can be parsed and most informa-
tion can be obtained reliably, avoiding undesirable “flicker”
effects, for instance when elements constantly appear and
disappear in an outline view.

By striving for a low-effort approach to tooling, we cannot
expect a language implementation to provide an incremen-
tal or even an error-recovering parser. Instead, we have to
assume that it aborts after the first error. This means our
language-agnostic language server has to compensate for it
and still provide a predictable user experience. We use two
slightly different approaches for the handling of structural
data and the handling of semantic highlighting. Though, in
either case, we attempt to reparse a file on every change.

5.1 Caching Structural Information
Whenever a file is changed, we try to parse it with the parser
subclass augmented to collect structural information. Once
we have a successful parse, we will cache the result on the
file level, and use the found classes, methods, etc, for fu-
ture requests, for instance code completion or navigation.
Though, we do not use any information obtained from erro-
neous parse attempts, to minimize UI flicker, i.e., elements
appearing and disappearing.

This approach is based on the assumption that most edits
will be made on existing files and that files are typically
checked into a project’s repository without parse errors.
Thus, when opening a file, the parser will initially succeed,
andwe cache a valid representation of the file’s structure. The
cache will only be updated after another successful parse.

The worst-case scenario for this approach is when a new
file is created. Depending on the programmer, this file may
take a long time to parse successfully for the first time, and
until then, no structural information will be available.

The other major weak point is that structural information
can become outdated when major changes are made to a file
without the parser succeeding. This means that position in-
formation may be outdated, for instance when large chunks

Figure 4. For the semantic highlighting, we combine the
parse result from before the error, with the ones of the last
successful parse, which is used for the lines after the error.

are inserted into the file, or deleted from it. In the future,
we may use the didChange notification of the LSP to correct
location information.
In our own use, neither of these two scenarios caused

usability issues, and our simple caching approach gives sur-
prisingly usable results. This is because we usually work on
existing files that we change step-by-step with small edits.

5.2 Caching Semantic Highlighting
For the semantic highlighting, the situation is a little different.
While the structural information is only observable either in
an outline view, where only very coarse details are given, or
when interacting with the code, the semantic highlighting is
more directly observable as token coloring.
Here we will also only cache results from a successful

parse, but if parsing fails, we combine token information
from the last successful parse with token information from
the one that failed. Specifically, from the failing parse, we
take the token information up to the position of the error.
Then we add the token information from the last successful
parse for the following line and beyond. This means, when
there is an error, only the bit after the error, on the same line,
will not be highlighted, as can be seen in fig. 4.

The main assumption here is that edits would not have
changed the file drastically, and reusing the older highlight-
ing for the rest of the file is likely fine. Thus, the worst-case
scenario is once again inserting or deleting large chunks of
the file. But, since we use the beginning of the failing parse,
starting a new file still gets useful highlighting information.
Despite the approach being very simplistic and not yet

adapting highlighting information based on the didChange
notification, the result feels very usable and does not cause
“flickering” highlighting in the editor.

6 Implementation
Our language-agnostic language server is implemented in
Java 17 and uses the LSP4J7 library as an implementation of
the LSP. The implementation is available as open source8
and has been tested with Visual Studio Code as the client.

7A Java implementation of the language server protocol, Eclipse Foundation,
https://github.com/eclipse/lsp4j
8Effortless Language Servers, Stefan Marr et al., https://github.com/smarr/e
ffortless-language-servers

7

https://github.com/eclipse/lsp4j
https://github.com/smarr/effortless-language-servers
https://github.com/smarr/effortless-language-servers

DLS ’22, December 07, 2022, Auckland, New Zealand Stefan Marr, Humphrey Burchell, and Fabio Niephaus

The server keeps all information for parsed files directly
in memory. The data is kept separately per file and the data
format is close to the one required for the LSP.
The main classes were already illustrated in fig. 3. The

Structures class keeps the data for a specific file. It keeps
a list of scopes, diagnostics, elements for after-navigation
lookups, and maps from element id to element or references.
The nesting of elements is implicitly constructed by the

startElement and completeElement methods. Each ele-
ment itself can contain a list of child elements, as well as a
list of contained references. We use this structure for lookups
based on source locations in the form of line and column
numbers, by identifying the element most specific to the
location. This enables us for instance to identify the current
element for hover information, goto definition, and code
completion requests. For code completion, we also keep a
list of elements that can only appear after navigation, e.g.,
after the dot to access fields or methods in Java.

The list of diagnostics collected during parsing and possi-
bly any compilation steps, are also kept here.

To enable lookups based on names, we keep one map from
an ElementId to a set of Element objects, and one to map
from an ElementId to a list of references.

The subclasses of ElementId need to implement equals()
and hashCode() methods to define equivalence classes, for
instance to distinguish local variables from class names, in
languages that distinguish them. The subclasses can also
override the matches(str) method to adapt the search se-
mantics based on language-specific requirements. For in-
stance, a language with Pascal case or camel case may want
to adapt the matching so that identifiers match based on the
capitalized letters, when someone searches using them as
an abbreviation. Our current standard implementation will
only match the case-insensitive beginning of an element’s
name, which works well for a variety of different languages.

Future work could combine our approach with something
like SemanticDB [Burmako 2018] to avoid keeping all data
in memory. Keeping everything in memory makes our lan-
guage server likely impractical for code bases with millions
of lines of code. Though, since our goal is to lower the en-
try barrier for the implementation of language servers, the
corresponding young or researchy languages are unlikely to
have large enough code bases to require such optimizations.

7 Tradeoffs between Execution and Parsing
To assess the tradeoffs between parse and execution-based
language servers, we contrast the requirements for both ap-
proaches, and then compare the precision and completeness,
as well as the effort needed to realize either.

7.1 Architectural Requirements
For both parse and execution-based language servers, we
assume as previously mentioned that the standard parser

of the language implementation is used. Thus, we expect a
batch parser/compiler, which aborts on the first error. While
incremental parsers would be desirable, they are not required,
but can be supported for both types of language servers.

For our parse-based approach, we need to be able to adapt
the parser. Though, we do not have any other requirements.
While we implemented this approach for languages in Java,
we do not see any obstacles to apply it to languages or LSP
libraries implemented in other languages.
As demonstrated with SimpleLanguage’s ANTLR gram-

mar, it is even possible to support ANTLR-based languages
without any change to their grammar. Instead, all details can
be collected based on ANTLR’s ParseTreeListeners, or in
the case of SimpleLanguage, in tandem with the language-
specific node factory.

For SOM we used TruffleSOM, and for Newspeak we used
SOMns’ implementation. In both cases, we rely on their hand-
written recursive descent parsers. We were able to subclass
the parser and lexer classes to access the desired information.
For convenience, we changed the parsers and lexers slightly,
to avoid having to track the grammar context in the subclass
explicitly. Thus, we made private methods protected so
that we can override them, and in some cases, introduced
methods in the parsers to disambiguate the grammar context,
for instance to distinguish local variables from fields.

Since we cache information only from a successful parse,
as discussed in section 5.1, information for the language
server is only available after parsing indeed succeeded.

For the execution-base approach of Stolpe et al., the major
requirement is that languages are implemented based on
the Truffle language framework. As detailed in section 2.3,
a language implementer can augment the AST with tags to
identify declarations, function calls, or variable accesses, and
needs to implement a few methods to provide details such
as the kind of element, documentation, and signatures. By
relying on existing Truffle APIs for debugging and language
interoperability, the investment into those also gives the
benefit of these other features.
However, the main requirement to collect much of the

desired data is that the code does not only parse success-
fully, but can also be executed. This is needed for instance
to collect structural information, identify concrete elements
referenced, or run-time types, as we detail in the following
section. The biggest drawback of this approach is that one
first needs well-defined entry points into the code and ide-
ally fully cover the code with unit tests. Furthermore, the
runtime may not have all desired information, because the
language designers may not have needed, e.g., access to class
comments at run time.

7.2 Precision and Completeness of IDE Features
For each of the IDE features, the parse and execution-based
approaches have different benefits and drawbacks, which we
discuss in the following and summarize in table 1 on page 12.

8

Execution vs. Parse-Based Language Servers DLS ’22, December 07, 2022, Auckland, New Zealand

Figure 5. The outline view shows all elements defined in a
file and their nesting relation.

Navigational Features.

Symbols. To display a list of elements contained in a file
or workspace, or to display a tree-like outline view as in
fig. 5, we need to report all defined symbols to the client.

For the parse-based approach, this is straightforward. The
language-specific part supplies all details via our API. This
includes what kind of element it is, documentation, any avail-
able type information, and source locations.

For the execution-based approach, the situation is slightly
more complex. Before execution, one only has the list of
functions or methods in a file, and can traverse their ASTs to
identify local variable definitions using the DeclarationTag
(see section 3). Only after execution, information on classes
or other containing structures can be obtained. This infor-
mation may then still be only partial depending on the code
structure. For instance, in the case of Newspeak, which sup-
ports nested classes, executing the top-level file would not
provide information for nested classes. A full suite of test
cases or other well-defined entry points for execution would
be needed to be able to extract all structural information.
Thus, locals and functions can be obtained in both ap-

proaches, but for globals, including classes, as well as prop-
erties the execution-based approach may require execution.

Goto Definition. In our parse-based approach, we utilize
the equality of ElementIds (see section 3.2) to find candidate
definitions when receiving a request for goto definition. For
dynamic languages, this means we may have low precision,
i.e., we may propose candidates that cannot be referenced,
but we can identify candidates in all successfully parsed files.

To distinguish local variables, our approach differs slightly
between the languages. For SOM and Newspeak, the parser
provides us with an object representing the definition, which
allows us to reject variables with the same name in other
functions as candidates. For SimpleLanguage, we include
the current function as part of the element id for variables,
which models the lexical scope accurately (see lst. 2). An
example can be seen in fig. 6.

The execution-based approach has initially only the struc-
tural information on functions and variable declarations

Figure 6. The goto definition action shows all candidates
for the inc function, directly showing one of the three here.

identified by the DeclarationTag. But at run time, it can ob-
serve concrete functions/methods being used at call sites and
obtain globals and information about properties from the de-
bugging and interop APIs. With this, it can either eliminate
candidates with the same name, or rank the ones observed
at execution time higher.
Thus, the execution-based approach can use this extra

information to improve precision, but requires execution to
obtain the globals and properties.

References and Highlights. IDEs may highlight all oc-
currences of a selected symbol, e.g., a variable or function,
and offer a search for all references to a symbol.
With the parse-based approach, we detect all candidates

and can distinguish the reading and writing accesses, as sup-
ported by the protocol. Eliminating candidates, for instance
based on a language’s scoping rules is done based on the
equality semantics of ElementId.

With the execution approach, using the ReadVariableTag
and WriteVariableTag, local variable identity can be deter-
mined without execution. For functions, all candidates can be
determined by name. Based on run-time information, these
can be ranked and possibly even eliminated. References to
globals, e.g., classes, require run-time information.

Informational Features.

Syntax Errors. For reporting syntax errors, or any other
errors reporting during parsing, both approaches have sim-
ilar benefits. Since errors are determined already during
parsing, execution is not generally required.

Signature Help. Our parse-based approach can harvest
the details about function signatures, argument names, and
similar during parsing. It can also capture comments, though,
here a change to the parser or lexer may be necessary. In
ANTLR grammars, comments are often skipped at the lexer
level, but can also be redirected to a separate token channel.
Similarly, hand-written parsers may simply discard com-
ments. In either case, the changes to capture comments are
normally fairly localized.
For the execution-based approach, if the language keeps

this information at run time, onemay be able to query objects.
For SimpleLanguage, the parser neither keeps comments nor
separates arguments from local variables. Thus, signature

9

DLS ’22, December 07, 2022, Auckland, New Zealand Stefan Marr, Humphrey Burchell, and Fabio Niephaus

Figure 7. Code completion for functions yields all possible
candidates, including signature information.

help and documentation will be incomplete. On the other
hand, execution can be used to augment signatures for in-
stance with run-time type information.

Hover Information. For hover information, the situation
is similar to signature help. For the parse-based approach,
we can capture for instance class comments and display
them. The execution-based approach will only get access
to such structural information via execution, and only if
it is preserved. On the other hand, it is possible to show
concrete run-time types, or even values, and extract concrete
information from those.

Code Completion. Supporting code completion brings its
own set of challenges. Stolpe et al. already identified the most
important issue: in many cases code completion is requested
at a point where the code may not currently parse correctly,
which is a challenge both approaches need to overcome.

Completing Globals and Locals. In the simplest case
for code completion, we may try to complete some kind of
basic expression. Depending on the language, many of these
requests will parse successfully. In our parse-based approach,
we either propose all symbols, i.e., elements at this point in
the scope, or when the cursor is at the end of an identifier,
use this identifier to select candidates with partial name
matching. Generally, we walk the nested Element objects,
and propose all elements found in the lexical order, inside
out, which seems to provide good results.

With the execution-based approach, results from the last
successful parse and/or run are used. Information for locals
can be used from the last parse and will be complete. Though,
globals require run-time information. For improved results,
the run-time information can be used to eliminate and rank
the completion candidates.

Completing Functions. For functions and methods, both
approaches rely on the last successful parse of the file, which
yields all lexically defined functions and methods as illus-
trated in fig. 7. Though, run-time information can be used
to eliminate or rank completion candidates.

Completing Properties. A complication for offering code
completion of property names is that in many languages
the parser will reject the program at the point when the
character to access a property, e.g., the dot as in obj.member,

is typed into the editor. The program will only parse when
at least the first letter of the property name is entered, too.

For our parse-based approach, this did not present a major
challenge. We keep the structural information from the last
successful parse, which in most cases will be after obj was
typed completely. When the parsing fails, we see that the
last inserted character was a dot and can use this to query for
completions that are after navigation as we call it. We include
this concept directly in the API to be able to more easily
identify completion candidates. In most languages, members
in the form of fields and methods will follow lookup rules
separate from lexical scoping. The after-navigation flag is
part of the definition of Elements, and considered when
searching for candidates. When there are already characters
of a property name, we will use it to narrow down the list
of candidates. Otherwise, we propose all candidates of the
current file first, and then all the other ones.
As mentioned earlier, we do not have any type informa-

tion or other structural details that could be used to further
narrow down the candidates, which is a classic challenge for
tooling for dynamic languages.
For the execution-based approach, an earlier successful

result will be used. Here the concrete type, e.g., of the object
before the dot can be queried for its members, which are
then proposed as completion candidates. Assuming that the
type observed in the test run is representative, this gives
highly accurate completion proposals.

Convenience Features. Features such as linting and se-
mantic highlighting are popular in IDEs, and add to their
convenience.

Linting. Linters often try to identify superficial or easy-
to-spot issues in code. They can comment on code formatting,
style, and sometimes even bugs.

In our parse-based approach, we added a few linters that
address basic issues. The simplest is a linter that detects
whether a file ends with a newline, which is something of a
convention in some environments. Perhaps more useful, we
also have a linter that checks all references created during
parsing for a corresponding candidate definition. If no defi-
nition is found, depending on the language, it may indicate
a bug. These linters are opt-in per language and either work
on the whole workspace, or just on a single file.
For the execution-based approach, it is conceivable to

implement some basic linting, too. For instance, since all
method and function calls are tagged with CallTag, one can
identify whether there are any calls for which no candidates
exist. The errors of unit tests executed in the background
may also be used to add lint-like hints.

Semantic Highlighting. Syntax highlighting is popular
in many editors and IDEs. Usually, this requires replicating

10

Execution vs. Parse-Based Language Servers DLS ’22, December 07, 2022, Auckland, New Zealand

a language’s parser in some framework to express the high-
lighting information. These days TextMate grammars9 and
Tree-sitter10 seem popular. Though, in the author’s expe-
rience, for researchy languages, these grammars are often
minimal, incomplete approximations of the actual language.
With our parse-based approach, we capture the seman-

tics of all relevant tokens using the semantic analysis of the
existing parser/compiler. Thus the highlighting can distin-
guish, e.g., fields and methods, or locals and arguments. In
our experience, capturing this information requires typically
a single line of code per token type.

Marr et al. [2017] demonstrated the use of AST tagging to
a similar effect. Unfortunately, this requires many different
AST tags, and will only highlight the body of functions and
methods. Thus, it would be possible also in a execution-based
approach, but likely feel rather incomplete.

Code Lenses for Unit Tests. The LSP supports the notion
of code lenses, which enables us to annotate specific code
ranges for instance with additional information and actions.

In our parse-based approach, languages can opt into such
lenses and configure them. For instance, we provide a code
lense to detect methods that start with test as common for
the xUnit frameworks.

While not mentioned in Stolpe et al. [2019], providing code
lenses for such scenarios should be trivial, since it already
relies on unit tests to harvest information for the IDE.

7.3 Implementation Effort
To compare implementation efforts, we have only a limited
amount of data available. Though, for the execution-based
approach, in the ideal case, one needs to merely add tags
to AST nodes and implement a few small methods. Adding
tags is as simple as implementing a hasTag(tag) method,
returning true for the four tags to indicate declarations, calls,
reads, and writes on the relevant nodes. One may argue that
the APIs for debugging and language interop are already
implemented for the other desirable functionality. Thus, the
effort is minimal.
To assess the implementation size, we use cloc version

1.92, and report the number of lines of code (LOC).
For SimpleLanguage, we estimate that the implementation

of the interop and debugging APIs is about 454 LOC. This
is an estimate, since there is in some cases not a clear sep-
aration, and we simply counted all lines of code of the classes
SLObject, SLFunction, SLLanguageView, and SLType, which
are dominated by the debugging and interop APIs.
In comparison, the language-specific code for our parse-

based approach is 491 LOC for SimpleLanguage, 920 LOC
for SOM, and 711 LOC for Newspeak.

9TextMate: Language Grammars, MacroMates Ltd., https://macromates.c
om/manual/en/language_grammars
10Tree-sitter , GitHub Inc., https://tree-sitter.github.io/

Much of it is however boilerplate. For SimpleLanguage,
considering only the parser subclass, our custom node fac-
tory, and the token listener, all information is collected with
merely 320 LOC. In the SOM implementation, the main code
is in the parser and lexer subclasses, which add up to 472
LOC. For Newspeak, we only needed to subclass the parser,
which amounts to 473 LOC. The other code is boiler plate,
equal() and hashCode() methods for element ids, as well
as conversion functions from one representation of a lexical
position to another.

To provide a rough comparison, we sampled 20 language
server implementations from the LSP wiki,11 for languages
we had heard of before. The goal here is to gain an intuition
of how our numbers compare to ad hoc language server
implementations. Note, these numbers are not well-defined
baseline for comparison, since these servers can spent arbi-
trary amounts of effort on better analysis and more precise
results and support different sets of LSP features, which we
did not access here. Comparing against the execution-based
approach provides are more well-defined baseline.

Taking the latest version of the git repositories, removing
tests and configuration files, and measuring the LOC, we
find the smallest language server to be 1,577 LOC and the
largest one 95,878 LOC, Microsoft’s deprecated open source
Python language server.12 The mean is 18,985 LOC and the
median 12,055 LOC. Some repositories contain however also
the language server protocol implementation itself, making
the numbers appear somewhat larger.
Overall, we observe that with our approach, a language

server is about an order of magnitude less code, while pro-
viding the most widely used IDE features.

8 Discussion
The focus so far was on the specific IDE features, though
there are a number of other concerns worth discussing, in-
cluding language built-ins, polyglot code bases, various limi-
tations, as well as how practical batch parsers are from the
perspective of performance.

Recognizing Built-Ins. The execution-based approach
is implicitly able to capture all functions that are built into
a language implementation, since they are announced via
Truffle’s standard instrumentation mechanisms.

However, with our approach, we require the information
to be given via our proposed API. This means built-ins are
often not directly represented. In the case of Newspeak and
SOM, we already collected the built-ins for other tooling, and
they were readily available. Though, for SimpleLanguage we
only used the ANTLR grammar, which means, this informa-
tion is not directly available, but can be provided manually.

11Implementations: Language Servers, Microsoft, https://microsoft.github.i
o/language-server-protocol/implementors/servers/
12Microsoft’s current PyLance Python Language Server is closed source,
and not available for comparison.

11

https://macromates.com/manual/en/language_grammars
https://macromates.com/manual/en/language_grammars
https://tree-sitter.github.io/
https://microsoft.github.io/language-server-protocol/implementors/servers/
https://microsoft.github.io/language-server-protocol/implementors/servers/

DLS ’22, December 07, 2022, Auckland, New Zealand Stefan Marr, Humphrey Burchell, and Fabio Niephaus

Table 1. Tradeoffs between Parse and Execution-based Language Servers

LSP Feature Parse Time Run Time

Symbols: locals, functions ✓ ✓
Symbols: globals, properties ✓ ⋆
Goto definition: locals ✓ ✓
Goto definition: functions ✓ ✓ + call targets
Goto definition: globals, properties ✓ ⋆ + types and properties
References and Highlights: locals ✓ ✓
References and Highlights: functions ✓ ✓ + call targets
References and Highlights: globals, properties ✓ ⋆ + types and properties
Syntax Errors ✓ ✓
Signature Help ✓ ⋆ + documentation (if preserved), types
Hover Information ✓ ⋆ + documentation (if preserved), types
Completion: globals ✓ ⋆
Completion: locals ✓ ✓
Completion: functions ✓ ✓ + call targets
Completion: properties ✓ ⋆ + types

Linting ✓ ⋆ + unit test errors
Semantic Highlighting ✓ � + run-time tags [Marr et al. 2017]
Code Lens for Unit Tests ✓ ⋆

✓ Available directly
� Limited static information
⋆ Reaches similar level after collecting run-time information
+ Enhanced details as more information can be observed at run time

Support for Polyglot Code Bases. One of the notable
features of the Truffle and GraalVM ecosystem is its support
for polyglot programming. As already noted by Stolpe et al.
[2019], the language server has immediate support for it,
simply be virtue of using the language interop API [Grimmer
et al. 2018] to obtain the needed information.

In our parse-based approach, this is not considered directly.
Even with the three languages supported, it does not work
out of the box to get for instance code completion proposals
from the other languages.

To support it, we could take inspiration from Truffle’s in-
terop approach and add abstract methods on ElementId such
as isExecutable() and isMemberReadable() for which
languages can then indicate whether an element is suitable,
for instance as candidate for code completion given the cur-
rent lexical context.

Supporting Non-Local Syntax Features. When imple-
menting our approach for Newspeak, we stumbled over
Newspeak’s primary factory method syntax, which is essen-
tially a constructor. Lst. 3 sketches the Error class, where
the constructor takes msg as an argument. Inside of what
one could consider the lexical body, we define in line 2 the
public field message.
For our API (see fig. 3), this meant we needed to add

an outerScope parameter, in which we pass an integer to

1 class Error signal: msg = (

2 | public message = msg. |

3 self signal.

4)()

Listing 3. Newspeak class syntax defines fields inside the
constructor.

indicate the number of levels to go up the nesting chain
when recording an element. Though, Newspeak is not the
only language that benefits from this approach. Python and
Ruby create fields during the constructor execution, as part
of the initial assignment. With this feature, these definitions
can be attributed to the surrounding class.
For other discontinuous language features, for instance

extensions to the same class in different Ruby files, one can
rely on the equivalence of ElementId objects and have the
different extension parts be equivalent, which ensures that
e.g., references and code completion work as expected.

Limitations and Practical Issues. From the user per-
spective, one observable limitation will be that code com-
pletion will offer to complete variables that have not been
defined yet. In some scenarios, this might even be useful,
e.g., when reordering code. Only on completion, the linter
or parser will produce a warning when the code is invalid.

12

Execution vs. Parse-Based Language Servers DLS ’22, December 07, 2022, Auckland, New Zealand

Another aspect that can cause practical limitations is the
parser design. For instance in the case of SOM, it is difficult
to get the correct details for code completion of a superclass’s
name. The problem is that the parser tries to load the super-
class, and then triggers Smalltalk code to handle the load
error, which does not preserve the error location. This makes
it difficult to support completion at this particular point. We
can imagine that other languages have other oddities, where
changes to the parser might be desirable.

For some languages, parsers may even minimize the work
performed for an initial parse. V8 does for instance delay
the full parsing of a function body to its first activation. For
tooling such as ours, this is of course undesirable. In these
cases, one must hope that the parser has a flag like V8’s that
allows one to disable this optimization.

Performance of Batch Parsers. Since our approach relies
on parsers that already exist, and are not designed for use in
IDEs, we wondered what their performance would be. There
are of course conceptual limitations, such as not having error
recovery, and thus, only partial information for files with
errors. Though, this aside, we wondered whether the parsers
would be fast enough for usual usage scenarios.

To investigate the question, we build code generators for
Newspeak, SimpleLanguage, and SOM, which, based on a
library of methods, would generate files of arbitrary length.

Then we built benchmarks that measure the parsing speed,
as well as the overhead of answering the requests for all
symbols and the semantic tokens, which an IDE would query
relatively often after file changes to update the outline view
and semantic highlighting information.

Running these benchmarks on a decade-old Intel Xeon E5-
2620 with 16GB RAM, Ubuntu 20.04 and Java 17, makes us be-
lieve that there is no practical issue preventing our approach
from succeeding. The results are depicted in fig. 8. They
indicate that batch parsers are fast enough, even for large
files. The SimpleLanguage parser, being based on ANTLR
is the slowest, but only takes 215ms for 10,000 LOC. The
Newspeak and SOM parsers stay well below it with 86ms
and 78ms respectively.
Johnson [2014] suggests that humans expect feedback in

under one second, but ideally expect a visible effect in about
100ms. For the combination of slower parsers and large files,
one thus may need to utilize the LSP’s support for partial
results and intermediate progress updates.

Current Status of the GraalVM Language Server. In
this paper, we focused our comparison on the system de-
scribed by Stolpe et al. [2019]. Though, as mentioned in
the beginning, it was the foundation for the GraalVM lan-
guage server. One important change in the product is that
the DeclarationTag was removed. For static information,
the system now delegates to existing language servers.
For widely used languages, this is a strategy that allows

the users to benefit from the combination of a fully-featured

1

100

10000

1 10 100 1000 10000 1000000
lines of code

ti
m
e
in

m
s
(lo

w
er

is
be
tt
er
)

Newspeak

SimpleLanguage

SOM

Figure 8. Performance results of SimpleLanguage’s ANTLR-
based parser, as well as the custom recursive descent parsers
for Newspeak and SOM for files with different numbers of
lines of code. They take at most 215ms for processing a file
with 10,000 LOC. The area around the lines indicates the 5th
and 95th percentile of 1,000 measurements.

custom-built language server, and the enhanced precision
and polyglot capabilities based on the run-time information.
Though, for niche and researchy languages this means that
our parse-based approach is needed to fill in the gap.

9 Conclusion and Future Work
We propose a novel API that enables implementers of dy-
namic languages to provide information to a language server
that covers many of the common features desired in an IDE.
The API design makes it independent of any implementation
framework and enables the use of preexisting parsers.

We compare our approach to Stolpe et al. [2019]’s execution-
based approach. In the best case, they require only a few lines
of code to tag AST nodes, and a small number of methods
to extract structural details. However, the drawback is that
files need to be executable and have either standard entry
points or be executed by unit tests to provide much of the
desirable information to the language server.

Our approach captures all information at parse time, and
sacrifices only some precision when selecting candidates, e.g.
for highlighting references or code completion.
From our three implemented languages, SOM required

with 920 lines the most code overall. Much of it is Java boiler-
plate and largely straightforward code turning data from one
form into another. Furthermore, it is an order of magnitude
less code than the median 12,055 LOC for the 20 language
servers we sampled.

Since we use existing parsers, which are not designed for
use in IDEs, we also confirmed that their performance for
reasonably sized files is practical for continuous use, perhaps
to reparse after a keystroke.

13

DLS ’22, December 07, 2022, Auckland, New Zealand Stefan Marr, Humphrey Burchell, and Fabio Niephaus

Combined with the execution-based approach, our ap-
proach has the potential to give highly precise and complete
information for an IDE with significantly less code than nor-
mal language servers. Thus, we believe our approach is not
just practical, but even a desirable design for building tooling
for existing niche and research languages.
Furthermore, by itself, our design enables low-effort lan-

guage servers and would be an ideal complement to libraries
implementing the language server protocol to give develop-
ers the option to support many IDE features rapidly.

Future Work. In this work, we focused on dynamic lan-
guages. In a sense, they are more forgiving and user expec-
tations around the precision of code completion may also be
different than perhaps for statically-typed languages. Thus,
one of the next steps would be to explore how to benefit
from type information in a language-agnostic way to expand
the proposed API to support such languages better.

With our support for basic language-agnostic linting, we
demonstrated that a useful correctness check can be done
with minimal effort. Since static analysis frameworks such
as Infer first map to an abstract intermediate form, one could
investigate what a language-agnostic language server would
need to capture to enable more advanced analyses.

Acknowledgments
The authors would like to thank Owen Oclee for the initial
implementation of the SOM language server, paving the way
for this language-agnostic language server. We also thank
the DLS’22 reviewers for their detailed and constructive
suggestions.
This work was supported by the Engineering and Physi-

cal Sciences Research Council (EP/V007165/1) and a Royal
Society Industry Fellowship (INF\R1\211001).

References
Eugene Burmako. 2018. SemanticDB: A Common Data Model for Scala

Developer Tools. In Proceedings of the 3rd ACM SIGPLAN International
Workshop on Meta-Programming Techniques and Reflection (Boston, MA,
USA) (META’18). ACM, 2. https://doi.org/10.1145/3281074.3281076

Sebastian Erdweg, Tijs van der Storm, Markus Völter, Laurence Tratt, Remi
Bosman, William R. Cook, Albert Gerritsen, Angelo Hulshout, Steven
Kelly, Alex Loh, Gabriël Konat, Pedro J. Molina, Martin Palatnik, Risto Po-
hjonen, Eugen Schindler, Klemens Schindler, Riccardo Solmi, Vlad Vergu,
Eelco Visser, Kevin van der Vlist, Guido Wachsmuth, and Jimi van der
Woning. 2015. Evaluating and comparing language workbenches: Exist-
ing results and benchmarks for the future. Computer Languages, Systems
& Structures 44 (2015), 24–47. https://doi.org/10.1016/j.cl.2015.08.007
Special issue on the 6th and 7th International Conference on Software
Language Engineering (SLE 2013 and SLE 2014).

Moritz Eysholdt and Heiko Behrens. 2010. Xtext: Implement your Lan-
guage Faster than the Quick and Dirty way. In Proceedings of the ACM
international conference companion on Object oriented programming sys-
tems languages and applications companion (SPLASH ’10). ACM, 307–309.
https://doi.org/10.1145/1869542.1869625

Matthias Grimmer, Roland Schatz, Chris Seaton, Thomas Würthinger,
Mikel Luján, and Hanspeter Mössenböck. 2018. Cross-Language In-
teroperability in a Multi-Language Runtime. ACM Transactions on
Programming Languages and Systems 40, 2 (June 2018), 1–43. https:
//doi.org/10.1145/3201898

Michael Haupt, Michael Perscheid, and Robert Hirschfeld. 2011. Type
Harvesting: A Practical Approach to Obtaining Typing Information
in Dynamic Programming Languages. In Proceedings of the 2011 ACM
Symposium on Applied Computing - SAC '11. ACM, 1282–1289. https:
//doi.org/10.1145/1982185.1982464

Jeff Johnson. 2014. Designing with the Mind in Mind, Second Edition: Simple
Guide to Understanding User Interface Design Guidelines (2nd ed.). Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA.

Lennart C.L. Kats and Eelco Visser. 2010. The Spoofax Language Work-
bench: Rules for Declarative Specification of Languages and IDEs. In
Proceedings of the ACM International Conference on Object Oriented Pro-
gramming Systems Languages and Applications (OOPSLA ’10). Association
for Computing Machinery (ACM), 444–463. https://doi.org/10.1145/
1932682.1869497

Sven Keidel, Wulf Pfeiffer, and Sebastian Erdweg. 2016. The IDE Portability
Problem and Its Solution in Monto. In Proceedings of the 2016 ACM
SIGPLAN International Conference on Software Language Engineering
(Amsterdam, Netherlands) (SLE ’16). ACM, 152–162. https://doi.org
/10.1145/2997364.2997368

Paul Klint, Tijs van der Storm, and Jurgen Vinju. 2009. RASCAL: A Domain
Specific Language for Source Code Analysis and Manipulation. In 2009
Ninth IEEE International Working Conference on Source Code Analysis and
Manipulation (SCAM ’09). IEEE, 168–177. https://doi.org/10.1109/SC
AM.2009.28

Stefan Marr, Carmen Torres Lopez, Dominik Aumayr, Elisa Gonzalez Boix,
and Hanspeter Mössenböck. 2017. Kómpos: A Platform for Debugging
Complex Concurrent Applications. , 2 pages. https://doi.org/10.1145/
3079368.3079378

Mauricio Verano Merino, Jurgen Vinju, and Tijs van der Storm. 2020. Bacatá:
Notebooks for DSLs, Almost for Free. The Art, Science, and Engineering
of Programming 4, 3 (Feb. 2020), 11:1–11:38. https://doi.org/10.22152/pr
ogramming-journal.org/2020/4/11

Terence Parr. 2013. The Definitive ANTLR 4 Reference (2nd ed.). Pragmatic
Bookshelf. 328 pages.

Daniel Stolpe, Tim Felgentreff, Christian Humer, Fabio Niephaus, and Robert
Hirschfeld. 2019. Language-Independent Development Environment
Support for Dynamic Runtimes. In Proceedings of the 15th ACM SIGPLAN
International Symposium on Dynamic Languages (DLS’19). ACM, 80–90.
https://doi.org/10.1145/3359619.3359746

Michael L. Van de Vanter, Chris Seaton, Michael Haupt, Christian Humer,
and Thomas Würthinger. 2018. Fast, Flexible, Polyglot Instrumentation
Support for Debuggers and other Tools. Programming Journal 2, 3 (March
2018), 30. https://doi.org/10.22152/programming-journal.org/2018/2/14

Thomas Würthinger, Andreas Wöß, Lukas Stadler, Gilles Duboscq, Doug Si-
mon, and Christian Wimmer. 2012. Self-Optimizing AST Interpreters. In
Proceedings of the 8th Dynamic Languages Symposium (Tucson, Arizona,
USA) (DLS’12). ACM, 73–82. https://doi.org/10.1145/2384577.2384587

14

https://doi.org/10.1145/3281074.3281076
https://doi.org/10.1016/j.cl.2015.08.007
https://doi.org/10.1145/1869542.1869625
https://doi.org/10.1145/3201898
https://doi.org/10.1145/3201898
https://doi.org/10.1145/1982185.1982464
https://doi.org/10.1145/1982185.1982464
https://doi.org/10.1145/1932682.1869497
https://doi.org/10.1145/1932682.1869497
https://doi.org/10.1145/2997364.2997368
https://doi.org/10.1145/2997364.2997368
https://doi.org/10.1109/SCAM.2009.28
https://doi.org/10.1109/SCAM.2009.28
https://doi.org/10.1145/3079368.3079378
https://doi.org/10.1145/3079368.3079378
https://doi.org/10.22152/programming-journal.org/2020/4/11
https://doi.org/10.22152/programming-journal.org/2020/4/11
https://doi.org/10.1145/3359619.3359746
https://doi.org/10.22152/programming-journal.org/2018/2/14
https://doi.org/10.1145/2384577.2384587

	Abstract
	1 Introduction
	2 Background
	2.1 Language Server Protocol
	2.2 Language Workbenches
	2.3 A Language-Agnostic Design of a Execution-Based Language Server

	3 A Language-Agnostic Design for a Parse-Based Language Server
	3.1 Architectural Overview
	3.2 API Overview

	4 Utilizing the API for SimpleLanguage
	5 Supporting Existing Parsers for Use in Language Servers
	5.1 Caching Structural Information
	5.2 Caching Semantic Highlighting

	6 Implementation
	7 Tradeoffs between Execution and Parsing
	7.1 Architectural Requirements
	7.2 Precision and Completeness of IDE Features
	7.3 Implementation Effort

	8 Discussion
	9 Conclusion and Future Work
	Acknowledgments
	References

