
Electronic Notes in Theoretical Computer Science 66 No. 5 (2002)
URL: http://www.elsevier.nl/locate/entcs/volume66.html 18 pages

Pattern Unification with Sequence Variables
and Flexible Arity Symbols

Temur Kutsia 1,2

Research Institute for Symbolic Computation
Johannes Kepler University Linz

and
Software Competence Center Hagenberg

A-4232, Hagenberg, Austria

Abstract

A unification procedure for a theory with individual and sequence variables, free
constants, free fixed and flexible arity function symbols and patterns is described.
The procedure enumerates a set of substitution/constraint pairs which constitutes
the minimal complete set of unifiers.

1 Introduction

The paper describes a unification procedure for a theory with individual and
sequence variables, free constants, free fixed and flexible arity function sym-
bols and patterns. We refer to the unification problem in this theory shortly
as pattern unification with sequence variables and flexible arity symbols. Pat-
terns abbreviate sequences of terms of unknown length, where the terms match
a certain “common pattern”. Sequence variables can be instantiated by ar-
bitrary finite, possibly empty, sequences of terms. Flexible arity symbols can
take arbitrary finite, possibly empty, number of arguments. In the literature
the symbols with similar property are also referred to as “variable arity” or
“variadic” symbols.

The subject of this research was proposed by Bruno Buchberger in [2] and
in a couple of personal discussions [3]. He suggested also the term “flexible
arity” instead of “variadic”, mainly because of the following reason: variadic
symbols, as they are understood in theorem proving or rewriting, are flattened
associative symbols, i.e. flat symbols which take at least two arguments, while

1 Supported by the Austrian Science Foundation (FWF) under Project SFB F1302 and by
Software Competence Center Hagenberg (Austria) under ForMI project.
2 Email: kutsia@risc.uni-linz.ac.at

c©2002 Published by Elsevier Science B. V.

52

Open access under CC BY-NC-ND license.

http://creativecommons.org/licenses/by-nc-nd/3.0/

T. Kutsia

flexible arity symbols can have zero or one argument as well and are not
necessarily flat.

Sequence variables, patterns and flexible arity (variadic) symbols have been
used in various areas:

• Knowledge management – Knowledge Interchange Format KIF [7] is an
extension of first order language with (among other constructs) sequence
variables and flexible arity symbols.

• Databases – Numerous formalisms involving sequence variables ([8], [15], [9])
have been developed for data representation and manipulation for genome
or text databases.

• Rewriting – variadic symbols used in rewriting usually come from flattening
terms with associative top function symbol. Patterns (sequence variables)
used together with variadic symbols, make the syntax more flexible and
expressive, and increase the performance of a rewriting system ([17], [10]).

• Programming languages – flexible arity symbols are supported by many
of them. The programming language of Mathematica [18] is one of such
examples, which uses the full expressive power of sequence variables and
patterns. A relation of Mathematica programming language and rewrite
languages, and the role of sequence variables in this relation is discussed in
[2].

• Theorem proving – the Epilog package [6] can manipulate an information
encoded in a subset of KIF language, containing sequence variables and
flexible arity symbols. Among the other routines, Epilog includes various
pattern matchers and an inference procedure based on model elimination.

Matching is the main solving technique in these applications. However,
in some areas, like theorem proving or completion/rewriting, more powerful
techniques (unification, for instance) are needed.

The problem whether Knuth-Bendix completion procedure [11] can be ex-
tended to handle term rewriting systems with variadic function symbols and
patterns is stated as an open problem in [17]. The primary reason why it is
an open problem is the absence of an appropriate unification algorithm.

In [13] we made the first step towards solving this problem, designing a uni-
fication procedure with sequence variables and flexible arity function symbols
and giving a very brief informal overview of the pattern unification. Here we
describe a unification procedure with sequence variables, flexible arity func-
tion symbols and patterns, thus moving further in solving the above mentioned
problem. Sequence variables and pattern-terms are instances of the pattern
construct of [17].

In the theorem proving context, quantification over sequence variables nat-
urally introduces flexible arity symbols and patterns. For instance, skolemizing
the expression ∀x∃yΦ[x, y], where x is a sequence variable, y is an individual
variable and Φ[x, y] is a formula which depends on x and y, introduces a

53

T. Kutsia

flexible arity Skolem function f : ∀xΦ[x, f(x)]. On the other hand, Skolemiz-
ing the expression ∀x∃yΦ[x, y] introduces a pattern h1,n(x)(x), which can be
seen as an abbreviation of a sequence of terms h1(x), . . . , hn(x)(x) of unknown
length, where h1, . . . , hn(x) are Skolem functions.

The problems like word equations (see e.g. [16]), equations over free semig-
roups [14], equations over lists of atoms with concatenation [5], pattern match-
ing can be considered as particular pattern unification problems with sequence
variables and flexible arity symbols.

We have implemented the unification procedure (without patterns and the
decision algorithm) as a Mathematica package and incorporated it into the
Theorema system [4], which aims at extending computer algebra systems by
facilities for supporting proving.

The results in this paper are given without proofs. They can be found in
[12].

2 Preliminaries

We consider an alphabet consisting of the following pairwise disjoint sets of
symbols: the set of individual variables VI , the set of sequence variables VS,
the set of object constants CObj , the set of fixed arity function symbols FF ix,
the set of flexible arity function symbols FF lex and a singleton consisting of a
binary predicate symbol � (equality). We define terms over (V, C), where V
stands for (VI ,VS) and C - for (CObj, FF ix,FF lex, �).

Definition 2.1 The set of terms (over (V, C)) is the smallest set of strings
over (V, C) that satisfies the following conditions:

• If t ∈ VI ∪ VS ∪ CObj then t is a term.

• If f ∈ FF ix, f is n-ary, n ≥ 0 and t1, . . . , tn are terms such that for all
1 ≤ i ≤ n, ti /∈ VS, then f(t1, . . . , tn) is a term. f is called the head of
f(t1, . . . , tn),

• If f ∈ FF lex and t1, . . . , tm (m ≥ 0) are terms, then so is f(t1, . . . , tm). f is
called the head of f(t1, . . . , tm).

Let us have, in addition, a set of variables VX , called index variables, and
the set P of linear polynomials with integer coefficients, whose variables are
in VX . We assume that VX and P are disjoint from any set from V and C.
If not otherwise stated, the following symbols, with or without indices, are
used as metavariables: x, y and z – over individual variables, x, y and z
– over sequence variables, x̂, ŷ, ẑ – over index variables, v – over (individual,
sequence or index) variables, a, b, c – over object constants, â, b̂, ĉ – over integer
constants, f , g and h – over (fixed or flexible arity) function symbols, s and t
– over terms, p̂, q̂, r̂ – over polynomials from P.

We define the notion of pattern as follows:

Definition 2.2 The set of patterns SPat (over (V, C,P)) is the smallest set

54

T. Kutsia

satisfying the following conditions:

• If c ∈ CObj , p̂, q̂ ∈ P, then cp̂,q̂ is a pattern.

• If f ∈ FF ix, f is n-ary, n ≥ 0 and t1, . . . , tn are terms such that for all
1 ≤ i ≤ n, ti /∈ VS, and p̂, q̂ ∈ P, then fp̂,q̂(t1, . . . , tn) is a pattern.

• If f ∈ FF lex, each of t1, . . . , tm (m ≥ 0) is a term or pattern, and p̂, q̂ ∈ P,
then fp̂,q̂(t1, . . . , tm) is a pattern.

A pattern of the form cp̂,q̂ is called a constant pattern. A pattern of the form
fp̂,q̂(t1, . . . , tn) is called a functional pattern. c is called the head of cp̂,q̂ and
f is called the head of fp̂,q̂(t1, . . . , tn). fp̂,q̂ is called a prefix of the pattern
fp̂,q̂(t1, . . . , tn). A prefix of cp̂,q̂ is cp̂,q̂ itself. We say that a pattern cp̂,q̂ or
fp̂,q̂(t1, . . . , tn) is explicit iff p̂ and q̂ are positive integers.

Definition 2.3 The set of quasi pattern-terms (over (V, C,P)), or, shortly,
QP-terms, is the smallest set satisfying the following conditions:

• If q ∈ VI ∪ VS ∪ CObj ∪ SPat then q is a QP-term.

• If f ∈ FF ix, f is n-ary, n ≥ 0 and t1, . . . , tn are QP-terms, for all 1 ≤ i ≤ n,
ti /∈ VS ∪ SPat, then f(t1, . . . , tn) is a QP-term.

• If f ∈ FF lex and t1, . . . , tm are QP-terms, then f(t1, . . . , tm) is a QP-term
(m ≥ 0).

f is called the head of f(t1, . . . , tn).

From now on, the letters s, t and r with or without indices are used as
metavariables over QP-terms. The head of a QP-term t is denoted by head(t).

Definition 2.4 The set of quasi pattern-equations (over (V, C,P), or, shortly,
QP-equations, is the smallest set satisfying the following condition: � (t1, t2)
is a QP-equation over (V, C,P) if

• t1 and t2 are QP-terms over (V, C,P) and

• t1, t2 /∈ VS ∪ SPat.

The symbol � is called the head of � (t1, t2). We write QP-equations in infix
notation.

Let t1, . . . , tn (n ≥ 0) be a sequence of QP-terms. Then we denote by

• ivars(t1, . . . , tn) – the set of all individual variables occurring in the sequence
t1, . . . , tn.

• svars(t1, . . . , tn) – the set of all sequence variables in t1, . . . , tn.

• xvars(t1, . . . , tn) – the set of all index variables in t1, . . . , tn.

• vars(t1, . . . , tn) = ivars(t1, . . . , tn) ∪ svars(t1, . . . , tn) ∪ xvars(t1, . . . , tn) –
the set of all variables in t1, . . . , tn.

For a sequence of QP-equations s1 � t1, . . . , sn � tn (n ≥ 0) we define
ivars(s1 � t1, . . . , sn � tn) = ivars(s1, t1, . . . , sn, tn). The other notions are
defined in the same way.

55

T. Kutsia

Definition 2.5 A QP-term t (a QP-equation q) is called ground iff vars(t) =
∅ (vars(q) = ∅).
Definition 2.6 A quasi pattern-substitution, or, shortly, QP-substitution, is
a finite set {x1 ← s1, . . . , xn ← sn, x1 ← t11, . . . , t

1
k1
, . . . , xm ← tm1 , . . . , t

m
km
,

x̂1 ← p̂1, . . . , x̂l ← p̂l} where

• n ≥ 0, m ≥ 0 and for all 1 ≤ i ≤ m, ki ≥ 0,

• x1, . . . , xn are distinct individual variables,

• x1, . . . , xm are distinct sequence variables,

• x̂1, . . . , x̂l are distinct index variables,

• for all 1 ≤ i ≤ n, si is a QP-term, si /∈ VS ∪ SPat and si �= xi,

• for all 1 ≤ i ≤ m, ti1, . . . , t
i
ki

is a sequence of QP-terms and if ki=1 then
tiki

�= xi,

• for all 1 ≤ i ≤ l, p̂i ∈ P and p̂i �= x̂i.

Each xi ← si, xi ← ti1, . . . , t
i
ki
and x̂i ← p̂i is called a QP-binding respectively

for xi, xi and x̂i.

A QP-substitution is called empty iff n = 0, m = 0 and l = 0. Greek
letters are used to denote QP-substitutions. The letter ε denotes the empty
QP-substitution. We define a notion of instance for index variables and poly-
nomials from P:

Definition 2.7 Let θ be a QP-substitution. Then:

• An instance of an index variable x̂ with respect to θ, denoted x̂θ, is defined
as

x̂θ =

p̂, if x̂ ← p̂ ∈ θ,

x̂, otherwise

• An instance of a polynomial p̂ = â1x̂1 + · · · + âkx̂k ∈ P with respect to
θ, denoted p̂θ, is a polynomial in P obtained from â1x̂1θ + · · · + âkx̂kθ by
arithmetic simplification.

Definition 2.8 Given a QP-substitution θ, we define an instance of a QP-
term or QP-equation with respect to θ recursively as follows:

• xθ =

s, if x ← s ∈ θ,

x, otherwise

• xθ =

s1, . . . , sm, if x ← s1, . . . , sm ∈ θ, m ≥ 0

x, otherwise

• cp̂,q̂θ = cp̂θ,q̂θ.

• fp̂,q̂(s1, . . . , sn)θ = fp̂θ,q̂θ(s1θ, . . . , snθ).

• f(s1, . . . , sn)θ = f(s1θ, . . . , snθ).

56

T. Kutsia

An instance of an equation is defined as follows: (s1 � s2)θ = s1θ � s2θ.

Definition 2.9 The domain, codomain and range of a QP-substitution σ are
defined respectively as

• dom(σ) = {v | vσ �= v},
• cod(σ) = {vσ | v ∈ dom(σ)},
• ran(σ) =

⋃
v∈dom(σ) vars(vσ).

Definition 2.10 A substitution σ is called ground iff ran(σ) = ∅.
Definition 2.11 Let θ = {x1 ← t1, . . . , xn ← tn, x1 ← t11, . . . , t

1
k1
, . . . , xm ←

tm1 , . . . , t
m
km
, x̂1 ← p̂1, . . . , x̂k ← p̂k} and λ = {y1 ← s1, . . . , yl ← sl, y1 ←

s11, . . . , s
1
q1
, . . . , yr ← sr

1, . . . , s
r
qr
, ŷ1 ← q̂1, . . . , ŷq ← q̂q} be two QP-substitu-

tions. Then the composition of θ and λ is the QP-substitution, denoted by
θ ◦ λ, obtained from the set

{ x1 ← t1λ, . . . , xn ← tnλ, x1 ← t11λ, . . . , t
1
k1
λ, . . . , xm ← tm1 λ, . . . , t

m
km
λ,

x̂1 ← p̂1λ, . . . , x̂k ← p̂kλ, y1 ← s1, . . . , yl ← sl,

y1 ← s11, . . . , s
1
q1
, . . . , yr ← sr

1, . . . , s
r
qr
, ŷ1 ← q̂1, . . . , ŷq ← q̂q}

by deleting

• all the elements xi ← tiλ (1 ≤ i ≤ n) for which xi = tiλ,

• all the elements xi ← ti1λ, . . . , t
i
ki
λ (1 ≤ i ≤ m) for which ki = 1 and

xi = ti1λ,

• all the elements x̂i ← p̂iλ (1 ≤ i ≤ k) for which x̂i = p̂iλ,

• all the elements yi ← si (1 ≤ i ≤ l) such that yi ∈ {x1, . . . , xn},
• all the elements yi ← si

1, . . . , s
i
qi
(1 ≤ i ≤ r) such that yi ∈ {x1, . . . , xm},

• all the elements ŷi ← q̂i (1 ≤ i ≤ q) such that ŷi ∈ {x̂1, . . . , x̂k}.
Example 2.12 Let θ = {x ← f(y), x ← y, x, y ← y, z, x̂ ← 3x̂ + ŷ, ẑ ←
ŷ − 2} and λ = {y ← g(c), x ← c, z ←, x̂ ← 2ŷ + 1, ŷ ← ẑ + 2}. Then
θ ◦ λ = {x ← f(g(c)), y ← g(c), x ← y, c, z ←, x̂ ← 6ŷ + ẑ + 5, ŷ ← ẑ + 2}.

Composition of QP-substitutions is associative (see [12]).

Definition 2.13 A restriction of a QP-substitution θ on a set of variables V ,
denoted θ|V , is a QP-substitution {v ← r̃ | v ← r̃ ∈ θ and v ∈ V } 3 .

3 Equational Theory with Sequence Variables, Flexible
Arity Symbols and Patterns

A set of QP-equations E (called presentation) defines a quasi-pattern equa-
tional theory, i.e. the equality of QP-terms induced by E. We use the term

3 r̃ is either a single QP-term, a (possibly empty) sequence of QP-terms or a polynomial
from P .

57

T. Kutsia

QPE-theory for the QP-equational theory defined by E. We will write s �E t
for s � t modulo E. Some examples of E-theories are:

(i) Free theory (∅): E = ∅;
(ii) Flat theory (F): E = {f(x, f(y), z) � f(x, y, z)}.
(iii) Orderless theory (O): E = {f(x, x, y, y, z) � f(x, y, y, x, z)}.
(iv) Flat-orderless theory (FO):

E = {f(x, f(y), z) � f(x, y, z), f(x, x, y, y, z) � f(x, y, y, x, z)}.
Solving QP-equations in a QPE-theory is called QPE-unification. The fact

that the QP-equation s �E t has to be solved is written as s
?�Et.

Definition 3.1 A general quasi pattern E-unification, or, shortly, QPE-uni-

fication problem is a finite system of QP-equations 〈s1 ?�Et1, . . . , sn
?�Etn〉.

Below by a QP-expression we mean either a QP-term, QP-equation, QP-
substitution or QPE-unification problem.

Definition 3.2 Let Q be a QP-expression. The explicit pattern expansion
in Q, denoted as expex(Q), is a QP-expression obtained from Q by replacing
each occurrence of an explicit pattern in Q with the sequence of QP-terms as
long as possible in the following way:

• each occurrence of an explicit pattern câ,â is replaced by câ;

• each occurrence of câ,b̂, â < b̂, is replaced by câ, câ+1, . . . , cb̂;

• each occurrence of fâ,â(t1, . . . , tn) is replaced by fâ(t1, . . . , tn).

• each occurrence of an explicit pattern fâ,b̂(t1, . . . , tn), â < b̂, is replaced by
the sequence fâ(t1, . . . , tn), fâ+1(t1, . . . , tn), . . . , fb̂(t1, . . . , tn).

Example 3.3 Let t be a QP-term f(a, b, g1,3(c1,2, y), h1,x̂(x)). Then

expex(t) = f(a, b, g1(c1, c2, y), g2(c1, c2, y), g3(c1, c2, y), h1,x̂(x)).

Definition 3.4 Let Q be a QP-expression. Q is called

• a pattern-term or, shortly, P-term;

• a pattern-equation or, shortly, P-equation;

• a pattern-substitution or, shortly, P-substitution or

• a pattern-E-unification problem or, shortly, PE-unification problem

over (V, C,P) iff there exist a substitution σ such that dom(σ) ⊂ VX and
expex(Qσ) is respectively a term, an equation, a substitution or an E-unifica-
tion problem over (V, C,P).

Definition 3.5 For a QP-expression Q, the associated system of linear Dio-
phantine constraints ldc(Q) is defined in the following way:

• Q is a QP-term. Then
· If Q ∈ VI ∪ VS ∪ CObj then ldc(Q) is empty.

58

T. Kutsia

· If Q is cp̂,q̂ or fp̂,q̂(t1, . . . , tn), then ldc(Q) is 1 ≤ p̂ ∧ p̂ ≤ q̂.
· If Q is f(t1, . . . , tn), where f ∈ FF ix ∪FF lex, then ldc(Q) is ldc(t1)∧ . . .∧
ldc(tn),

• Q is either QP-equation, QP-substitution or a QPE-unification problem.
Then ldc(Q) is ldc(t1) ∧ . . . ∧ ldc(tm), where t1, . . . , tm are all QP-terms
occurring in Q.

By P-expression we mean either a P-term, P-equation, P-substitution or
PE-unification problem. The theorem below shows how to decide whether a
QP-expression is the corresponding P-expression.

Theorem 3.6 A QP-expression Q is the corresponding P-expression if the
constraint ldc(Q) has a positive integer solution.

Definition 3.7 Let U be a PE-unification problem 〈s1 ?�Et1, . . . , sn
?�Etn〉. A

P-substitution θ is called a PE-unifier of U iff

• xvar(U) ⊆ dom(θ);

• for each x̂ ∈ dom(θ), x̂θ is a positive integer;

• each pattern which occurs in P-terms in cod(θ) is explicit;

• for each 1 ≤ i ≤ n, the P-equality siθ �E tiθ holds.

Example 3.8 Let U = f(x, y)
?�∅f(hŷ,ẑ(z)). Then θ = {x ← h1,2(z), y ←

h3,6(z), ŷ ← 1, ẑ ← 6} is one of ∅-unifiers of U.

Definition 3.9 A P-substitution θ is more general than a P-substitution σ
on a finite set of variables V modulo a theory E (denoted θ �V

E σ) iff there
exists a P-substitution λ such that

• for all x ∈ V ,
· x ← /∈ λ;
· there exist P-terms t1, . . . , tn, s1, . . . , sn, n ≥ 0 such that xσ = t1, . . . , tn,
xθ ◦ λ = s1, . . . , sn and for each 1 ≤ i ≤ n, either ti and si are the same
sequence variables or the equality ti �E si holds;

• for all x ∈ V , the equality xσ �E xθ ◦ λ holds;

• for all x̂ ∈ V , x̂σ = x̂θ ◦ λ.
Example 3.10 {x ← y} �{x,y}

∅ {x ← a, z, y ← a, z}, but not {x ←
y} �{x,y}

∅ {x ←, y ←}.
Definition 3.11 Let U be a PE-unification problem. The minimal complete
set of PE-unifiers of U, denoted mcuE(U), is a set of P-substitutions, satisfying
the following conditions:

PE-correctness - for all θ ∈ mcuE(U), θ is an PE-unifier of U.

PE-completeness - for any PE-unifier σ of U there exists θ ∈ mcuE(U) such

that θ �vars(U)
E σ.

59

T. Kutsia

PE-minimality - for all θ, σ ∈ mcuE(U), θ �vars(U)
E σ implies θ = σ.

Below in this paper we consider only the QP-∅-theory, although the results
valid for arbitrary QPE-theories are formulated in a general setting.

We represent mcuE(U) as a set of P-substitution/constraint pairs. The
constraints are linear Diophantine equations and/or inequalities. The repres-
entation must satisfy the following properties:

• for each pair {θ, d} in the representation and for each positive integer solu-
tion µ of d, the P-substitution (θ ◦ µ)|vars(U) is in mcuE(U);

• for each substitution σ ∈ mcuE(U) there is a pair {θ, d} in the representation
such that σ = (θ ◦ µ)|vars(U) for a positive integer solution µ of d.

The following two examples give a demonstration of a representation of a
minimal complete set of unifiers as a set of P-substitution/constraint pairs:

Example 3.12 Let U = f(x, y)
?�∅f(hx̂,ŷ(z)). Then we can represent mcu∅(U)

as a finite set of P-substitution/constraint pairs:

S = { {{x← , y ← hx̂,ŷ(z)}, 1 ≤ x̂ ∧ x̂ ≤ ŷ},
{{x← , hx̂,ŷ(z), y ←}, 1 ≤ x̂ ∧ x̂ ≤ ŷ},
{{x← hx̂,ẑ(z), y ← hẑ+1,ŷ(z)}, 1 ≤ x̂ ∧ x̂ ≤ ẑ ∧ ẑ + 1 ≤ ŷ} }.

In fact,

mcu∅(U) = {σ | there exists {θ, d} ∈ S andµ such thatµ is a

positive integer solution of d andσ = (θ ◦ µ)|vars(U)}.
For instance, a solution {x̂ ← 1, r̂ ← 3, ŷ ← 4} of the constraint 1 ≤

x̂ ∧ x̂ ≤ ẑ ∧ ẑ + 1 ≤ ŷ, applied on the substitution {x ← hx̂,ẑ(z), y ←
hẑ+1,ŷ(z)} gives {x ← h1,3(z), y ← h4,4(z), x̂ ← 1, ẑ ← 3, ŷ ← 4}. The
restriction of the latter to vars(U) is {x ← h1,3(z), y ← h4,4(z), x̂ ← 1, ŷ ← 4},
which belongs to mcuE(U). In the expanded form the substitution looks like
{x← h1(z), h2(z), h3(z), y ← h4(z), x̂ ← 1, ŷ ← 4}.

Example 3.13 Let U = f(x, hx̂,ŷ(z))
?�∅f(hx̂,ŷ(z), x). Then the set S gives an

infinite representation of mcu∅(U) as a set of substitution/constraint pairs:

S = { {{x←}, 1 ≤ x̂ ∧ x̂ ≤ ŷ},
{{x← hx̂,ŷ(z)}, 1 ≤ x̂ ∧ x̂ ≤ ŷ},
{{x← hx̂,ŷ(z), hx̂,ŷ(z)}, 1 ≤ x̂ ∧ x̂ ≤ ŷ} . . .}.

Again,

mcu∅(U) = {σ | there exists {θ, d} ∈ S and µ such that µ is a

positive integer solution of d and σ = (θ ◦ µ)|vars(U)}.

60

T. Kutsia

4 Unification Procedure

Next, we design a unification procedure for a P-∅-unification problem. Note
it is enough to consider single P-equations instead of systems of P-equations.

The problem has a form of P-equation t1
?�∅t2. We design the unification

procedure as a tree generation process based on three basic steps: projection,
transformation and pattern-simplification. They are described in terms of
“quasi-patterns” instead of “patterns”.

4.1 Projection

Projection eliminates some sequence variables from the given QP-∅-unification
problem Q∅. Let Π(Q∅) be the following set of substitutions: {{x ← | x ∈
S} | S ⊆ svars(Q∅)}. Π(Q∅) is called the set of projecting substitutions for
Q∅. Each π ∈ Π replaces some sequence variables from Q∅ with the empty
sequence. The projection rule is shown in Figure 1.

Projection: s
?�∅t � 〈〈sπ1 ?�∅tπ1, π1, d〉, where {π1, . . . , πk} = Π(s

?�∅t)

. . . , 〈sπk
?�∅tπk, πk, d〉〉 and d = ldc(s

?�∅t).

Fig. 1. Projection rule for QP-∅-unification.

4.2 Transformation

Each of the transformation rules for QP-∅-unification have one of the following
forms: Q∅ � ⊥ or Q∅ � 〈〈S1, σ1, d1〉, . . . , 〈Sn, σn, dn〉〉 where each of the
successors Si is either � or a new unification problem, σ-s are substitutions
and d-s are linear Diophantine constraints.

Transformation rules are success, failure, elimination and splitting rules
given on the figures 2, 3, 4 and 5 below.

SuccessT: t
?�∅t � 〈〈�, ε, true〉〉.
x
?�∅t � 〈〈�, {x ← t}, true〉〉, if x /∈ ivars(t).

t
?�∅x � 〈〈�, {x ← t}, true〉〉, if x /∈ ivars(t).

Fig. 2. Success rules for transformation for QP-∅-unification.

4.3 Pattern Simplification

Like the transformation rules, QP-∅-simplification rules for patterns have one
of the following forms: Q∅ � ⊥ or Q∅ � 〈〈S1, σ1, d1〉, . . . , 〈Sn, σn, dn〉〉

61

T. Kutsia

FailureT: c1
?�∅c2 � ⊥, if c1 �= c2.

x
?�∅t � ⊥, if t �= x and x ∈ ivars(t).

t
?�∅x � ⊥, if t �= x and x ∈ ivars(t).

f1(t̃)
?�∅f2(s̃) � ⊥, if f1 �= f2.

f()
?�∅f(t1, t̃) � ⊥.

f(t1, t̃)
?�∅f() � ⊥.

f(x, t̃)
?�∅f(s1, s̃) � ⊥, if s1 �= x and x ∈ svars(s1).

f(s1, s̃)
?�∅f(x, t̃) � ⊥, if s1 �= x and x ∈ svars(s1).

f(t1, t̃)
?�∅f(s1, s̃) � ⊥, if t1

?�∅s1 � ⊥.

Fig. 3. Failure rules for transformation for QP-∅-unification. t̃ and s̃ are possibly
empty sequences of QP-terms. f, f1, f2 ∈ FF ix ∪ FF lex.

where each of the successors Si is either � or a new unification problem, σ-s
are substitutions and d-s are linear Diophantine constraints.

The full set of pattern simplification rules consists of failure, contraction
and separation rules for constants patterns (given on the figures 6, 7 and 8)
and for functional patterns (given on the figures 9, 10 and 11).

4.4 Tree Generation

Projection, transformation and pattern simplification can be seen as single
steps in a tree generation process. Each node of the tree is labeled either with
a QP-∅-unification problem, � or ⊥. The edges of the tree are labeled by
substitutions and linear Diophantine constraints. The nodes labeled with �
or ⊥ are terminal nodes. The nodes labeled with QP-∅-unification problems
are non-terminal nodes. The children of a non-terminal node are constructed
in the following way:

Let Q be a QP-∅-unification problem attached to a non-terminal node and
cQ be a conjunction of linear Diophantine constraints attached to the edges
in the branch, from the root of the tree till the current node. First, we check
whether cQ is satisfiable. If it is not, we replace Q with the new label ⊥. Oth-
erwise we proceed as follows: If we can decide whether Q is not unifiable, then
we replace Q with the new label ⊥. Otherwise we apply projection, transform-
ation or pattern simplification on Q and get 〈〈S1, σ1, d1〉, . . . , 〈Sn, σn, dn〉〉.
Then the node Q has n children, labeled respectively with S1, . . . ,Sn and the
edge to the Si node is labeled with σi and di (1 ≤ i ≤ n). The set {σ1, . . . , σn}
is denoted by sub(Q). The set {d1, . . . , dn} is denoted by con(Q).

Satisfiability of cQ can be checked by one of known algorithms for solving
linear Diophantine equational and inequational systems, e.g. [1].

62

T. Kutsia

EliminationT: f(t1, t̃)
?�∅f(s1, s̃) � if t1

?�∅s1 �
〈〈g(t̃σ) ?�∅g(s̃σ), σ, true〉〉, 〈〈�, σ, true〉〉.

f(x, t̃)
?�∅f(x, s̃) �

〈〈g(t̃) ?�∅g(s̃), ε, true〉〉.
f(x, t̃)

?�∅f(s1, s̃) � if x /∈ svars(s1) and

〈〈g(t̃σ1) ?�∅g(s̃σ1), σ1, true〉, σ1 = {x← s1},
〈g(x, t̃σ2) ?�∅g(s̃σ2), σ2, true〉〉, σ2 = {x← s1, x}.

f(t1, t̃)
?�∅f(x, s̃) � if x /∈ svars(t1) and

〈〈g(t̃σ1) ?�∅g(s̃σ1), σ1, true〉, σ1 = {x← t1},
〈g(t̃σ2) ?�∅g(x, s̃σ2), σ2, true〉〉, σ2 = {x← t1, x}.

f(x, t̃)
?�∅f(y, s̃) � where

〈〈g(t̃σ1) ?�∅g(s̃σ1), σ1, true〉, σ1 = {x← y},
〈g(x, t̃σ2) ?�∅g(s̃σ2), σ2, true〉, σ2 = {x← y, x},
〈g(t̃σ3) ?�∅g(y, s̃σ3), σ3, true〉〉, σ3 = {y ← x, y}.

Fig. 4. Elimination rules for transformation for QP-∅-unification. t1, s1 �∈ VS∪ SPat.
t̃ and s̃ are possibly empty sequences of QP-terms. g ∈ FF lex is a new symbol, if in
the same rule f ∈ FF ix. Otherwise g = f .

SplittingT: f(t1, t̃)
?�∅f(s1, s̃) � if t1

?�∅s1 �
〈〈f(r1, t̃σ1) ?�∅f(q1, s̃σ1), σ1, d1〉, 〈〈r1 ?�∅q1, σ1, d1〉,
. . . , . . . ,

〈f(rk, t̃σk)
?�∅f(qk, s̃σk), σk, dk〉〉 〈rk

?�∅qk, σk, dk〉〉.

Fig. 5. Splitting rules for transformation for QP-∅-unification. t1, s1 �∈ VI ∪ VS∪
SPat. t̃ and s̃ are possibly empty sequences of terms.

We design the general P-∅-unification procedure for Q∅ as a breadth first
(level by level) tree generation process. The root of the tree is labeled with Q∅
(zero level). First level nodes (the children of the root) of the tree are obtained
from Q∅ by projection 4 . Starting from the second level, we apply only a
transformation or pattern simplification step to a QP-∅-unification problem of

4 Starting from the first level, the unification problems attached to the nodes in the tree
might not be P-∅-unification problems, but they are, of course, QP-∅-unification problems.

63

T. Kutsia

FailureC: f(t1, t̃)
?�∅f(cp̂,q̂, s̃) � ⊥, if t1 /∈ VI ∪ VS, head(t1) �= c.

f(hp̂,q̂, t̃)
?�∅f(s1, s̃) � ⊥, if s1 /∈ VI ∪ VS, head(s1) �= c.

Fig. 6. Failure rules for constant pattern simplification for QP-∅-unification. t̃ and
s̃ are possibly empty sequences of QP-terms. f ∈ FF lex.

ContractionC: f(x, t̃)
?�∅f(cp̂,q̂, s̃) � where

〈〈f(t̃)σ1 ?�∅f(s̃)σ1, σ1, p̂ = q̂〉, σ1 = {x ← cq̂},
〈f(t̃)σ2 ?�∅f(cp̂+1,q̂, s̃)σ2, σ2 = {x ← cp̂}

σ2, p̂+ 1 ≤ q̂〉〉.
f(cp̂,q̂, t̃)

?�∅f(x, s̃) � where

〈〈f(t̃)σ1 ?�∅f(s̃)σ1, σ1, p̂ = q̂〉, σ1 = {x ← cq̂},
〈f(cp̂+1,q̂, t̃)σ2

?�∅f(s̃)σ2, σ2 = {x ← cp̂}.
σ2, p̂+ 1 ≤ q̂〉〉,

f(x, t̃)
?�∅f(cp̂,q̂, s̃) � where

〈〈f(t̃)σ1 ?�∅f(cx̂+1,q̂, s̃)σ1, σ1 = {x ← cp̂,x̂},
σ1, p̂ ≤ x̂ ∧ x̂+ 1 ≤ q̂〉,

〈f(x, t̃)σ2 ?�∅f(s̃)σ2, σ2, true〉, σ2 = {x ← cp̂,q̂, x},
〈f(t̃)σ3 ?�∅f(s̃)σ3, σ3, true〉〉, σ3 = {x ← cp̂,q̂}.

f(cp̂,q̂, t̃)
?�∅f(x, s̃) � where

〈〈f(cx̂+1,q̂, t̃)σ1
?�∅f(s̃)σ1, σ1 = {x ← cp̂,x̂},

σ1, p̂ ≤ x̂ ∧ x̂+ 1 ≤ q̂〉,
〈f(t̃)σ2 ?�∅f(x, s̃)σ2, σ2, true〉, σ2 = {x ← cp̂,q̂, x},
〈f(t̃)σ3 ?�∅f(s̃)σ3, σ3, true〉〉, σ3 = {x ← cp̂,q̂}.

Fig. 7. Contraction rules for constant pattern simplification for QP-∅-unification. t̃
and s̃ are possibly empty sequences of QP-terms. f ∈ FF lex.

each node, thus getting new successor nodes. The branch which ends with a
node labeled by � is called a successful branch. The branch which ends with a
node labeled by ⊥ is a failed branch. All QP-∅-unification problems attached
to the nodes of a successful branch are in fact P-∅-unification problems.

For each node in the tree, we compose substitutions (top-down) displayed
on the edges of the branch which leads to this node and attach the obtained

64

T. Kutsia

SeparationC: f(cr̂, t̃)
?�∅f(cp̂,q̂, s̃) �

〈〈f(t̃) ?�∅f(cp̂+1,q̂, s̃),

ε, p̂ = r̂ ∧ p̂+ 1 ≤ q̂〉〉.
f(cp̂,q̂, t̃)

?�∅f(cr̂, s̃) �
〈〈f(cp̂+1,q̂, t̃)

?�∅f(s̃),

ε, p̂ = r̂ ∧ p̂+ 1 ≤ q̂〉〉.
f(cp̂1,p̂2, t̃)

?�∅f(cq̂1,q̂2, s̃) � where

〈〈f(t̃) ?�∅f(cp̂2+1,q̂2, s̃), d1 = (p̂1 = q̂1 ∧ p̂2 + 1 ≤ q̂2)

ε, d1〉,
〈f(cq̂2+1,p̂2, t̃)

?�∅f(s̃), d2 = (p̂1 = q̂1 ∧ q̂2 + 1 ≤ p̂2)

ε, d2〉,
〈f(t̃) ?�∅f(s̃), ε, d3〉〉, d3 = (p̂1 = q̂1 ∧ p̂2 = q̂2).

Fig. 8. Separation rules for constant pattern simplification for QP-∅-unification. t̃
and s̃ are possibly empty sequences of QP-terms. f ∈ FF lex.

FailureF: f(t1, t̃)
?�∅f(hp̂,q̂(r̃), s̃) � ⊥, if t1 /∈ VI ∪ VS, head(t1) �= h.

f(hp̂,q̂(r̃), t̃)
?�∅f(s1, s̃) � ⊥, if s1 /∈ VI ∪ VS, head(s1) �= h.

Fig. 9. Failure rules for functional pattern simplification for QP-∅-unification. t̃, s̃
and r̃ are possibly empty sequences of QP-terms. f ∈ FF ix ∪ FF lex.

substitution to the node. The empty substitution is attached to the root. For
a node N , the substitution attached to N in such a way is called the associated
substitution of N .

Similarly, for each node in the tree, we take a conjunction of the linear
Diophantine constraints displayed on the edges of the branch which leads
to this node and attach the obtained constraint to the node. The linear
Diophantine constraint ldc(Q∅) is attached to the root. For a node N , the
constraint attached to N in such a way is called the associated constraint of
N .

We call the tree a P-∅-unification tree for Q∅ and denote it putree(Q∅).
Let ∆(Q∅) be the set of all P-substitution/constraint pairs associated with

the � nodes. Then we define the set Σ(Q∅) as follows:

Σ(Q∅) = {σ | there exists {θ, d} ∈ ∆(Q∅) and µ such that µ is a positive

integer solution of d and σ = (θ ◦ µ)|vars(U)}.

65

T. Kutsia

ContractionF: f(x, t̃)
?�∅f(hp̂,q̂(r̃), s̃) � if x /∈ ivars(hp̂,q̂(r̃)),

〈〈f(t̃)σ1 ?�∅f(s̃)σ1, σ1, p̂ = q̂〉, σ1 = {x← hq̂(r̃)},
〈f(t̃)σ2 ?�∅f(hp̂+1,q̂(r̃), s̃)σ2, σ2 = {x← hp̂(r̃)}

σ2, p̂+ 1 ≤ q̂〉〉,
f(hp̂,q̂(r̃), t̃)

?�∅f(x, s̃) � if x /∈ ivars(hp̂,q̂(r̃)),

〈〈f(t̃)σ1 ?�∅f(s̃)σ1, σ1, p̂ = q̂〉, σ1 = {x← hq̂(r̃)},
〈f(hp̂+1,q̂(r̃), t̃)σ2

?�∅f(s̃)σ2, σ2 = {x← hp̂(r̃)}.
σ2, p̂+ 1 ≤ q̂〉〉,

f(x, t̃)
?�∅f(hp̂,q̂(r̃), s̃) � if x /∈ svars(hp̂,q̂(r̃)),

〈〈f(t̃)σ1 ?�∅f(hx̂+1,q̂(r̃), s̃)σ1, σ1 = {x← hp̂,x̂(r̃)},
σ1, p̂ ≤ x̂ ∧ x̂+ 1 ≤ q̂〉,

〈f(x, t̃)σ2 ?�∅f(s̃)σ2, σ2, true〉, σ2 = {x← hp̂,q̂(r̃), x},
〈f(t̃)σ3 ?�∅f(s̃)σ3, σ3, true〉〉, σ3 = {x← hp̂,q̂(r̃)}.

f(hp̂,q̂(r̃), t̃)
?�∅f(x, s̃) � if x /∈ svars(hp̂,q̂(r̃)),

〈〈f(hx̂+1,q̂(r̃), t̃)σ1
?�∅f(s̃)σ1, σ1 = {x← hp̂,x̂(r̃)},

σ1, p̂ ≤ x̂ ∧ x̂+ 1 ≤ q̂〉,
〈f(t̃)σ2 ?�∅f(x, s̃)σ2, σ2, true〉, σ2 = {x← hp̂,q̂(r̃), x},
〈f(t̃)σ3 ?�∅f(s̃)σ3, σ3, true〉〉, σ3 = {x← hp̂,q̂(r̃)}.

Fig. 10. Contraction rules for functional pattern simplification for QP-∅-unification.
t̃, s̃ and r̃ are possibly empty sequences of QP-terms. f ∈ FF lex.

The next theorem shows that Σ(Q∅) is a minimal complete set of P-∅-
unifiers of Q∅. This is the main result of this paper:

Theorem 4.1 Σ(Q∅) = mcu∅(Q∅). 5

We can observe that unification procedure terminates if one of the P-terms
to be unified is ground. This yields to the following result:

Theorem 4.2 Let M∅ be a general P-∅-matching problem. Then the set
∆(M∅) is finite. If M∅ contains no patterns, then Σ(M∅) is finite.

The termination condition given in the theorem below requires for a prob-

5 In fact, in [12] we have proved a stronger result: Σ(Q∅) is a disjoint complete set of free
unifiers of Q∅.

66

T. Kutsia

SeparationF: f(hr̂(q̃), t̃)
?�∅f(hp̂,q̂(r̃), s̃) � where

〈〈f(hp̂(q̃), t̃)
?�∅ d = (p̂ = r̂∧

f(hp̂(r̃), hp̂+1,q̂(r̃), s̃), ε, d〉, p̂+ 1 ≤ q̂).

f(hp̂,q̂(r̃), t̃)
?�∅f(hr̂(q̃), s̃) � where

〈〈f(hp̂(r̃), hp̂+1,q̂(r̃), t̃)
?�∅ d = (p̂ = r̂∧

f(hp̂(q̃), s̃), ε, d〉, p̂+ 1 ≤ q̂).

f(hp̂1,p̂2(r̃), t̃)
?�∅f(hq̂1,q̂2(q̃), s̃) � where

〈〈f(hp̂2(r̃), t̃)
?�∅ d1 = (p̂1 = q̂1∧

f(hp̂2(q̃), hp̂2+1,q̂2(q̃), s̃), ε, d1〉, p̂2 + 1 ≤ q̂2),

〈f(hq̂2(r̃), hq̂2+1,p̂2(r̃), t̃)
?�∅ d2 = (p̂1 = q̂1∧

f(hq̂2(q̃), s̃), ε, d2〉, q̂2 + 1 ≤ p̂2),

〈f(hq̂2(r̃), t̃)
?�∅f(hq̂2(q̃), s̃), d3 = (p̂1 = p̂2∧

ε, d3〉〉, q̂1 = q̂2).

Fig. 11. Separation rules for functional pattern simplification for QP-∅-unification.
t̃, s̃, r̃ and q̃ are possibly empty sequences of QP-terms, f ∈ FF lex.

lem of the form f(x)
?�∅f(t1, . . . , tn), n > 1, to check whether x occurs in

f(t1, . . . , tn). We call it the last sequence variable occurrence checking (lsvoc).
We can tailor lsvoc into the tree generation process as follows: if in the tree

a successor of the QP-∅-unification problem of the form f(x)
?�∅f(t1, . . . , tn),

n > 1, has to be generated, perform lsvoc. If x occurs in f(t1, . . . , tn), label
the node with ⊥, otherwise proceed in the usual way.

Theorem 4.3 If Q∅ is a unification problem such that all sequence variables
occurring in Q∅ are only the last arguments of the term they occur, then the
unification procedure with lsvoc terminates.

The fact that in most of the applications sequence variables occur precisely
only at the last position in terms, underlines the importance of Theorem 4.3.

5 Conclusion

We considered a unification problem for an equational theory with sequence
and individual variables, free constants, fixed and flexible arity function sym-
bols and patterns and described a minimal complete unification procedure.
Patterns abbreviate sequences of unknown lengths of terms matching cer-
tain “pattern”. The unification procedure enumerates substitution/constraint

67

T. Kutsia

pairs which constitute the minimal complete set of solutions of the problem.
Two sufficient termination conditions have been established.

6 Acknowledgments

I wish to thank Prof. Bruno Buchberger for supervision and for many helpful
discussions.

References

[1] F. Ajili and E. Contejean. Complete solving of linear Diophantine equations and
inequations without adding variables. In U. Montanari and F. Rossi, editors,
Proceedings of the First International Conference on Principles and Practice of
Constraint Programming, volume 1949 of Lecture Notes in Computer Science,
pages 1–17, Cassis, France, 1995. Springer Verlag.

[2] B. Buchberger. Mathematica as a rewrite language. In T. Ida, A. Ohori, and
M. Takeichi, editors, Proceedings of the 2nd Fuji International Workshop on
Functional and Logic Programming), pages 1–13, Shonan Village Center, Japan,
1–4 November 1996. World Scientific.

[3] B. Buchberger. Personal communication, 2001.

[4] B. Buchberger, C. Dupre, T. Jebelean, F. Kriftner, K. Nakagawa, D. Vasaru,
and W. Windsteiger. The Theorema project: A progress report. In M. Kerber
and M. Kohlhase, editors, Symbolic Computation and Automated Reasoning.
Proceedings of Calculemus’2000, pages 98–113, St. Andrews, UK, 6–7 August
2000.

[5] A. Colmerauer. An introduction to Prolog III. CACM, 33(7):69–91, 1990.

[6] M. R. Genesereth. Epilog for Lisp 2.0 Manual. Epistemics Inc., Palo Alto, US,
1995.

[7] M. R. Genesereth and R. E. Fikes. Knowledge Interchange Format, Version
3.0 Reference Manual. Technical Report Logic-92-1, Computer Science
Department, Stanford University, Stanford, US, June 1992.

[8] S. Ginsburg and X. S. Wang. Pattern matching by Rs-operations: Toward a
unified approach to querying sequenced data. In Proceedings of the 11th ACM
SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems,
pages 293–300, San Diego, US, 2–4 June 1992.

[9] G. Grahne and E. Waller. How to make SQL stand for string query language.
In R. Connor and A. Mendelzon, editors, Research Issues in Structured and
Semistructured Database Programming. Proceedings of the 7th International
Workshop on Database Programming Languages, DBPL’99, volume 1949 of
Lecture Notes in Computer Science, pages 61–79, Kinloch Rannoch, UK, 1–
3 September 2000. Springer Verlag.

68

T. Kutsia

[10] M. Hamana. Term rewriting with sequences. In Proceedings of the First
International Theorema Workshop, Hagenberg, Austria, 9–10 June 1997.

[11] D. E. Knuth and P. B. Bendix. Simple word problems in universal algebras. In
J. Leech, editor, Computational Problems in Abstract Algebra, pages 263–298,
Oxford, 1967. Pergamon Press. Appeared 1970.

[12] T. Kutsia. Solving and proving in equational theories with sequence
variables and flexible arity symbols. PhD Thesis. Available from
http://www.risc.uni-linz.ac.at/people/tkutsia/pub/Thesis.pdf, 2002.

[13] T. Kutsia. Unification with sequence variables and flexible arity symbols and
its extension with pattern-terms. In J. Calmet, B. Benhamou, O. Caprotti,
L. Henocque, and V. Sorge, editors, Artificial Intelligence, Automated
Reasoning and Symbolic Computation. Proceedings of Joint AICS’2002 and
Calculemus’2002 Conferences, volume 2385 of Lecture Notes in Artificial
Intelligence, pages 290–304, Marseille, France, 1–5 July 2002. Springer Verlag.

[14] G. S. Makanin. The problem of solvability of equations on a free semigroup.
Math. USSR Sbornik, 32(2), 1977.

[15] G. Mecca and A. J. Bonner. Sequences, Datalog and transducers. In
Proceedings of the Fourteenth ACM SIGACT-SIGMOD-SIGART Symposium
on Principles of Database Systems, pages 23–35, San Jose, US, 22–25 May
1995.

[16] K. U. Schulz. Word unification and transformation of generalized equations.
J. Automated Reasoning, 11(2):149–184, 1993.

[17] M. Widera and C. Beierle. A term rewriting scheme for function symbols with
variable arity. Technical Report 280, Prakt. Informatik VIII, FernUniversität
Hagen, Germany, 2001.

[18] S. Wolfram. The Mathematica Book. Cambridge University Press and Wolfram
Research, Inc., fourth edition, 1999.

69

