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Abstract. This paper introduces Hypersequent GV (HGV), a modular and extensible
core calculus for functional programming with session types that enjoys deadlock free-
dom, confluence, and strong normalisation. HGV exploits hyper-environments, which are
collections of type environments, to ensure that structural congruence is type preserving.
As a consequence we obtain an operational correspondence between HGV and HCP—a
process calculus based on hypersequents and in a propositions-as-types correspondence
with classical linear logic (CLL). Our translations from HGV to HCP and vice-versa both
preserve and reflect reduction. HGV scales smoothly to support Girard’s Mix rule, a crucial
ingredient for channel forwarding and exceptions.

1. Introduction

Session types [Hon93, THK94, HVK98] are types used to model and verify communication
protocols in concurrent and distributed systems: just as data types rule out dividing an
integer by a string, session types rule out sending an unexpected message. Session types
originated in process calculi, but there is a gap between process calculi, which model the
evolving state of concurrent systems, and the descriptions of these systems in mainstream
programming languages. This paper addresses two foundations for session types: (1) a
session-typed concurrent lambda calculus called GV [LM15], intended to be a modular and
extensible basis for functional programming languages with session types; and, (2) a session-
typed process calculus called CP [Wad14], with a propositions-as-types correspondence to
classical linear logic (CLL) [Gir87].

Processes in CP correspond exactly to proofs in CLL and deadlock freedom follows from
cut-elimination for CLL. However, while CP is strongly tied to CLL, at the same time it
departs from the π-calculus. Independent π-calculus features can only appear in combination
in CP: CP combines name restriction with parallel composition ((νx)(P ∥ Q)), corresponding
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to CLL’s cut rule, and combines sending (of bound names only) with parallel composition
(x[y].(P ∥ Q)), corresponding to CLL’s tensor rule. This results in a proliferation of process
constructors and prevents the use of standard techniques from concurrency theory, such
as labelled-transition semantics and bisimulation, since the expected transitions give rise
to ill-typed terms. For example, we cannot write the expected transition rule for output,

x[y].(P ∥ Q)
x[y]−−→ P ∥ Q, since P ∥ Q is not a valid CP process. A similar issue arises when

attempting to design a synchronisation transition rule for bound output (see [KMP19b] for a
detailed discussion). Inspired by Carbone et al. [CMS18] who use hypersequents [Avr91] to
give a logical grounding to choreographic programming languages [Mon13], Hypersequent CP
(HCP) [KMP19a, KMP19b, MP18] restores the independence of these features by factoring
out parallel composition into a standalone construct while retaining the close correspondence
with CLL proofs. HCP typing reasons about collections of processes using collections of
type environments (or hyper-environments).

GV extends linear λ-calculus with constants for session-typed communication. Following
Gay and Vasconcelos [GV10], Lindley and Morris [LM15] describe GV’s semantics by
combining a reduction relation on single terms, following standard λ-calculus rules, and
a reduction relation on concurrent configurations of terms, following standard π-calculus
rules. They give a semantic characterisation of deadlocked processes, an extrinsic [Rey00]
type system for configurations, and show that well-typed configurations are deadlock-free.
There is, however, a large fly in this otherwise smooth ointment: GV’s process equivalence
does not preserve typing. As a result, it is not enough for Lindley and Morris to show
progress and preservation for well-typed configurations; instead, they must show progress
and preservation for all configurations equivalent to well-typed configurations. This not only
complicates the metatheory of GV, but the burden is inherited by any effort to build on
GV’s account of concurrency [FLMD19].

In this paper, we show that using hyper-environments in the typing of configurations
enables a metatheory for GV that, compared to that of Lindley and Morris, is simpler, is
more general, and as a result is easier to use and easier to extend. Hypersequent GV (HGV)
repairs the treatment of process equivalence—equivalent configurations are equivalently
typeable—and avoids the need for formal gimmickry connecting name restriction and parallel
composition. HGV admits standard semantic techniques for concurrent programs: we use
bisimulation to show that our translations both preserve and reflect reduction, whereas
Lindley and Morris resort to weak explicit substitutions [LM99] and only show that their
translations between GV and CP preserve reduction. HGV is also more easily extensible:
we outline three examples, including showing that HGV naturally extends to disconnected
sets of communication processes, without any change to the proof of deadlock freedom, and
that it serves as a simpler foundation for existing work on exceptions in GV [FLMD19].

Contributions. The paper contributes the following:

• Section 3 introduces Hypersequent GV (HGV), a modular and extensible core calculus for
functional programming with session types which uses hyper-environments to ensure that
structural congruence is type preserving.

• Section 4 shows that every well-typed GV configuration is also a well-typed HGV config-
uration, and every tree-structured HGV configuration is equivalent to a well-typed GV
configuration.

• Section 5 gives an operational correspondences between HGV and HCP via translations
in both directions that preserve and reflect reduction.
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• Section 6 demonstrates the extensibility of HGV through: (1) unconnected processes, (2)
a simplified treatment of forwarding, and (3) an improved foundation for exceptions.

Section 2 reviews GV and its metatheory, Section 7 discusses why it is difficult to apply
hyper-environments to term typing, Section 8 discusses related work, and Section 9 concludes
and discusses future work.

This paper is an improved and extended version of a paper published at CONCUR
2021 [FKD+21]. Additional highlights include:

• a more detailed account of process structures;
• a more detailed account of extensions;
• a more detailed account of the metatheory for HCP; and
• a modified formulation of HCP’s labelled transition system and the translation of fork in
Section 5 fixing errors in the operational correspondence result from the CONCUR 2021
paper.

Proofs of all of the technical results are included in the paper.

2. The Equivalence Embroglio

GV programs are deadlock free, which GV ensures by restricting process structures to
trees. A process structure is an undirected graph where nodes represent processes and
edges represent channels shared between the connected nodes. Session-typed programs with
an acyclic process structure are deadlock-free by construction. We illustrate this with a
session-typed vending machine example written in GV.

Example 2.1. Consider the session type of a vending machine below, which sells chocolate
bars and lollipops. If the vending machine is free, the customer can press 1○ to receive a
chocolate bar or 2○ to receive a lollipop. If the vending machine is busy, the session ends.

VendingMachine ≜ ⊕
{

Free : & { 1○ : !ChocolateBar.end!, 2○ : !Lollipop.end!}
Busy : end!

}
The customer’s session type is dual : where the vending machine sends a ChocolateBar, the
customer receives a ChocolateBar, and so forth. Figure 1 shows the vending machine and
customer as a GV program with its process structure.

GV establishes the restriction to tree-structured processes by restricting the primitive
for spawning processes. In GV, fork has type (S ⊸ end!)⊸ S. It takes a closure of type
S ⊸ end! as an argument, creates a channel with endpoints of dual types S and S, spawns
the closure as a new process by supplying one of the endpoints as an argument, and then
returns the other endpoint. In essence, fork is a branching operation on the process structure:
it creates a new node connected to the current node by a single edge. Linearity guarantees
that the tree structure is preserved, even in the presence of higher-order channels.

Lindley and Morris [LM15] introduce a semantics for GV, which evaluates programs
embedded in process configurations, consisting of embedded programs, flagged as main (•)
or child (◦) threads, ν-binders to create new channels, and parallel compositions:

C,D ::= • M | ◦ M | (νx)C | (C ∥ D)

They introduce these process configurations together with a standard structural con-
gruence, which allows, amongst other things, the reordering of processes using commu-
tativity (C ∥ C′ ≡ C′ ∥ C), associativity (C ∥ (C′ ∥ C′′) ≡ (C ∥ C′) ∥ C′′), and scope extrusion
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let vendingMachine = λs.
let s = select Free s in

let s = offer s

{
1○ 7→ send chocolateBar
2○ 7→ send lollipop

}
close s

in let customer = λs.

offer s


Free 7→ let s = select 1○ s in

let (cb, s) = recv s in
wait s; eat cb

Busy 7→ wait s;hungry


in let s = fork (λs.vendingMachine s)
in customer s

(a) Vending machine and customer as a GV program.

vendingMachine

customer

s

s

(b) Process structure of Figure 1a.

Figure 1. Example program with acyclic process structure.

(C ∥ (νx)C′ ≡ (νx)(C ∥ C′) if x /∈ fv(C)). They guarantee acyclicity by defining an extrinsic
type system for configurations. In particular, the type system requires that in every parallel
composition C ∥ D, configurations C and D must have exactly one channel in common, and
that in a name restriction (νx)C, channel x cannot be used until it is shared across a parallel
composition.

These restrictions are sufficient to guarantee deadlock freedom. Unfortunately, they are
not preserved by process equivalence. As Lindley and Morris write, (noting that their name
restrictions bind channels rather than endpoint pairs, and their (νxy) abbreviates (νx)(νy)):

Alas, our notion of typing is not preserved by configuration equivalence. For
example, assume that Γ ⊢ (νxy)(C1 ∥ (C2 ∥ C3)), where x ∈ fv(C1), y ∈
fv(C2), and x, y ∈ fv(C3). We have that C1 ∥ (C2 ∥ C3) ≡ (C1 ∥ C2) ∥ C3,
but Γ ⊬ (νxy)((C1 ∥ C2) ∥ C3), as both x and y must be shared between the
processes C1 ∥ C2 and C3.

As a result, standard notions of progress and preservation are not enough to guarantee
deadlock freedom, as reduction sequences could include equivalence steps from well-typed to
non-well-typed terms. Instead, they must prove a stronger result:

Theorem 3 (Lindley and Morris [LM15]). If Γ ⊢ C, C ≡ C′, and C′ −→ D′, then there exists
D such that D ≡ D′ and Γ ⊢ D.

This is not a one-time cost: languages based on GV must either also give up on type
preservation for structural congruence [FLMD19] or admit deadlocks [ITT+19, TV20].

Note that CP only avoids the same issue through its combined (νx)(P ∥ Q) term;
attempts to split the term into a separate name restriction and parallel composition would
also lose typability of equivalence.

3. Hypersequent GV

We present Hypersequent GV (HGV), a linear λ-calculus extended with session types and
primitives for session-typed communication. HGV shares its syntax and static typing with
GV, but uses hyper-environments for runtime typing to simplify and generalise its semantics.
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Typing rules for terms Γ ⊢ M : T

TM-Var

x : T ⊢ x : T

TM-Const

· ⊢ K : T

TM-Lam
Γ, x : T ⊢ M : U

Γ ⊢ λx.M : T ⊸ U

TM-App
Γ ⊢ M : T ⊸ U ∆ ⊢ N : T

Γ,∆ ⊢ M N : U

TM-Unit

· ⊢ () : 1

TM-LetUnit
Γ ⊢ M : 1 ∆ ⊢ N : T

Γ,∆ ⊢ let () = M in N : T

TM-Pair
Γ ⊢ M : T ∆ ⊢ N : U

Γ,∆ ⊢ (M,N) : T × U

TM-LetPair
Γ ⊢ M : T × T ′ ∆, x : T , y : T ′ ⊢ N : U

Γ,∆ ⊢ let (x, y) = M in N : U

TM-Absurd
Γ ⊢ M : 0

Γ ⊢ absurd M : T

TM-Inl
Γ ⊢ M : T

Γ ⊢ inl M : T + U

TM-Inr
Γ ⊢ M : U

Γ ⊢ inr M : T + U

TM-CaseSum
Γ ⊢ L : T + T ′ ∆, x : T ⊢ M : U ∆, y : T ′ ⊢ N : U

Γ,∆ ⊢ case L {inl x 7→ M ; inr y 7→ N} : U

Type schemas for communication primitives K : T

link : S × S ⊸ end!

fork : (S ⊸ end!)⊸ S
send : T × !T.S ⊸ S
recv : ?T.S ⊸ T × S

wait : end? ⊸ 1

Duality S

!T.S = ?T.S ?T.S = !T.S end! = end? end? = end!

Figure 2. HGV, duality and typing rules for terms.

Types, terms, and static typing. Types (T , U) comprise a unit type (1), an empty type
(0), product types (T × U), sum types (T + U), linear function types (T ⊸ U), and session
types (S).

T ,U ::= 1 | 0 | T × U | T + U | T ⊸ U | S S ::= !T.S | ?T.S | end! | end?

Session types (S) comprise output (!T.S: send a value of type T , then behave like S), input
(?T.S: receive a value of type T , then behave like S), and dual end types (end! and end?).
The dual endpoints restrict process structure to trees [Wad14]; conflating them loosens this
restriction to forests [ALM16]. We let Γ,∆ range over type environments.

The terms and typing rules are given in Figure 2. The linear λ-calculus rules are standard;
communication primitives K are given as constants. Each communication primitive K has a
type schema: link takes a pair of compatible endpoints and forwards all messages between
them; fork takes a function, which is passed one endpoint (of type S) of a fresh channel
yielding a new child thread, and returns the other endpoint (of type S); send takes a pair
of a value and an endpoint, sends the value over the endpoint, and returns an updated
endpoint; recv takes an endpoint, receives a value over the endpoint, and returns the pair
of the received value and an updated endpoint; and wait synchronises on a terminated
endpoint of type end?. Output is dual to input, and end! is dual to end?. Duality is

involutive, i.e., S = S.
We write M ;N for let () = M in N , let x = M in N for (λx.N) M , λ().M for λz.z;M ,

and λ(x, y).M for λz.let (x, y) = z in M . We write K : T for · ⊢ K : T in typing derivations.
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Typing rules for configurations G ⊢ C : R

TC-New
G ∥ Γ, x : S ∥ ∆, y : S ⊢ C : R

G ∥ Γ,∆ ⊢ (νxy)C : R

TC-Par
G ⊢ C : R H ⊢ D : R′

G ∥ H ⊢ C ∥ D : R ⊓R′

TC-Main
Γ ⊢ M : T

Γ ⊢ • M : • T

TC-Child
Γ ⊢ M : end!

Γ ⊢ ◦ M : ◦

TC-Link

x : S, y : S, z : end? ⊢ x
z↔y : ◦

Configuration types

R ::= ◦ | • T

Configuration type combination R ⊓R′

• T ⊓ ◦ = • T ◦ ⊓ • T = • T ◦ ⊓ ◦ = ◦

Figure 3. HGV, typing rules for configurations.

Remark 3.1. We include link because it is convenient for the correspondence with CP,
which interprets CLL’s axiom as forwarding. We can encode link in GV via a type directed
translation akin to CLL’s identity expansion.

Configurations and runtime typing. Process configurations (C,D, E) comprise child

threads (◦ M), the main thread (• M), link threads (x
z↔y), name restrictions ((νxy)C), and

parallel compositions (C ∥ D). We refer to a configuration of the form ◦M or x
z↔y as an

auxiliary thread, and a configuration of the form •M as a main thread. We let A range over
auxiliary threads and T range over all threads (auxiliary or main).

ϕ ::= • | ◦ C,D, E ::= ϕ M | x
z↔y | C ∥ D | (νxy)C

The configuration language is reminiscent of π-calculus processes, but has some non-standard
features. Name restriction uses double binders [Vas12] in which one name is bound to each

endpoint of the channel. Link threads [LM16] handle forwarding. A link thread x
z↔y waits

for the thread connected to z to terminate before forwarding all messages between x and y.
Configuration typing departs from GV [LM15], exploiting hypersequents [Avr91] to

recover modularity and extensibility. Inspired by HCP [MP18, KMP19b, KMP19a], con-
figurations are typed under a hyper-environment, an unordered collection of disjoint type
environments. We let G,H range over hyper-environments, writing ∅ for the empty hyper-
environment, G ∥ Γ for disjoint extension of G with type environment Γ, and G ∥ H for
disjoint concatenation of G and H.

The typing rules for configurations are given in Figure 3. Rules TC-New and TC-Par

are key to deadlock freedom: TC-New joins two disjoint configurations with a new channel,
and merges their type environments; TC-Par combines two disjoint configurations, and
registers their disjointness by separating their type environments in the hyper-environment.
Rules TC-Main, TC-Child, and TC-Link type main, child, and link threads, respectively;
all three require a singleton hyper-environment. A configuration has type ◦ if it has no main
thread, and • T if it has a main thread of type T . The configuration type combination
operator ensures that a well-typed configuration has at most one main thread.

Operational semantics. Figure 4 gives the operational semantics for HGV, presented as
a deterministic reduction relation on terms and a nondeterministic reduction relation on
configurations. HGV values (U , V , W ), evaluation contexts (E), and term reduction rules
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Values and evaluation contexts
Values U, V ,W ::= K | λx.M | () | (V,W ) | inl V | inr V
Evaluation contexts E ::= □

| E M | V E
| let () = E in M
| (E,M) | (V,E) | let (x, y) = E in M
| inl E | inr E | case E {inl x 7→ M ; inr y 7→ N}

Thread contexts F ::= ϕ E

Term reduction M −→M N

E-Lam (λx.M) V −→M M{V/x}
E-Unit let () = () in M −→M M
E-Pair let (x, y) = (V,W ) in M −→M M{V/x,W/y}
E-Inl case inl V {inl x 7→ M ; inr y 7→ N} −→M M{V/x}
E-Inr case inr V {inl x 7→ M ; inr y 7→ N} −→M N{V/y}
E-Lift E[M ] −→M E[N ], if M −→M N

Structural congruence C ≡ D
SC-ParAssoc C ∥ (D ∥ E) ≡ (C ∥ D) ∥ E
SC-NewComm (νxy)(νzw)C ≡ (νzw)(νxy)C
SC-ScopeExt (νxy)(C ∥ D) ≡ C ∥ (νxy)D, if x, y /∈ fv(C)

SC-ParComm C ∥ D ≡ D ∥ C
SC-NewSwap (νxy)C ≡ (νyx)C
SC-LinkComm x

z↔y ≡ y
z↔x

Configuration reduction C −→ D
E-Reify-Fork F [fork V ] −→ (νxx′)(F [x] ∥ ◦ (V x′)), where x, x′ fresh

E-Reify-Link F [link (x, y)] −→ (νzz′)(x
z↔y ∥ F [z′]), where z, z′ fresh

E-Comm-Link (νzz′)(νxx′)(x
z↔y ∥ ◦ z′ ∥ ϕ M) −→ ϕ (M{y/x′})

E-Comm-Send (νxy)(F [send (V, x)] ∥ F ′[recv y]) −→ (νxy)(F [x] ∥ F ′[(V, y)])
E-Comm-Close (νxy)(◦ y ∥ F [wait x]) −→ F [()]

E-Res
C −→ C′

(νxy)C −→ (νxy)C′

E-Par
C −→ C′

C ∥ D −→ C′ ∥ D

E-Equiv
C ≡ C′ C′ −→ D′ D′ ≡ D

C −→ D

E-Lift-M
M −→M M ′

F [M ] −→ F [M ′]

Figure 4. HGV, operational semantics.

(−→M) define a standard call-by-value, left-to-right evaluation strategy. A closed term either
reduces to a value or is blocked on a communication action.

Thread contexts (F ) extend evaluation contexts to threads. The structural congruence
rules are standard apart from SC-LinkComm, which ensures links are undirected, and
SC-NewSwap, which swaps names in double binders.

The configuration reduction relation gives a semantics for HGV’s communication and
concurrency constructs. The first two rules, E-Reify-Fork and E-Reify-Link, create child
and link threads, respectively. The next three rules, E-Comm-Link, E-Comm-Send, and
E-Comm-Close perform communication actions. The final four rules enable reduction under
name restriction and parallel composition, rewriting by structural congruence, and term

reduction in threads. Two rules handle links: E-Reify-Link creates a new link thread x
z↔y

which blocks on z of type end?, one endpoint of a fresh channel. The other endpoint, z′ of
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type end!, is placed in the evaluation context of the parent thread. When z′ terminates a
child thread, E-Comm-Link performs forwarding by substitution.

Remark 3.2. Note that E-Comm-Link does not fire if z′ is returned by a main thread. In
closed configurations, typing ensures that such a configuration cannot arise: intuitively, a
main thread can only obtain endpoints by fork or by receiving an endpoint.

Endpoints generated to communicate with forked threads (i.e., those passed to a child
thread) will always have a session type terminating with end?, and a child thread cannot
transmit an endpoint ending in end!, since the endpoint must be returned. Consequently,
there is no way for a main thread to obtain endpoints with dual session types as required by
the type of link. The case for open configurations is accounted for by our open progress
result (see Section 3.1).

Choice. HGV does not include constructs for internal and external choice (for example,
as shown in the vending machine example in Section 1). Internal and external choice are
instead encoded with sum types and session delegation [Kob03, DGS17]. Prior encodings of
choice in GV [LM15] are asynchronous. Instead, to encode synchronous choice we add a
‘dummy’ synchronisation before exchanging the value of sum type, as follows:

S ⊕ S′ ≜ !1.!(S1 + S2).end!

S & S′ ≜ ?1.?(S1 + S2).end?

⊕{} ≜ !1.!0.end!

&{} ≜ ?1.?0.end?

select ℓ ≜ λx.

(
let x = send ((), x) in
fork (λy.send (ℓ y, x))

)
offer L {inl x 7→ M ; inr y 7→ N}

≜
let ((), z) = recv L in let (w, z) = recv z
in wait z; case w {inl x 7→ M ; inr y 7→ N}

offer L {} ≜
let ((), c) = recv L in let (z, c) = recv c
in wait c;absurd z

3.1. Metatheory. HGV enjoys type preservation, deadlock freedom, confluence, and strong
normalisation.

Preservation. Hyper-environments enable type preservation under structural congruence,
which significantly simplifies the metatheory compared to GV.

Theorem 3.3 (Preservation).

(1) If G ⊢ C : R and C ≡ D, then G ⊢ D : R.
(2) If G ⊢ C : R and C −→ D, then G ⊢ D : R.

Proof. By induction on the derivations of C ≡ D and C −→ D. See Appendix A.

Before moving onto progress, we must introduce some technical machinery to allow us
to reason about the structure of HGV programs.



SEPARATING SESSIONS SMOOTHLY 9

Abstract process structures. Unlike in GV, in HGV we cannot rely on the fact that
exactly one channel is split over each parallel composition. Instead, we introduce the notion
of an abstract process structure (APS). Abstract process structures are a crucial ingredient
in showing that HGV configurations can be written in tree canonical form, which helps both
with establishing progress results and also the correspondence between HGV and GV.

We begin by establishing the intuition behind the notion of an APS, and then describe
the formal definitions. An APS is a graph defined over a hyper-environment G and a set of
undirected pairs of co-names (a co-name set) N drawn from the names in G.

The nodes of an APS are the type environments in G. Each edge is labelled by a distinct
co-name pair {x1, x2} ∈ N , such that x1 : S ∈ Γ1 and x2 : S ∈ Γ2.

Example 3.4.

Let G = Γ1 ∥ Γ2 ∥ Γ3, where Γ1 = x : S1, y : S2, Γ2 = x′ : S1, z : T ,

and Γ3 = y′ : S2, and suppose N = {{x, x′}, {y, y′}}. The APS for

G and N is illustrated to the right.

Γ1

Γ2 Γ3

{x, x′} {y, y′}

{{x, x′}, {y, y′}}

Example 3.5.

Let G = Γ1 ∥ Γ2 ∥ Γ3, where Γ1 = x : S1, z
′ : S3, and

Γ2 = x′ : S1, y : S2, and Γ3 = y′ : S2, z : S3, and suppose
N = {{x, x′}, {y, y′}, {z, z′}}. The APS for G and N is illustrated
to the right.

Γ1

Γ2 Γ3

{x, x′}

{y, y′}

{z, z′}

{{x, x′}, {y, y′}, {z, z′}}

Let us now discuss the formal definition of an APS. We begin by recalling the definition
of an undirected edge-labelled multigraph: an undirected graph that allows multiple edges
between vertices.

Definition 3.6 (Undirected Multigraph). An undirected multigraph G is a 3-tuple (V, E , r)
where:

(1) V is a set of vertices
(2) E is a set of edge names
(3) r is a function r : E 7→ {{v, w} : v, w ∈ V} from edge names to an unordered pair of

vertices

Denote the size of a set as |·|. A path is a sequence of edges connecting two vertices.
A multigraph G = (V, E , r) is connected if |V| = 1, or if for every pair of vertices v, w ∈ V
there is a path between v and w. A multigraph is acyclic if no path forms a cycle. A leaf is
a vertex connected to the remainder of a graph by a single edge.

Definition 3.7 (Leaf). Given an undirected multigraph (V, E , r), a vertex v ∈ V is a leaf if
there exists a single e ∈ E such that v ∈ r(e).

In an undirected tree containing at least two vertices, there must be at least two leaves.

Lemma 3.8. If G = (V, E , r) is an undirected tree where |V | ≥ 2, then there exist at least
two leaves in V.
Proof. For G to be an undirected tree where |V | ≥ 2 and have fewer than two leaves, then
there would need to be a cycle, contradicting acyclicity.

With the graph preliminaries in place, we are now ready to introduce the formal definition
of an APS.
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Definition 3.9 (Abstract process structure). The abstract process structure of a hyper-
environment H with respect to a co-name set N = {{x1, y1}, . . . , {xn, yn}} is an undirected
multigraph (V, E , r) defined as follows:

(1) V = envs(H)
(2) E = N
(3) r = ({x, y} 7→ {Γ1,Γ2}) for each {x, y} ∈ N such that Γ1 ∈ envs(H),Γ2 ∈ envs(H), x ∈

fv(Γ1), y ∈ fv(Γ2)

Example 3.10. The formal definition of the APS described in Example 3.4 is defined as:

• V = {Γ1,Γ2,Γ3}
• E = {{x, x′}, {y, y′}}
• r({x, x′}) 7→ {Γ1,Γ2})
r({y, y′}) 7→ {Γ1,Γ3})

Whereas Example 3.4 is a tree, Example 3.5 contains a cycle. Only configurations typeable
under a hyper-environment with a tree structure can be written in tree canonical form.

Definition 3.11 (Tree structure). A hyper-environment H with co-name set N has a tree
structure, written Tree(H,N ), if its APS is connected and acyclic.

An HGV program • M has a single type environment, so is tree-structured; the same
goes for child and link threads. A key feature of HGV is a subformula principle, which states
that all hyper-environments arising in the derivation of an HGV program are tree-structured.
It follows that a configuration resulting from the reduction of an HGV program is also
tree structured. Read bottom-up, TC-New and TC-Par preserve tree structure, which is
illustrated by the following two pictures.

G
N

Γ ∆

N ⊎ {{z, z′}, {x, y}}

{z, z′}

{x, y}

G
N

Γ,∆

{z, z′}

N ⊎ {{z, z′}}

G

H

N1

N2

G

H

N1

N2

N1 ⊎N2 ⊎ {{x, x′}}

{x, x′}

The following lemma states this intuition formally. By analogy to Kleene equality, we

write P ≏⇐⇒ Q, to mean that either P or Q is undefined, or P ⇐⇒ Q.

Lemma 3.12 (Tree structure).

• Tree((H ∥ Γ1, x1 : S ∥ Γ2, x2 : S),N ⊎ {{x1, x2}})
≏⇐⇒ Tree((H ∥ Γ1,Γ2)),N )

• Tree((H1 ∥ Γ1, x1 : S),N1) ∧ Tree((H2 ∥ Γ2, x2 : S),N2)
≏⇐⇒ Tree((H1 ∥ Γ1, x1 : S ∥

H2 ∥ Γ2, x2 : S),N1 ⊎N2 ⊎ {{x1, x2}})

Proof. By the definition of
≏⇐⇒, we need only consider the cases where both sides of the

bi-implication are defined. Both results follow from the observation that adding an edge
between two trees results in a tree, and removing an edge from a tree partitions the tree
into two subtrees.
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Tree canonical form. We now define a canonical form for configurations that captures
the tree structure of an APS. Tree canonical form enables a succinct statement of open
progress (Lemma 3.17) and a means for embedding HGV in GV (Proposition 4.5).

Definition 3.13 (Tree canonical form). A configuration C is in tree canonical form if it can
be written: (νx1y1)(A1 ∥ · · · ∥ (νxnyn)(An ∥ ϕN) · · · ) where xi ∈ fv(Ai) for 1 ≤ i ≤ n.

Every well-typed HGV configuration typeable under a single type environment can be
written in tree canonical form.

Theorem 3.14 (Well-typed configurations in tree canonical forms). If Γ ⊢ C : R, then there
exists some D such that C ≡ D and D is in tree canonical form.

Proof. By induction on the number of ν-binders in C. In the case that n = 0, it must be
the case that Γ ⊢ ϕM : R for some thread M , since parallel composition is only typeable
under a hyper-environment containing two or more type environments. Therefore, C is in
tree canonical form by definition.

In the case that n ≥ 1, by Theorem 3.3, we can rewrite the configuration as:

(νx1y1) · · · (νxnyn)(◦M1 ∥ · · · ∥ ◦Mn ∥ ϕN)

Fix N = {{xi, yi} | 1 ≤ i ≤ n}. By definition, Γ has a tree structure with respect to
an empty co-name set. By repeated applications of TC-New, there exists some G such
that G ⊢ ◦M1 ∥ · · · ∥ ◦Mn ∥ ϕN : T ; by Lemma 3.12 (clause 1, right-to-left), G has a tree
structure.

Construct the APS for G using names N ; by Lemma 3.8, there exist Γ1,Γ2 ∈ envs(H)
such that Γ1 and Γ2 are leaves of the tree and therefore by the definition of the APS contain
precisely one ν-bound name. By TC-Par, there must exist two threads C1, C2 such that
Γ1 ⊢ C1 : R1 and Γ2 ⊢ C2 : R2. By runtime type combination, at least one of R1, R2 must be
◦; without loss of generality assume this is R1. Suppose (again without loss of generality)
that the ν-bound name contained in Γ1 is x1 and L1 = M1.

Let D = (νx2y2) · · · (νxnyn)(◦M2 ∥ · · · ∥ ◦Mn ∥ ϕN). By Theorem 3.3 and the fact
that x1 is the only ν-bound variable in M1, we have that C ≡ (νx1y1)(◦M1 ∥ D). By the
induction hypothesis, there exists some D′ such that D ≡ D′ and D′ is in canonical form.
By construction we have that C ≡ (νx1y1)(◦M1 ∥ D′), which is in tree canonical form as
required.

As hyper-environments capture parallelism, a configuration C typeable under hyper-
environment Γ1 ∥ · · · ∥ Γn is equivalent to n independent parallel processes.

Proposition 3.15 (Independence). If Γ1 ∥ · · · ∥ Γn ⊢ C : R, then there exist R1, . . . , Rn and
D1, . . . ,Dn such that R = R1 ⊓ · · · ⊓Rn and C ≡ D1 ∥ · · · ∥ Dn and Γi ⊢ Di : Ri for each i.

Proof. By induction on the derivation of Γ1 ∥ · · · ∥ Γn ⊢ C : R. The cases for TC-Main,
TC-Child, and TC-Link follow immediately. The cases for TC-New and TC-Par follow
from the IH and structural congruence rules.

It follows from Theorem 3.14 and Proposition 3.15 that any well-typed HGV configuration
can be written as a forest of independent configurations in tree canonical form.
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Progress and Deadlock Freedom. With tree canonical forms defined, we can now state a
progress result. A thread is blocked on an endpoint x if it is ready to perform a communication
action on x.

Definition 3.16 (Blocked thread). We say that thread T is blocked on variable z, written

blocked(T , z), if either: T = ◦ z; T = x
z↔y, for some x, y; or T = F [N ] for some F , where

N is send (V, z), recv z, or wait z.

We let Ψ range over type environments containing only session-typed variables, i.e.,
Ψ ::= · | Ψ, x : S, which lets us reason about configurations that are closed except for
runtime names. Using Lemma 3.17 we obtain open progress for configurations with free
runtime names.

Lemma 3.17 (Open Progress). Suppose Ψ ⊢ C : T where

C = (νx1y1)(A1 ∥ · · · ∥ (νxnyn)(An ∥ ϕN) · · · )

is in tree canonical form. Either C −→ D for some D, or:

(1) For each Ai (1 ≤ i ≤ n), blocked(Ai, z) for some z ∈ {xi} ∪ {yj | 1 ≤ j < i} ∪ fv(Ψ)
(2) Either N is a value or blocked(ϕN, z) for some z ∈ {yi | 1 ≤ i ≤ n} ∪ fv(Ψ)

Proof. Open progress follows as a direct corollary of a slightly more verbose property which
holds on HGV processes, proved by induction on the derivation of an inductive definition of
tree canonical forms. See Appendix A for details.

Closed configurations enjoy a stronger result: if a closed configuration cannot reduce,
then each auxiliary thread must either be a value, or be blocked on its neighbouring endpoint.

Lemma 3.18 (Closed Progress). Suppose Ψ ⊢ C : R where

C = (νx1y1)(A1 ∥ · · · ∥ (νxnyn)(An ∥ ϕN) · · · )

is in tree canonical form. Either C −→ D for some D, or:

(1) For each Aj for 1 ≤ j ≤ n, blocked(Aj , xj)
(2) N is a value

Proof. Since the environment is closed, by Lemma 3.17, for each Aj it must be that
blocked(Aj , z) for some z ∈ {yi | i ∈ 1..j − 1} ∪ {xj}.

Note that if two names x, y are co-names, and one thread is blocked on x, and another
is blocked on y, then due to typing the names must be dual and reduction can occur.

Consider A1. Since the environment is closed, A1 must be blocked on x1. Next, consider
A2; the thread cannot be blocked on y1 as reduction would occur. By the definition of tree
canonical forms, A2 must contain x2 and by the typing rules cannot contain y2, so the thread
must be blocked on x2. The argument extends to the remainder of the configuration.

Finally, for ground configurations, where the main thread does not return a runtime
name or capture a runtime name in a closure, we obtain a yet tighter result, global progress,
which implies deadlock freedom [CDM14].

Definition 3.19 (Ground configuration). A configuration C is a ground configuration if
· ⊢ C : T , C is in canonical form, and T does not contain session types or function types.

Our main progress result states that a ground configuration can reduce, or is a value.
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Typing rules for configurations Γ ⊢GV C : T

TG-New
Γ, ⟨x, y⟩ : S♯ ⊢GV C : R

Γ ⊢GV (νxy)C : R

TG-Connect1

Γ1, x : S ⊢GV C : R
Γ2, y : S ⊢GV D : R′

Γ1,Γ2, ⟨x, y⟩ : S♯ ⊢GV C ∥ D : R ⊓R′

TG-Connect2

Γ1, y : S ⊢GV C : R
Γ2, x : S ⊢GV D : R′

Γ1,Γ2, ⟨x, y⟩ : S♯ ⊢GV C ∥ D : R ⊓R′

TG-Child
Γ ⊢GV M : end!

Γ ⊢GV ◦M : ◦

TG-Main
Γ ⊢GV M : T

Γ ⊢GV •M : • T

TG-Link

x : S, y : S, z : end? ⊢GV x
z↔y : ◦

Figure 5. GV, typing rules for configurations.

Theorem 3.20 (Global progress). Suppose C is a ground configuration. Either there exists
some D such that C −→ D, or C = •V for some value V .

Proof. By Lemma 3.18, either C can reduce, or C can be written:

(νx1y1)(◦A1 ∥ · · · ∥ (νxnyn)(◦An ∥ •V ) · · · )

where blocked(Ai, xi) for each {xi | i ∈ 1..n}.
Since C is ground, fv(V ) = ∅. By definition, tree canonical form ensures that no cycles

are present amongst threads, so no auxiliary thread can be blocked. It follows that if C ̸−→,
then there cannot be any auxiliary threads and thus C = •V for some value V .

Determinism and Strong Normalisation. HGV enjoys a strong form of determinism
known as the diamond property, and due to linearity it enjoys strong normalisation. Unlike
with preservation and progress, the addition of hypersequents does not substantially change
the arguments from [LM15].

Theorem 3.21 (Diamond property). If G ⊢ C : T , C −→ D, and C −→ D′, then D ≡ D′.

Proof. Similar to that of GV [LM15, Fow19]: −→M is deterministic, and due to linearity,
any overlapping reductions are separate and may be performed in either order.

Theorem 3.22 (Termination). If G ⊢ C : T , there are no infinite sequences C −→−→ · · · .

Proof. As with GV [LM15, Fow19], due to linearity, HGV has an elementary strong normal-
isation proof. Let the size of a configuration be the sum of the sizes of all abstract syntax
trees of all terms contained in threads. The size of a configuration is invariant under ≡ and
strictly decreases under −→, so no infinite reduction sequences can exist.

4. Relation between HGV and GV

In this section, we show that well-typed GV configurations are well-typed HGV configurations,
and well-typed HGV configurations with tree structure are well-typed GV configurations.
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GV. HGV and GV share a common term language and reduction semantics, so only differ
in their runtime typing rules. Figure 5 gives the runtime typing rules for GV. We adapt the
rules to use a double-binder formulation to concentrate on the essence of the relationship
with HGV, but it is trivial to translate GV with single binders into GV with double binders.

GV uses a pseudo-type S♯ to type channels. Unlike endpoints, channels cannot appear
in terms. Read bottom-up, rule TG-New types a name restriction (νxy)C, adding ⟨x, y⟩ : S♯

to the type environment, which along with TG-Connect1 and TG-Connect2 ensures that
a session channel of type S will be split into endpoints x and y over a parallel composition.
In turn, this enforces a tree process structure. The remaining typing rules are as in HGV.

A simple embedding of GV into HGV. The simplest embedding of GV in HGV relies
on the observation from Section 2 that each parallel composition splits a single channel. Let
C ∥⟨x,y⟩ D denote two configurations C and D connected by a channel with endpoints x, y.
We can write an arbitrary closed GV configuration in the form:

C1 ∥⟨x1,y1⟩ · · · ∥⟨xn−2,yn−2⟩ Cn−1 ∥⟨xn−1,yn−1⟩ Cn
where each C does not contain a further parallel composition, and any main thread is in Cn.
We can then subsequently embed the configuration in HGV as:

(νx1y1)(C1 ∥ · · · ∥ (νxn−2yn−2)(Cn−2 ∥ (νxn−1yn−1)(Cn−1 ∥ Cn)) · · · )
which is well-typed by construction. As a corollary, every well-typed, closed GV configuration
is equivalent to a well-typed, closed HGV configuration.

A structure-preserving embedding of GV into HGV. Though the simple embedding
of GV into HGV is sound, it does not respect the intention of GV. In fact, we can provide
a stronger result: every well-typed open GV configuration is exactly a well-typed HGV
configuration.

Definition 4.1 (Flattening). Flattening, written ↓ , converts GV type environments and
HGV hyper-environments into HGV environments.

↓ · = ·
↓ (Γ, ⟨x, x′⟩ : S♯) = ↓Γ, x : S, x′ : S
↓ (Γ, x : T ) = ↓Γ, x : T

↓∅ = ∅
↓ (G ∥ Γ) = ↓ G,Γ

Definition 4.2 (Splitting). Splitting converts GV type environments into hyper-environments.

Given channels {⟨xi, x′i⟩ : S
♯
i}i∈1..n in Γ, a hyper-environment G is a splitting of Γ if ↓ G = ↓Γ

and ∃Γ1, . . . ,Γn+1 such that G = Γ1 ∥ · · · ∥ Γn+1, and Tree(G, {{x1, x′1}, . . . , {xn, x′n}}).
A well-typed GV configuration is typeable in HGV under a splitting of its type environment.

Theorem 4.3 (Typeability of GV configurations in HGV). If Γ ⊢GV C : R, then there exists
some G such that G is a splitting of Γ and G ⊢ C : R.

Proof. By induction on the derivation of Γ ⊢GV C : T (see Appendix B).

Example 4.4. Consider a configuration where a child thread pings the main thread:

(νxy)(◦ (send (ping , x)) ∥ • (let ((), y) = recv y in wait y))

We can write a GV typing derivation as follows:

x : !1.end!, ping : 1 ⊢GV ◦ (send (ping , x)) : ◦ y : ?1.end? ⊢GV • (let ((), y) = recv y in wait y) : • 1

⟨x, y⟩ : !1.end!
♯, ping : 1 ⊢GV (νxy)(◦(send (ping , x)) ∥ •(let ((), y) = recv y in wait y)) : 1

ping : 1 ⊢GV (νxy)(◦(send (ping , x)) ∥ •(let ((), y) = recv y in wait y)) : 1
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The corresponding HGV derivation is:

x : !1.end!, ping : 1 ⊢ ◦ (send (ping , x)) : ◦ y : ?1.end? ⊢ • (let ((), y) = recv y in wait y) : • 1

x : !1.end!, ping : 1 ∥ y : ?1.end? ⊢ (νxy)(◦(send (ping , x)) ∥ •(let ((), y) = recv y in wait y)) : • 1

ping : 1 ⊢ (νxy)(◦(send (ping , x)) ∥ •(let ((), y) = recv y in wait y)) : • 1

Note that x : !1.end!, ping : 1 ∥ y : ?1.end? is a splitting of ⟨x, y⟩ : (!1.end!)
♯, ping : 1.

Translating HGV to GV. As we saw in §2, unlike in HGV, equivalence in GV
is not type-preserving. It follows that HGV types strictly more processes than GV.
Let us revisit Lindley and Morris’ example from §1 (adapted to use double-binders),
where Γ1,Γ2,Γ3 ⊢GV (νxx′)(νyy′)(C ∥ (D ∥ E)) : R1 ⊓R2 ⊓R3 with Γ1, x : S ⊢GV C : R1,

Γ2, y : S′ ⊢GV D : R2, and Γ3, x
′ : S, y′ : S′ ⊢GV E : R3.

The structurally-equivalent term (νxx′)(νyy′)((C ∥ D) ∥ E) is not typeable in GV, since
we cannot split both channels over a single parallel composition:

Γ1,Γ2, x : S ̸⊢GV C ∥ D : R1 ⊓R2 Γ3, x
′ : S, ⟨y, y′⟩ : S′♯ ̸⊢GV E : R3

Γ1,Γ2,Γ3, ⟨x, x′⟩ : S♯, ⟨y, y′⟩ : S′♯ ̸⊢GV (C ∥ D) ∥ E : R1 ⊓R2 ⊓R3

Γ1,Γ2,Γ3, ⟨x, x′⟩ : S♯ ̸⊢GV (νyy′)((C ∥ D) ∥ E) : R1 ⊓R2 ⊓R3

Γ1,Γ2,Γ3 ̸⊢GV (νxx′)(νyy′)((C ∥ D) ∥ E) : R1 ⊓R2 ⊓R3

However, we can type this process in HGV:

Γ1, x : S ⊢ C : R1 Γ2, y : S′ ⊢ D : R2

Γ1, x : S ∥ Γ2, y : S′ ⊢ C ∥ D : R1 ⊓R2 Γ3, x
′ : S, y′ : S′ ⊢ E : R3

Γ1, x : S ∥ Γ2, y : S′ ∥ Γ3, x
′ : S, y′ : S′ ⊢ (C ∥ D) ∥ E : R1 ⊓R2 ⊓R3

Γ1, x : S ∥ Γ2,Γ3, x
′ : S ⊢ (νyy′)((C ∥ D) ∥ E) : R1 ⊓R2 ⊓R3

Γ1,Γ2,Γ3 ⊢ (νxx′)(νyy′)((C ∥ D) ∥ E) : R1 ⊓R2 ⊓R3

Note in particular the shaded hyper-environment, which includes hyper-environment separa-
tors to separate endpoints x and x′, as well as y and y′. It follows that, unlike in GV, both
channels can be split over the same parallel composition. Similarly, the hyper-environment
separator allows C and D to be composed without sharing any channels.

Although HGV types more processes, every well-typed HGV configuration typeable
under a singleton hyper-environment Γ is equivalent to a well-typed GV configuration, which
we show using tree canonical forms.

Proposition 4.5. Suppose Γ ⊢ C : R where C is in tree canonical form. Then, Γ ⊢GV C : R.

Proof. By induction on the derivation of Γ ⊢ C : R, making use of an inductive definition of
tree canonical forms. See Appendix B for details.

Remark 4.6. It is not the case that every HGV configuration typeable under an arbitrary
hyper-environment H is equivalent to a well-typed GV configuration. This is because
open HGV configurations can form forest process structures, whereas (even open) GV
configurations must form a tree process structure.

Since we can write all well-typed HGV configurations in canonical form, and HGV tree
canonical forms are typeable in GV, it follows that every well-typed HGV configuration
typeable under a single type environment is equivalent to a well-typed GV configuration.
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Typing rules for processes P ⊢ G

TP-Link

x↔Ay ⊢ x : A, y : A⊥

TP-New
P ⊢ G ∥ Γ, x : A ∥ ∆, y : A⊥

(νxy)P ⊢ G ∥ Γ,∆

TP-Par
P ⊢ G Q ⊢ H
P ∥ Q ⊢ G ∥ H

TP-Halt

0 ⊢ ∅

TP-Close
P ⊢ ∅

x[].P ⊢ x : 1

TP-Wait
P ⊢ Γ

x().P ⊢ Γ, x : ⊥

TP-Send
P ⊢ Γ, y : A ∥ ∆, x : B

x[y].P ⊢ Γ,∆, x : A⊗B

TP-Recv
P ⊢ Γ, y : A, x : B

x(y).P ⊢ Γ, x : A`B

TP-Offer-Absurd

x ▷ {} ⊢ Γ, x : ⊤

TP-Select-Inl
P ⊢ Γ, x : A

x ◁ inl.P ⊢ Γ, x : A⊕B

TP-Select-Inr
P ⊢ Γ, x : B

x ◁ inr.P ⊢ Γ, x : A⊕B

TP-Offer
P ⊢ Γ, x : A Q ⊢ Γ, x : B

x ▷ {inl : P ; inr : Q} ⊢ Γ, x : A&B

Duality A⊥

(A⊗B)⊥ = A⊥ `B⊥

(A`B)⊥ = A⊥ ⊗B⊥
(1)⊥ = ⊥
(⊥)⊥ = 1

(A⊕B)⊥ = A⊥ &B⊥

(A&B)⊥ = A⊥ ⊕B⊥
(0)⊥ = ⊤
(⊤)⊥ = 0

Figure 6. HCP, duality and typing rules for processes.

Corollary 4.7. If Γ ⊢ C : R, then there exists some D such that C ≡ D and Γ ⊢GV D : R.

5. Relation between HGV and HCP

In this section, we explore two translations, from HGV to HCP and from HCP to HGV,
together with their operational correspondence results.

Hypersequent CP. HCP [MP18, KMP19b] is a session-typed process calculus with a
correspondence to CLL, which exploits hypersequents to fix extensibility and modularity
issues with CP.

Types (A, B) consist of the connectives of linear logic: the multiplicative operators (⊗,
`) and units (1, ⊥) and the additive operators (⊕, &) and units (0, ⊤).

A,B ::= 1 | ⊥ | 0 | ⊤ | A⊗B | A`B | A⊕B | A&B

Type environments (Γ, ∆) associate names with types. Hyper-environments (G, H) are
collections of type environments. The empty type environment and hyper-environment are
written · and ∅, respectively. Names in type and hyper-environments must be unique and
environments may be combined, written Γ,∆ and G ∥ H, only if they are disjoint.

Processes (P , Q) are a variant of the π-calculus with forwarding [San96, Bor98], bound
output [San96], and double binders [Vas12]. The syntax of processes is given by the typing
rules (Figure 6), which are standard for HCP [MP18, KMP19b]: x↔Ay forwards messages
between x and y; (νxy)P creates a channel with endpoints x and y, and continues as P ;
P ∥ Q composes P and Q in parallel; 0 is the terminated process; x[y].P creates a new
channel, outputs one endpoint over x, binds the other to y, and continues as P ; x(y).P
receives a channel endpoint, binds it to y, and continues as P ; x[].P and x().P close x and
continue as P ; x ◁ inl.P and x ◁ inr.P make a binary choice; x ▷ {inl : P ; inr : Q} offers a
binary choice; and x ▷ {} offers a nullary choice. As HCP is synchronous, the only difference
between x[y].P and x(y).P is their typing (and similarly for x[].P and x().P ). We write
unbound send as x⟨y⟩.P (short for x[z].(y↔z ∥ P )), and synchronisation as x̄.P (short for
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Action rules
Act-Pref
π.P

π−→ P

Act-Link1

x↔y
x↔y−→ 0

Act-Link2

x↔y
y↔x−→ 0

Act-Off-Inl

x ▷ {inl : P ; inr : Q} x▷inl−→ P

Act-Off-Inr

x ▷ {inl : P ; inr : Q} x▷inr−→ Q

Communication Rules

Alp-Link
P

x↔z−→ P ′

(νxy)P
α−→ P ′{z/y}

Bet-Send

P
x[x′]∥y(y′)−→ P ′

(νxy)P
β−→ (νxy)(νx′y′)P ′

Bet-Close

P
x[]∥y()−→ P ′

(νxy)P
β−→ P ′

Bet-Inl

P
x◁inl∥y▷inl−→ P ′

(νxy)P
β−→ (νxy)P ′

Bet-Inr

P
x◁inr∥y▷inr−→ P ′

(νxy)P
β−→ (νxy)P ′

Structural Rules
Str-Res

P
ℓ−→ P ′ x, y ̸∈ cn(ℓ)

(νxy)P
ℓ−→ (νxy)P ′

Str-Par1

P
ℓ−→ P ′ bn(ℓ) ∩ fn(Q) = ∅

P ∥ Q
ℓ−→ P ′ ∥ Q

Str-Par2

Q
ℓ−→ Q′ bn(ℓ) ∩ fn(P ) = ∅

P ∥ Q
ℓ−→ P ∥ Q′

Str-Syn

P
ℓ−→ P ′ Q

ℓ′−→ Q′ bn(ℓ) ∩ bn(ℓ′) = ∅

P ∥ Q
l∥l′−→ P ′ ∥ Q′

Figure 7. HCP, label transition semantics.

x[z].(z[].0 ∥ P )) and x.P (short for x(z).z().P ). Duality is standard and is involutive, i.e.,
(A⊥)⊥ = A.

We define a standard structural congruence (≡) similar to that of HGV, i.e., parallel
composition is commutative and associative, we can commute name restrictions, swap the
order of endpoints, swap links, and have scope extrusion (similar to Figure 4). Note that
since we base our formal developments on an LTS semantics, structural congruence is not
required for reduction.

x↔Ay ≡ y↔A⊥
x P ∥ 0 ≡ P P ∥ Q ≡ Q ∥ P P ∥ (Q ∥ R) ≡ (P ∥ Q) ∥ R

(νxx′)(νyy′)P ≡ (νyy′)(νxx′)P (νxy)P ≡ (νyx)P

(νxy)(P ∥ Q) ≡ P ∥ (νxy)Q if x, y ̸∈ fv(P )

We define the labelled transition system for HCP as a small refinement of the LTS
for the additive-multiplicative fragment of the πLL calculus introduced by Montesi and
Peressotti [MP21], in turn inspired by their previous system CT [MP18]. The LTS is
identical, save for the fact that we distinguish two types of internal actions. Action labels l
represent the actions that a process can fire. Prefixes π are a convenient subset of action
labels which can be written as prefixes to processes, i.e., π.P . Transition labels ℓ include
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action labels and the parallel composition of two action labels, along with internal actions
α, β, and τ . The LTS gives rise to two types of internal action: α represents only the
evaluation of links as renaming, and β represents only communication. Labels τ arise only
due to saturated transition (Definition 5.4) and are not produced by the rules in the LTS.

Prefixes π ::= x[y] | x[] | x(y) | x() | x ◁ inl | x ◁ inr
Action Labels l ::= π | x↔y | x ▷ inl | x ▷ inr
Transition Labels ℓ ::= l | l ∥ l′ | α | β

We let ℓx range over labels on x: x↔y, x[y], x[], etc. Labelled transition
ℓ−→ is defined

in Figure 7. We write
ℓ−→ ℓ′−→ for the composition of

ℓ−→ and
ℓ′−→,

ℓ+−→ for the transitive

closure of
ℓ−→, and

ℓ∗−→ for the reflexive-transitive closure of
ℓ−→. We write bn(ℓ) and fn(ℓ)

for the bound and free names contained in ℓ, respectively. We write cn(ℓ) for all names in ℓ,
i.e., cn(ℓ) = fn(ℓ) ∪ bn(ℓ).

Metatheory. Transitions preserve typeability. Since internal actions occur only under
binders, they are typable under the same hyper-environment.

Theorem 5.1 (Type Preservation). Suppose P ⊢ G and P
ℓ−→ Q.

• If ℓ is internal, then Q ⊢ G.
• If ℓ is not internal, then there exists some H such that Q ⊢ H.

Proof. Following the approach of [KMP19a, MP18, MP21], type preservation is established
by defining proof transformations on typing derivations of each reducing process. The only
difference with respect to [MP18, MP21] arises due to our separate treatment of α and β
actions, which does not materially impact the proof.

Similarly, our LTS for HCP satisfies progress. Following [KMP19a, MP21], the key
intermediate step is to note that for every type environment in a hyper-environment, there
is some free name which can be acted upon. Again, the stratification of internal actions does
not materially impact the proof.

Theorem 5.2 (Progress). If P ⊢ H and P ̸≡ 0, then there exist some ℓ,Q such that

P
ℓ−→ Q.

Behavioural Theory. The behavioural theory for HCP follows Kokke et al. [KMP19a],
except that we distinguish two subrelations of weak bisimilarity, following the subtypes of
internal actions.

Definition 5.3 (Strong bisimulation and strong bisimilarity). A symmetric relation R on

processes is a strong bisimulation if P R Q implies that if P
ℓ−→ P ′, then Q

ℓ−→ Q′ for
some Q′ such that P ′ R Q′. Strong bisimilarity is the largest relation ∼ that is a strong
bisimulation.

Definition 5.4 (Saturated transition). The L-saturated transition relation, for L ⊆ {α, β},
is the smallest relation =⇒L closed under the following rules, with saturated transition labels
ℓ ranging over transition labels and the distinguished label τ :

P
τ

=⇒L P

P
τ

=⇒L P ′ ℓ−→ Q′ τ
=⇒L Q ℓ ∈ L

P
τ

=⇒L Q

P
τ

=⇒L P ′ ℓ−→ Q′ τ
=⇒L Q ℓ /∈ L

P
ℓ

=⇒L Q
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We write =⇒ℓ as shorthand for =⇒{ℓ}, and we write =⇒ as shorthand for =⇒{α,β}.

Definition 5.5 (Weak bisimulation and weak bisimilarity). A symmetric relation R on

processes is an L-bisimulation, for L ⊆ {α, β}, if P R Q implies that if P
ℓ′

=⇒L P ′, then

Q
ℓ′

=⇒L Q′ for some Q′ such that P ′ RQ′. The L-bisimilarity relation is the largest relation
≈L that is an L-bisimulation. We write ≈ as shorthand for ≈{α,β}.

Lemma 5.6. Structural congruence, strong bisimilarity and the various forms of weak
bisimilarity are related as follows:

≡ ⊂ ∼ ∼ ⊂ ≈ ∼ ⊂ ≈α ∼ ⊂ ≈β

Differences with previous version. The LTS in Figure 7 is similar to that in the previous
version of this work [FKD+21], with the exception that we have removed the rules Tau-Alp

and Tau-Bet:

�
�
�
�
��Tau-Alp

P
α−→ P ′

P
τ−→ P ′

�
�

�
�
��Tau-Bet

P
β−→ P ′

P
τ−→ P ′

To see why these rules are problematic, consider processes P = (νxy)(z↔x ∥ y[].0) and
Q = z[].0. Following Definition 5.5, P and Q are α-bisimilar, as P only has the α-transition

P
α−→ Q and Q has no transitions. In the previous version, Tau-Alp gave P the derived

τ -transition P
τ−→ Q, which meant that P ̸≈α Q, as Q ̸ τ=⇒ Q. Therefore Tau-Alp collapses

≈α to ∼ and Tau-Bet collapses ≈β to ∼.
The solution we adopted was to remove Tau-Alp and Tau-Bet from the label transition

relation −→, and instead lift α- and β-transitions to τ -transitions in the definition of
saturated transition1.

Translating HGV to HCP. We factor the translation from HGV to HCP into two
translations: (1) a translation into HGV∗, a fine-grain call-by-value [LPT03] variant of HGV,
which makes control flow explicit; and (2) a translation from HGV∗ to HCP. In so doing, we
can concentrate on the essence of the translations as opposed to concerning ourselves with
administrative reductions.

HGV∗. We define HGV∗ as a refinement of HGV in which any non-trivial term must be
named by a let-binding before being used. While let is syntactic sugar in HGV, it is part of
the core language in HGV∗. Correspondingly, the reduction rule for let follows from the
encoding in HGV, i.e., let x = V in M −→M M{V/x}.

Terms L,M,N ::= V | let x = M in N | V W
| let () = V in M | let (x, y) = V in M
| absurd V | case V {inl x 7→ M ; inr y 7→ N}

Values V ,W ::= x | K | λx.M | () | (V,W ) | inl V | inr V
Evaluation contexts E ::= □ | let x = E in M
Thread contexts F ::= ϕ E

1We thank Marco Peressotti for notifying us of the error and suggesting the fix.
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Remark 5.7. Fine-grain call-by-value λ-calculi typically include an explicit return V
construct to embed values into the term language. As there is no difference between the
shapes of the value and term typing judgements, we allow ourselves to embed values directly
for simplicity.

We can näıvely translate HGV to HGV∗ (L·M) by let-binding each subterm in a value
position, e.g., Linl MM = let z = LMM in inl z.

Definition 5.8 (Näıve translation of HGV to HGV∗).
LxM = x
Lλx.MM = λx.LMM
LL MM = let x = LLM in let y = LMM in x y
L()M = ()
Llet () = L in MM = let z = LLM in let () = z in LMM
L(M,N)M = let x = LMM in let y = LNM in (x, y)
Llet (x, y) = L in MM = let z = LLM in let (x, y) = z in LMM
Linl MM = let z = LMM in inl z
Linr MM = let z = LMM in inr z
Lcase L {inl x 7→ M ; inr y 7→ N}M = let z = LLM in case z {inl x 7→ LMM; inr y 7→ LNM}
Labsurd LM = let z = LLM in absurd z

Standard techniques can be used to avoid administrative redexes [Plo75, DMN07]. We
give a full definition of HGV∗ in Appendix C.

HGV∗ to HCP. The translation from HGV∗ to HCP is given in Figure 8. All control flow
is encapsulated in values and let-bindings. We define a pair of translations on types, T·U and
V·W, such that TTU = VTW⊥. We extend these translations pointwise to type environments
and hyper-environments. We define translations on configurations (J·Kcr), terms (J·Kmr ) and
values (J·Kvr), where r is a fresh name denoting a distinguished output channel.

We translate an HGV sequent G ∥ Γ ⊢ C : T as JCKcr ⊢ TGU ∥ TΓU, r : TTU⊥, where Γ is
the type environment corresponding to the main thread. The translation of computations
includes synchronisation action in order to faithfully simulate a call-by-value reduction
strategy. The (term) translation of a value JV Kmr immediately pings the output channel
r to announce that it is a value. The translation of a let-binding Jlet w = M in NKmr
first evaluates M to a value, which then pings the internal channel x/x′ and unblocks the
continuation x.JNKmr . The translations of main and child threads each make use of an
internal result channel. The translation of a child thread consumes the yielded unit endpoint
once the child thread has terminated. The translation of the main thread forwards the result
value along the external output channel once the main thread has terminated.

There are two changes with respect to the translation of our earlier paper [FKD+21].
First, in the earlier work the translation of the main thread output directly to the external
output channel instead of forwarding via an intermediary as in the current translation. This
change is purely aesthetic. Second, in the earlier work the translation of fork was not
sufficiently concurrent. Correspondingly there was an error in the case of the operational
correspondence proof which is fixed in the current paper.

Lemma 5.9 (Type Preservation).

(1) If Γ ⊢ V : T , then JV Kvr ⊢ TΓU, r : TTU⊥.
(2) If Γ ⊢ M : T , then JMKmr ⊢ TΓU, r : 1⊗ TTU⊥.
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Translation on types TTU and VTW

T!T.SU = TTU⊥ ⊗ TSU
T?T.SU = TTU⊥ ` TSU

Tend!U = 1
Tend?U = ⊥

TTU = VTW⊥,
if T is not a session type

VT × UW = VTW⊗ VUW
VT + UW = VTW⊕ VUW

V1W = 1
V0W = 0

VT ⊸ UW = VTW⊥ ` (1⊗ VUW)
VSW = TSU⊥

Translation on configurations, terms, and values JCKcr, JMKmr , and JV Kvr

J◦ MKcr = (νyy′)(JMKmy ∥ y′.y′[].0)
J• MKcr = (νyy′)(JMKmy ∥ y′.y′↔r)

J(νxx′)CKcr = (νxx′)JCKcr
J C ∥ DKcr = JCKcr ∥ JDKcr

Jx z↔yKcr = z̄.z().x↔y

JxKvr = r↔x
Jλx.MKvr = r(x).JMKmr

J()Kvr = r[].0
J(V,W )Kvr = r[x].(JV Kvx ∥ JW Kvr)

Jinl V Kvr = r ◁ inl.JV Kvr
Jinr V Kvr = r ◁ inr.JV Kvr

JV W Kmr = (νxx′)(νyy′)(y⟨x⟩.r↔y ∥ JV Kvy′ ∥ JW Kvx′)

Jlet () = V in MKmr = (νxx′)(x().JMKmr ∥ JV Kvx′)
Jlet (x, y) = V in MKmr = (νyy′)(y(x).JMKmr ∥ JV Kvy′)

Jcase V {inl x 7→ M ; inr y 7→ N}Kmr = (νxx′)(x ▷ {inl : JMKmr ; inr : JN{x/y}Kmr } ∥ JV Kvx′)
Jabsurd V Kmr = (νxx′)(x ▷ {} ∥ JV Kvx′)
Jlet x = M in NKmr = (νxx′)(x.JNKmr ∥ JMKmx′)
JV Kmr = r̄.JV Kvr

JlinkKvr = r(y).y(x).r̄.r().x↔y
JforkKvr = (νyy′)(r(x).y⟨x⟩.r̄.r↔y ∥ y′(x).x⟨y′⟩.x.x[].0)
JsendKvr = r(y).y(x).y⟨x⟩.r̄.r↔y
JrecvKvr = r(x).x(y).r̄.r⟨y⟩.r↔x
JwaitKvr = r(x).x().r̄.r[].0

Figure 8. Translation from HGV∗ to HCP.

(3) If G ∥ Γ ⊢ C : T , where Γ is the type environment for the main thread in C, then
JCKcr ⊢ TGU ∥ TΓU, r : TTU⊥.

Lemma 5.10 (Substitution). If M is a well-typed term with w ∈ fv(M), and V is a
well-typed value, then (νww′)(JMKmr ∥ JV Kvw′) ≈α JM{V/w}Kmr .

Theorem 5.11 (Operational Correspondence). Suppose C is a well-typed configuration.

(1) (Preservation of reductions) If C −→ C′, then there exists a P such that JCKcr
β+

=⇒α P
and P ≈α JC′Kcr; and

(2) (Reflection of transitions)

• if JCKcr
α−→ P , then P ≈α JCKcr; and

• if JCKcr
β−→ P , then there exists a C′ and a P ′ such that C −→ C′ and P

β∗
=⇒α P ′ and

P ′ ≈α JC′Kcr. Furthermore, C′ is unique up to structural congruence.

The proof is in Appendix C. One might strive for a tighter operational correspondence
here, but our current translation generates multiple administrative β-transitions. The only
term reduction that translates to multiple β-transitions is the one for let-bindings. This is
because we choose to encode synchronisation using two β-transitions. We could adjust the
accounting here by treating synchronisation as a single β-transition or its own special kind of
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administrative transition. Many more administrative reductions arise from the configuration
translation. These are due to a combination of synchronisations and also the fact that we
use constants along with pairs and application for our communication primitives instead of
building-in fully-applied communication primitives.

Translating HCP to HGV. We cannot translate HCP processes to HGV terms directly:
HGV’s term language only supports fork (see Section 7 for further discussion), so there is
no way to translate an individual name restriction or parallel composition. However, we can
still translate HCP into HGV via the composition of known translations.

HCP into CP: We must first reunite each parallel composition with its corresponding
name restriction, i.e., translate to CP using the disentanglement translation shown
by Kokke et al. [KMP19b, Lemma 4.7]. The result is a collection of independent CP
processes.

CP into GV: Next, we can translate each CP process into a GV configuration using (a
variant of) Lindley and Morris’ translation [LM15, Figure 8].

GV into HGV: Finally, we can use our embedding of GV into HGV (Theorem 4.3) to
obtain a collection of well-typed HGV configurations, which can be composed using
TC-Par to result in a single well-typed HGV configuration.

The translation from HCP into CP and the embedding of GV into HGV preserve and
reflect reduction. However, as previously mentioned, Lindley and Morris’s original translation
from CP to GV preserves but does not reflect reduction due to an asynchronous encoding of
choice. By adapting their translation to use a synchronous encoding of choice (Section 3),
we obtain a translation from CP to GV that both preserves and reflects reduction. Thus,
composing all three translations together we obtain a translation from HCP to HGV that
preserves and reflects reduction.

6. Extensions

In this section, we outline three extensions to HGV that exploit generalising the tree structure
of processes to a forest structure. These extensions are of particular interest since HGV
already supports a core aspect of forest structure, enabling its full utilisation merely through
the addition of a structural rule. In contrast, to extend GV with forest structure one must
distinguish two distinct introduction rules for parallel composition [LM15, Fow19]. Other
extensions to GV such as shared channels [LM15], polymorphism [LM17], and recursive
session types [LM16] adapt to HGV almost unchanged.

From trees to forests. The TC-Par rule allows two processes to be composed in parallel
if they are typeable under separate hyper-environments. In a closed program, hyper-
environment separators are introduced by TC-Res, meaning that each process must be
connected by a channel.

The following TC-Mix rule allows two type environments Γ1,Γ2 to be split by a hyper-
environment separator without a channel connecting them, and is inspired by Girard’s
Mix rule [Gir87]; in the concurrent setting, Mix can be interpreted as concurrency without
communication [LM15, ALM16]. TC-Mix admits a much simpler treatment of link and
provides a crucial ingredient for handling exceptional behaviour.
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TC-Mix
G ∥ Γ1 ∥ Γ2 ⊢ C : R

G ∥ Γ1,Γ2 ⊢ C : R

Atkey et al. [ALM16] show that conflating the 1 and ⊥ types in CP (which correspond
respectively to the end! and end? types in GV) is logically equivalent to adding the Mix
rule and a 0-Mix rule (used to type an empty process). It follows that in the presence of
TC-Mix, we use self-dual end type; in the GV setting, by using a self-dual end type, we
decouple closing a channel from process termination. We therefore refine the TC-Child rule
and the type schema for fork to ensure that each child thread returns the unit value, and
replace the wait constant with a close constant which eliminates an endpoint of type end.

fork : (S ⊸ 1)⊸ S close : end⊸ 1

TC-Child
Γ ⊢ M : 1

Γ ⊢ ◦M : ◦

E-Close
(νxy)(E[close x] ∥ E′[close y]) −→ E[()] ∥ E′[()]

Given TC-Mix, we might expect a term-level construct spawn : (1⊸ 1)⊸ 1 which
spawns a parallel thread without a connecting channel. We can encode such a construct
using fork and close (assuming fresh x and y):

spawn M ≜ let x = fork(λy.close y; M) in close x

Assuming the encoded spawn is running in a main thread, after two reduction steps, we
are left with the configuration:

· ⊢ M : 1

· ⊢ ◦M : ◦
TC-Child

· ⊢ M : 1

· ⊢ •() : 1
TC-Main

· ∥ · ⊢ ◦M ∥ •() : 1
TC-Par

· ⊢ ◦M ∥ •() : 1
TC-Mix

Note the essential use of TC-Mix to insert a hyper-environment separator.
The addition of TC-Mix does not affect preservation or progress. The result follows

from routine adaptations of the proof of Theorem 3.3 and Theorem 3.20.
By relaxing the tree process structure restriction using TC-Mix, we can obtain a more

efficient treatment of link, and can support the treatment of exceptions advocated by
Fowler et al. [FLMD19].

A simpler link. The link (x, y) construct forwards messages from x to y and vice-versa.
Consider threads L = F [link (x, y)], M , N , where L connects to M by x and to N by y.

L

M N

{x, x′} {y, y′}
−→

L

M N
{y, y′}

The result of link reduction has forest structure. Well-typed closed programs in both GV
and HGV must always maintain tree structure. Different versions of GV do so in various
unsatisfactory ways: one is pre-emptive blocking [LM15], which breaks confluence; another
is two-stage linking (Figure 4), which defers forwarding via a special link thread [LM16].
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Lindley and Morris [LM15] implement link using the following rule (modified here to
use a double-binder formulation):

(νxx′)(F [link (x, y)] ∥ F ′[M ]) −→ (νxx′)(F [x] ∥ F ′[wait x′;M{y/x′}]) where x′ ∈ fv(M)

The first thread will eventually reduce to ◦x, at which point the second thread will synchronise
to eliminate x and x′ and then evaluate the continuation M with endpoint y substituted for
x′. Unfortunately, this formulation of link preemptively inhibits reduction in the second
thread, since the evaluation rule inserts a blocking wait. The resulting system does not
satisfy the diamond property.

HGV uses the incarnation of link advocated by Lindley and Morris [LM16], where
linking is split into two stages: the first generates a fresh pair of endpoints z, z′ and a

link thread of the form x
z′↔y, and returns z to the calling thread. Once the calling thread

has evaluated to a value (which must by typing be z), then the link substitution can take
place. This formulation recovers confluence, but we still lose a degree of concurrency:
communication on y is blocked until the linking thread has fully evaluated. In an ideal
implementation, the behaviour of the linking thread would be irrelevant to the remainder of
the configuration. The operation requires additional runtime syntax and thus complicates
the metatheory.

The above issues are symptomatic of the fact that the process structure after a link
takes place is a forest rather than a tree. However, with TC-Mix, we can refine the type
schema for link to (S × S)⊸ 1 and we can use the following rule:

(νxx′)(F [link (x, y)] ∥ ϕN) −→ F [()] ∥ ϕN{y/x′}

This formulation enables immediate substitution, maximimising concurrency. A variant
of HGV replacing E-Reify-Link and E-Comm-Link with E-Link-Mix retains HGV’s
metatheory.

Exceptions. In order to support exceptions in the presence of linear endpoints [FLMD19,
MV18] we must have a way of cancelling an endpoint. Mostrous and Vasconcelos [MV18]
describe a process calculus allowing the explicit cancellation of a channel endpoint, ac-
counting for exceptional scenarios such as a client disconnecting, or a thread encountering
an unrecoverable error. Attempting to communicate with a cancelled endpoint raises an
exception. Fowler et al. [FLMD19] extend these ideas to the functional setting, introducing
Exceptional GV (EGV). EGV supports exceptional behaviour by adding three term-level
constructs:

• a new constant, cancel : S ⊸ 1, which allows us to discard an arbitrary session endpoint
with type S

• a construct raise, which raises an exception
• an exception handling construct try L as x in M otherwise N in the style of Benton &
Kennedy [BK01], which attempts possibly-failing computation L, binding the result to x
in success continuation M if successful and evaluating N if an exception is raised
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Cancellation generates a zapper thread ( x) which severs a tree topology into a forest
as in the following example.

(νxx′)(νyy′)(◦x′ ∥ ◦y′ ∥ •(cancel x;wait y))

• (cancel x;wait y)

◦ x′ ◦ y′

−→

(νxx′)(νyy′)(◦x′ ∥ ◦y′ ∥  x ∥ •(();wait y)

 x

◦ x′

• (();wait y)

◦ y′

The configuration on the left has a tree process structure. However, after reduction, we
obtain the configuration on the right which is clearly a forest and thus needs TC-Mix to be
typeable. We have described a synchronous version of EGV, but extending our treatment to
asynchrony as in the work of [FLMD19] is a routine adaptation.

7. Can we separate fork?

Hyper-environments allow us to cleanly separate name restriction and parallel composition
in process configurations. A natural follow-on question is whether we could use the same
technique at the level of terms in order to split fork into separate constructs for creating
a channel and spawning a process. As tantalising a prospect this is, we argue that the
disadvantages outweigh the benefits.

Suppose we were to extend term typing to allow hyper-environments, G ⊢ M : T , and
were to introduce terms let ⟨x, x′⟩ = new in M to create a channel and let ⟨⟩ = spawn M in N
to spawn a thread, with the following typing rules:

TM-LetNew
G ∥ Γ1, x : S ∥ Γ2, x

′ : S ⊢ M : T

G ∥ Γ1,Γ2 ⊢ let ⟨x, x′⟩ = new in M : T

TM-LetSpawn
G ⊢ M : end! H ⊢ N : T

G ∥ H ⊢ let ⟨⟩ = spawn M in N : T

These rather ad-hoc rules mirror hypersequent cut and hypersequent composition: TM-LetNew

creates a new channel with endpoints x and x′, and requires them to be used in sep-
arate threads in the continuation M ; and TM-LetSpawn takes a term M , spawns it
as a child thread, and continues as N . Using these rules, we can encode fork M as
let ⟨x, x′⟩ = new in let ⟨⟩ = spawn (M x) in x′.

Where else can we allow hyper-environments? In HCP, we have two options: (1) if
we restrict all logical rules to singleton hypersequents and allow hyper-environments only
in the rules for name restriction and parallel composition, we can use standard sequential
semantics [MP18, KMP19b]; but (2) if we allow hyper-environments in any logical rules,
we must use a semantics which allows the corresponding actions to be delayed [KMP19a].
This is unlikely to be a property of logical rules, but rather due to the fact that the logical
rules correspond exactly to the communication actions—which block reduction—and the
structural rules to name restriction and parallel composition—which do not. Therefore, we
expect the positions where hypersequents can safely occur to follow from the structure of
evaluation contexts and whether any blocking term perform a communication action.

Regardless of our choice, we would be left with restrictions on the syntax of terms that
seem sensible in a process calculus, but are surprising in a λ-calculus. In the strictest variant,
where we disallow hyper-environments in all but the above two rules, uses of TM-LetNew

and TM-LetSpawn may be interleaved, but no other construct may appear between a
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TM-LetNew and its corresponding TM-LetSpawn. Consider the following terms, where M
uses x and y, and N uses x′. Term (7.1) may be well-typed, but (7.2) is always ill-typed:

let y = 1 in let ⟨x, x′⟩ = new in let ⟨⟩ = spawn M in N (7.1)

let ⟨x, x′⟩ = new in let y = 1 in let ⟨⟩ = spawn M in N (7.2)

Note that let ⟨x, x′⟩ = new in M is a single, monolithic term constructor—exactly
what hypersequents were meant to prevent! However, if we attempt to decompose these
constructors, we find that these are not the regular product and unit types.

8. Related work

Session Types and Functional Languages. Session types were originally introduced
in the context of process calculi [Hon93, THK94, HVK98], however they have been vastly
integrated also in functional calculi, a line of work initiated by Gay and collaborators [VRG04,
VGR06, GV10]. This family of calculi builds session types directly into a lambda calculus.
Toninho et al. [TCP13] take an alternative approach, stratifying their system into a session-
typed process calculus and a separate functional calculus. There are many pragmatic
embeddings of session type systems in existing functional programming languages [NT04,
PT08, SE08, IYA10, OY16, KD21a]. A detailed survey is given by Orchard and Yoshida
[OY17].

Propositions as Sessions. When Girard introduced linear logic [Gir87] he suggested a
connection with concurrency. Abramsky [Abr94] and Bellin and Scott [BS94] give embeddings
of linear logic proofs in π-calculus, where cut reduction is simulated by π-calculus reduction.
Both embeddings interpret tensor as parallel composition. The correspondence with π-
calculus is not tight in that these systems allow independent prefixes to be reordered.
Caires and Pfenning [CP10] give a propositions as types correspondence between dual
intuitionistic linear logic and a session-typed π-calculus called πDILL. They interpret tensor
as output. The correspondence with π-calculus is tight in that independent prefixes may not
be reordered. With CP [Wad14], Wadler adapts πDILL to classical linear logic. Aschieri
and Genco [AG20] give an interpretation of classical multiplicative linear logic as concurrent
functional programs. They interpret ` as parallel composition, and the connection to session
types is less direct.

Priority-based Calculi. Systems such as πDILL, CP, and GV (and indeed HCP and
HGV) ensure deadlock freedom by exploiting the type system to statically impose a tree
structure on the communication topology — there can be at most one communication
channel between any two processes. Another line of work explores a more liberal approach to
deadlock freedom enabling some cyclic communication topologies, where deadlock freedom
is guaranteed via priorities, which impose an order on actions. Priorites were introduced
by Kobayashi and Padovani [Kob06, Pad14] and adopted by Dardha and Gay [DG18] in
Priority CP (PCP), and Kokke and Dardha in Priority GV (PGV) [KD21b]. Dezani et
al. [DCdY07] and Vieira and Vasconcelos [VV13] use a partial order on channels to guarantee
deadlock freedom, following Kobayashi’s work [Kob06]. Later on Dezani et al. [DCMYD06]
guarantee progress by allowing only one active session at a time. Carbone et al. [CDM14]
use catalysers to show that progress is a compositional form of lock freedom for standard
typed π calculus. The authors describe how this technique can be used for session typed
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π-calculus by using the the encoding of session types to linear types [DGS17, Dar14, Dar16].
Dardha and Perez [DP22] compare the different calculi and techniques for deadlock freedom
using CP and CLL as a yardstick and showing that the class of processes in CP is strictly
included in the class of processes typed by Kobayashi [Kob06].

Graph-theoretic Approaches. Carbone and Debois [CD10] define a graph-theoretic
approach for a session typed π-calculus. They define an explicit dependency graph defined
inductively on the structure of a process, in contrast to our approach of inducing a graph
on type environments given a co-name set. They ensure progress for processes with acyclic
graphs using a catalyser, which provides a missing counterpart to a process. Jacobs et
al. [JBK22a] also define a graph-theoretic approach to deadlock freedom, but differently from
Carbone and Debois, their work is based on separation logic. A line of work on many-writer,
single-reader process calculi [Pad18, dP18] uses explicit dependency graphs to both ensure
resource separation and guarantee deadlock freedom, however it is not immediate how to
apply this approach to functional calculi.

9. Conclusion and future work

HGV exploits hypersequents to resolve fundamental modularity issues with GV. As a
consequence, we have obtained a tight operational correspondence between HGV and
HCP. HGV is a modular and extensible core calculus for functional programming with
binary session types. In future we intend to apply hypersequents to multiparty versions of
CP [CLM+16] and GV [JBK22b] to exhibit a similarly strong operational correspondence.
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Appendix A. Omitted Proofs for Section 3: Hypersequent GV

In this Appendix we give full definitions and proofs for Section 3.

T-Seq

Γ ⊢ M : 1 ∆ ⊢ N : T

Γ,∆ ⊢ M ;N : T

T-LamUnit
Γ ⊢ M : T

Γ ⊢ λ().M : 1⊸ T

T-LamPair
Γ, x : T , y : T ′ ⊢ M : U

Γ ⊢ λ(x, y).M : T × T ′ ⊸ U

T-Let
Γ ⊢ M : T ∆, x : T ⊢ N : U

Γ,∆ ⊢ let x = M in N : U

T-Select-Inl

· ⊢ select inl : S ⊕ S′ ⊸ S

T-Select-Inr

· ⊢ select inr : S ⊕ S′ ⊸ S′

T-Offer
Γ ⊢ L : S & S′ ∆, x : S ⊢ M : T ∆, y : S′ ⊢ N : T

Γ,∆ ⊢ offer L {inl x 7→ M ; inr y 7→ N} : T

T-Offer-Absurd
Γ ⊢ L : &{}

Γ,∆ ⊢ offer L {} : T

Figure 9. Derived rules for syntactic sugar

A.1. Derived typing rules for syntactic sugar. The main body makes use of syntactic
sugar, and encodings of branching and selection. Figure 9 shows the derived typing rules.

A.2. Preservation Proof. Next, we detail the proof of preservation. We begin with the
usual lemmas to manipulate evaluation contexts, and the usual substitution lemma.

Lemma A.1 (Subterm typeability). Suppose D is a derivation of Γ ⊢ E[M ] : T . Then,
there exist Γ1,Γ2 such that Γ = Γ1,Γ2, a type U , and some subderivation D′ of D concluding
Γ2 ⊢ M : U , where the position of D′ in D coincides with the position of the hole in D.

Proof. By induction on the structure of E.

Lemma A.2 (Replacement, Evaluation Contexts). If:

• D is a derivation of Γ1,Γ2 ⊢ E[M ] : T
• D′ is a subderivation of D concluding Γ2 ⊢ M : U
• The position of D′ in D corresponds to that of the hole in E
• Γ3 ⊢ N : U
• Γ1,Γ3 is defined

then Γ1,Γ3 ⊢ E[N ] : T .

Proof. By induction on the structure of E.

Lemma A.3 (Substitution). If:

(1) Γ1, x : U ⊢ M : T
(2) Γ2 ⊢ N : U
(3) Γ1,Γ2 is defined
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then Γ1,Γ2 ⊢ M{N/x} : T .

Proof. By induction on the derivation of Γ1, x : U ⊢ M : T .

Preservation of typing under term reduction is standard.

Lemma A.4 (Preservation, −→M). If Γ ⊢ M : T and M −→M N , then Γ ⊢ N : T .

Proof. A standard induction on the derivation of −→M.

Runtime type merging is commutative and associative. We make use of these properties
implicitly in the remainder of the proofs.

Lemma A.5. (1) R1 ⊓R2 ⇐⇒ R2 ⊓R1

(2) R1 ⊓ (R2 ⊓R3) ⇐⇒ (R1 ⊓R2) ⊓R3

Proof. Immediate from the definition of ⊓.

The first more major result is preservation of configuration typing under structural
congruence.

Lemma A.6 (Preservation (≡)). If G ⊢ C : R and C ≡ D, then G ⊢ D : R.

Proof. We consider the cases for the equivalence axioms; the congruence cases are straight-
forward applications of the IH.

Case (SC-ParAssoc).

C ∥ (D ∥ E) ≡ (C ∥ D) ∥ E

G1 ⊢ C : R1

G2 ⊢ D : R2 G3 ⊢ E : R3

G2 ∥ G3 ⊢ D ∥ E : R2 ⊓R3

G1 ∥ G2 ∥ G3 ⊢ C ∥ (D ∥ E) : R1 ⊓R2 ⊓R3 ⇐⇒

G1 ⊢ C : R1 G2 ⊢ D : R2

G1 ∥ G2 ⊢ C ∥ D : R1 ⊓R2 G3 ⊢ E : R3

G1 ∥ G2 ∥ G3 ⊢ (C ∥ D) ∥ E : R1 ⊓R2 ⊓R3

Case (SC-ParComm).

C ∥ D ≡ D ∥ C
G ⊢ C : R1 H ⊢ D : R2

G ∥ H ⊢ C ∥ D : R1 ⊓R2 ⇐⇒
H ⊢ D : U G ⊢ C : T

G ∥ H ⊢ D ∥ C : R1 ⊓R2

Case (SC-NewComm).

(νxx′)(νyy′)C ≡ (νyy′)(νxx′)C
Two illustrative subcases:

Subcase (1).

G ∥ Γ1, x : S ∥ Γ2, x
′ : S ∥ Γ3, y : S′ ∥ Γ4, y

′ : S′ ⊢ C : R

G ∥ Γ1, x : S ∥ Γ2, x
′ : S ∥ Γ3,Γ4 ⊢ (νyy′)C : R

G ∥ Γ1,Γ2 ∥ Γ3,Γ4 ⊢ (νxx′)(νyy′)C : R
⇐⇒

G ∥ Γ1, y : S′ ∥ Γ2, y
′ : S′ ∥ Γ3, x : S ∥ Γ4, x

′ : S ⊢ C : R

G ∥ Γ1, y : S′ ∥ Γ2, y
′ : S′ ∥ Γ3,Γ4 ⊢ (νxx′)C : R

G ∥ Γ1,Γ2 ∥ Γ3,Γ4 ⊢ (νyy′)(νxx′)C : R
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Subcase (2).

G ∥ Γ1, x : S, y : S′ ∥ Γ2, y
′ : S′ ∥ Γ3, x

′ : S ⊢ C : R

G ∥ Γ1,Γ2, x : S ∥ Γ3, x
′ : S ⊢ (νyy′)C : R

G ∥ Γ1,Γ2,Γ3 ⊢ (νxx′)(νyy′)C : R
⇐⇒

G ∥ Γ1, x : S, y : S′ ∥ Γ2, y
′ : S′ ∥ Γ3, x

′ : S ⊢ C : R

G ∥ Γ1,Γ3, y : S′ ∥ Γ2, y
′ : S′ ⊢ (νxx′)C : R

G ∥ Γ1,Γ2,Γ3 ⊢ (νyy′)(νxx′)C : R

Case (SC-NewSwap).

(νxy)C ≡ (νyx)C
Follows immediately since hyper-environments are treated as unordered.

Case (SC-ScopeExt).

C ∥ (νxy)D ≡ (νxy)(C ∥ D)

(where x, y ̸∈ fv(C))

G ⊢ C : R1 H ∥ Γ1, x : S ∥ Γ2, y : S ⊢ D : R2

G ⊢ C : R1 H ∥ Γ1,Γ2 ⊢ (νxy)D : R2

G ∥ H ∥ Γ1,Γ2 ⊢ C ∥ (νxy)D : R1 ⊓R2

⇐⇒
G ⊢ C : R1 H ∥ Γ1, x : S ∥ Γ2, y : S ⊢ D : R2

G ∥ H ∥ Γ1, x : S ∥ Γ2, y : S ⊢ C ∥ D : R1 ⊓R2

G ∥ H ∥ Γ1,Γ2 ⊢ (νxy)(C ∥ D) : R1 ⊓R2

Case (SC-LinkComm).

x
z↔y ≡ y

z↔x

Assumption:

x : S, y : S ⊢ x
z↔y : ◦

By dualising both variables, we have that x : S, y : S. Since duality is an involution, we can
show x : S, y : S ⇐⇒ x : S, y : S.
Thus:

y : S, x : S ⊢ y
z↔x : ◦

The reasoning for the symmetric case is identical.

The next result shows that configuration typeability is preserved under configuration
reduction. Note that this lemma makes crucial use of Lemma A.6 due to E-Equiv.

Lemma A.7 (Preservation (−→)). If G ⊢ C : R and C −→ D, then G ⊢ D : R.
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Proof. By induction on the derivation of C −→ D. Where there is a choice for ϕ, we prove
the case for ϕ = • and expand T [M ] to •(E[M ]) for some evaluation context E; the other
cases are similar.

Case (E-Reify-Fork).

•E[fork V ] −→ (νxy)(•E[x] ∥ ◦V y)

Assumption:

Γ ⊢ E[fork V ] : T

Γ ⊢ •E[fork V ] : T

By Lemma A.1, there exist Γ1,Γ2, S such that Γ = Γ1,Γ2 and Γ1,Γ2 ⊢ E[fork V ] : T and:

Γ2 ⊢ V : S ⊸ end!

Γ2 ⊢ fork V : S

By Lemma A.2:

Γ1, x : S ⊢ E[x] : T

Γ1, x : S ⊢ •E[x] : T

By TM-App, Γ2, y : S ⊢ V y : end! and so by TC-Child, Γ2, y : S ⊢ V y : ◦
Recomposing:

Γ1, x : S ⊢ E[x] : T

Γ1, x : S ⊢ •E[x] : T

Γ2, y : S ⊢ V y : end!

Γ2, y : S ⊢ ◦(V y) : ◦
Γ1, x : S ∥ Γ2, y : S ⊢ •E[x] ∥ ◦(V y) : T

Γ1,Γ2 ⊢ (νxy)(•E[x] ∥ ◦(V y) : T

as required.

Case (E-Comm-Send).

(νxy)(•E[send (V, x)] ∥ ◦E′[recv y]) −→ (νxy)(•E[x] ∥ ◦E′[(V, y)])

Assumption:

Γ, x : S ⊢ E[send (V, x)] : U

Γ, x : S ⊢ •E[send (V, x)] : U

Γ′, y : S ⊢ E′[recv y] : end!

Γ′, y : S ⊢ ◦E′[recv y] : ◦
Γ, x : S ∥ Γ′, y : S ⊢ •E[send (V, x)] ∥ ◦E′[recv y] : U

Γ,Γ′ ⊢ (νxy)(•E[send (V, x)] ∥ ◦E′[recv y]) : U

By Lemma A.1, there exist Γ1,Γ2, S such that Γ = Γ1,Γ2, and
Γ1,Γ2, x : S ⊢ E[send (V, x)] : U and:

Γ2 ⊢ V : T x : !T.S′ ⊢ x : !T.S′

Γ2, x : !T.S′ ⊢ send (V, x) : S′

With the knowledge that S = !T.S′, we can refine our original derivation:
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Γ1,Γ2, x : !T.S′ ⊢ E[send (V, x)] : U

Γ1,Γ2, x : !T.S′ ⊢ •E[send (V, x)] : U

Γ′, y : ?T.S′ ⊢ E′[recv y] : end!

Γ′, y : ?T.S′ ⊢ ◦E′[recv y] : ◦
Γ1,Γ2, x : !T.S′ ∥ Γ′, y : ?T.S′ ⊢ •E[send (V, x)] ∥ ◦E′[recv y] : U

Γ1,Γ2,Γ
′ ⊢ (νxy)(•E[send (V, x)] ∥ ◦E′[recv y]) : U

Again by Lemma A.1, we have that Γ′, y : ?T.S′ ⊢ E′[recv y] : end! and:

y : ?T.S′ ⊢ y : ?T.S′

y : ?T.S′ ⊢ recv y : T × S′

We can show:

Γ2 ⊢ V : T y : S′ ⊢ y : S′

Γ2, y : S′ ⊢ (V, y) : T × S′

By Lemma A.2, we have that Γ2,Γ
′, y : S′ ⊢ E′[(V, y)] : S′.

Recomposing:

Γ1, x : S′ ⊢ E[x] : U

Γ1, x : S′ ⊢ •E[x] : U

Γ2,Γ
′, y : S′ ⊢ E′[(V, y)] : end!

Γ2,Γ
′, y : S′ ⊢ ◦E′[(V, y)] : ◦

Γ1, x : S′ ∥ Γ2,Γ
′, y : S′ ⊢ •E[x] ∥ ◦E′[(V, y)] : U

Γ1,Γ2,Γ
′ ⊢ (νxy)(•E[x] ∥ ◦E′[(V, y)]) : U

as required.

Case (E-Comm-Close).

(νxy)(T [wait x] ∥ ◦y) −→ T [()]

Taking T = •E, assumption:

Γ, x : end? ⊢ E[wait x] : T

Γ, x : end? ⊢ •E[wait x] : T

y : end! ⊢ y : end!

y : end! ⊢ ◦y : ◦
Γ, x : end? ∥ y : end! ⊢ •E[wait x] ∥ ◦y : T

Γ ⊢ (νxy)(•E[wait x] ∥ ◦y) : T
By Lemma A.1, we have that:

x : end? ⊢ x : end?

x : end? ⊢ wait x : 1

By Lemma A.2, Γ ⊢ E[()] : T .
Recomposing:

Γ ⊢ E[()] : T

Γ ⊢ •E[()] : T

as required.
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Case (E-Reify-Link).

F [link (x, y)] −→ (νzz′)(x
z↔y ∥ F [z′])

where z, z′ fresh.
Taking F = •E, we have that:

Γ ⊢ E[link (x, y)] : T

Γ ⊢ •E[link (x, y)] : T

By Lemma A.1, we have that Γ = Γ′, x : S, y : S such that:

x : S ⊢ x : S y : S ⊢ y : S

x : S, y : S ⊢ (x, y) : S × S

x : S, y : S ⊢ link (x, y) : ◦
By Lemma A.2, we have that Γ′, z : end! ⊢ E[z] : T .
Reconstructing:

z : end?, x : S, y : S ⊢ x
z↔y : ◦ Γ′, z : end! ⊢ •E[z] : T

z : end?, x : S, y : S ∥ Γ′, z : end! ⊢ x
z↔y ∥ •E[z] : T

Γ′, x : S, y : S ⊢ (νzz′)(x
z↔y ∥ •E[z]) : T

as required.

Case (E-Comm-Link).

(νzz′)(νxx′)(x
z↔y ∥ ◦z ∥ •M) −→ •(M{y/x})

Assumption:

x : S, y : S, z : end? ⊢ x
z↔y : ◦

z′ : end! ⊢ z : end!

z′ : end! ⊢ ◦z : ◦
Γ, x′ : S ⊢ M : T

Γ, x′ : S ⊢ •M : T

z′ : end! ∥ Γ, x′ : S ⊢ ◦z ∥ •M : T

x : S, y : S, z : end? ∥ z′ : end! ∥ Γ, x′ : S ⊢ x
z↔y ∥ ◦z′ ∥ •M : T

Γ, y : S, z : end? ∥ z′ : end! ⊢ (νxx′)(x
z↔y ∥ ◦z′ ∥ •M) : T

Γ, y : S ⊢ (νzz′)(νxx′)(x
z↔y ∥ ◦z′ ∥ •M) : T

By Lemma A.3, Γ, y′ : S ⊢ M{y/x′} : T , thus:

Γ, y′ : S ⊢ M{y/x′} : T

Γ, y′ : S ⊢ •M{y/x′} : T

as required.

Case (E-Res).
(νxy)C −→ (νxy)D if C −→ D

Immediate by the IH.
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Case (E-Par).
C ∥ D −→ C′ ∥ D if C −→ C′

Immediate by the IH.

Case (E-Equiv).
C −→ D if C ≡ C′, C′ −→ D′, and D′ ≡ D

Assumption: G ⊢ C : R.
By Lemma A.6, G ⊢ C′ : R.
By the IH, G ⊢ D′ : R.
By Lemma A.6, G ⊢ D : R, as required.

Case (E-Lift-M).
ϕM −→ ϕN if M −→M N

Immediate by Lemma A.4.

Theorem 3.3 (Preservation).

(1) If G ⊢ C : R and C ≡ D, then G ⊢ D : R.
(2) If G ⊢ C : R and C −→ D, then G ⊢ D : R.

Proof. A direct corollary of Lemmas A.6 and A.7.

A.3. Progress. Functional reduction satisfies progress: under an environment only con-
taining runtime names, a term will either reduce, be a value, or be ready to perform a
communication action.

Lemma A.8 (Progress, Terms). If Ψ ⊢ M : T , then either M is a value, or there exists
some N such that M −→M N , or M can be written E[N ] for some
N ∈ {fork V , send (V,W ), recv V ,wait V , link (V,W )}.

Proof. A standard induction on the derivation of Ψ ⊢ M : T .

Note that tree canonical forms can be defined inductively:

F ::= ϕM | (νxy)(A ∥ F)

We assume the same requirement for configurations F as the non-inductive definition of
tree canonical forms: i.e., that for a configuration (νxy)(A ∥ F), that x ∈ fv(A).

Lemma 3.17 follows as a direct corollary of a slightly more verbose property, which
follows from the inductive definition of TCFs.

Definition A.9 (Open progress). Suppose Ψ ⊢ F : R, where F ̸−→. We say that F satisfies
open progress if:

(1) C = (νxx′)(A ∥ F ′), where:
(a) There exist Ψ1,Ψ2 such that Ψ = Ψ1,Ψ2

(b) Ψ1, x:S ⊢ A : ◦ for some session type S, and blocked(A, y) for some y ∈ fv(Ψ1, x:S)
(c) Ψ2, x

′:S ⊢ D : R, where F ′ satisfies open progress
(2) F = ϕM , and either M is a value, or blocked(ϕM, x) for some x ∈ fv(Ψ).

Lemma A.10 (Open progress). If Ψ ⊢ F : R and F ̸−→, then F satisfies open progress.



SEPARATING SESSIONS SMOOTHLY 39

Proof. By induction on the derivation of G ⊢ F : R. By the definition of canonical forms, it
must be the case that C is of the form (νxy)(A ∥ F ′) or •M .

We show the case where C = (νxy)(◦M ∥ F ′); the cases for A = x
z↔x′ and C = •M

follow similar reasoning.
Assumption:

Ψ1, x : S ⊢ A : ◦ Ψ2, y : S ⊢ F ′ : R

Ψ1, x : S ∥ Ψ2, y : S ⊢ A ∥ F ′ : R

Ψ1,Ψ2 ⊢ (νxy)(◦M ∥ F ′) : R

In both cases, by the induction hypothesis, Ψ2, y : S ⊢ F ′ : T satisfies open progress.

Subcase (A = ◦M).
By Lemma A.8, either M is a value, or M can be written E[N ] for some communication
and concurrency construct N ∈ {fork V, send (V,W ), recv V,wait V, link (V,W )}.
Otherwise, M is a communication or concurrency construct. If N = fork V , then reduction
could occur by E-Reify-Fork. If N = link (V,W ), then by the type schema for link, we
have that link (V,W ) must be of the form link (z, z′) for z, z′ ∈ fv(Ψ, x : S) and could
reduce by E-Reify-Link.
Otherwise, it must be the case that blocked(◦M, z) for some z ∈ fv(Ψ1, x : S).
Thus, (νxy)(◦M ∥ D) satisfies open progress, as required.

Subcase (A = z2
z1↔z3). We have that z1, z2, z3 ∈ fv(Ψ1, x : S), and the thread must be

blocked by definition.



40 SEPARATING SESSIONS SMOOTHLY

Appendix B. Omitted Proofs for section 4: Relation between HGV and GV

Theorem 4.3 (Typeability of GV configurations in HGV). If Γ ⊢GV C : R, then there exists
some G such that G is a splitting of Γ and G ⊢ C : R.

Proof. By induction on the derivation of Γ ⊢ C : R.

Case (TG-New). Assumption:

Γ, ⟨y, y′⟩ : S♯ ⊢GV C : R

Γ ⊢GV (νyy′)C : R

Suppose Γ = ⟨x1, x′1⟩ : S
♯
1, . . . , ⟨xn, x′n⟩ : S

♯
n (for clarity, without loss of generality, we

assume the absence of non-session variables. As these are simply split between
environments, they can be added orthogonally).
By the IH, we have that there exists some hyper-environment G such that G ⊢ C : R, where
G is a splitting of Γ, ⟨y, y′⟩ : S♯.
Since G is a splitting of C, we know that y : S ∈ G and y′ : S ∈ G, and that G has a tree
structure with respect to names {{x1, x′1}, . . . , {xn, x′n}, {y, y′}}.
Since G has a tree structure, by definition we have that G = G′ ∥ Γ1, y : S ∥ Γ2, y

′ : S for
some G′,Γ1,Γ2, where G′ has a tree structure.
By Lemma 3.12 (clause 1, left-to-right), G′ ∥ Γ1,Γ2 has a tree structure with respect to
names {{x1, x′1}, . . . , {xn, x′n}}.
Thus, we can show:

G′ ∥ Γ1, y : S ∥ Γ2, y
′ : S ⊢ C : R

G′ ∥ Γ1,Γ2 ⊢ (νyy′)C : R

where G′ ∥ Γ1,Γ2 has a tree structure with respect to names {{x1, x′1}, . . . , {xn, x′n}} and is
therefore a splitting of Γ, as required.

Case (TG-Connect1). Assumption:

Γ1, y : S ⊢GV C : R1 Γ2, y
′ : S ⊢GV D : R2

Γ1,Γ2, ⟨y, y′⟩ : S♯ ⊢GV C ∥ D : R1 ⊓R2

Suppose Γ1 = ⟨x1, x′1⟩ : S
♯
1, . . . , ⟨xm, x′m⟩ : S♯

m and

Γ2 = ⟨xm+1, x
′
m+1⟩ : S

♯
m+1, . . . , ⟨xn, x′n⟩ : S

♯
n.

By the IH, there exist hyper-environments G,H such that:

(1) G is a splitting of Γ1, y : S
(2) H is a splitting of Γ2, y

′ : S
(3) G ⊢GV C : R1

(4) H ⊢GV D : R2

By the definition of splittings, G and H can be written G = G′ ∥ Γ′
1, y : S and

H = H′ ∥ Γ′
2, y

′ : S for some Γ′
1,Γ

′
2. Furthermore, G has a tree structure with respect to
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{{x1, x′1}, . . . , {xm, x′m}} and H has a tree structure with respect to
{{xm+1, x

′
m+1}, . . . , {xn, x′n}}.

By Lemma 3.12 (clause 2, left-to-right), G′ ∥ Γ′
1, y : S ∥ H′ ∥ Γ′

2, y
′ : S has a tree structure

with respect to {{x1, x′1}, . . . , {xn, x′n}, {y, y′}} and therefore G ∥ H is a splitting of
Γ1,Γ2, ⟨y, y′⟩ : S♯.
Recomposing in HGV:

G ⊢ C : R1 H ⊢ D : R2

G ∥ H ⊢ C ∥ D : R1 ⊓R2

as required.

Case (TG-Connect2). Similar to TG-Connect1.

Case (TG-Child). Assumption:

Γ ⊢ M : end!

Γ ⊢GV ◦M : ◦

Since we mandated that variables of type S♯ cannot appear in terms, there are no names of
type S♯ in Γ. Therefore, the singleton hyper-environment Γ is a valid splitting, and so we
can conclude by TC-Child in HGV.

Case (TG-Main). Similar to TG-Child.

Proposition 4.5. Suppose Γ ⊢ C : R where C is in tree canonical form. Then, Γ ⊢GV C : R.

Proof. By induction on the number of ν-bound names.
In the case that n = 0, the result follows immediately by TG-Child or TG-Main.
In the case that n ≥ 1, we have that Γ = Γ1,Γ2 for some Γ1,Γ2 and:

Γ1, x : S ⊢ ◦L : ◦ Γ2, y : S ⊢ D : R

Γ1, x : S ∥ Γ2, y : S ⊢ ◦L ∥ D : R

Γ1,Γ2 ⊢ (νxy)(◦L ∥ D) : R

such that D is in tree canonical form. That Γ1, x : S ⊢ ◦L : ◦ follows by the definition
of tree canonical forms, since x ∈ fv(L).

By the IH, Γ2, y : S ⊢ D : R in GV.
Thus, we can write:

Γ1, x : S ⊢ ◦L : ◦ Γ2, y : S ⊢ D : R

Γ1,Γ2, ⟨x, y⟩ : S♯ ⊢ ◦L ∥ D : R

Γ1,Γ2 ⊢ (νxy)(◦L ∥ D) : R

as required.
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Appendix C. Omitted Proofs for section 5: Relation between HGV and CP

C.1. Full definition of HGV∗.
Syntax.

Terms L,M,N ::= V | let x = M in N | V W
| let () = V in M | let (x, y) = V in M
| absurd V | case V {inl x 7→ M ; inr y 7→ N}

Values V ,W ::= x | K | λx.M | () | (V,W ) | inl V | inr V
Evaluation contexts E ::= □ | let x = E in M
Thread contexts F ::= ϕ E

Typing rules for values Γ ⊢ V : T

TV*-Var

x : T ⊢ x : T

TV*-Const

· ⊢ K : T

TV*-Lam
Γ, x : T ⊢ M : U

Γ ⊢ λx.M : T ⊸ U

TV*-Unit

· ⊢ () : 1

TV*-Pair
Γ ⊢ V : T ∆ ⊢ W : U

Γ,∆ ⊢ (V,W ) : T × U

TV*-Absurd
Γ ⊢ V : 0

Γ ⊢ absurd V : T

TV*-Inl
Γ ⊢ V : T

Γ ⊢ inl V : T + U

TV*-Inr
Γ ⊢ V : U

Γ ⊢ inr V : T + U

Typing rules for terms Γ ⊢ M : T

TM*-App
Γ ⊢ V : T ⊸ U ∆ ⊢ W : T

Γ,∆ ⊢ V W : U

TM*-Let
Γ ⊢ M : T ∆, x : T ⊢ N : U

Γ,∆ ⊢ let x = M in N : U

TM*-LetUnit
Γ ⊢ V : 1 ∆ ⊢ M : T

Γ,∆ ⊢ let () = V in M : T

TM*-LetPair
Γ ⊢ V : T × T ′ ∆, x : T , y : T ′ ⊢ M : U

Γ,∆ ⊢ let (x, y) = V in M : U

TM*-CaseSum
Γ ⊢ V : T + T ′

∆, x : T ⊢ M : U ∆, y : T ′ ⊢ N : U

Γ,∆ ⊢ case V {inl x 7→ M ; inr y 7→ N} : U

The typing of constants is the same as for HGV.

Operational Semantics. The operational semantics for HGV∗ is the same as for HGV
(Figure 4), with the addition of the following explicit rule for let:

E-Let let x = V in M −→ M{V/x}
Similarly, HGV∗ directly inherits HGV’s runtime typing.

C.2. Translating HGV∗ to HCP. The translation is guaranteed to have only internal
(i.e., α or β) transitions and transitions on the dedicated output channel. More specifically:

Lemma C.1.

• If JCKcr
ℓ−→, then ℓ ∈ {α, β} or ℓ = ℓr.

• If JMKmr
ℓ−→ and M is a non-value, then ℓ ∈ {α, β}.

• If V is a value, then JV Kmr
ℓr−→.
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• If JV Kvr
ℓ−→ then ℓ ∈ {α, β}.

Proof. By induction on the structure of M .

We do not use the above lemma directly, but it is a useful sanity check.

Definition C.2 (process contexts). A process context P [ ] is a process with a single hole,
denoted □. We extend the typing rules, LTS and typing rules to process contexts. We
write P [ ] ⊢ G/H to mean that P [ ] is typed under hyper-environment H expecting a process
typed under G, i.e., if Q ⊢ G then P [Q] ⊢ H.

Definition C.3. A process P is blocked on x if it only has transitions P
ℓx−→.

Lemma C.4. If P [ ] is a process context with z, w,w′ ̸∈ cn(P [ ]), and Q is a process blocked
on w′, then (νww′)(P [z↔w] ∥ Q) ≈α P [Q{z/w′}].

Proof. By induction on the process context P [ ].

Case (□).

(νww′)(z↔w ∥ Q)
α−→ Q{z/w′}
∼ Q{z/w′} (by reflexivity)

Case ((νxy)P [ ]).

(νww′)((νxy)(P [z↔w]) ∥ Q)
∼ (νxy)(νww′)(P [z↔w] ∥ Q) (by Lemma 5.6)

≈α (νxy)(P [Q{z/w′}]) (by Lemma 5.6 and IH)

Case (P [ ] ∥ R).

(νww′)(P [z↔w] ∥ R ∥ Q)
∼ (νww′)(P [z↔w] ∥ Q) ∥ R (by Lemma 5.6)

≈α P [Q{z/w′}] ∥ R (by Lemma 5.6 and IH)

Case (R ∥ P [ ]).

(νww′)(R ∥ P [z↔w] ∥ Q)
∼ R ∥ (νww′)(P [z↔w] ∥ Q) (by Lemma 5.6)

≈α R ∥ P [Q{z/w′}] (by Lemma 5.6 and IH)

Case (π.P [ ]). Since Q is blocked on w′, the process (νww′)(π.P [z↔w] ∥ Q) has only one
transition,

(νww′)(π.P [z↔w] ∥ Q)
π−→ (νww′)(P [z↔w] ∥ Q).

The process π.P [Q{z/w′}] has only one transition, also with label π,

π.P [Q{z/w′}] π−→ P [Q{z/w′}].

The resulting processes are bisimilar by the induction hypothesis.

Case (x ▷ {inl : P [ ]; inr : P ′[ ]}). Since Q is blocked on w′, the process
(νww′)(x ▷ {inl : P [z↔w]; inr : P ′[z↔w]} ∥ Q) has only two transitions,

(νww′)(x ▷ {inl : P [z↔w]; inr : P ′[z↔w]} ∥ Q)
x▷inl−→ (νww′)(P [z↔w] ∥ Q)
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and

(νww′)(x ▷ {inl : P [z↔w]; inr : P ′[z↔w]} ∥ Q)
x▷inr−→ (νww′)(P ′[z↔w] ∥ Q).

The process x ▷ {inl : P [Q{z/w′}]; inr : P ′[Q{z/w′}]} has only two transitions, also with
labels x ▷ inl and x ▷ inr,

x ▷ {inl : P [Q{z/w′}]; inr : P ′[Q{z/w′}]} x▷inl−→ P [Q{z/w′}]

and

x ▷ {inl : P [Q{z/w′}]; inr : P ′[Q{z/w′}]} x▷inr−→ P ′[Q{z/w′}].

The resulting processes are bisimilar by the induction hypothesis.

Lemma 5.10 (Substitution). If M is a well-typed term with w ∈ fv(M), and V is a
well-typed value, then (νww′)(JMKmr ∥ JV Kvw′) ≈α JM{V/w}Kmr .

Proof. Immediately from Lemma C.4.

Lemma 5.9 (Type Preservation).

(1) If Γ ⊢ V : T , then JV Kvr ⊢ TΓU, r : TTU⊥.
(2) If Γ ⊢ M : T , then JMKmr ⊢ TΓU, r : 1⊗ TTU⊥.
(3) If G ∥ Γ ⊢ C : T , where Γ is the type environment for the main thread in C, then

JCKcr ⊢ TGU ∥ TΓU, r : TTU⊥.

Proof. Part 1.

• Case (x). We have x : T ⊢ x : T and JxKvr = r↔x. We can derive:

x↔r ⊢ x : TAU, r : TAU⊥

• Case (K). We have one case for each communication primitive.
– Subcase link. We have link : S × S ⊸ end!, where

TS × S⊥ ⊸ end!U⊥ = VS × S⊥ ⊸ end!W

= VS × S⊥W⊥ ` (1⊗ Vend!W)

= (VSW⊥ ` VSW)` (1⊗⊥)

and JlinkKvr = r(y).y(x).r̄.r().x↔y. We can derive:

x↔y ⊢ x : VSW⊥, y : VSW
r().x↔y ⊢ x : VSW⊥, y : VSW, r : ⊥

r̄.r().x↔y ⊢ x : VSW⊥, y : VSW, r : 1⊗⊥
y(x).r̄.r().x↔y ⊢ y : VSW⊥ ` VSW, r : 1⊗⊥

r(y).y(x).r̄.r().x↔y ⊢ r : (VSW⊥ ` VSW)` (1⊗⊥)
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– Subcase fork: We have fork : (S ⊸ end!)⊸ S where

T(S ⊸ end!)⊸ S⊥U⊥ = V(S ⊸ end!)⊸ S⊥W

= VS ⊸ end!W⊥ ` (1⊗ VS⊥W)

= (VSW⊥ ` (1⊗ Vend!W))⊥ ` (1⊗ TSU)

= (TSU⊥ ⊗ (⊥` 1))` (1⊗ TSU)

and JforkKvr = (νyy′)(r(x).y⟨x⟩.r̄.r↔y ∥ y′(x).x⟨y′⟩.x.x[].0). We derive:

r↔y ⊢ y : TSU⊥
, r : TSU

r̄.r↔y ⊢ y : TSU⊥
, r : 1 ⊗ TSU

y⟨x⟩.r̄.r↔y ⊢ y : (TSU ` (1 ⊗ ⊥)) ⊗ TSU⊥
, x : (TSU⊥ ⊗ (⊥ ` 1)), r : (1 ⊗ TSU)

(r(x).y⟨x⟩.r̄.r↔y) ⊢ y : (TSU ` (1 ⊗ ⊥)) ⊗ TSU⊥
, r : (TSU⊥ ⊗ (⊥ ` 1)) ` (1 ⊗ TSU) D

(r(x).y⟨x⟩.r̄.r↔y ∥ y
′
(x).x⟨y′⟩.x.x[].0) ⊢ y : T , r : (TSU⊥ ⊗ (⊥ ` 1)) ` (1 ⊗ TSU) ∥ y

′
: T

⊥

(νyy
′
)(r(x).y⟨x⟩.r̄.r↔y ∥ y

′
(x).x⟨y′⟩.x.x[].0) ⊢ r : (TSU⊥ ⊗ (⊥ ` 1)) ` (1 ⊗ TSU)

where

T = (TSU` (1⊗⊥))⊗ TSU⊥

T⊥ = (TSU⊥ ⊗ (⊥` 1))` TSU

and D is the derivation

0 ⊢ ∅
x[].0 ⊢ x : 1

x.x[].0 ⊢ x : (⊥ ` 1)

x⟨y′⟩.x.x[].0 ⊢ x : (TSU⊥ ⊗ (⊥ ` 1)), y
′
: TSU

y
′
(x).x⟨y′⟩.x.x[].0 ⊢ y

′
: (TSU⊥ ⊗ (⊥ ` 1)) ` TSU

– Subcase send: We have send : T × !T.S ⊸ S where

TT × !T.S ⊸ SU⊥ = VT × !T.S ⊸ SW

= VT × !T.SW⊥ ` (1⊗ VSW)

= (VTW⊥ ` T!T.SU)` (1⊗ VSW)

= (VTW⊥ ` (VTW⊗ TSU))` (1⊗ TSU⊥)

and JsendKvr = r(y).y(x).y⟨x⟩.r̄.r↔y. We derive:

r↔y ⊢ y : TSU, r : TSU⊥

r̄.r↔y ⊢ y : TSU, r : (1⊗ TSU⊥)
y⟨x⟩.r̄.r↔y ⊢ x : VTW⊥, y : (VTW⊗ TSU), r : (1⊗ TSU⊥)

y(x).y⟨x⟩.r̄.r↔y ⊢ y : (VTW⊥ ` (VTW⊗ TSU)), r : (1⊗ TSU⊥)
r(y).y(x).y⟨x⟩.r̄.r↔y ⊢ r : (VTW⊥ ` (VTW⊗ TSU))` (1⊗ TSU⊥)

– Subcase recv: We have recv : ?T.S ⊸ T × S where

T?T.S ⊸ T × SU⊥ = V?T.S ⊸ T × SW

= V?T.SW⊥ ` (1⊗ VT × SW)

= (VTW⊥ ` VSW⊥)` (1⊗ (VTW⊗ VSW))
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and JrecvKvr = r(x).x(y).r̄.r⟨y⟩.r↔x. We derive:

r↔x ⊢ x : VSW⊥, r : VSW
r⟨y⟩.r↔x ⊢ y : VTW⊥, x : VSW⊥, r : VTW⊗ VSW

r̄.r⟨y⟩.r↔x ⊢ y : VTW⊥, x : VSW⊥, r : (1⊗ (VTW⊗ VSW))
x(y).r̄.r⟨y⟩.r↔x ⊢ x : (VTW⊥ ` VSW⊥), r : (1⊗ (VTW⊗ VSW))

r(x).x(y).r̄.r⟨y⟩.r↔x ⊢ r : (VTW⊥ ` VSW⊥)` (1⊗ (VTW⊗ VSW))

– Subcase wait: We have wait : end? ⊸ 1 where

Tend? ⊸ 1U⊥ = Vend? ⊸ 1W

= Vend?W⊥ ` (1⊗ V1W)
= ⊥` (1⊗ 1)

and JwaitKvr = r(x).x().r̄.r[].0. We derive

0 ⊢ ∅
r[].0 ⊢ r : 1

r̄.r[].0 ⊢ r : 1⊗ 1

x().r̄.r[].0 ⊢ x : ⊥, r : 1⊗ 1

r(x).x().r̄.r[].0 ⊢ r : ⊥` (1⊗ 1)

• Case (λx.M). We assume JMKmr : TΓU, x : TTU, r : 1⊗ TUU⊥ and derive

JMKmr ⊢ TΓU, x : TTU, r : 1⊗ VUW
r(x).JMKmr ⊢ TΓU, r : TTU` (1⊗ VUW)

• Case (()). We derive:

0 ⊢ ∅
x[].0 ⊢ x : 1

• Case (inl W ). We assume JW Kvr : TΓU, r : TTU⊥ and derive

JW Kvr ⊢ TΓU, r : TTU⊥

r ◁ inl.JW Kvr ⊢ TΓU, r : VTW⊕ VUW

• Case ((V,W )). We assume JV Kvx : TΓU, x : TTU⊥, JW Kvr : T∆U, r : TUU⊥, and derive

JV Kvx ⊢ TΓU, x : VTW JW Kvr ⊢ T∆U, r : VUW
JV Kvx ∥ JW Kvr ⊢ TΓU, x : VTW ∥ T∆U, r : VUW

r[x].(JV Kvx ∥ JW Kvr) ⊢ TΓU,T∆U, r : VTW⊗ VUW

Part 2.
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• Case (V W ). We assume JV Kvy′ : TΓU, y
′ : VTW⊥ ` (1⊗ VUW) and JW Kvx′ : T∆U, x′ : VTW

and derive

r↔y ⊢ y : VTW ⊗ (⊥ ` VUW⊥
), r : 1 ⊗ VUW

y⟨x⟩.r↔y ⊢ x : VTW⊥
, y : VTW ⊗ (⊥ ` VUW⊥

), r : 1 ⊗ VUW D
y⟨x⟩.r↔y ∥ JV Kv

y′ ∥ JW Kv
x′ ⊢ x : VTW⊥

, y : VTW ⊗ (⊥ ` VUW⊥
), r : 1 ⊗ VUW ∥ TΓU, y′

: VTW⊥ ` (1 ⊗ VUW) ∥ T∆U, x′
: VTW

(νyy
′
)(y⟨x⟩.r↔y ∥ JV Kv

y′ ∥ JW Kv
x′ ) ⊢ x : VTW⊥

, r : 1 ⊗ VUW ∥ TΓU, T∆U, x′
: VTW

(νxx
′
)(νyy

′
)(y⟨x⟩.r↔y ∥ JV Kv

y′ ∥ JW Kv
x′ ) ⊢ TΓU, T∆U, r : 1 ⊗ VUW

where D is the derivation

JV Kvy′ ⊢ TΓU, y′ : VTW⊥ ` (1⊗ VUW) JW Kvx′ ⊢ T∆U, x′ : VTW

JV Kvy′ ∥ JW Kvx′ ⊢ TΓU, y′ : VTW⊥ ` (1⊗ VUW) ∥ T∆U, x′ : VTW
• Case (let (x, y) = V in M). We assume JV Kvy′ : TΓU, y

′ : VTW⊗ VT ′W and

JMKmr : T∆U, x : VTW⊥, y : VT ′W⊥, r : 1⊗ TUU⊥ and derive

JMKmr ⊢ T∆U, x : VTW⊥, y : VT ′W⊥, r : 1⊗ TUU⊥

y(x).JMKmr ⊢ T∆U, y : VTW⊥ ` VT ′W⊥, r : 1⊗ TUU⊥ JV Kvy′ ⊢ TΓU, y′ : VTW⊗ VT ′W

y(x).JMKmr ∥ JV Kvy′ ⊢ T∆U, y : VTW⊥ ` VT ′W⊥, r : 1⊗ TUU⊥ ∥ TΓU, y′ : VTW⊗ VT ′W

(νyy′)(y(x).JMKmr ∥ JV Kvy′) ⊢ TΓU, T∆U, r : 1⊗ TUU⊥

• Case (absurd V ). We assume JV Kvx′ : TΓU, x′ : 0, and derive:

x ▷ {} ⊢ r : 1⊗ TTU⊥, x : ⊤ JV Kvx′ ⊢ TΓU, x′ : 0
x ▷ {} ∥ JV Kvx′ ⊢ r : 1⊗ TTU⊥, x : ⊤ ∥ TΓU, x′ : 0

(νxx′)(x ▷ {} ∥ JV Kvx′) ⊢ TΓU, r : 1⊗ TTU⊥

• Case (let x = M in N). We assume JMKmx′ : TΓU, x′ : 1⊗ VTW and

JNKmr : T∆U, x : VTW⊥, r : VUW and derive

JNKmr ⊢ T∆U, x : VTW⊥, r : VUW
x.JNKmr ⊢ T∆U, x : ⊥` VTW⊥, r : VUW JMKmx′ ⊢ TΓU, x′ : 1⊗ VTW
x.JNKmr ∥ JMKmx′ ⊢ T∆U, x : ⊥` VTW⊥, r : VUW ∥ TΓU, x′ : 1⊗ VTW

(νxx′)(x.JNKmr ∥ JMKmx′) ⊢ TΓU, T∆U, r : VUW

• Case (V ). We assume JV Kvr : TΓU, r : VTW and derive

JV Kvr ⊢ TΓU, r : VTW
r̄.JV Kvr ⊢ TΓU, r : 1⊗ VTW

Part 3. The cases are all by immediate induction.

Lemma C.5. Let F be an HGV∗ evaluation context and r a result endpoint. Then there
exists a process context JF Kfr and a result endpoint v = hr(F , r) for the hole such that for all
M we have that JF [M ]Kcr = JF Kfr[JMKmv ].

Proof. By induction on the structure of F .

In the above lemma, if F is the empty context then v = r. Otherwise v is a variable
bound by the process context JF Kfr.

Lemma C.6 (Operational Correspondence, Terms). If M is a well-typed term:
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(1) If M −→M M ′, then there exists a P such that JMKmr
β+

=⇒α P and P ≈α JM ′Kmr ; and
(2) if JMKmr

β−→ P , then there exists an M ′ and a P ′ such that M −→M M ′ and P
β∗
=⇒α P ′

and P ′ ≈α JM ′Kmr .

Proof.

(1) By induction on the reduction M −→M M ′.

Case (E-Lam).

(λx.M) V M{V/x}

(νxx′)(νyy′)(y⟨x⟩.r↔y ∥ y′(x).JMKmy′ ∥ JV Kvx′)

(νxx′)(νyy′)(r↔y ∥ JMKmy′ ∥ JV Kvx′)

(νxx′)(JMKmr ∥ JV Kvx′) JM{V/x}Kmr

−→M

J·Kmr

J·Kmrβ−→ α−→

α−→
≈α (by Lemma 5.10)

Case (E-Unit).

let () = () in M M

(νxx′)(x().JMKmr ∥ x′[].0)

JMKr ∥ 0 JMKmr

−→M

J·Kr

J·Kr

β−→
∼

Case (E-Pair).

let (x, y) = (V,W ) in M M{V/x}{W/y}

(νyy′)(y(x).JMKmr ∥ y′[x′].(JV Kvx′ ∥ JW Kvy′))

(νyy′)(νxx′)(JMKr ∥ JV Kvx′ ∥ JW Kvy′) JM{V/x}{W/y}Kmr

−→M

J·Kr

J·Kr

β−→
≈α (by Lemma 5.10)

Case (E-Inl).

case inl V {inl x 7→ M ; inr y 7→ N} M{V/x}

(νxx′)(x ▷ {inl : JMKmr ; inr : JN{x/y}Kmr } ∥ x′ ◁ inl.JV Kvx′)

(νxx′)(JMKr ∥ JV Kvx′) JM{V/x}Kmr

−→M

J·Kr

J·Kr

β−→
≈α (by Lemma 5.10)

Case (E-Inr). As E-Inl.
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Case (E-Let).

let x = V in M M{V/x}

(νxx′)(x.JMKmr ∥ x̄′.JV Kvx′)

(νxx′)(JMKr ∥ JV Kvx′) JM{V/x}Kmr

−→M

J·Kr

J·Kr

β−→ β−→
≈α (by Lemma 5.10)

Case (E-Lift). The induction hypothesis yields the reasoning steps depicted by the
first diagram, which we use, together with HGV’s E-Lift and HCP’s Str-Res and
Str-Par2, to justify the second diagram:

M M ′

JMKmr JM ′Kmr

−→M

J·Kmr J·Kmr
β+

=⇒α≈α

let x = E[M ] in N let x = E[M ′] in N

(νxx′)(x.JNKmr ∥ JMKmx′) (νxx′)(x.JNKmr ∥ JM ′Kmx′)

−→M

J·Kr J·Kr
β+

=⇒α≈α

(2) By induction on M .

Case (U V ). There are two well-typed cases for U : either U = z for some z; or
U = λx.M for some x and M . If U = z, we have

(νxx′)(νyy′)(y⟨x⟩.r↔y ∥ z↔y′ ∥ JV Kvx′) ̸ β−→, which contradicts our premise. Therefore,
U = λx.M . The only possible β-transition is the one in the following diagram:

(λx.M) V M{V/x}

(νxx′)(νyy′)(y⟨x⟩.r↔y ∥ y′(x).JMKmy′ ∥ JV Kvx′)

(νxx′)(νyy′)(r↔y ∥ JMKmy′ ∥ JV Kvx′)

(νxx′)(JMKmr ∥ JV Kvx′) JM{V/x}Kmr

−→M

J·Kmr

J·Kmrβ−→ α−→

α−→
≈α (by Lemma 5.10)

Hence, M ′ = M{V/x}.

Case (let () = U in M). There are two well-typed cases for U : either U = z for some

z; or U = (). If U = z, we have (νxx′)(x().JMKmr ∥ x′↔z) ̸ β−→, which contradicts our
premise. Therefore, U = (). The only possible β-transition is the one in the following
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diagram:

let () = () in M M

(νxx′)(x().JMKmr ∥ x′[].0)

JMKr ∥ 0 JMKmr

−→M

J·Kr

J·Kr

β−→
∼

Hence, M ′ = M .

Case (let (x, y) = U in M). There are two well-typed cases for U : either U = z for

some z, or U = (V,W ). If U = z, we have (νyy′)(y(x).JMKmr ∥ y′↔z) ̸ β−→, which
contradicts our premise. Therefore, U = (V,W ). The only possible β-transition is the
one in the following diagram:

let (x, y) = (V,W ) in M M{V/x}{W/y}

(νyy′)(y(x).JMKmr ∥ y′[x′].(JV Kvx′ ∥ JW Kvy′))

(νyy′)(νxx′)(JMKr ∥ JV Kvx′ ∥ JW Kvy′) JM{V/x}{W/y}Kmr

−→M

J·Kr

J·Kr

β−→
≈α (by Lemma 5.10)

Case (case U {inl x 7→ M ; inr x 7→ N}). There are two well-typed cases for U : either
U = z for some z; or U = inl V . If U = z, we have

(νxx′)(x ▷ {inl : JMKmr ; inr : JN{x/y}Kmr } ∥ x′↔z) ̸ β−→, which contradicts our premise.
Therefore, U = inl V . The only possible β-transition is the one in the following
diagram:

case inl V {inl x 7→ M ; inr y 7→ N} M{V/x}

(νxx′)(x ▷ {inl : JMKmr ; inr : JN{x/y}Kmr } ∥ x′ ◁ inl.JV Kvx′)

(νxx′)(JMKr ∥ JV Kvx′) JM{V/x}Kmr

−→M

J·Kr

J·Kr

β−→
≈α (by Lemma 5.10)

Case (absurd U). There is only one well-typed case for U : U = z for some z.

However, (νxx′)(x ▷ {} ∥ x′↔z) ̸ β−→, which contradicts our premise.

Case (let x = M in N). There are two possible cases: either M = V ; or JMKmx′
β−→ P

for some P . If M is a value, the only possible β-transition is the one in the following
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diagram:

let x = V in M M{V/x}

(νxx′)(x.JMKmr ∥ x̄′.JV Kvx′)

(νxx′)(JMKr ∥ JV Kvx′) JM{V/x}Kmr

−→M

J·Kr

J·Kr

β−→ β−→
≈α (by Lemma 5.10)

Otherwise, if JMKmx′
β−→ P for some P , the induction hypothesis gives us an M ′ such

that M −→M M ′ and P ≈ JM ′Kmr . We apply HGV’s E-Lift and HCP’s Str-Res and
Str-Par2.

Case (V ). We have r̄.JV Kvr ̸ β−→, which contradicts our premise.

Theorem 5.11 (Operational Correspondence). Suppose C is a well-typed configuration.

(1) (Preservation of reductions) If C −→ C′, then there exists a P such that JCKcr
β+

=⇒α P
and P ≈α JC′Kcr; and

(2) (Reflection of transitions)

• if JCKcr
α−→ P , then P ≈α JCKcr; and

• if JCKcr
β−→ P , then there exists a C′ and a P ′ such that C −→ C′ and P

β∗
=⇒α P ′ and

P ′ ≈α JC′Kcr. Furthermore, C′ is unique up to structural congruence.

Proof.

(1) By induction on the reduction C −→ C′. We implicitly make use of Lemma C.5 throughout
the proof in order to recast the translation of a plugged evaluation context JF [M ]Kcr into
the plugging of the translated evaluation context with the translation of the plugged
term JF Kfr[JMKmv ] where v = hr(F, r).

Case (E-Reify-Fork).

F [fork V ] (νxx′)(F [x] ∥ ◦ V x′)

JF Kfr[(νzz′)(νyy′)


y⟨z⟩.v↔y ∥

(νxx′)

(
y′(w).x⟨w⟩.ȳ′.y′↔x ∥
x′(w).w⟨x′⟩.w.w[].0

)
∥

JV Kv
z′

]

JF Kfr[(νzz′)

(νxx′)

(
v̄.v↔x ∥
z⟨x′⟩.z.z[].0

)
∥

JV Kv
z′

] (νxx′)


JF Kfr[v̄.v↔x] ∥

(νyy′)

(νww′)(νzz′)

z⟨w⟩.y↔z ∥
JV Kv

z′ ∥
w′↔x′

 ∥

y′.y′[].0




−→

J·Kcr

J·Kcr

β−→ β−→ α−→

≈α

The endpoint v = hr(F, r). The final two terms are bisimilar by Lemma C.4.
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Case (E-Reify-Link).

◦ E[link (x, y)] (νzz′)(x
z↔y ∥ ◦ E[z′])

(νaa′)(JEKmr [(νzz′)(νww′)(w⟨z⟩.v↔w ∥ w′(t).t(s).w̄′.w′().s↔t ∥ z′⟨x⟩.y↔z′ ∥ ā′.a′[].0))]

(νaa′)(JEKmr [v̄.v().x↔y] ∥ ā′.a′[].0) (νzz′)(z̄.z().x↔y ∥ (νaa′)(JE[v↔z′]Kma ∥ ā′.a′[].0))

−→

J·Kcr

β−→ β−→ α−→ α−→ J·Kcr

≈α

The endpoint v = hr(F, r).

Case (E-Comm-Link).

(νzz′)(νxx′)(x
z↔y ∥ ◦ z′ ∥ ϕ M) ϕ (M{y/x′})

(νzz′)(νxx′)(z̄.z().x↔y ∥ (νww′)(z′↔w ∥ w′.w′[].0) ∥ Jϕ MKcr)

Jϕ MKcr{y/x′} Jϕ M{y/x′}Kcr

−→

J·Kcr

J·Kcr

α−→,
β−→×3

≈α

Case (E-Comm-Send).

(νxx′)(F [send (V, x)] ∥ F ′[recv x′]) (νxx′)(F [x] ∥ F ′[(V, x′)])

(νxx′)

(
JF Kfr[(νyy′)(νzz′)(z⟨y⟩.u↔z ∥ z′(t).t(s).t⟨s⟩.z̄′.z′↔t ∥ y′[w].(JV Kvw ∥ x↔y′))] ∥
JF ′Kcr[(νyy′)(νzz′)(z⟨y⟩.v↔z ∥ z′(s).s(t).z̄′.z′⟨t⟩.z′↔s ∥ x′↔y′)]

)

(νxx′)(JF Kfr[(x⟨w⟩.ū.x↔u ∥ JV Kvw)] ∥ JF ′Kcr[x′(t).v̄.v⟨t⟩.v↔x′])

(νxx′)(JF Kfr[ū.x↔u] ∥ JF ′Kcr[v̄.v[w].(JV Kvw ∥ v↔x′)])

(νxx′)(JF Kfr[(ū.u↔x ∥ JV Kvw)] ∥ JF ′Kcr[v̄.v⟨w⟩.v↔x′])

−→

J·Kcr

β−→×5,
α−→×2

J·Kcr

β

≈α

The endpoint u = hr(F, r) and the endpoint v = hr(F ′, r).

Case (E-Comm-Close).

(νxx)(◦ x ∥ F [wait x′]) F [()]

(νxx)

(
(νyy′)(ȳ.x↔y ∥ y′.y′[].0) ∥
JF Kfr[(νzz′)(νww′)(w⟨z⟩.v↔w ∥ w′(s).s().w̄′.w′[].0 ∥ x′↔z′)]

)

JF Kfr[v̄.v[].0] JF Kfr[v̄.v[].0]

−→

J·Kcr

J·Kcr

β−→×3,
α−→×3,

β−→
=

The endpoint v = hr(F, r).

Case (E-Res).

(νxy)C (νxy)C′

(νxy)JCKcr (νxy)JC′Kcr

−→

J·Kcr J·Kcr
β+

=⇒α≈α(IH)
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Case (E-Par).

C ∥ D C′ ∥ D

JCKcr ∥ JDKcr

JC′Kcr ∥ JDKcr JC′ ∥ DKcr

−→

J·Kcr

J·Kcr

β+

=⇒α≈α(IH)

=

Case (E-Equiv).

C C′ D′ E

JCKcr

JC′Kcr

JD′Kcr JEKcr

≡

J·Kcr

−→ ≡

J·Kcr≈α(Lemma 5.6)

β+

=⇒α≈α(IH)
≈α(Lemma 5.6)

Case (E-Lift-M). The cases for ϕ = • and ϕ = ◦ are similar; here we show the case for
•.

•M •N

JMKmr JNKmr

−→

J·Kcr J·Kcr
β+

=⇒α≈α(Lemma C.6)

(2) Reflection of α-transitions is trivial as α-transition is included in α-bisimulation. Re-
flection of β-transitions is by induction on C; as with Lemma C.6, the only well-typed
β-transitions that can occur for each case are those specified in the simulation case.
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