
Partial Evaluation, Whole-Program Compilation
Or, We Have a Compiler at Home

CHRIS FALLIN, Fastly, USA
MAXWELL BERNSTEIN, Recurse Center, USA

There is a tension in dynamic language runtime design between speed and correctness: state-of-the-art JIT
compilation, the result of enormous industrial investment and significant research, achieves heroic speedups
at the cost of complexity that can result in serious correctness bugs. Much of this complexity comes from
the existence of multiple tiers and the need to maintain correspondence between these separate definitions
of the language’s semantics; also, from the indirect nature of the semantics implicitly encoded in a compiler
backend. One way to address this complexity is to automatically derive, as much as possible, the compiled code
from a single source-of-truth; for example, the interpreter tier. In this work, we introduce a partial evaluator
that can derive compiled code “for free” by specializing an interpreter with its bytecode. This transform
operates on the interpreter body at a basic-block IR level and is applicable to almost unmodified existing
interpreters in systems languages such as C or C++. We show the effectiveness of this new tool by applying it
to the interpreter tier of an existing industrial JavaScript engine, SpiderMonkey, yielding 2.17× speedups, and
the PUC-Rio Lua interpreter, yielding 1.84× speedups with only three hours’ effort. Finally, we outline an
approach to carry this work further, deriving more of the capabilities of a JIT backend from first principles
while retaining semantics-preserving correctness.

1 Introduction
Most dynamic language runtimes start as interpreters, for their numerous initial advantages:
interpreters are easier to develop and extend than compilation-based alternatives; they are likewise
easier to debug; and they are usually more portable, relying less on platform- or ISA-specific
details to generate and execute code. Over time, dynamic language runtimes tend to build run-
time type profiling and code specialization features, and going further, some develop just-in-time
(JIT) compiler backends to remove interpretation overhead. A JIT is effective but not free: it is a
second implementation of language semantics that may diverge in hard-to-debug ways from the
corresponding interpreter, it generates specialized code that may depend on invariants that can be
invalidated at run-time, and this generated code is ephemeral and thus harder to audit.

Security-conscious platforms often eschew run-time code generation for this reason. For example,
iOS does not permit it outside the built-in web engine (and turns it off in this engine too in lockdown
mode), and the Edge browser has a secure mode that disables JIT [33]. The three major JavaScript
engines (V8, SpiderMonkey and JSC) regularly have CVEs resulting from subtle JIT bugs (e.g. [2] as
one recent example in V8). Even coarse-grained sandboxing, such as V8’s “ubercage” [23], does
not protect against correctness bugs that can violate isolation when multiple server-side tenants
share one VM via isolates [9], or when multiple requests with different users’ data are processed
by one engine. Separately, the continued prevalence of JS engines’ security bugs indicates that
full language-semantics correctness is difficult to maintain; and, even if a bug does not yield a
sandbox escape, it can be catastrophic to individual applications when miscompilations alter the
application’s logic.
We thus see a tension between the ever-increasing need for efficient execution of dynamic

languages – manifested in the enormous engineering investments in JIT compilers and language
runtime optimization – and the need for security and correctness as these languages are used to
implement the underpinnings of modern infrastructure.

Authors’ Contact Information: Chris Fallin, chris@cfallin.org, Fastly, San Francisco, California, USA; Maxwell Bernstein,
acm@bernsteinbear.com, Recurse Center, Boston, Massachusetts, USA.

ar
X

iv
:2

41
1.

10
55

9v
1

 [
cs

.P
L

]
 1

5
N

ov
 2

02
4

HTTPS://ORCID.ORG/0000-0002-6733-1803
HTTPS://ORCID.ORG/0000-0003-3130-7059
https://orcid.org/0000-0002-6733-1803
https://orcid.org/0000-0003-3130-7059

2 Chris Fallin and Maxwell Bernstein

In this paper, we explore a technique – partial evaluation – to derive a language runtime’s
compiler backend automatically from an interpreter that already exists. This is an old technique,
going back to Futamura [18, 19], with numerous modern implementations [7, 10, 29, 32, 44]. We
observe, however, that most extant tools today require the interpreter to be developed for the purpose
– in other words, written in terms of a framework (as with Graal/Truffle [44]), or in terms of a
semantic-definition DSL [7, 29], or in a special restricted language [10]. Our contribution is to
design a partial-evaluation transform that works on a mostly unmodified interpreter body, at the
IR level: it transforms an arbitrary control-flow graph of basic blocks, in SSA form, unrolling an
interpreter loop as a side-effect that falls out of a general “context specialization” mechanism (§3).
Our tool is an open-source, industrial-strength compiler that we call weval. In its initial form,
it processes interpreters compiled to WebAssembly [24], as a portable and easily transformable
IR that many compiler toolchains can target, but without loss of generality it should work on
any optimizing compiler IR that uses basic blocks, such as LLVM [27], with some fairly minimal
requirements (§3.6).
This approach provides several benefits. First, it allows easy, rapid provisioning of a compiler-

based backend for a language runtime, as we show in our case study on Lua (§7) where we
managed to achieve a speedup of 1.84× with three hours’ effort. There exists a long tail of language
implementations that have only interpreters and that could benefit from this technique. Even
established language runtimes can benefit on new platforms not supported by existing their JIT
backends: for example, the SpiderMonkey JS engine (§6) has no JIT tiers when compiled to run on
a server-side Wasm platform (i.e. sandboxed within a Wasm module), whereas weval allows us to
attain a 2.17× speedup on average “for free” – deriving the result from exactly the same interpreter
source. Second, it provides a realistic pathway toward single-source-of-truth definitions of language
semantics. We describe a plausible future path for carrying this approach forward to include profile
feedback in a semantics-preserving way, showing how one might derive a competitive JIT from
language semantics (in an interpreter) from first principles.

2 Futamura Projections and Partial Evaluation
In this work, we observe that we can automatically produce compiled code from an interpreter body
and its interpreted program input. In order to understand this further, we first need to understand
how to automatically produce compiled code from an interpreter: that is the Futamura projection.

2.1 The Futamura Projection
Futamura [18, 19] introduced the concept of partial evaluation in the context of compilation: by
partially evaluating an interpreter with its interpreted program, we obtain a compiled program.
Consider an interpreted program execution as a function invocation, where the interpreter re-
ceives two inputs, the interpreted program and the input to that program: Interp(Prog, Input). The
key idea of the first Futamura projection is to substitute in a constant 𝐶 for the Prog argument,
yielding a new function that we can consider a compiled form of the user program. Then we
have Compiled(Input) = SubstProg=𝐶 (Interp(Prog, Input)). What we have described so far is the first
Futamura projection: it is the partial evaluation of the interpreter with an interpreted program,
yielding a compiled program. Futamura also defines the second and third projections: the second
projection enhances compilation speed, and the third produces a compiler-compiler tool, but both
are less tractable than the first projection, and we will not describe them further.

2.2 Optimizing Compilation: Interpreted Program to Specialized Code
One could achieve a basic kind of compilation by joining an interpreter with a snapshot of its input
(bytecode), perhaps by linking the interpreter with an additional data section and some startup code.

Partial Evaluation, Whole-Program Compilation 3

This fits the definition of a Futamura projection in a trivial sense. However, practically speaking,
this “compilation” lacks many of the properties one usually expects from compiled code. Mainly
this relates to performance: the combined module retains the performance characteristics of the
interpreter, because the interpreter body is unchanged. Let us now state a definition that sets a
minimum bar for a compilation with the desired performance:
Definition. A partial evaluator performs a bytecode-erased compilation if the resulting

specialized program does not load data from the bytecode stream; hence it should have program
points that statically correspond to the interpreted program rather than the interpreter, and should
no longer dynamically dispatch behavior based on the original bytecode.1

1 void interpret(bytecode_t* pc,

2 Value* stack) {

3 while (true) {

4 switch (*pc++) {

5 case OP_add:

6 Value v1 = *stack ++;

7 Value v2 = *stack ++;

8 *--stack = value_add(v1, v2);

9 break;

10 /* ... other opcodes ... */

11 }

12 }

13 }

Fig. 1. An sketch of an interpreter loop written in C.

That is, we consider the result a desirable
compilation if it replaces the interpreter’s con-
trol flow with the native control-flow graph of
the interpreted program. This is both itself a
speedup (in our observations, often 1.5-2x) and
a substrate for further optimizations: each in-
stance of an opcode becomes its own static code,
we can optimize it separately, and together with
the opcodes around it.

2.3 Optimizing
an Interpreter with its Input
The key question is: how can we practically
expand bytecode to specialized code by par-
tially evaluating an interpreter loop? As we
will see in the rest of this section, there are
various design points, requiring various com-
promises in the way that the interpreter is expressed.

1 void interpret_specialized_func0(

2 bytecode_t* _pc_unused ,

3 Value* stack) {

4 Value v1 = stack [0];

5 Value v2 = stack [1];

6 stack [1] = value_add(v1, v2);

7 return;

8 }

Fig. 2. Compiled code resulting from constant
propagation of interpret from Fig. 1 on one op-
code.

Above we introduced an algebraic analogy to par-
tial evaluation, namely, substituting a variable for a
constant value and simplifying (optimizing). What
happens if we apply the analogous compiler analy-
sis and transform, namely constant propagation and
folding?

Consider the body of the interpreter loop in Fig. 1.
If we take a function func0 of a single opcode, say
OP_add, and we take a constant initial stack pointer
offset, we might imagine taking the body of the in-
terpreter and producing code similar to Fig. 2.
This code results because constant propagation

can convert the fetch of the opcode to its constant
value OP_add. This in turn works because we are
processing a partial evaluator invocation in which the user has promised that this memory is
constant (“specialize this function when this pointer points to this data”). The specializer can then
branch-fold the switch to the one case actually taken due to the constant selector, and constant-fold
the offsets from stack.

1This concept is very similar to Jones-optimality [25], which specifies that a partial evaluator should “remove all computa-
tional overhead caused by interpretation.”

4 Chris Fallin and Maxwell Bernstein

Fig. 3. An illustration of constant propagation over an interpreter loop: with one iteration, we can deduce
constant values, but multiple iterations cause the analysis to degrade to “unknown” because all iterations are
considered together.

However, as soon as we advance to a program of two opcodes – before even considering control
flow within the interpreted program – we run into issues with constant propagation. In fact,
we glossed over the issue in the single-opcode example: how do we handle the interpreter loop
backedge? A classical iterative dataflow analysis, such as constant propagation, computes a Meet-
Over-All-Paths solution [4], meaning that it produces one analysis conclusion per static program
point, merging together all paths that could reach that point. At the top of the interpreter loop (one
program point), what is pc? When we merge all iterations together, we only reach the conclusion
that it is not constant, because we are analyzing all opcodes at once. The rest of the interpreter then
fails to specialize to the bytecode: pc is not constant, so neither is *pc, so we cannot branch-fold
the switch, so the result of specialization is only a copy of the original interpreter, with nothing
changed. This situation is illustrated in Fig. 3.

The heart of the issue is that in order to compile the bytecode to target code, we need to somehow
iterate over the bytecode operators and emit code for each one, and this iteration happens at
compile-time. A constant-folding pass that retains the original CFG, only substituting in constants
where known, will not lead to this output. Can we build an analysis that somehow knows how to
unroll arbitrary interpreter loops over the bytecode?
One possible approach is to unroll all loops by analyzing the interpreter along a trace: in other

words, discarding the Meet-Over-All-Paths principle. This approach is appealing in its simplicity.
However, it can result in unbounded work: thus, it must be limited by trace size or some other
metric, and it can have surprising worst-case cost.
A more targeted approach, taken by PyPy [10], is to detect hot loops that result from loops

in the interpreted program, and trace the interpreted execution of these loops, instantiating and
specializing the interpreter loop once for each opcode in the loop.

This approach resolves the above limits but has as a profile-driven approach, it requires execution
of the interpreted program before compilation can commence. In some settings, we may desire
fully ahead-of-time compilation, or we may not have adequate or representative test inputs for the
interpreted program (or may not be able to run it at all in the compiler’s execution environment, if it

Partial Evaluation, Whole-Program Compilation 5

has other dependencies). Additionally, it can suffer from brittle performance cliffs: if the control-flow
path during run-time diverges from that seen during compilation, execution must revert to the
interpreter (possibly ameliorated by attaching “side traces” over time). This behavior of “falling off
the trace” was a well-known failure mode in the TraceMonkey JavaScript JIT [20].

The downside of both of the above options is that, in attempting to specialize an interpreter loop
fully automatically, they rely on heuristics that can fail fairly easily. One alternative is to allow – or
indeed, require – the interpreter author to explicitly denote the interpreter loop and how it should be
specialized. The high-level idea would be to devolve control of the main interpretation loop to a
framework that the partial evaluator is somehow aware of. This framework would understand the
format of the interpreted program (e.g., bytecode or AST nodes), and would take care of dispatching
to implementations of opcode semantics provided by the interpreter author. In this way, the partial
evaluator could directly translate the bytecode or other interpreted program representation to
compiled form by copying over and concatenating the implementations of each opcode.
While this ought to work robustly, because the partial evaluator is co-designed and developed

with the interpreter framework, it has the major disadvantage that it requires the interpreter to be
written in a way specific to this tool. An existing interpreter is likely to be difficult to port to this
framework.

3 The weval Transform: User-Context-Controlled Constant Propagation
We have argued that to produce a bytecode-erased compilation – that is, to produce compiled code
that has a separate program point for each bytecode, turning the transitions in interpreter state into
true control-flow edges – we need to somehow unroll the interpreter loop during partial evaluation,
analyzing the loop body separately for each interpreted-program operator. Furthermore, we wish to
do this without rewriting the interpreter to conform to a framework that understands the structure
of the interpreted program. Rather, we want to support an existing interpreter, with minimal
modifications, using its own logic to “parse” the bytecode as we translate it opcode by opcode. In
this section, we will introduce a transform that does exactly this. We call this the weval transform,
short for “WebAssembly [partial] evaluator.”
The transform operates on a function body represented as a control-flow graph (CFG) of basic

blocks in static single assignment (SSA) form. Due to the problem-space that we built this tool to
address (see §6), we build and use a framework that allows for SSA CFG-based Wasm-to-Wasm
compilation. However, without loss of generality, this transform can apply to any IR that is a CFG
of basic blocks, such as LLVM [27] (§3.6). This transform is relatively small for its power, measuring
at 5KLoC of Rust.

3.1 Key Idea #1: User Context
Recall that we began our discussion of the Futamura projection by noting how constant propagation
addresses the problem fully in the single-opcode case, but fails as soon as more than one opcode
exists in the interpreted program (Fig. 3). Specifically, when the constant-propagation analysis
follows the interpreter backedge, the “next” value of the interpreter program counter conflicts with
the previous value, and we conclude that nothing is constant at all.

To address this, we allow the interpreter to selectively introduce context specialization via intrinsics
to separate the analysis of each interpreter loop iteration. The intrinsic invocation appears like
update_context(pc) at some point before the loop backedge, as shown in Fig. 4; when performing
an iterated dataflow analysis for constant propagation, this causes analysis to flow to successor
blocks in a new context. In other words, the set of program-point locations analyzed by iterated
dataflow analysis is dynamic and expandable. This will be illustrated by an example below in Fig. 6.

6 Chris Fallin and Maxwell Bernstein

This annotation is lightweight and minimal, yet it unlocks an entire specialization pipeline: it
drives code duplication exactly and only where needed to replicate the interpreter body according
to the overall schema of the interpreted bytecode, and the rest of the specialization falls out of this.
In other words, by avoiding the “meet-over-all-paths” trap that we described in §2.3, we achieve a
bytecode-erasing compilation that produces an output control-flow graph that follows the bytecode
rather than the interpreter.

1 void interpret(bytecode_t* pc) {

2 while (true) {

3 switch (*pc++) {

4 /* ... */

5 }

6 // Update analysis context:

7 // backedge reaches loop

8 // header in a new context ,

9 // maintaining constantness

10 // of pc.

11 update_context(pc);

12 }

13 }

Fig. 4. Annotations to context-specialize analysis
of an interpreter function.

Note that context may be nested: our actual intrin-
sics include push_context() and pop_context(),
allowing, e.g., value-specialization or manual loop
unrolling to occur inside of the main interpreter loop
unrolling.
Furthermore, note that this requires the context

value (pc here) to be a known constant at specializa-
tion time. This will be the case for bytecode-driven
control flow with a fixed CFG, but, e.g., an opcode
that computes an arbitrary bytecode destination
would not be workable. (What CFG should result in
the compiled code? Will there be an edge to every
block?) To support computed-gotos with a known
list of destinations (e.g., switches or exception han-
dlers), we allow for value specialization (§3.3).

Finally, note that this intrinsic is not load-bearing
for correctness: it splits constant-propagation con-
text, but the weval transform is sound regardless of

how many separate contexts are used to analyze duplicates of code. The worst that happens with
an arbitrarily wrong context is that specialization collapses back to “nothing is known” and the
result is the original interpreter body. Separately, we provide an intrinsic that asserts compile-time
constantness to help debug such performance issues.

3.2 Key Idea #2: Context-Specialized Code Duplication
Given a generic function to be specialized with a set of constant parameters, we now define the
worklist-driven algorithm that produces the specialized function body.

The algorithm operates over the generic (input) function in an SSA-based IR containing basic
blocks, and is driven by a worklist of blocks to specialize. Blocks in the generic function are
specialized per context into blocks in the specialized function. We keep a mapping from ⟨basic
block, context⟩ tuples to specialized blocks, and likewise for SSA value numbers. We specialize one
block at a time, performing constant-propagation analysis, const-folding and branch-folding as we
flow forward. We track and update the current context as flow-sensitive analysis state, updated as
necessary by intrinsics. When we reach a branch instruction, look up target block(s) in the current
context. If already processed, create an edge to the corresponding specialized block. Otherwise,
enqueue the block in context on a worklist. We provide this algorithm as pseudocode in Fig. 5.

In Fig. 6 we show an example of a specialization of a simple interpreter (supporting three opcodes,
ADD, SUB and GOTO) for a bytecode program that performs ADD and SUB operations in an infinite
loop. The interpreter is annotated with context updates, and the specialization provides the semantic
information that the bytecode is constant. Note, however, that no other knowledge of interpreters,
per-se, is needed: this is a fully general transform for duplicating and constant-specializing code.

The analysis is worklist-driven and runs until fixpoint, but in practice in most cases, makes one
pass over the bytecode, emitting the portion of the interpreter-switch corresponding to each opcode.

Partial Evaluation, Whole-Program Compilation 7

1 worklist = [] # Worklist of (Ctx , Block)

2 blockmap = {} # Map from (Ctx , Block) to SpecializedBlock

3 valuemap = {} # Map from (Ctx , Value) to SpecializedValue

4 valuestate = {} # Map from SpecializedValue to CpropAnalysisState

5 # ... Dependency management to re-enqueue blocks omitted

6 # ... Flow -sensitive state management omitted

7
8 def partially_evaluate(func , args):

9 for (arg , cprop_state) in args:

10 valuestate[arg] = cprop_state

11
12 initial_ctx = create_root_context ()

13 worklist.append ((initial_ctx , func.entry_block))

14 while len(worklist) > 0:

15 (ctx , block) = worklist.pop()

16 partially_evaluate_block(func , ctx , block)

17
18 def partially_evaluate_block(func , ctx , block):

19 specialized_block = blockmap [(ctx , block)] or create_new_block(ctx , block)

20 # We may be revisiting due to updated abstract state; empty the block.

21 clear_block(specialized_block)

22
23 # Partially evaluate and transcribe over the instructions.

24 for inst in func[block]:

25 specialized_args = [valuemap [(ctx , value)] for value in func.inst_args(inst)]

26 (specialized_inst , abstract_state , ctx) = partially_evaluate_inst(

27 func , ctx , specialized_block , inst , specialized_args ,

28 [valuestate[spec_arg] for spec_arg in specialized_args])

29 valuestate[specialized_inst] = abstract_state

30 append_to_block(specialized_block , specialized_inst)

31
32 # Evaluate the terminator (branch) targets , enqueueing more blocks.

33 # Omitted: if conditional or switch and constant selector , branch -fold.

34 set_terminator(specialized_block ,

35 [evaluate_target(ctx , target) for target in terminator_targets(func , block)])

36
37 def partially_evaluate_inst(func , ctx , specialized_block ,

38 inst , specialized_args , abs_states):

39 if inst is intrinsic 'update_context ':

40 ctx = abs_states [0] # Assert this is a constant; we do not support runtime ctx

41 elif ...: # Handle other intrinsics

42 else:

43 abstract_state = constant_propagate(inst_opcode(func , inst), abs_states)

44 if abstract_state is constant c:

45 inst = create_const_value(specialized_block , c)

46 else:

47 inst = clone_inst(inst , specialized_block)

48 return (inst , abstract_state , ctx)

49
50 def evaluate_target(ctx , target):

51 specialized_target = blockmap [(ctx , target)] or create_new_block(ctx , target)

52 # ... Meet flow -sensitive state into entry state (omitted) ...

53 if newly created or entry state changed:

54 worklist.push((ctx , target))

55 return specialized_target

Fig. 5. Pseudocode for the main specialization (Futamura projection) algorithm.

That is, the overall scheme of a single-pass template compiler falls out automatically, without us
having to adapt the interpreter or bytecode into a framework that understands this flow.
The resulting compiled code contains a control-flow graph that corresponds to the interpreted

program, with its loop (the JMP backedge), rather than the interpreter. Thus, we have a bytecode-
erased compilation as a result of a partial evaluation. This is an instance of a first Futamura projection.

8 Chris Fallin and Maxwell Bernstein

Fig. 6. An example of a partial evaluation of a simple interpreter on a three-opcode interpreted program.

3.3 Key Idea #3: Directed Value-Specialization
Basic block specialization requires compile-time constant context values: otherwise, we cannot
resolve branch targets to blocks in the specialized function statically.
However, an interpreted program will naturally have run-time-data-dependent control flow in

the form of conditional branches. An interpreter will implement these branch opcodes either with
its own branch, conditionally updating its “next PC” value, or with a branchless conditional-select
(e.g., condition ? targetPC : fallthroughPC). The issue with both of these is that control flow
reconverges to a single backedge to the next interpreter loop iteration. At the update_context
intrinsic call, what will constant-propagation know about pc?

One possible solution to this dilemma is to write the interpreter control-flow with two backedges,
one for the taken- and one for not-taken case. This way, the next PC is always constant at any given
static program point, and the interpreter’s conditional branch becomes the conditional branch in
the compiled code. However, this approach falls short: it is vulnerable to tail-merging optimizations
when the interpreter itself is compiled2, and it does not scale to opcodes with a dynamic number of

2We considered investigating intrinsics or other optimization directives in the interpreter source to prevent this optimization
from breaking the weval transform, but in the end, we decided this was a philosophical dead-end: it is better for the transform

Partial Evaluation, Whole-Program Compilation 9

targets (from e.g. switch statements). In essence, we cannot reify all control flow paths as branches
in the interpreter if we do not have a static number of paths for one opcode.

Instead, we introduce another intrinsic to allow splitting context on values (in the partial evaluation
literature, this is known as “The Trick” [26]). The idea is that rather than a scalar context (e.g., an
interpreter PC), we add a sub-context index, so specialization maps key on ⟨ basic block, context,
value ⟩. We add an intrinsic:

int32_t specialized_value(int32_t value , int32_t low , int32_t high);

that specifies a range of 𝑁 possible values, and passes through a run-time value. At the intrinsic
callsite, the block specialization generates control flow to 𝑁 blocks, branching at runtime on value,
then constant-propagating at compile time in each specialized path. The net result is that as long as
we have a statically-enumerable list of possible values for a “next PC,” we can support arbitrary
control flow operators in bytecode such as switch.

3.4 Maintaining Static Single Assignment (SSA) Form
There is one optimization that is critical to grant the weval transform acceptable performance
in practice. An SSA-based IR has the key invariant that a value can be used only in the subtree
of the dominance tree below its definition – that is, in a block that is dominated by the block
where it is defined. This invariant ensures that the value is always defined before it is used during
program execution. Because the result of the weval specialization transform is a control-flow graph
that resembles the interpreted program’s control-flow graph rather than that of the interpreter,
the def-to-use relationships in the IR of the interpreter body may no longer satisfy this invariant
when transcribed over to the specialized function body. Thus, we must somehow repair the SSA, or
ensure by construction that we do not violate this invariant.

A simple solution is to run the weval transform on a restricted form of SSA that uses values only
in the blocks in which they are defined, and otherwise passes all values across control-flow edges
explicitly with 𝜙-nodes (or equivalently, block parameters). This guarantees correctness because it
trivially removes any dependence on inter-block dominance relations. However, while this solution
is correct, it leads to very high transform cost and overhead (in our experiments, up to a 5x increase
in block parameter count, yielding very slow compilation of the result).
We implement an analysis that finds a “minimal CFG cut” across which all values need to be

made explicit block parameters. Intuitively, this cut is around where paths from different contexts
may merge, e.g., the interpreter backedge: these points are where subgraphs of the original CFG
are “glued together” to form a new overall shape.
This analysis operates by, in a fixpoint loop, for each basic block, finding the “highest same-

context ancestor” (HSCA) in the dominance tree. Each block flows its HSCA outward on CFG
edges; blocks that have update-context intrinsics have themselves as HSCA. If an HSCA flows into
a block and does not dominate that block, the block becomes a cut-point and becomes its own
HSCA. Otherwise, a block’s HSCA is the domtree-join (lowest common ancestor) of all inbound
HSCA values. Once we find all cut-points, we update these blocks to have block parameters for all
live values flowing in.

3.5 Interface: Semantics-Preserving Specialization
From the point of view of an interpreter and language runtime, how do we integrate a transform
that operates on the interpreter itself, seemingly from outside the system? Furthermore, how do we

to work for any code, optimized in any way (as far as practical). The calls to intrinsics will never be optimized away when
compiling the interpreter, because they are external/imported functions; that is all that is necessary for correctness.

10 Chris Fallin and Maxwell Bernstein

reason about what the interface to this fragment of specialized code is, and how we can integrate
it, i.e. invoke it in place of the original interpreter?
The key abstraction we provide is semantics-preserving specialization. The user of the weval

tool can make specialization requests that reference a function (e.g., a generic interpreter) and
include some constant arguments to that function. The request causes the partial evaluator tool to
generate a new, specialized function. Each function argument is named in a specialization request
with one of three modes: Run-time, SpecializedConst(value), or SpecializedMemory(data). The first
means the value is not known at compile time (no constant-folding occurs), and the latter two
specialize on either a constant value or constant data at the given pointer, respectively. In essence,
the specialization request makes the promise that the function parameter or the memory contents
will have those values at invocation time: the semantics-preserving specialization is with respect
to this promise. In order to retain function-pointer type compatibility, each specialized function
continues to have parameters even for specialized arguments. The specialized function body simply
ignores these parameters.
There are two general ways this API could be integrated into a system: within the execution

universe of the program undergoing specialization, or outside of it. Both are reasonable for different
design points. An interpreter that already has a separable frontend to parse and create bytecode
might prefer to invoke weval “from the outside,” appending new functions to an image of the
runtime. On the other hand, when adapting an existing interpreter with no clear phase separation,
it might make more sense to request a specialization “from the inside,” directly providing data
from the heap and receiving a function pointer in return. This could operate at run-time, with
a JIT-compilation backend, or it could operate in a snapshot workflow: enqueue specialization
requests, snapshot the program with its heap, append new functions to the snapshot, and restart. In
our Wasm-based prototype, we take this latter approach, building on top of the Wizer [16] snapshot
tool. Note, however, that this is not fundamental to the weval transform.
When integrated into a Wasm-snapshot build workflow, the top-level interface to our tool is a

function that has a signature like the following (slightly simplified):
template <typename ... Args >

request_t* specialize(func_t* result , func_t generic , Args ... args);

This enqueues the “request” at a well-known location in the Wasm heap so that the weval tool
can find it; when theWasmmodule snapshot is processed, the function pointer at result is updated
to point to the appended function.

The integration into an interpreter then requires one to: (i) enqueue specialization requests when
function bytecode is created; (ii) store a specialized-code function pointer on function objects;
and (iii) check for and invoke this function pointer.3 We will see objective measures of annotation
overhead, including this “plumbing” to weave the specializations into the language runtime’s
execution, in the following sections.

3.6 Generality Across IRs
We prototyped this transform on WebAssembly for pragmatic reasons (it was the platform that
spawned the need for our tool) but we believe the transform is general. In brief, it will work on any
IR and platform given these requirements:

• The possible control-flow edges need to be explicit – for example, the IR cannot have a
computed-goto feature with “label address” operators. Otherwise, it would not be possible
to resolve block targets in specialization contexts ahead of time.

3This is usually a conditional, and the original interpreter may still be present if the interpreted language allows, e.g., eval()
at run-time, so not every function may be specialized – but this is outside the scope of the weval tool itself.

Partial Evaluation, Whole-Program Compilation 11

• The IR needs to support arbitrary, e.g., irreducible, control flow: when driven by specialized-
on bytecode, i.e. user-controlled data, invariants of the original CFG such as reducibility may
be lost. In our prototype on Wasm, where the output format can only represent reducible
CFGs, we implement special lowering for irreducibility.

• The platform and tool interface together need to have a way to expose “constant memory”
to the transform. In our prototype, the interface allows specifying a function argument
as “pointer to these constant bytes” (e.g., bytecode or interpreter configuration data), and
this works from inside the Wasm module, referring to bytes in the Wasm heap snapshot.
However, one could also imagine an externally-driven interface where the data is provided
separately.

4 Handling Interpreter State Efficiently

Fig. 7. Partial evaluation by itself removes dispatch
overhead, but preserves load/store semantics of inter-
preter state data structures, leading to inefficiency.

As it stands so far, our partial evaluator can
eliminate an interpreter’s dispatch overhead by
pasting together the parts of the interpreter’s
main loop that implement each opcode. How-
ever, these opcode implementations will still
likely contain dynamic indirection to access
the interpreted program’s state. This is another
source of overhead that differentiates inter-
preted execution from fully optimized compiled
execution, and we wish to eliminate it as well.
As a simple example, consider a bytecode

for a virtual register-based interpreter, together
with opcode implementations, in Fig. 7. If we
were to take the Futamura projection of this interpreter over the bytecode, we might obtain a
compiled result like that in the figure.

The regs array accesses compile to loads and stores to offsets in the interpreter’s state. A good
alias analysis, combined with redundant load elimination, dead store elimination, and store-to-load
forwarding optimizations,might be able to disambiguate these loads and stores. However, a realistic
interpreter might have other features that interfere with this: for example, calls to other functions.
These functions may not access regs, but this cannot be proved intraprocedurally. Ideally we would
like to indicate some other way to the partial evaluator that these values can be stored in true locals
(i.e., SSA values in the weval transform result) rather than memory.

4.1 Virtualized Registers
In our tool, we allow the interpreter to communicate this intent via intrinsics. Specifically, we
provide the intrinsics load_register(index) and store_register(index, value) that are
semantically equivalent to loads and stores to a hidden array within the specialized function. The
index parameter must always be a constant (perhaps loaded from the constant bytecode) during
specialization. (See §5 for an example that uses these intrinsics.) The specialization transform
carries a map of indices to SSA values, and translates these intrinsics appropriately, reconstructing
SSA (by inserting block parameters at merge points) where needed.

4.2 In-Memory State: Locals and Operand Stack
Non-escaping locals provide an important primitive, but interpreters sometimes have state that is
necessarily exposed to the rest of the runtime. For example, in a garbage-collected platform, a GC

12 Chris Fallin and Maxwell Bernstein

might need to inspect an array of local-variable values in order to mark them as rooted or update
them after a compaction.

As above, we wish to lift the original in-memory storage to SSA when possible. However, these
values will need to be written back to memory at certain points, and their new values reloaded. To
support this, we provide two state abstractions that build on virtualized registers, but carry both the
value and a canonical in-memory address. This kind of state operates like a write-back cache: the
transform will perform true loads when necessary, and will generate stores at “flush” intrinsics. The
intrinsics for in-memory locals are read(index, address), write(index, address, value),
and flush().
Beyond indexed locals, many interpreters also present a stack VM abstraction with opcodes

that push and pop operands and results. To support this, we also provide push(address, value),
pop(address), read_stack(depth, address), and write_stack(depth, address, value)
intrinsics. These perform an abstract interpretation of stack state, falling back to true loads when
needed, and generating stores at flush-points as above.

Note that some care must be taken to ensure that flush() is invoked wherever the in-memory
state might be observed. In our SpiderMonkey adaptation (§6) we built a C++ RAII mechanism
to ensure this (exposing the ability to call the rest of the runtime only after interpreter state is
flushed). Any interpreter that opts into these intrinsics will need to take care that when in-memory
state is observable, a flush has occurred. Other design points might also be possible: for example, a
new intrinsic or mode in our tool that flushes at every callsite, or that tracks escaped pointers to
the state in some other way.

4.3 Discussion: Semantics-Preservation and Polyfills
These intrinsics differ from the initial function-specialization transform in §3 in two ways: (i)
they grant the weval tool permission to diverge in semantics in controlled ways (lazy flushing of
in-memory state with user-denoted sync points), and (ii) they are not simply intrinsics that can be
removed (“hints”) but must be replaced/polyfilled for ordinary execution of the original function
body to work. This permission to diverge is fundamental for performance: the memory operations
become a severe bottleneck otherwise.

Native Compiled C
Native Interpreter

Interpreter on Wasm
+ weval

+ locals opt
0.0

0.2

0.4

0.6

0.8

1.0

1.2

Ti
m

e
[s

]

1.00x

8.01x

12.69x

4.53x

1.01x

Min interpreter runtime by execution strategy (lower is better)

Fig. 8. Benchmark of the loop program with different
execution strategies.

Note that we have carefully designed the
signatures so that polyfills are possible: the in-
memory state intrinsics take canonical address
arguments and can thus fall back to true loads
and stores. The virtualized register intrinsics
(§4.1) could be rewritten to loads and stores
to an array allocated on the stack. For prag-
matic reasons we have no implemented these
polyfills, and instead we generate two sepa-
rate versions of the interpreter body function
with and without state intrinsics, but this is
not fundamental.

5 Case Study: Minimal Toy Interpreter
To give a feel for weval, we integrate it first
into a minimal example interpreter—a small
64-bit unsigned integer register machine named Min. Min has 10 instructions that operate on a
program counter 𝑝𝑐 , an array of indexed registers 𝑟𝑒𝑔𝑖𝑠𝑡𝑒𝑟𝑠 , and a special accumulator register 𝑎𝑐𝑐 .
Except for the JMPNZ instruction, the machine reads the instruction, increments the 𝑝𝑐 , executes

Partial Evaluation, Whole-Program Compilation 13

1 uint64_t Execute(uint64_t *program) {

2 uint64_t accumulator = 0;

3 uint64_t registers [256] = {0};

4 uint32_t pc = 0;

5 PUSH_CONTEXT(pc); // NEW

6 while (true) {

7 uint64_t op = program[pc++];

8 switch (op) {

9 case LOAD_IMMEDIATE: {

10 accumulator = program[pc++];

11 break;

12 }

13 case STORE_REG: {

14 uint64_t idx = program[pc++];

15 registers[idx] = accumulator;

16 break;

17 }

18 // ...

19 case ADD: {

20 uint64_t idx1 = program[pc++];

21 uint64_t idx2 = program[pc++];

22 accumulator = registers[idx1] +

23 registers[idx2];

24 break;

25 }

26 // ...

27 } // end switch

28 UPDATE_CONTEXT(pc); // NEW

29 } // end while

30 POP_CONTEXT (); // NEW

31 }

Fig. 9. Min bytecode interpreter in C. The listing
is shortened for this paper but in total is 63 lines
of code. Lines marked NEW are the added weval
annotations.

1 #define REG_AT(idx) (IsSpecialized ? \

2 read_reg(idx) : \

3 registers[idx])

4 #define REG_AT_PUT(idx , val) \

5 if (IsSpecialized) { \

6 write_reg(idx , val); \

7 } else { \

8 registers[idx] = val; \

9 }

10
11 template <bool IsSpecialized >

12 uint64_t Execute(uint64_t *program) {

13 // ...

14 REG_AT_PUT(idx , accumulator);

15 // ...

16 accumulator = REG_AT(idx);

17 // ...

18 }

19

Fig. 10. We modify the macros to read and write
registers to conditionally use weval’s register in-
trinsics. For non-fundamental reasons, we cur-
rently don’t polyfill the intrinsics in our tool in
non-specialized versions of the function, so we
need to generate two versions of the interpreter
function: one using the intrinsics, and one with
a conventional register array. In order to create
both alternatives, we use C++ template special-
ization to ensure this choice is made when the
interpreter is compiled. In a pure C-based inter-
preter, one could put the interpret function in
a separate file, redefine the macros twice (once
for intrinsics and once without), and include the
function body in both cases.

the instruction, and returns to the top of the interpreter loop. The interpreter loop is summarized
in Figure 9.

The first step to wevaling an interpreter is adding a context annotation. To specialize a bytecode
interpreter, we use the program counter—the pc—as the context. As the annotation only has
meaning when the program is being partially evaluated, we invoke the annotations with macros
that are conditionally defined only in a build for weval.
Just these annotations alone will confer a performance boost; they unroll the interpreter loop

into guest language control flow and allow for weval’s optimizer “see through” the interpreter
into the guest language. We can, however, do better: we can also use weval’s interpreter state
optimizations (§4).
To allow weval to optimize 𝑟𝑒𝑔𝑖𝑠𝑡𝑒𝑟𝑠 and remove loads/stores, in Fig. 10 we replace direct

array accesses like registers[idx] with macros REG_AT(idx) and REG_AT_PUT(idx, value)
and define them to use read_reg(idx) and write_reg(idx, value) in a variant of Execute

14 Chris Fallin and Maxwell Bernstein

passed to the partial evaluator. Now we can unroll the “infinite register” bytecode that reads from
and writes to an array into direct SSA dataflow. This avoids touching memory and gives more
information to the optimizer.

As a benchmark, we write one program in Min that computes the sum of all integers from 0 to 100
million and prints it to stdout. In Fig. 8 we show performance of a Min program running on the C++
interpreter running on the host platform directly (as an x86_64 program), on the interpreter compiled
to Wasm, and on that interpreter processed by weval and with interpreter-state optimizations
applied (all Wasm variants running on Wasmtime), all compared to the equivalent program written
in C.4 We show that wevaling the interpreter beats native interpreter performance and unrolling
local variables yields still more speedup, coming within 1% of the performance of the equivalent
program written in C and compiled to native code.

Min is an excellent introduction to weval because a first-year graduate student learned about the
idea of weval, designed an interpreter, and then directly applied weval with minimal tutelage—all in
the space of four hours. This indicates to the authors that weval is not only useful, but immediately
applicable to many extant projects.

6 Case Study: SpiderMonkey JavaScript Interpreter
In this section, we present our most significant real-world use-case: an application of our partial
evaluator to the SpiderMonkey [3] JavaScript engine’s interpreter, in order to derive compiled
code directly from the interpreter semantics. This application of our tool has been merged into
the StarlingMonkey JS runtime [6] which embeds SpiderMonkey to target Wasm-first platforms,
where run-time code generation (JIT) is not supported. weval-based snapshot processing is used to
provide its “ahead-of-time compilation” (AOT) feature.
The SpiderMonkey JavaScript engine, running on a native platform (e.g. x86 or ARM), has

several interpreter tiers and several JIT-compilation tiers. It does not have support for ahead-of-
time compilation. It has been ported to run within a WebAssembly module [13]; in this mode, it
runs only with its interpreter tiers, because Wasm does not support run-time code-generation.
SpiderMonkey supports inline caches (ICs) in a fully interpreted mode using the Portable Baseline
Interpreter (PBL) [15]; we take this as our baseline. We augment StarlingMonkey’s compilation
flow that uses the Wizer [16] snapshotting tool: once a snapshot of the engine with the user
program’s bytecode is taken, with function specialization requests enqueued in the heap image,
weval processes those specialization requests and appends new Wasm functions to the module.

There is one further hurdle we must address: IC bytecode is generated only at run-time, when
behaviors are observed, while our tool requires bytecode to be present in the snapshot for AOT
processing. To address this dependency, we augment SpiderMonkey with an IC corpus mechanism
that builds a pre-collected set of IC bodies into the binary, available in a lookup table.
Stated succinctly, the key insight is: ahead-of-time compilation of JavaScript is possible at this

level because inline caches (ICs) allow dynamism in semantics to be pushed to late-binding run-time
data changes (function pointer updates) rather than code changes.

6.1 Changes to the Interpreter
In order to permit the Portable Baseline Interpreter (PBL)’s two interpreter loops – for JS and
IC bytecode – to be partially evaluated, several minor changes were necessary. First, we had to
ensure that one native function call frame (in the interpreter’s implementation language, C++)

4We find that a sufficiently advanced optimizer, such as the one present in Clang/LLVM, can completely unroll the loop into
the closed-form 𝑛 (𝑛 + 1)/2. Adding such an optimizer (for example, Binaryen [43]) is future work and not relevant to the
main claims of this paper. To keep the loop and local variables around for the benchmark, we annotate with volatile.

Partial Evaluation, Whole-Program Compilation 15

corresponded to one JS function or IC stub call; this is what allows per-function specialization to
work. The interpreter was originally written to perform JS calls and returns “inline”, by pushing
and popping JS stack frames as data without making C++-level calls. We modified the interpreter
to recurse instead.

Second, as in the previous section, we added annotations to update context, and to optimize the
storage of interpreter state. We used weval’s “registers” for CacheIR, which is a register-based IR;
and “locals” and the virtualized operand stack for JS bytecode.
To handle several forms of non-local control flow, our modified interpreter loop tail-calls

(“restarts”) to a non-specialized version of itself – just for the active function frame – in sev-
eral control flow situations that are nontrivial or inefficient to handle: async function restarts,
which would imply multiple function entry points5, and error cases (including exception throws),
to minimize compiled code size. The engine supports all edge cases and retains 100% compatibility
(continues to pass all tests), and only a negligible fraction of execution time is spent in interpreted
(non-specialized) code in our benchmarks.

Our patch to add these annotations and intrinsics amounted to +1045 -2 lines, including a
vendored weval.h. The changes to the interpreter function itself amount to 133 lines of alternate
macro definitions to swap in the intrinsic usages.

6.2 Performance Results
In Fig. 11, we show the performance of our modified SpiderMonkey engine on the Octane benchmark
suite [34], reporting throughput (inverse run time, i.e., speed) data for these configurations, all as
Wasm modules running on Wasmtime [5]:

• Generic Interp: default (generic) interpreter;
• Interp + ICs: Portable Baseline (PBL) interpreter with inline caches;
• wevaled: AOT-compiled JS via partially-evaluated PBL interpreter;
• wevaled + state opt: same, with state optimizations (§4) – our final configuration.

The speedup of our approach is properly seen as the delta from Interp + ICs to wevaled + state
opt. This ratio is a 2.17× speedup; up to 2.93× on the best benchmark (Richards) and above 2× in
all cases except RegExp (which depends heavily on the regular expression engine’s interpreter loop
which we have not modified) and CodeLoad (which tests the engine’s code loading rather than
execution speed).

Our use of interpreter state optimizations was motivated by the observation that loads and stores
to locals and the operand stack are quite hot. By making use of these intrinsics, from the wevaled
configuration to wevaled + state opt, we see a 1.37× speedup. Without this optimization, a number
of benchmarks see almost no speedup at all (Crypto, Mandreel). Across all of Octane, the virtualized
stack intrinsics elide 84% of 639K loads and 76% of 563K stores; the local intrinsics elide 14% of
149K loads and 5% of 74K stores. (Pushes and pops happen at every opcode, while JS locals are
accessed less frequently and there are more often GC safepoints in between that force values back
into memory.)

6.3 Comparison to Native Execution
In order to judge the relative speedups attained by weval, and also eventual upper bounds, it is
interesting to compare analogous execution strategies in a native-code configuration, with JIT
backends. Note that we do not intend to compare weval’d code inside a Wasmmodule directly to the

5It should be possible to either include a switch at the beginning of async functions to handle this, or more ambitiously,
define new intrinsics that allow compiling coroutine-like code to WebAssembly’s stack-switching proposal; we have not yet
implemented either approach.

16 Chris Fallin and Maxwell Bernstein

Rich
ard

s

Delt
aB

lue
Cryp

to

Ra
yTr

ace

Ea
rle

yB
oy

er

Re
gE

xp
Sp

lay

Nav
ier

Sto
kes Pd

fJS

Man
dre

el

Gam
eb

oy

Cod
eLo

ad
Box2

D

ge
om

ea
n

0

1

2

3

4

Sp
ee

du
p

SpiderMonkey execution performance by execution strategy (higher is better) Generic Interp
Interp + ICs
wevaled
wevaled + state opt

Fig. 11. Performance results of Octane benchmark suite on SpiderMonkey engine, with interpreter in a Wasm
module (without and with ICs), and weval-compiled code (without and with interpreter-state optimizations).

Gen
eri

c In
ter

p

Int
erp

+ICs

Com
pile

d+
ICs

(w
ev

ale
d)

Gen
eri

c In
ter

p

Int
erp

+ICs

Com
pile

d+
ICs

Opti
mize

d
0.1

1.0

10.0

100.0

Sp
ee

du
p

(lo
g

sc
al

e) Wasm Native

1.17x
2.53x 1.79x

4.60x
9.61x

37.14x

1.17x
2.17x 2.57x

2.09x
3.86x

SpiderMonkey execution performance on Wasm vs. native platform (higher is better)

Fig. 12. SpiderMonkey configurations running on top of a Wasm engine vs. SpiderMonkey as a native build on
the same system. This shows how (i) inline-cache fastpaths, (ii) compilation of JS bytecode and inline caches
separately, and (iii) optimized compilation of both together (native only) result in progressive speedups.

native code – it encounters some overhead due to the Wasm sandbox – but rather, the progressive
ratios of each step on the two platforms.

Fig. 12 shows three of the four configurations from §6.2 on Wasm alongside four configurations
running natively (e.g. directly on x86_64) on the same system:

• Generic Interp: the same generic interpreter as in theWasm case (js –no-ion –no-baseline
–no-blinterp);

• Interp + ICs: SpiderMonkey’s baseline interpreter, which interprets JS bytecode but runs
compiled IC stubs (js –no-ion –no-baseline);

• Compiled + ICs: SpiderMonkey’s baseline compiler, which compiles JS bytecode and ICs,
comparable to the optimization level of wevaled code (js –no-ion);

• Optimized: a fully optimized combination of JS bytecode with type-specialized cases inlined,
yielding maximal performance (js default native engine).

We label speedup ratios between each successive pair of configurations. A few interesting
comparisons can be made. First, by observing the second to third bar on each side, this plot shows
that weval attains a similar speedup over the next lower tier (interpreter with ICs) as the native
baseline compiler does. In both cases, we are removing the interpreter overhead but retaining
runtime binding of behavior via IC stubs.

Partial Evaluation, Whole-Program Compilation 17

Second, we see that fully optimized native JIT execution is a significant speedup (3.86×) over
baseline compilation. Note that the Optimized configuration “pulls out all the stops” and, in particu-
lar, takes advantage of being a JIT compiler : it type-specializes code. As we argue in §9, we believe
there is a path for our AOT-based approach to adopt profile-guided inlining in a safe, principled
way, possibly closing this gap. Nevertheless, the gap remains today.

Third, however, the overall speedup of the “baseline compiler-like” configurations – first bar
to third bar – is still somewhat behind in weval: 2.53× over the generic interpreter, vs. 5.37× on
native. In principle there is no difference between the optimizations that both configurations are
capable of, and in fact profiling and examination of generated code largely bears this out: both
are “baseline compilation” producing a skeletal compilation of JS bytecode that invokes ICs and
plumbs values between them, and straightline compilations of IC opcodes. We believe the remaining
inefficiencies lie mostly in the IC invocation efficiencies: the native baseline compiler can tightly
control ABI and register allocation, keeping hot values in pinned registers and effectively doing
interprocedural register allocation between the JS function body and ICs. In contrast, on a Wasm
platform, control-flow integrity (CFI) checks make indirect calls much slower.

6.4 Code Size
The Wasm module containing the entire SpiderMonkey JavaScript engine contains 8 MiB of Wasm
bytecode initially, in 18080 functions. After AOT compilation with weval of the entire Octane
benchmark suite (7.5MiB or 337KLoC of JS) together with the pre-collected corpus of 2320 ICs,
there is 52 MiB of Wasm bytecode, with 5212 new functions from JS function bodies and 2320 new
IC-stub functions. With more optimization work in our tooling, including our Wasm compiler
backend, we believe the size of generated bytecode could be decreased substantially.

6.5 Transform Speed
Compiling the aboveWasmmodule takes, in total, 350 seconds of CPU time (44.16 seconds wallclock
parallelized over specialization requests on a 12-core machine). This indicates a compilation speed
of slightly under 1KLoC/second of JavaScript source. We believe this could be improved with
further work: our Wasm compilation backend has not been heavily optimized. In order to improve
compilation times in practice, we have added a cache that keys on input Wasm module hash
plus the function specialization request’s argument data; in practice, this works well to avoid
redundant work for the unchanging AOT IC corpus, and helps with incremental compilation during
development as well.

7 Case Study: PUC-Rio Lua Interpreter
To demonstrate generality of the tool across multiple real-world bytecode interpreters, we ported
the original (PUC-Rio) Lua interpreter, with which no author had any familiarity, to Wasm and
applied weval-based partial evaluation in the space of three hours. We split the process into the
following chunks:
Support Wasm. Porting the interpreter to Wasm took approximately 45 minutes. For simplicity,

we stubbed out (i.e. removed the source and added calls to abort()) some Linux-specific OS library
functions; we also stubbed out exception handling because it uses the setjmp and longjmp C
functions6.

6Unfortunately, many WebAssembly runtimes do not yet support setjmp and longjmp but support is expected to land soon
with the exception-handling extension [1]. For now, projects such as Emscripten handle exceptions by calling into the host
JavaScript runtime and leaning on JavaScript exceptions.

18 Chris Fallin and Maxwell Bernstein

Support Wizer-based snapshotting. After the initial Wasm port, we spent another 45 minutes
adding snapshotting. This involves adding approximately 30 lines of C code near the C main
function to expose two functions: wizer_init and wizer_resume. The initialization function runs
the top-level Lua module and pushes that module’s main function (a convention we arbitrarily
chose) onto the call stack. The resume function—the new C _start—calls this function.

Specialize functions. Supporting function specialization requires adding two pointer-sized fields
to Lua’s function object (Proto) struct: a specialized function pointer 𝑠𝑝𝑒𝑐 and a weval request
pointer 𝑟𝑒𝑞. We create and fill in 𝑟𝑒𝑞 when the function object is created in the parser. It must
exist somewhere in the heap so that weval can find it, and we retain it so that it can be freed
later on function destruction. (It is possible to instead use a side-table, but we chose to keep the
implementation simple.) When we make the weval request, we also pass it the address of 𝑠𝑝𝑒𝑐 field
for weval to fill in later, after Wizer has run.
We tested this step before we added annotations to the interpreter: at this point, weval special-

ization should produce the same interpreter function as output, because no context-specialization
occurs. We also modified the interpreter function (luaV_execute) signature to pass in a bytecode
parameter for specialization.

Annotate interpreter. PUC-Rio Lua uses macros instead of manual code duplication to implement
much of its interpreter control-flow. This makes modifying the interpreter straightforward: we add
a push_context to the top of the interpreter and an update_context to back edges.

Change call path. In order to reap the benefits of our specialized function pointers, we must call
them. Lua has only two ways to call a managed function (outside the interpreter and inside the
interpreter) and we modified both to call 𝑠𝑝𝑒𝑐 if it had been filled in. We also ensured that the
interpreter calls itself for each Lua call, rather than handling the call opcode “inline”.
After a short period of debugging, we had a working ahead-of-time compiler for Lua. Some

trivial interpreter-heavy benchmarks produce the expected results, showing a 1.84× speedup. The
resulting source tree has a diff in Lua C/header files (excluding weval’s and Wizer’s headers, and
build-system tweaks) of +173 -57 lines. This includes the initial port to Wasm. Future work
includes calling intrinsics to lift local variables or stack variables to Wasm locals. We expect this to
take not significantly more time for programmers who are already familiar with the code.

8 Related Work
Partial Evaluation: There is a rich pre-existing literature on partial evaluation, going back at least
to Futamura [18, 19]. Jones [26] provides a comprehensive overview of the field. Several aspects of
the weval transform, such as its use of value specialization (“The Trick”), are standard techniques for
partial evaluators; and others implement optimizations such as virtualized handling of interpreter
state (e.g., PyPy [10]) as well. Our particular tool differs primarily in targeting WebAssembly, and
possibly in its particular basic block- and SSA-oriented specialization transform.
DyC [21, 22] is a run-time optimization system for C that performs partial evaluation. It targets
use-cases where run-time data could be used to greatly simplify or specialize a program’s logic: for
example, simulators (for a particular configuration) or numeric code (for known dimensions or
parameters), in addition to interpreters. It provides annotations (e.g., make_static() to perform
“The Trick” of value specialization) and performs binding-time analysis; the work demonstrates the
ability to unroll interpreter loops, as we do. However, the system appears to be significantly more
complex, relying on heuristics and analysis to handle interprocedural specialization, overlapping
specialization regions, caching of specializations, and more. In contrast, our tool (weval) is only 5K
LoC, and provides a comprehensible semantic model for its transform.

Partial Evaluation, Whole-Program Compilation 19

GraalVM and Truffle [44] are a JIT compiler backend and language runtime framework (respec-
tively) that perform the first Futamura transform. The Truffle ecosystem supports high-performance
execution of Ruby [38, 44], JavaScript [44], and other popular languages.
Truffle users rely on a Truffle-provided framework that supports AST-walking interpreters.

Users’ AST node classes must inherit from Truffle classes. In other words, the interpreter must
be developed specifically for Truffle. The engine also includes support for run-time optimization
and de-optimization based on changing or violated assumptions, which is very useful for dynamic
language support. The tradeoffs come in terms of significant added complexity, and long warmup
times. More recently, Truffle has been used to build interpreters for bytecode (e.g., TruffleWasm [37]),
though by building AST nodes for bytecode instructions.
GraalVM also supports a “Native Image” feature that shares some motivation (startup latency,

etc) with the Wizer [16] WebAssembly snapshotting tool (used as part of the workflow in our
case studies), but it goes further: it runs static initializers, then uses a closed-world assumption
and a loop of (optionally context-sensitive) points-to analysis and optimization to specialize Graal
IR. Then it produces a small native binary. Taken together with a Truffle-based interpreter, this
presents another way to build an AOT compiler for a language from an interpreter.
PyPy [10] is a Python implementation built on top of the RPython meta-tracing JIT compiler
infrastructure. RPython has a similar API to our annotation infrastructure. Constructing an instance
of the JitDriver class requires annotating which variables are constant for the execution of a
particular instruction and which are not; JitDriver.jit_merge_point unrolls the interpreter
loop using an arbitrary context (ordinarily the pc value). RPython also allows for optimizing
interpreter state, as we do. RPython is different, however, because (i) interpreters must be written
in RPython, a restricted subset of Python 2.7, and (ii) the interpretation and compilation strategy is
based on a linear program trace instead of an entire method or CFG. Additionally, it is not possible
to use RPython for AOT compilation.
BuildIt [12] is a C++ library for partial evaluation of C++ programs. It provides similar annotations
in the form of templated types—static_var and dyn_var—for partitioning variables into compile-
time constants and run-time data, respectively. BuildIt generates C++ code. With BuildIt, it is
possible to do similar unrolling of interpreter loops and promotion of local variables, but it is
easier to go wrong; mis-use of static_var (analogous to our push_context) can lead to semantic
differences other than performance. Additionally, unlike weval, BuildIt relies on the user to provide
a C++ compiler to compile the generated code.
Lightweight Modular Staging (LMS) [35, 36] is a library developed by Rompf and Odersky for
partial evaluation of Scala programs. It has been used to great effect to, among other things, compile
SQL queries to efficient code [41]. Like BuildIt, it is general-purpose and requires annotations like
Rep (comparable to BuildIt’s static_var). Unlike BuildIt, it can target more language backends.
Using this library requires using Scala as the host language.
Deegen [7] aims to generate a fast interpreter, baseline JIT, and—eventually—an optimizing JIT
from a description of language semantics. Deegen provides a C++ DSL for describing interpreter
semantics in the form of an infinite register bytecode VM. It has APIs for defining opcodes, type-
specialized variants of opcodes, inline caches, a type lattice, “slow paths”, and more. Similarly to
PyPy, it cannot be used for AOT compilation; it intentionally burns constants into the generated
code for better performance.
SemPy [29] and Static Basic Block Versioning [30] (SBBV) are works by Melançon, Feeley, and
Serrano that seem to be building toward a similar goal of deriving a compiler from interpretable
semantics using context-sensitive dataflow analyses and partial evaluation. SemPy records language
semantics in canonical, interpreter-like form, but this form is developed explicitly for the purpose,
i.e., is not a pre-existing interpreter. SBBV is a complementary technique to a semantics with

20 Chris Fallin and Maxwell Bernstein

many dynamic type checks: it is an algorithm for finding a set of type-specialized contexts ahead-
of-time to generate code for (without knowing what the real types will be), while applying a
technique to limit combinatorial blowup. This is an alternative to our approach to dynamic types
in SpiderMonkey: we observe that AOT compilation is possible when inline caches (ICs) are used if
all type-driven dynamism is pushed to late-binding (run-time-filled) IC callsites, while SBBV allows
optimization beyond that level, permitting type-specialized variants of code with strongly typed
values fully unboxed. These are complementary, and an SBBV-like algorithm could in theory be
applied to a wevaled interpreter body with intrinsics denoting type-specialization points.
LuaAOT: We apply weval to a Lua interpreter to AOT-compile Lua bytecode. LuaAOT [32] is a
purpose-built AOT compiler framework that, superficially, works similarly: it compiles bytecode
by pasting together portions of the interpreter loop. However, its algorithm operates at the source
(interpreter in C) level. The work claims 20–60% speedups (1.25×–2.5×) from a 500-LoC implemen-
tation; in contrast, our Lua modification achieves 1.84× speedup (on top of WebAssembly, though
in principle weval is not limited to Wasm, as we noted in §3) with a +173 -57-line diff.
AOT JS Compilers: While AOT compilation of JavaScript is not the focus of our work, our
evaluation on SpiderMonkey does yield such a compiler. Several other options exist. Hopc [39, 40],
Porffor [28], Static Hermes [31], and Static TypeScript [8] are all compilers that accept JavaScript,
TypeScript, or some annotated subset thereof, and produce either native code or WebAssembly.
The key distinction from our work is that these compilers are explicit: they are written as code
transforms, not executable interpreters, and hence are harder to validate, debug or extend than
an interpreter-based solution. On the other hand, they can perform optimizations in a more
straightforward way, potentially yielding higher ultimate performance.

9 Future Work
9.1 Profile-Guided Inlining and Semantics-Preserving Optimizations
The level of optimization that the weval transform is able to provide in its current form (as a
processing step on a program snapshot) is limited by its ahead-of-time-only design goal: it cannot
optimize based on types in dynamic languages. To carry the goal of automatically deriving a
compiler further, one ought to be able to derive type-specialization optimizations beyond ICs.
We believe that profile-guided inlining is a principled way to do this. One would start with an

AOT compilation, observe and gather statistics on IC callsite targets, and eventually recompile
indirect-call instructions into guarded inlined functions (if function pointer is X, inline body, else
call-indirect). In this way, just as for the basic weval transform, semantics are fully preserved.
The Winliner tool [17] prototypes this optimization strategy. This parallels how SpiderMonkey’s
WarpMonkey [14] backend generates its optimizing compiler input from inlined ICs.

Such inlining would remove the IC indirect-call overhead, and it indirectly creates opportunity:
it places boxing and unboxing operations together in the same function body. Our tool could then
incorporate special optimizations that – still preserving semantics – hoist type-checks upward,
and eliminate boxing-unboxing pairs. All of these operations can be written as generic compiler
rewrite rules – for example, SpiderMonkey’s boxing is a form of NaN-boxing and so a partial-
known-bits optimizer that understands known tag bits and conditional checks on them should
achieve this [11, 42]. Overall, this is a further step toward a goal of safe dynamic-language compilers,
where “safe” means that the only “load-bearing” semantics are described in the interpreter body.

9.2 Specializing at Run-time
While our initial prototype is used to derive AOT compiler backends, we are also interested
in generating JIT backends. Nothing prevents the weval transform from operating at run-time.

Partial Evaluation, Whole-Program Compilation 21

Operating at run-time places stresses on the performance of the specialization algorithm itself. In
principle, the second Futamura transform could generate an efficient compiler directly from the
interpreter, without the specializer (the weval tool) remaining at all. This is out of reach today, but
remains an interesting end-goal.

References
[1] [n. d.]. WebAssembly exception-handling proposal. https://github.com/WebAssembly/exception-handling/
[2] 2024. CVE-2024-4761. https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2024-4761
[3] 2024. SpiderMonkey JavaScript Engine. https://spidermonkey.dev/.
[4] A. V. Aho, M. S. Lam, R. Sethi, and J. D. Ullman. 2006. Compilers: principles, techniques, and tools, 2nd ed. Addison

Wesley.
[5] Bytecode Alliance. [n. d.]. Wasmtime WebAssembly virtual machine. https://wasmtime.dev
[6] Bytecode Alliance. 2024. StarlingMonkey JavaScript Runtime. https://github.com/bytecodealliance/starlingmonkey
[7] Anonymous Authors. 2025. Deegen: A Compiler Generator for Dynamic Languages. PLDI (2025).
[8] Thomas Ball, Peli de Halleux, and Michał Moskal. 2019. Static TypeScript: an implementation of a static compiler for

the TypeScript language. In Proceedings of the 16th ACM SIGPLAN International Conference on Managed Programming
Languages and Runtimes (Athens, Greece) (MPLR 2019). Association for Computing Machinery, New York, NY, USA,
105–116. https://doi.org/10.1145/3357390.3361032

[9] Zach Bloom. 2018. Cloud Computing without Containers. https://blog.cloudflare.com/cloud-computing-without-
containers/

[10] C F Bolz, A Cuni, M Fijalkowski, and A Rigo. 2009. Tracing the meta-level: PyPy’s tracing JIT compiler. ICOOOLPS
(2009). https://doi.org/10.1145/1565824.1565827

[11] CF Bolz-Tereick. 2024. A Knownbits Abstract Domain for the Toy Optimizer, Correctly. https://pypy.org/posts/2024/
08/toy-knownbits.html

[12] Ajay Brahmakshatriya and Saman Amarasinghe. 2021. BuildIt: A Type-Based Multi-stage Programming Framework
for Code Generation in C++. In 2021 IEEE/ACM International Symposium on Code Generation and Optimization (CGO).
39–51. https://doi.org/10.1109/CGO51591.2021.9370333

[13] L Clark. 2021. Making JavaScript Run Fast on WebAssembly. https://bytecodealliance.org/articles/making-javascript-
run-fast-on-webassembly.

[14] J de Mooij. 2020. Warp: Improved JS performance in Firefox 83. https://hacks.mozilla.org/2020/11/warp-improved-js-
performance-in-firefox-83/

[15] C Fallin. 2023. Fast(er) JavaScript on WebAssembly: Portable Baseline Interpreter and Future Plans. https://cfallin.
org/blog/2023/10/11/spidermonkey-pbl/

[16] N Fitzgerald. 2020. Wizer: The WebAssembly Pre-initializer. https://github.com/bytecodealliance/wizer.
[17] N Fitzgerald. 2023. The Winliner WebAssembly indirect call inliner. https://github.com/fitzgen/winliner
[18] Y Futamura. 1971. Partial Evaluation of Computation Process – An Approach to a Compiler-Compiler. Sys-

tems.Computers.Controls 2, 5 (1971).
[19] Y Futamura. 1999. Partial Evaluation of Computation Process – An Approach to a Compiler-Compiler. Higher-Order

and Symbolic Computation 12 (1999). https://doi.org/10.1023/A:1010095604496
[20] A Gal, B Eich, M Shaver, D Anderson, D Mandelin, M R Haghighat, B Kaplan, G Hoare, B Zbarsky, J Orendorff,

J Ruderman, E W Smith, R Reitmaier, M Bebenita, M Chang, and M Franz. 2009. Trace-based just-in-time type
specialization for dynamic languages. PLDI (2009). https://doi.org/10.1145/1542476.1542528

[21] Brian Grant, Markus Mock, Matthai Philipose, Craig Chambers, and Susan J. Eggers. 2000. DyC: an expressive
annotation-directed dynamic compiler for C. Theor. Comput. Sci. 248, 1–2 (Oct. 2000), 147–199. https://doi.org/10.
1016/S0304-3975(00)00051-7

[22] Brian Grant, Matthai Philipose, Markus Mock, Craig Chambers, and Susan J. Eggers. 1999. An evaluation of staged
run-time optimizations in DyC. In Proceedings of the ACM SIGPLAN 1999 Conference on Programming Language Design
and Implementation (Atlanta, Georgia, USA) (PLDI ’99). Association for Computing Machinery, New York, NY, USA,
293–304. https://doi.org/10.1145/301618.301683

[23] Samuel Groß. 2021. V8 Sandbox – High-Level Design Doc. https://docs.google.com/document/d/
1FM4fQmIhEqPG8uGp5o9A-mnPB5BOeScZYpkHjo0KKA8

[24] A Haas, A Rossberg, D L Schuff, B L Titzer, M Holman, D Gohman, L Wagner, A Zakai, and JF Bastien. 2017. Bringing
the Web Up To Speed with WebAssembly. PLDI (2017). https://doi.org/10.1145/3062341.3062363

[25] Neil D. Jones. 1990. Partial evaluation, self-application and types. In Proceedings of the Seventeenth International Collo-
quium on Automata, Languages and Programming (Warwick University, England). Springer-Verlag, Berlin, Heidelberg,
639–659.

https://github.com/WebAssembly/exception-handling/
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2024-4761
https://spidermonkey.dev/
https://wasmtime.dev
https://github.com/bytecodealliance/starlingmonkey
https://doi.org/10.1145/3357390.3361032
https://blog.cloudflare.com/cloud-computing-without-containers/
https://blog.cloudflare.com/cloud-computing-without-containers/
https://doi.org/10.1145/1565824.1565827
https://pypy.org/posts/2024/08/toy-knownbits.html
https://pypy.org/posts/2024/08/toy-knownbits.html
https://doi.org/10.1109/CGO51591.2021.9370333
https://bytecodealliance.org/articles/making-javascript-run-fast-on-webassembly
https://bytecodealliance.org/articles/making-javascript-run-fast-on-webassembly
https://hacks.mozilla.org/2020/11/warp-improved-js-performance-in-firefox-83/
https://hacks.mozilla.org/2020/11/warp-improved-js-performance-in-firefox-83/
https://cfallin.org/blog/2023/10/11/spidermonkey-pbl/
https://cfallin.org/blog/2023/10/11/spidermonkey-pbl/
https://github.com/bytecodealliance/wizer
https://github.com/fitzgen/winliner
https://doi.org/10.1023/A:1010095604496
https://doi.org/10.1145/1542476.1542528
https://doi.org/10.1016/S0304-3975(00)00051-7
https://doi.org/10.1016/S0304-3975(00)00051-7
https://doi.org/10.1145/301618.301683
https://docs.google.com/document/d/1FM4fQmIhEqPG8uGp5o9A-mnPB5BOeScZYpkHjo0KKA8
https://docs.google.com/document/d/1FM4fQmIhEqPG8uGp5o9A-mnPB5BOeScZYpkHjo0KKA8
https://doi.org/10.1145/3062341.3062363

22 Chris Fallin and Maxwell Bernstein

[26] N D Jones. 1996. An Introduction to Partial Evaluation. Comput. Surveys 28, 3 (1996). https://doi.org/10.1145/243439.
243447

[27] C. Lattner and V. Adve. 2004. LLVM: A compilation framework for lifelong program analysis & transformation. CGO
(2004). https://doi.org/10.1109/CGO.2004.1281665

[28] Oliver Medhurst. [n. d.]. Porffor: A from-scratch experimental AOT JS engine, written in JS. https://github.com/
CanadaHonk/porffor

[29] Olivier Melançon, Marc Feeley, and Manuel Serrano. 2023. An Executable Semantics for Faster Development of
Optimizing Python Compilers. In Proceedings of the 16th ACM SIGPLAN International Conference on Software Language
Engineering (Cascais, Portugal) (SLE 2023). Association for Computing Machinery, New York, NY, USA, 15–28. https:
//doi.org/10.1145/3623476.3623529

[30] Olivier Melançon, Marc Feeley, and Manuel Serrano. 2024. Static Basic Block Versioning. In 38th European Conference
on Object-Oriented Programming (ECOOP 2024) (Leibniz International Proceedings in Informatics (LIPIcs), Vol. 313),
Jonathan Aldrich and Guido Salvaneschi (Eds.). Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany,
28:1–28:27. https://doi.org/10.4230/LIPIcs.ECOOP.2024.28

[31] Tzvetan Mikov. [n. d.]. Static Hermes: How to Speed Up a Micro-benchmark by 300x Without Cheating. https:
//tmikov.blogspot.com/2023/09/how-to-speed-up-micro-benchmark-300x.html

[32] Hugo Musso Gualandi and Roberto Ierusalimschy. 2021. A Surprisingly Simple Lua Compiler. In Proceedings of the 25th
Brazilian Symposium on Programming Languages (Joinville, Brazil) (SBLP ’21). Association for Computing Machinery,
New York, NY, USA, 1–8. https://doi.org/10.1145/3475061.3475077

[33] Johnathan Norman. 2021. Microsoft Edge: Super Duper Secure Mode. https://microsoftedge.github.io/edgevr/posts/
Super-Duper-Secure-Mode/

[34] V8 Project. [n. d.]. Octane Benchmark Suite. http://chromium.github.io/octane/
[35] Tiark Rompf. 2016. The Essence of Multi-stage Evaluation in LMS. Springer International Publishing, Cham, 318–335.

https://doi.org/10.1007/978-3-319-30936-1_17
[36] Tiark Rompf andMartin Odersky. 2010. Lightweight modular staging: a pragmatic approach to runtime code generation

and compiled DSLs. SIGPLAN Not. 46, 2 (Oct. 2010), 127–136. https://doi.org/10.1145/1942788.1868314
[37] Salim S. Salim, Andy Nisbet, and Mikel Luján. 2020. TruffleWasm: a WebAssembly interpreter on GraalVM. In

Proceedings of the 16th ACM SIGPLAN/SIGOPS International Conference on Virtual Execution Environments (Lausanne,
Switzerland) (VEE ’20). Association for Computing Machinery, New York, NY, USA, 88–100. https://doi.org/10.1145/
3381052.3381325

[38] Chris Seaton. 2015. Specialising Dynamic Techniques for Implementing The Ruby Programming Language. PhD
thesis, University of Manchester.

[39] Manuel Serrano. 2018. JavaScript AOT compilation. In Proceedings of the 14th ACM SIGPLAN International Symposium
on Dynamic Languages (Boston, MA, USA) (DLS 2018). Association for Computing Machinery, New York, NY, USA,
50–63. https://doi.org/10.1145/3276945.3276950

[40] Manuel Serrano. 2021. Of JavaScript AOT compilation performance. Proc. ACM Program. Lang. 5, ICFP, Article 70
(Aug. 2021), 30 pages. https://doi.org/10.1145/3473575

[41] Amir Shaikhha, Yannis Klonatos, and Christoph Koch. 2018. Building Efficient Query Engines in a High-Level Language.
ACM Trans. Database Syst. 43, 1, Article 4 (April 2018), 45 pages. https://doi.org/10.1145/3183653

[42] Harishankar Vishwanathan, Matan Shachnai, Srinivas Narayana, and Santosh Nagarakatte. 2022. Sound, Precise, and
Fast Abstract Interpretation with Tristate Numbers. In 2022 IEEE/ACM International Symposium on Code Generation
and Optimization (CGO). 254–265. https://doi.org/10.1109/CGO53902.2022.9741267

[43] WebAssembly. [n. d.]. Optimizer and compiler/toolchain library for WebAssembly. https://github.com/WebAssembly/
binaryen

[44] T Würthinger, C Wimmer, C Humer, A Wöß, L Stadler, C Seaton, G Duboscq, D Simon, and M Grimmer. 2017. Practical
Partial Evaluation for High-Performance Dynamic Language Runtimes. PLDI (2017). https://doi.org/10.1145/3062341.
3062381

https://doi.org/10.1145/243439.243447
https://doi.org/10.1145/243439.243447
https://doi.org/10.1109/CGO.2004.1281665
https://github.com/CanadaHonk/porffor
https://github.com/CanadaHonk/porffor
https://doi.org/10.1145/3623476.3623529
https://doi.org/10.1145/3623476.3623529
https://doi.org/10.4230/LIPIcs.ECOOP.2024.28
https://tmikov.blogspot.com/2023/09/how-to-speed-up-micro-benchmark-300x.html
https://tmikov.blogspot.com/2023/09/how-to-speed-up-micro-benchmark-300x.html
https://doi.org/10.1145/3475061.3475077
https://microsoftedge.github.io/edgevr/posts/Super-Duper-Secure-Mode/
https://microsoftedge.github.io/edgevr/posts/Super-Duper-Secure-Mode/
http://chromium.github.io/octane/
https://doi.org/10.1007/978-3-319-30936-1_17
https://doi.org/10.1145/1942788.1868314
https://doi.org/10.1145/3381052.3381325
https://doi.org/10.1145/3381052.3381325
https://doi.org/10.1145/3276945.3276950
https://doi.org/10.1145/3473575
https://doi.org/10.1145/3183653
https://doi.org/10.1109/CGO53902.2022.9741267
https://github.com/WebAssembly/binaryen
https://github.com/WebAssembly/binaryen
https://doi.org/10.1145/3062341.3062381
https://doi.org/10.1145/3062341.3062381

	Abstract
	1 Introduction
	2 Futamura Projections and Partial Evaluation
	2.1 The Futamura Projection
	2.2 Optimizing Compilation: Interpreted Program to Specialized Code
	2.3 Optimizing an Interpreter with its Input

	3 The weval Transform: User-Context-Controlled Constant Propagation
	3.1 Key Idea #1: User Context
	3.2 Key Idea #2: Context-Specialized Code Duplication
	3.3 Key Idea #3: Directed Value-Specialization
	3.4 Maintaining Static Single Assignment (SSA) Form
	3.5 Interface: Semantics-Preserving Specialization
	3.6 Generality Across IRs

	4 Handling Interpreter State Efficiently
	4.1 Virtualized Registers
	4.2 In-Memory State: Locals and Operand Stack
	4.3 Discussion: Semantics-Preservation and Polyfills

	5 Case Study: Minimal Toy Interpreter
	6 Case Study: SpiderMonkey JavaScript Interpreter
	6.1 Changes to the Interpreter
	6.2 Performance Results
	6.3 Comparison to Native Execution
	6.4 Code Size
	6.5 Transform Speed

	7 Case Study: PUC-Rio Lua Interpreter
	8 Related Work
	9 Future Work
	9.1 Profile-Guided Inlining and Semantics-Preserving Optimizations
	9.2 Specializing at Run-time

	References

