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We propose a rich foundational theory of typed data streams and stream transformers, motivated by two high-

level goals: (1) the type of a stream should be able to express complex sequential patterns of events over time,

and (2) it should describe the parallel structure of the stream to enable deterministic stream processing on

parallel and distributed systems. To this end, we introduce stream types, with operators capturing sequential

composition, parallel composition, and iteration, plus a core calculus of transformers over typed streams

which naturally supports a number of common streaming idioms, including punctuation, windowing, and

parallel partitioning, as first-class constructions. The calculus exploits a Curry-Howard-like correspondence

with an ordered variant of the logic of Bunched Implication to program with streams compositionally and

uses Brzozowski-style derivatives to enable an incremental, event-based operational semantics. To validate

our design, we provide a reference interpreter and machine-checked proofs of the main results.
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1 INTRODUCTION

What is the type of a stream? A straightforward answer, dating back to the early days of func-
tional programming [16], is that a stream is an unbounded sequence of items of a single fixed type,
produced by one part of a system (or the external world) and consumed by another. This perspec-
tive has been immensely successful, with the programming models exposed by the most popular
distributed stream processing eDSLs (e.g., Flink [17, 25], Beam [30], Storm [29], and Heron [26])
typically offering just one type, Stream t.
However, this homogeneous treatment of streams leaves something to be desired in the world

of modern stream processing. For one thing, streaming data sometimes arrives at a processing
node frommultiple sources in parallel. Using arrival times to impose an “incidental” order on such
parallel data can make it difficult to ensure that processing is deterministic because downstream
results may then depend on external factors like network latency [49, 55]. Another issue is that
temporal patterns like bracketedness (every “begin” event has a following “end”) or streams with
exactly : events are invisible in the stream’s type. Programmers cannot trust the type system to
ensure these properties when producing a stream, nor can they rely on them when consuming a
stream; see Section 2 for examples.
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2 Cutler et al.

We offer a new logical foundation for typed stream processing that can describe streams with
both complex sequential patterns and parallel structure. On this foundation, we build a calculus
called _ST that is (a) expressive and type-safe for streams with complex temporal patterns and (b)
deterministic, even in the presence of parallel inputs.
Programs in _ST are intuitively batch processors that operate over entire streams at once. But,

since streams are in general unbounded, stream transformers can’t actually wait for “the entire
input stream” to arrive before producing any output. The operational semantics of the _ST calculus
is therefore incremental, producing partial outputs from partial inputs on the fly. Concretely, a _ST

program is interpreted as a function mapping any prefix of its input(s) to a prefix of its output plus
a “derivative” term that is ready to transform the rest of the inputs to the rest of the output.
Our stream types include two kinds of products, one representing a pair of streams in temporal

sequence, the other a pair of streams in parallel. This structure is inspired both by Concurrent
Kleene Algebras [35, 45], which syntactically describe partially ordered series/parallel data, and
work by Alur et al. [3] and Mamouras et al. [49], where streams are modeled as partially ordered
sets. We find a suitable proof theory for this two-product formalism in a variant of O’Hearn and
Pym’s Logic of Bunched Implications (BI) [52]. BI has famously been used as a foundation for sep-
aration logic [54], where the “separating conjunction” allows for local reasoning about separate
regions of the heap in imperative programs. In _ST, we replace spatial separation with temporal

separation: one product describes pairs of streams separated sequentially in time; the other, inde-
pendent pairs of streams whose elements may arrive in interleaved fashion.
Concretely, our contributions are:

(1) We propose stream types, a type discipline for distributed stream processing that generalizes
the traditional homogeneous view to a richer nested-parallel-and-sequential structure.

(2) We define a calculus _ST of stream processing transformers, inspired by a Curry-Howard-
like correspondence with an ordered variant of BI. Terms in _ST are high level programs in
a functional style that conceptually transform whole streams.

(3) We equip _ST with an operational semantics interpreting terms as incremental transformers
that accept and produce finite prefixes of streams. Our main technical result is a powerful
homomorphism theorem (Theorem 3.3) guaranteeing that the result of a transformer does
not depend on how the input stream is divided into successive prefixes.

(4) We formalize the type system and semantics in Coq and prove that the incremental semantics
is deterministic: all interleavings of parallel substreams yield the same final result.

(5) We demonstrate by example how _ST enables type-safe programming for streams with com-
plex patterns and prevents nondeterminism and how programming patterns from stream
processing practice are elegantly supported by this richer model, including MapReduce-like
pipelines, temporal integrity constraints, windowing, punctuation, parallelism control, rout-
ing, and side outputs.

(6) We show that the high-level operational semantics of _ST can be implemented atop conven-
tional sequential streams by compiling stream-typed terms to string transducers, opening a
path to a future distributed implementation based on an existing industrial-strength runtime.

The rest of the paper is structured as follows. Section 2 explores some concrete cases where _ST’s
structured types can prevent common stream processing bugs and enable cleaner programming
patterns. Section 3 presents Kernel _ST, a minimal subset with just the features needed to state and
understand our main results. Section 4 extends this presentation to the full _ST. Section 5 develops
several examples and argues that _ST solves the problems presented in Section 2. Section 6 shows
how to compile _ST terms to string transducers. Sections 7 and 8 discuss related and future work.
Overviews of the Coq formalization of our main results and our prototype interpreter in Haskell
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Stream Types 3

can be found in Appendix A, technical details omitted from the main paper in Appendix B, and
expanded versions of the examples in Appendix C.

2 MOTIVATING EXAMPLES

Types for temporal invariants. Consider a stream of brightness data coming from a motion sensor,
where each event in the stream is a number between 0 and 100. Suppose we want a stream trans-
former that acts as a threshold filter, sending out a “Start” event when the brightness level goes
above level 50, forwarding along brightness values until the level dips below the threshold, and
sending a final “Stop” event. For example:

11, 30, 52, 56, 53, 30, 10, 60, 10, . . . =⇒ Start, 52, 56, 53, Stop, Start, 60, Stop, . . .

The output of the transformer should satisfy the following temporal invariant: each start event
must be followed by one or more data events, and then one end event. Unfortunately, usual
stream processing systems would give this transformation a type that looks like Stream Int →

Stream (Start + Int + Stop), which expresses only the types of events in the output, not the
temporal invariant on them.
These simple types become even more of a problem when consuming streams. Suppose a second

transformer wanted to consume the output stream of type Stream (Start + Int + Stop) and
compute the average brightness between each start/end pair. We know a priori that the stream is
well bracketed, but the type does not say so. Thus, the transformer must re-parse the stream to
compute the averages, requiring additional logic for various special cases (e.g., empty start/end
pairs) that cannot actually occur in the real stream!

In _ST, we can express this invariant with the type
(
Start · Int · Int★ · End

)
★

, specifying that
the stream consists of a start message, at least one Int, and an end message, repeatedly. A well-
typed transformer with this output type is guaranteed to enforce the desired invariant; conversely,
a downstream transformer can assume that its input will adhere to the invariant.

Enforcing deterministic parallelism. A second limitation of homogeneous streams is that they
impose a total ordering on their component events.1 In other words, for each pair of events in the
stream, the transformer can tell which came first. Imposing a total ordering like this is problematic
in a world where stream transformers work over data that is logically partially ordered—e.g., be-
cause it comes from separate sources. For example, consider a pair of sensors, each producing one
reading per second and and sending them different network connections to a single transformer
that averages them pairwise, producing a composite reading each second.
A natural way to do this is to merge the two streams, group adjacent pairs of elements (i.e., im-

pose a size-two tumbling window), and average the pairs, but this is subtly wrong: a network delay
could cause a pair of consecutive elements in the merged stream to be from the same sensor, after
which the averages will all be bogus. The problem here is that this transformer is not deterministic:
its result can depend on external factors like network latency. Bugs of this type can easily occur in
practice [49, 55] and can be very difficult to track down, since they may only manifest under rare
conditions [43].
Once again, this is a failure of type structure. In _ST, we would give the merged stream the

type (Sensor1‖Sensor2)★, capturing the fact that it is a stream of parallel pairs of readings from
the two sensors. We can write a strongly typed merge operator that produces this type, given
parallel streams of type Sensor1★ and Sensor2★. This merge operator is deterministic because all

1In practical stream processing systems, this is often a total ordering per key for a parallelized stream—cf. KeyedStream in

Flink—but the same objections apply.
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4 Cutler et al.

well-typed _ST programs are (Section 3.4); operationally, it waits for events to arrive on both of its
input streams before sending them along as a pair.

3 KERNEL _ST

In this section, we define the most important constructors of stream types together with the cor-
responding features of the term language; these form the “kernel” of the _ST calculus. The rest of
the types and terms of full _ST will layered on bit by bit in Section 4.
The concatenation type constructor describes streams that vary over time: if B and C are types

of streams, then a stream of type B · C behaves first like a stream of type B , and then, if the B part
finishes, like a stream of type C . Operationally, streams of type B ·C can include a punctuation marker

[60] indicating where they cross over from their B part to their C part. For example, streams of type
B★ are distinguishable from streams of type B★ · B★ because a transformer accepting the latter can
see when its input crosses from the first B★ to the second.
The parallel type constructor, written B‖C , describes streams with two parallel substreams of

types B and C . Each element in a parallel stream is tagged to indicate which substream it belongs to.
This means that streams of type B‖C are isomorphic, but not identical, to streams of type C ‖B , and
similarly Int★‖Int★ is not the same as Int★. Semantically, the B and C components are produced
and consumed independently: a transformer that produces B‖C may send out an entire B first and
then a C , or an entire C and then the B , or any interleaving of the two. Conversely, a transformer that
accepts B‖C must handle all these possibilities uniformly by processing the B and C independently.
Parallel types can be combined with concatenation types in interesting ways. For example, a

stream of type (B‖C) · A consists of a stream of interleaved items from B and C , followed (once all
the B’s and C ’s have arrived) by a stream of type A . By contrast, a stream of type (B · C)‖(B′ · C ′)

has two parallel components, one a stream described by B followed by a stream described by C and
the other an B′ followed by a C ′. The fact that the parallel type is on the outside means that the
change-over points from B to C and B′ to C ′ are completely independent.
The base type 1 describes a stream containing just one data item, itself a unit value. The other

base type is Y, the type of the empty stream containing no data; it is the unit for both the · and
‖ constructors—i.e., B · Y, Y · B , Y‖B and B‖Y are all equivalent to B , in the sense that there are _ST

transformers that convert between them. In summary, the Kernel _ST stream types are given by
the grammar on the top left in Figure 1. (Of course, these kernel types can only describe streams
of fixed, finite size. In Section 4.3 we will introduce unbounded streams via the Kleene star type
B★.)

What about terms? Our goal is to develop a language of core terms 4 , typed by stream types,
where well-typed terms G : B ⊢ 4 : C are interpreted as incremental stream transformers accepting
a stream described by B and producing one described by C . But one input stream is not enough: in
order to be compositional, the type system needs to be able to handle stream transformers with
multiple parallel and sequential inputs. To enable this, we draw upon results from proof theory for
insight. Both the types B ·C and B‖C are product types, in the sense that streams of these types should
contain the data of a stream of type B and a stream of type C—although the temporal structure differs
between the two. In situations where a logic (or type theory) includes two products, standard
techniques from proof theory tell us that the corresponding typing judgment requires a context
with two context formers.

The first of these, written with a comma (Γ, Δ), is standard in intuitionistic logics. The second,
written with a semicolon (Γ; Δ), is the interesting one, behaving intuitively like the parallel type
constructor. A context Γ, Δ describes inputs to a transformer arriving from two different parts of
the environment, one structured according to Γ and the other according to Δ. On the other hand,
the semicolon corresponds to concatenation: a context Γ; Δ means that data will first arrive from
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Stream Types 5

B, C, A := 1 | Y | B · C | B‖C Γ ::= · | Γ, Γ | Γ; Γ | G : B

Γ ⊢ 41 : B Γ ⊢ 42 : C

Γ ⊢ (41, 42) : B‖C
Par-R

Γ(G : B, ~ : C) ⊢ 4 : A

Γ(I : B‖C) ⊢ letΓ (−) (G,~) = I in 4 : A
Par-L

Γ ⊢ 41 : B Δ ⊢ 42 : C

Γ; Δ ⊢ (41; 42) : B · C
Cat-R

Γ(G : B; ~ : C) ⊢ 4 : A

Γ(I : B · C) ⊢ letΓ (−) (G ;~) = I in 4 : A
Cat-L

Γ ⊢ sink : Y
Eps-R

Γ ⊢ () : 1
One-R

Γ(G : B) ⊢ (G : B@Γ(−)) : B
Var

pf : Γ ≤ Γ
′

Γ
′ ⊢ 4 : B

Γ ⊢ subctx (pf , 4) : B
Subctx

Fig. 1. Kernel _STsyntax and typing rules

the environment according to Γ, then according to Δ. Such bunched contexts were first introduced
in the logic of Bunched Implication [52], the basis of modern separation logic[54]. In BI, the sepa-
rating context former is commutative, while our semicolon context former is not.
Formally, stream contexts are drawn from the grammar at the top right of Figure 1. Our typing

judgment is now Γ ⊢ 4 : B . Intuitively, this means that 4 is a transformer from a collection of
streams structured like Γ to a single stream structured like B .
The structural rules for manipulating these contexts will determine which sequents are prov-

able and hence which programs are type-correct. For example, including an exchange rule for the
comma connective—allowing Γ, Δ to be rewritten as Δ, Γ—ensures that B‖C is interprovable with
C ‖B; a proof of this fact will be a transformer that swaps the parallel components of the stream.
On the other hand, B · C is manifestly different from C · B: in a stream of the first type, B arrives
before C ; in the second, C before B . In other words, concatenation is an ordered product. The conse-
quence of this is that our type system does not include an exchange rule for semicolon contexts. A
contraction rule for semicolon—converting from Γ to Γ; Γ—is similarly undesirable, as every use
of this structural rule would require the runtime system to save and then “replay” a potentially
unbounded incoming stream.
In summary, our type system is substructural. The semicolon context former is ordered (no

exchange) and affine (no contraction), while the comma context former is fully structural. Both
context formers are associative, with the empty context serving as a unit for both.

3.1 Kernel Typing Rules

The typing rules for Kernel _ST are collected in Figure 1. For technical reasons, the rules are pre-
sented in sequent-calculus style, rather than the more familiar natural deduction style. The main
difference is that sequent calculi have left and right rules—describing how to eliminate a connec-
tive when it’s in the context or the result type, respectively—as opposed to natural deduction’s
introduction and elimination rules. (In the presence of a Cut rule, the two presentations are equiv-
alent. The semantics of Cut itself is a bit complex, though, and we choose the sequent-calculus
presentation to isolate this complexity in one place.)
The most straightforward typing rule is the right rule for parallel (Par-R). From a context Γ, we

can produce a stream of type B‖C by producing B and C independently from Γ, using transformers
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6 Cutler et al.

41 and 42. We write the combined transformer as a “parallel pair”, (41, 42). Semantically, this trans-
former operates by copying the inputs arriving on Γ, passing the copies to 41 and 42, and pairing
up the outputs into a parallel stream. Similarly, the Cat-R rule is used to produce a stream of type
B · C . It uses a similar pairing syntax—if term 41 has type B and 42 has type C , then the “sequential
pair” (41; 42) has type B ·C—but the context in the conclusion differs. Since 41 needs to be run before
42, the part of the input stream that 41 depends on (Γ) must arrive before the part that 42 depends
on (Δ). Semantically, this term will operate by accepting data from the Γ part of the context and
running 41; once the Γ part is finished and the Δ part starts to arrive, it will switch to running 42.
These right rules describe how to produce a stream of parallel or concatenation type; the corre-

sponding left rules describe how to use a variable of one of these types appearing somewhere in
the context. Syntactically, the terms take the form of let-bindings: we can deconstruct variables of
type B ·C or B‖C as pairs of variables of type B and C , connected by either ; or , as appropriate. We use
the standard BI notation Γ(−) for a context with a hole, and Γ(Δ) when this hole has been filled
with the context Δ. In particular, Γ(G : B) is a context with a distinguished variable G at some leaf.

The Par-L rule says that if I is a variable of type B‖C somewhere in the context, we can let-bind
it as a pair of variables G and ~ of type B and C and use these in a continuation term 4 of type A .
When typing 4 , the variables G and ~ appear in the same position as the original variable I, but
separated by a comma—i.e., G and ~ are assumed to arrive in parallel. Similarly, the parallel rule
Cat-L says that, if a variable I of type B · C appears in the context, it can be let-bound to a pair of
variables G and ~ of types B and C , which are again used in the continuation 4 . This time, though,
G and ~ are separated by a semicolon—i.e., the substream bound to G will arrive first, followed by
the substream bound to ~.
Eps-R and One-R are the right rules for the two base types, witnessed by the terms sink and

(). Semantically, sink does nothing: it accepts inputs on Γ and produces no output. On the other
hand, () emits a unit value as soon as it receives its first input, and then never emits anything else.
The variable rule (Var) says that, if G : B is a variable somewhere in the context, then we can

simply return it. Semantically, it works by dropping everything in the context except for the B-
typed data for G , which it forwards along. The corresponding proof term is (G : B@Γ(−)), where G
is the variable itself, B is its type, and Γ(−) is surrounding context. The annotations B and Γ(−) are
included because they will be needed by the operational semantics. Because the input to a termwill
itself be tree-structured, the context location Γ(−) is required to look up the data corresponding
to G in the input tree. And the output type B is required when this variable lookup comes back
empty handed because the prefix of the context that has arrived so far stops before it gets to any
data corresponding to this variable; in this case, the semantics of the Var rule needs to construct
an “empty” value, whose shape depends on the type B . (Although these annotations are required
at runtime, we expect they will be inferrable in a high-level language based on _ST—see Section 8.)
Finally, the rule SubCtx encodes all of the structural rules as a subtyping relation on the context.

For example, the weakening rule for semicolon contexts is written, Γ; Δ ≤ Γ, and the exchange
rule is Γ, Δ ≤ Δ, Γ. Each of these structural rules has semantic content. For example, choosing to
use the comma contraction rule Γ ≤ Γ, Γ requires duplicating the input at runtime. Because of
this, the structural rules are marked in the syntax explicitly as subctx (pf , 4), where pf is a proof
term describing which structural rules structural rules were used. See Appendix B.7 for details.

Examples. To show the typing rules in action, here are two small examples of transformers written
in Kernel _ST.2 The first is a simple “parallel-swap” transformer, which accepts a stream I of type

2We elide the annotations on variables and let-bindings, as well as terms for structural rules, following the style used for

the examples in Section 5. Fully explicit versions can be found in Appendix C, and elaboration from a high level language

to the core is discussed in Section 8.
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Stream Types 7

oneb : batch (1) epsb : batch (Y)

1 : batch (B) 1′ : batch (C)

catb (1,1′) : batch (B · C)

1 : batch (B) 1′ : batch (C)

parb (1,1′) : batch (B‖C)

1 : batch (B)

1 : batch ((G : B))

1 : batch (Γ) 1′ : batch (Γ′)

catb (1,1′) : batch (Γ; Γ′)

1 : batch (Γ) 1′ : batch (Γ′)

parb (1,1′) : batch (Γ, Γ′)

Fig. 2. Batches of types and contexts

B‖C , and outputs a stream of type C ‖B , swapping the “positions” of the parallel substreams: I : B‖C ⊢
let (G,~) = I in (~, G) : C ‖B . It works by splitting the variable I : B‖C into variables G : B and ~ : C
and yielding a parallel pair with the order reversed. The second example is a “prepend” transformer,
which takes a variable G : B and outputs a stream of type 1 · B , prepending a unit value to the front:
G : B ⊢ ((); G) : 1 · B .

3.2 Batches and Batch Processing Semantics

Although our goal is to develop an incremental semantics for stream transformers, it turns out
that we need a “batch semantics” as a subroutine, where the full contents of a stream is provided
to a transformer and it produces its entire output all at once. A batch, then, is a structured value
representing the full history of a completed stream.
Stream types dictate the shape of their batches. In particular, a batch of a parallel stream type

B‖C is a pair of a batch of B and a batch of C . Crucially, this definition encodes no information about
any particular interleaving of the batch of B and the batch of C . Similarly, a batch of a concatenation
B · C is also a batch of B and a batch of C . The grammar of batches is

1 ::= oneb | epsb | catb (1,1′) | parb (1,1′)

where catb (1,1′) and parb (1,1′) construct batches for parallel and concatenation types and oneb
and epsb are the unique batches of types 1 and Y. Batches are given types by the judgment 1 :
batch (B), the rules of which are given in Figure 2. This relation is further lifted to contexts: Γ,Δ
and Γ;Δ are the batches of parb (1,1′) and catb (1,1′), respectively, when 1 and 1′ are batches of
Γ and Δ.
The batch semantics is defined by the judgment 1 ⇒ 4 ⇒ 1′, pronounced “running term 4 on

batch 1 produces batch 1′” (see Figure 3). The following theorem establishes the correctness of the
semantics: well typed terms Γ ⊢ 4 : B take batches of Γ to batches of B .

Theorem 3.1 (Batch Safety). If Γ ⊢ 4 : B and 1 : batch (Γ), then there is a unique 1′ such that

1 ⇒ 4 ⇒ 1′; moreover, 1′ : batch (B).

This and all of the theorems in the paper are formalized in Coq (see Appendix A) and discussed in
more detail in the Appendix B.
The cases for the two pairing constructs in the batch semantics are straightforward. In B-Par-R,

we take the input batch, pass it to both 41 and 42, and then combine the results as a parallel pair
of batches. In B-Cat-R, the input must be a concatenation batch because the conclusion of the
Cat-R rule has a semicolon context Γ;Δ. We pass the first batch to 41 and the second to 42, and we
combine the results as a concatenation pair of batches. On the other hand, the batch semantics for
let-bindings is trivial, since is it easy to verify that a batch of Γ(I : B · C) is exactly the same as a
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8 Cutler et al.

1 ⇒ 41 ⇒ 11 1 ⇒ 42 ⇒ 12

1 ⇒ (41, 42) ⇒ parb (11, 12)
B-Par-R

1 ⇒ 4 ⇒ 1′

1 ⇒ letΓ (−) (I, G) = ~ in 4 ⇒ 1′
B-Par-L

11 ⇒ 41 ⇒ 1′1 12 ⇒ 42 ⇒ 1′2

catb (11, 12) ⇒ (41; 42) ⇒ catb
(
1′1, 1

′
2

) B-Cat-R
1 ⇒ 4 ⇒ 1′

1 ⇒ letΓ (−) (I; G) = ~ in 4 ⇒ 1′
B-Cat-L

1 ⇒ sink ⇒ epsb
B-Eps-R

1 ⇒ () ⇒ oneb
B-One-R

1 {Γ (−) 1
′

1 ⇒ (G : B@Γ(−)) ⇒ 1′
B-Var

coeBatch (pf , 1) ∼ 1′ 1′ ⇒ 4 ⇒ 1′′

1 ⇒ subctx (pf , 4) ⇒ 1′′
B-SubCtx

Fig. 3. Batch semantics rules (input and output batched are red, terms are blue)

batch for Γ(G : B; ~ : C), and similarly for parallel types and comma contexts. For this reason, both
left rules can simply pass their input batches to the continuation and return the result.
The rules B-Eps-R and B-One-R simply return the unique batches of their respective types.
The variable rule (B-Var) takes the input batch 1 and uses the context location Γ(−) to look

up the part of 1 that corresponds to the variable G . This lookup is accomplished with an auxiliary
relation called batch projection, written 1 {Γ (−) 1′ and defined in Appendix B.5. For example,
suppose 1 = catb (11, parb (12, 13)) is a batch for the context (G : B; (~ : C, I : A )). Then we have
1 {(G :B; (−, I:A ) ) 12 holds, i.e., 12 is the batch located at the hole where ~ occurs.

The rule for context subtyping accepts a batch 1, rearranges it by transporting it along the
subtyping relation pf , and then runs it through 4 . This rule uses another auxiliary relation called
batch transport and written coeBatch (pf , 1) ∼ 1′. This relation transforms a batch for Γ into a
(unique) batch for Γ′ when pf : Γ ≤ Γ

′. See Appendix B.7 for details.

3.3 Prefixes and Incremental Semantics

We’re now ready to discuss the incremental semantics of Kernel _ST. The natural notion of “value”
for an incremental semantics is finite prefixes of streams: that is, a well-typed term Γ ⊢ 4 : B should
accept any prefix of a stream of type Γ and produce a prefix of a stream of type B .
(Ultimately, we will be interested in running transformers one event at a time, as discussed in

Section 6. Even so, the generalization to arbitrary prefixes here is needed to define the semantics
compositionally, since the behavior of a composite transformer in response to a single event may
involve generating and processing multiple events internally.)
The possible prefixes of a stream can be calculated from its type. In particular, there are two

prefixes of a stream of type 1: the empty prefix, written onepA, and the prefix containing the
single element (), written onepB. Similarly, the unique stream of type Y has a single prefix, the
empty prefix, which we write epsp.
What about B‖C? A parallel stream of type B‖C is conceptually a pair of independent streams of

type B and C , so a prefix of a parallel stream should be a pair parp(?1, ?2), where ?1 is a prefix of a
stream of type B , and ?2 is a prefix of a stream of type C . As with batches of streams of parallel type,
this definition includes no information about orderings between the two parallel components: the
prefix parp(?1, ?2) equally represents a situation where ?1 arrived first and the ?2 did, one where
?2 arrived before ?1, and one where the data for ?1 and ?2 arrived in some interleaved order. In a
nutshell, this definition is what guarantees deterministic processing. By representing all possible
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epsp : prefix (Y) onepA : prefix (1) onepB : prefix (1)

? : prefix (B)
? ′ : prefix (C)

parp(?, ? ′) : prefix (B‖C)

? : prefix (B)

catpA(?) : prefix (B · C)

1 : batch (B)
? : prefix (C)

catpB(1, ?) : prefix (B · C)

Fig. 4. Prefixes for types

interleavings using the same prefix value, we ensure that a transformer that operates on these
values cannot possibly depend on ordering information that isn’t present in the type.

Finally, let’s consider the prefixes of streams of type B · C . One case is a prefix that only includes
data from B because it is cut off before reaching the point where the B · C stream stops being B and
starts being C . We write such a prefix as catpA(?), with ? a prefix of type B . The other case is where
the prefix does include the crossover point—i.e., it consists of a complete batch of B plus a prefix
of C . We write this as catpB(1, ?), with 1 a batch of B and ? a prefix of C .
We formalize all these possibilities as a judgment ? : prefix (B) (see Figure 4). We further lift

this judgment to contexts, with prefixes of streams of comma contexts behaving like prefixes of
streams of parallel type and prefixes of streams of semicolon contexts behaving like prefixes of
streams of concatenation type.
Every type B has a distinguished empty prefix, written empB and defined by straightforward recur-

sion on B . There is also a natural operation that takes a batch and turns it into a prefix, “forgetting”
the fact that it was a complete batch. We write this operation as (1)◦. See Appendix B.1 for details.

Derivatives. After a well-typed transformer Γ ⊢ 4 : B accepts a prefix ? of type Γ and produces a
prefix ? ′ of type B , it should transition to a new transformer 4′ that is prepared to accept the rest
of the input stream to produce the rest of the output stream. In other words, 4′ should have type
“the rest of a stream of type B , after ? ′” in context “the rest of a stream of type Γ, after ?”.

The “rest” of a type or context is, intuitively, its derivative in the sense of standard Brzozowski
derivatives of regular expressions [15]. Formally, we define a 3-place relation, X? (B) ∼ B′, pro-
nounced “the derivative of B with respect to ? is B′” (see Figure 5). This relation is actually a partial
function that is defined when ? : prefix (B); in this case, we write X? (B) for the unique B

′ such
that X? (B) ∼ B′.
The derivative of the type 1 with respect to the empty prefix onepA is 1 (the “rest” of the stream

is the entire stream), and the derivative with respect to the full prefix onepB is Y (there is no more
stream left after the unit element has arrived). For parallel, the derivative is taken component-wise.
Themost interesting cases are those for the concatenation type. If the prefix has the form catpA(?),
the derivative XcatpA (? ) (B · C) is

(
X? (B)

)
· C , i.e., some of the B has gone by but not all, and we still

expect C to come after it. On the other hand, if the prefix has the form catpB(1, ?), the derivative
XcatpB (1,? ) (B · C) is just X? (C), i.e., the B component is complete, and the rest of the stream is just
the part of C after ? .

Incremental Semantics. The incremental semantics is given by a judgment ? ⇒ 4 ↓ 4′ ⇒ ? ′,
pronounced “running the core term 4 on the input prefix ? yields the output prefix ? ′ and steps
to 4′.” The following correctness theorem establishes correctness for this semantics: if we run a
well-typed core term on a prefix from the context type, it will return a prefix with the result type
and step to a term that can accept the rest of the context and produce the rest of the result.
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10 Cutler et al.

Xepsp (Y) ∼ Y XonepA (1) ∼ 1 XonepB (1) ∼ Y

X? (B) ∼ B′

XcatpA (? ) (B · C) ∼ B′ · C

X? (C) ∼ C ′

XcatpB (1,? ) (B · C) ∼ C ′

X? (B) ∼ B′ X? ′ (C) ∼ C ′

Xparp (?,? ′ ) (B‖C) ∼ B′‖C ′

Fig. 5. Derivatives

Theorem 3.2 (Correctness of the Incremental Semantics). If Γ ⊢ 4 : B and ? : prefix (Γ),
then there are unique 4′ and ? ′ such that ? ⇒ 4 ↓ 4′ ⇒ ? ′; moreover, ? ′ : prefix (B) and X? (Γ) ⊢
4′ : X? ′ (B).

The rules for the incremental semantics of Kernel _ST are gathered in Figure 6 and described in
the remainder of this subsection; the full set of rules for all of _ST can be found in Appendix B.10.

Incremental Semantics of the Right Rules. The right rules for parallel and concatenation are the
simplest to understand, so we address them first. For P-Par-R, we accept a prefix ? and use it to run
the component terms 41 and 42, independently producing outputs ?1 and ?2 and stepping to new
terms 4′1 and 4

′
2. The pair term (41, 42) then steps to

(
4′1, 4

′
2

)
and produces the output parp(?1, ?2).

There are two right rules for the concatenation pair (41; 42) : B · C . Because the conclusion of the
corresponding typing rule ensures that the input context has the form Γ;Δ, there are two possible
shapes of input prefixes: either catpA(?), with ? a prefix of type Γ, or else catpB(1, ?), with 1

a batch of type Γ and ? a prefix of type ? . If the input is catpA(?), the rule P-Cat-R-1 applies:
we run 41 with ? , which returns ? ′ as output and 4′1 as a new term. The original term then steps

to
(
4′1; 42

)
and returns catpA(? ′). (Since the input prefix includes no data for the second half of

the context, we do not need to run 42 at all.) On the other hand, if the input is catpB(1, ?), the
rule P-Cat-R-2 applies. Here, the data required to run 41 has arrived as a full batch 1, so we run
41 using the batch semantics to produce an output batch 1′. We then use the prefix ? to run 42,
returning ? ′ and stepping to 4′2. The entire term then outputs catpB(1′, ? ′) and steps to 4′2. Note
that the pair is eliminated in the process: we step from (41; 42) to just 4

′
2. To see why, note that, for

the correctness theorem to hold, the resulting term must have type XcatpB (1′,? ′ ) (B · C) = X? (C) in
context XcatpB (1,? ) (Γ;Δ) = X? (Δ)—but this is the typing for 4′2.

Incremental Semantics of Context Subtyping. The incremental semantics for context subtyping is
conceptually similar to the batch semantics. Given pf : Γ ≤ Γ

′, we accept a prefix ? of type Γ in the
input, coerce it with a relation coePfx (pf , ?) ∼ ? ′ to a prefix of type Γ′, pass it to the premise term
4 , and return the result ? ′′. The difference comes in how we decide what term to step to. In the
recursive call, the premise term 4 steps to 4′, which is well typed in context X? ′ (Γ′). Meanwhile,
the overall conclusion must be well typed in context X? (Γ). These two contexts are related by a
subtyping rule—intuitively, the one given by the derivative of the proof term pf with respect to ? .
To calculate this derivative, we use yet another relation X? (pf ) ∼ pf ′ (defined in Figure B.66 in
Appendix B), which takes a prefix ? of type Γ together with a proof term pf : Γ ≤ Γ

′ and produces
a proof term pf ′ : X? (Γ) ≤ X? ′ (Γ′). In the rule P-SubCtx-1, we use this to update the proof term
and step to the term subctx (pf ′, 4′). However, it is sometimes the case that X? (Γ) = X? ′ (Γ′) on
the nose, in which case the structural rule is no longer needed. We write this as X? (pf ) ∼ ⊥, and
use it in P-SubCtx-2, where we simply step to the term 4′.
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?@Γ(−) { ⊥@Γ
′(−)

? ⇒ (G : B@Γ(−)) ↓ (G : B@Γ
′(−)) ⇒ empB

P-Var-1

?@Γ(−) { ? ′@Γ
′(−)

? ⇒ (G : B@Γ(−)) ↓
(
G : X? (B)@Γ

′(−)
)
⇒ ? ′

P-Var-2
?@Γ(−) { 1

? ⇒ (G : B@Γ(−)) ↓ sink1 ⇒ (1)◦
P-Var-3

? ⇒ 41 ↓ 4′1 ⇒ ?1 ? ⇒ 42 ↓ 4′2 ⇒ ?2

? ⇒ (41, 42) ↓
(
4′1, 4

′
2

)
⇒ parp(?1, ?2)

P-Par-R

(?@Γ(−) { ⊥@Γ
′ (−)) ∨ (?@Γ(−) { ? ′@Γ

′(−)) ? ⇒ 4 ↓ 4′ ⇒ ? ′

? ⇒ letΓ (−) (G,~) = I in 4 ↓ letΓ′ (−) (G,~) = I in4′ ⇒ ? ′
P-Par-L-1

?@Γ(−) { _@? ⇒ 4 ↓ 4′ ⇒ ? ′

? ⇒ letΓ (−) (G,~) = I in 4 ↓ 4′ ⇒ ? ′
P-Par-L-2

? ⇒ 41 ↓ 4′1 ⇒ ? ′

catpA(?) ⇒ (41; 42) ↓
(
4′1; 42

)
⇒ catpA(? ′)

P-Cat-R-1

1 ⇒ 41 ⇒ 1′ ? ⇒ 42 ↓ 4′2 ⇒ ? ′

catpB(1, ?) ⇒ (41; 42) ↓ 4′2 ⇒ catpB(1′, ? ′)
P-Cat-R-2

(?@Γ(−) { ⊥@Γ
′ (−)) ∨ (?@Γ(−) { catpA(_)@Γ

′(−)) ? ⇒ 4 ↓ 4′ ⇒ ? ′

? ⇒ letΓ (−) (I; G) = ~ in4 ↓ letΓ′ (−) (I; G) = ~ in 4′ ⇒ ? ′
P-Cat-L-1

(?@Γ(−) { catpB(_, _)@_) ∨ (?@Γ(−) { 1) ? ⇒ 4 ↓ 4′ ⇒ ? ′

? ⇒ letΓ (−) (I; G) = ~ in 4 ↓ 4′ ⇒ ? ′
P-Cat-L-2

? ⇒ sink ↓ sink ⇒ epsp
P-Eps-R

? ⇒ () ↓ sink ⇒ onepB
P-One-R

coePfx (pf , ?) ∼ ? ′ ? ′ ⇒ 4 ↓ 4′ ⇒ ? ′′ X? (pf ) ∼ pf ′

? ⇒ subctx (pf , 4) ↓ subctx (pf ′, 4′) ⇒ ? ′′
P-SubCtx-1

coePfx (pf , ?) ∼ ? ′ ? ′ ⇒ 4 ↓ 4′ ⇒ ? ′′ X? (pf ) ∼ ⊥

? ⇒ subctx (pf , 4) ↓ 4′ ⇒ ? ′′
P-SubCtx-2

Fig. 6. Incremental semantics of Kernel _ST

Incremental Semantics of Variables and Prefix Projection. The rules for a variable term (G : B@Γ(−))

are a bit more involved, but the basic idea is straightforward: given a prefix ? of type Γ(G : B), we
use the location Γ(−) of G within the context to traverse ? and locate the sub-prefix corresponding
to G . A slight complication arises from the fact that traversing ? to look for the data corresponding
to G might lead to three different results. First, the input prefix might include none of the data
for the variable G , as in the prefix ? = catpA(? ′) for the context Γ0 = (~ : C ; (G : B; I : A )), using
the one-hole context Γ(−) = (~ : C ; (−; I : A )). Second, the input prefix might include a prefix of
the data for the variable G , as in the prefix catpB(1, catpA(?)) for the same Γ0. In this case, ?
is the result of projecting out the data for G . And third, the input might include an entire batch
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12 Cutler et al.

corresponding to the variable G , as in the prefix catpB(1, catpB(1′, ?)) for Γ0. Here, the batch 1
′ is

the result of projecting out G .
To account for these three situations, we define a trio of relations. The four-place relation

?@Γ(−) { ⊥@Γ
′(−) holds in the first situation, when data for G has not arrived yet. Next, the

relation ?@Γ(−) { ? ′@Γ
′(−) holds in the second situation, where ? ′ is the prefix corresponding

to G . Last, the relation ?@Γ(−) { 1 holds when there is a batch 1 located at Γ(−) in ? . In the first
two relations, Γ′(−) is the one-hole context corresponding the location of G in the derivative of
Γ(G : B) with respect to ? . These take the place of the original Γ(−) in the term that (G : B@Γ(−))

steps to. The rules defining (slightly more general versions of) these relations can be found in
Appendix B.5.

Nowwe need three variable rules, one for each possibility. When the prefix ? includes no data for
G (so ?@Γ(−) { ⊥@Γ

′(−) holds), P-Var-1 applies. We return empB , the empty prefix of type B , and
step to the term (G : B@Γ

′(−))with the updated location of G in the remaining context. If? includes
a prefix ? ′ for G , P-Var-2 applies. We return the prefix ? ′ and step to the term

(
G : X? ′ (B)@Γ

′ (−)
)

with the updated location of G and its updated type after ? ′ has been sent out. Last, if ? includes
an entire batch 1 for G , P-Var-3 applies. We return (1)◦ (the result of turning 1 into a prefix) and
step to sink1 , a term that produces no output (sink1 is defined (in Appendix B.9) by recursion on
1 and has type X (1 )◦ (B), as required by the correctness theorem).

Incremental Semantics of Le� Rules. The prefix-to-prefix parts of the left rules for concatenation
and parallel are straightforward: we accept a prefix ? of type Γ(I : B ⊗ C), where ⊗ is one of the
two products, and pass it on to the continuation term.
For both connectives, the term that we step to depends on the “size” of the input prefix ? . This

termmust be well typed in context X? (Γ(I : B ⊗ C)), but, if ? is large enough, the derivative context
will no longer include the connective being eliminated, in which case we must remove the let

binding. For example, given (I : B‖C ; D : A ) ⊢ let (G,~) = I inD : A , if we have ? = catpB(1, ? ′),
then X? ((I:B‖C) ; (D:A )) =

(
D : X? ′ (A )

)
. The stream has advanced past the segment which contained

the connective being eliminated, so the let-binding itself no longer makes sense. In the case of
the left rule for parallel, this happens when the prefix ? includes a batch of I : B‖C , as shown in
the example above. In the case of the left rule for concatenation, it happens when ? includes either
a batch of I : B · C or a prefix catpB(1, ?) that includes a batch 1 of B; in this case the derivative
X? (Γ(I : B · C)) looks like Γ′(I : X? (C)) for some Γ′(−); the connective has again been deleted by
the derivative, and the let-binding is no longer required.

3.4 The Homomorphism Property and Determinism

Our incremental semantics is designed to run a stream transformer on an “input chunk” of any
size. In practical terms, whenever one or more input events are ready, a transformer can take a
step that consumes these events and produces the appropriate output. Later, when more of the
input arrives, it can take another step to produce more output, and so on. But this flexibility has a
cost, as it raises the question of coherence—whether we are guaranteed to arrive at the same final
output depending on how we carve up a transformer’s input into a series of prefixes. Fortunately,
this is indeed guaranteed.
Coherence follows from our main technical result, a homomorphism theorem that says running a

term 4 on a prefix ?1 and then running the resulting term 4′ on a prefix ? ′1 of the remaining stream
produces the same end result as running 4 on the combined prefix.

Theorem 3.3 (Homomorphism Theorem). Suppose

(1) Γ ⊢ 4 : B
(2) ?1 : prefix (Γ)
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(3) ? ′1 : prefix
(
X?1 (Γ)

)

(4) ?2 : prefix (B)
(5) ? ′2 : prefix

(
X?2 (B)

)

(6) ?1 ⇒ 4 ↓ 4′ ⇒ ?2
(7) ? ′1 ⇒ 4′ ↓ 4′′ ⇒ ? ′2.

Then ?1 ·Γ ?
′
1 ⇒ 4 ↓ 4′′ ⇒ ?2 ·B ?

′
2.

The operation ? ·B ?
′ here is type-indexed prefix concatenation, which takes a prefix ? of type B and

a prefix ? ′ of type X? (B) and produces the prefix of type B that is first ? , and then ? ′. Formally, we
define this as a 4-place partial inductive relation ? ·B ?

′ ∼ ? ′′, which is defined when ? and ? ′ have
types B and X? (B), respectively. The operation ? ·Γ ?

′ does the same for prefixes of contexts. See
Appendix B.4 for details.

The homomorphism theorem not only justifies the prefixes-at-a-time perspective; it also im-
plies deterministic processing of parallel streams. Intuitively, determinism states that the results
of a stream transformer do not depend on the particular order in which parallel data arrives. We
formalize this through the following scenario. Suppose Γ, Γ′ ⊢ 4 : B is a term with two parallel
contexts serving as its input, and suppose that ?1 is a prefix of type Γ and ?2 a prefix of type Γ

′.
There are two different ways of running 4 on this data. One is to first run 4 on ?1 (passing the
empty prefix for the Γ′ component) and then run the resulting term on ?2 (with an empty prefix
for Γ). The other does the opposite, first running 4 on ?2 and then running the resulting term on
?1. Determinism says that these strategies produce equal results. It is proved by observing that
the homomorphism theorem guarantees that each of these options is equivalent to running 4 on
parp(?1, ?2).

Theorem 3.4 (Determinism). Suppose

(1) Γ, Γ′ ⊢ 4 : B
(2) parp(?1, ?2) : prefix (Γ, Γ′)
(3) parp(?1, empΓ′ ) ⇒ 4 ↓ 41 ⇒ ? ′1 and parp(empΓ, ?2) ⇒ 41 ↓ 42 ⇒ ? ′2
(4) parp(empΓ, ?2) ⇒ 4 ↓ 4′1 ⇒ ? ′′1 and parp(?1, empΓ′ ) ⇒ 4′1 ↓ 4′2 ⇒ ? ′′2 .

Then 42 = 4′2 and ?
′
1 ·B ?

′
2 = ? ′′1 ·B ?

′′
2 .

Two crucial observations make the proof work. First, prefixes are morally equivalence classes
of sequences of stream elements, up to the possible reorderings defined by their type [57]. When
presented syntactically, these equivalence classes serve as normal forms for all the possible inter-
leavings of the same data. The homomorphism theorem then guarantees that these normal forms
are processed compositionally, and so are independent of the actual temporal ordering of parallel
data—it suffices to compute on aggregate normal forms.

4 FULL _ST

We now introduce—more briefly—the remaining types and terms of _ST that are not part of Kernel
_ST. Along the way, we explore both type-theoretic and logical consequences of the concepts in
_ST, as well as features that are more practically motivated.

4.1 Cut

A logically inclined reader might have wondered about the absence of a cut rule in Kernel _ST. In
sequent calculus-style presentations of logics, a cut rule supports proofs with “lemmas”: we can
prove a proposition and then use it as a premise to help prove another.3 Transported along the

3Traditionally in sequent calculi, the cut rule is introduced only to be immediately shown to be admissible. We have reason

to believe that the cut rule in _ST will indeed be admissible—Frumin [32] has proven that BI plus an arbitrary set of structural
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proofs-as-programs principle, cut corresponds to sequencing: running one transformer and then
passing its output as an argument to another. Given a transformer term 41 whose output type is
used in the input of another term 42, we can cut them together to form a single term let G = 41 in42
that operates as the sequential composition of 41 followed by 42.
One way to think about the term let G = 41 in42 is that it “internalizes” the sequential compo-

sition of stream transformers, in the following sense. In an eventual high-level stream-processing
language based on _ST, a programmermightwrite one transformer to describe the behavior of each
node in a distributed stream processing system and wire these together into a dataflow graph, con-
necting the output of one transformer to the inputs of another by way of links that might traverse
the network. This is an external form of composition, occurring outside the bounds of the calculus.
The term let G = 41 in 42 internalizes this composition by forming a single core term that behaves
like the external sequential composition of 41 and 42. This step from external to internal compo-
sition of transformers corresponds to operator fusion, a key optimization technique in the stream
processing literature.

Δ ⊢ 41 : B Γ(G : B) ⊢ 42 : C

Γ(Δ) ⊢ letΓ (−) G = 41 in 42 : C
Cut

The typing rule for cut is shown to the right. If 41 has type
B in context Δ, and 42 has type C in a context Γ(G : B) with
a variable of type B , we can form the cut term letΓ (−) G =

41 in 42, which has type C in context Γ(Δ). (The one-hole context Γ(−) is included as an annotation
on the term for the same reason that it is included in the terms for concatenation and parallel let-
bindings: it is needed at runtime.)
Running a cut incrementally intuitively takes the following steps: (1) accept an input prefix ?

and project out the component ?Δ corresponding to the subcontext Δ, (2) run ?Δ through 41 to
get a prefix ?B , (3) bind ?B to G by substituting it back into ? where ?Δ was to get a prefix of type
Γ(G : B), and (4) run that through 42, producing the final output. (Full details can be found in
Appendix B.10.) An important point to note is that this semantics is non-blocking: even if no data
for Δ has arrived, we still run 42, potentially producing output.

4.2 Sums

The first type constructor that appears in _ST but not in Kernel _ST is the sum type, written B + C .
Sums in _ST are tagged unions: a stream of type B + C is either a stream of type B or a stream of type
C , and a consumer can distinguish between the two. Streams of type B are not the same as streams
of type B + B , and streams of type B + C are equivalent to but not the same as streams of type C + B .
Operationally, a producer of a sum stream sends a tag bit prior to sending the rest of the stream, to
say which side it is choosing. Conversely, a consumer of B + C first reads the bit to learn if it should
expect a stream of type B or one of type C and then gets a stream of that type.
Batches of B + C are either a tagged batch of B , written sumbA (1), or a tagged batch of C , written

sumbB (1). A prefix of B + C can be a prefix of one of B or one of C , written sumpA(?) or sumpB(?). A
third possible prefix is sumpEmp, the empty prefix of type B +C , which does not even say which way
the rest of the stream is going to go. The derivatives with respect to these prefixes are defined by
(a) the empty prefix taking nothing off the type (XsumpEmp (B + C) = B + C ) and (b) the two injections
reducing to taking the derivative of the corresponding branch of the sum (XsumpA (? ) (B + C) = X? (B)

and XsumpB (? ) (B + C) = X? (C)).
The typing rules for sums are the normal injections on the right (Sum-R-1 and a symmetric rule

Sum-R-2) and a case analysis principle on the left (Sum-L). The right rules operate by prepending

rules admits cut—but we have not proven it ourselves for the specific set of rules and constructs in _ST . Because the point

of cut elimination is to enable effective proof search, whereas we are most interested in the calculus from a programming

perspective, we will not dwell on this point here.
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their respective tag and then running the embedded term. The left rule performs case analysis: if
the incoming stream is a left, then it is processed with 41; if a right, then 42.

Γ ⊢ 4 : B

Γ ⊢ inl (4) : B + C
Sum-R-1

Γ(G : B) ⊢ 41 : A Γ(~ : C) ⊢ 42 : A

Γ(I : B + C) ⊢ caseΓ (−),B,C,A (I, G .41,~.42) : A
Sum-L

The batch se-
mantics for the
Plus-L andPlus-
R rules are straightforward, but the incremental semantics is a bit more subtle. When a prefix ar-
rives at a sum case term, the incremental semantics must dispatch on the tag that says if the stream
is a left or a right. But that prefix might not include a tag (if it is sumpEmp) or it might not include
any value for the variable at all (as in the rule P-Var-1 discussed earlier); in these cases, we have
no way of determining which branch to run. The solution to this conundrum is to run neither!
Instead, we hold on to the prefix, adding incoming data to the buffer until the tag arrives. Once
we get a prefix that includes the tag, we continue by running the corresponding branch. Note that
this buffering is necessarily a blocking operation.4 Even if data arrives on part of the input that is
in parallel with the variable being scrutinized, the case analysis must block until the tag arrives.
This requires a slightly generalized typing rule that includes a buffer ? : prefix (Γ(I : B + C))
of the context type in the term. As prefixes arrive, we append to this buffer until we get the tag.
When the buffer is empty (? = empΓ (I:B+C ) , e.g., before the transformer starts running), the general-
ized rule simplifies to the Sum-L rule in shown above. Full details on the generalized rule and the
incremental semantics for case analysis can be found in Appendix B.10.

4.3 Star

Full _ST also includes a type constructor for unbounded streams,5 written B★; it describes a stream
that contains zero or more sub-streams of type B , in sequence. This formulation is inspired by the
Kleene star from the theory of regular languages: zero or more concatenations of a stream type
B with itself. In regular languages, A★ is equal to Y + A · A★. Interpreted in the language of stream
types, this equation says that streams of type B★ are either empty (Y) or a stream of type B , followed
by another stream of type B★—i.e., B★ can be understood as the least fixpoint of the stream type
operator G ↦→ Y + B · G . It is a list, whose elements are separated in time. The definitions of batches,
prefixes, and typing rules for star all follow from this perspective.
For example, since a batch of B + C is either a batch of B or a batch of C , a batch of Y +B · B★ is either

a batch of Y (the unit value), or a batch of B · B★, which is a pair of a batch of B and another batch of
B★. This gives us the possible batches of type B★: the empty batch [] and the “cons batch” 1 ::1′.

Similarly, we cook our definition of the prefixes of type B★ so that prefix(B★) = prefix(Y+B ·B★).
The empty prefix of type B★, written stpEmp, is effectively the empty prefix of the sum that makes
up B★. The second form of prefix—the “done” prefix of type B★—is written stpDone. It corresponds
to the left injection of the sum, and receiving it means that the stream has ended. Note that, despite
containing no data, this prefix is not empty: it conveys the information that the stream is complete.
The final two cases correspond to the right injection of the sum, i.e., a prefix of type B · B★. This is
either stpA(?), with ? a prefix of B , or stpB(1, ?), with 1 a batch of B and ? another prefix of B★.
For derivatives, the empty prefix leaves the type as is (XstpEmp

(
B★
)
= B★). Because no data will

arrive after the done prefix, the derivative of B★ with respect to stpDone is Y, the type of the
empty stream. In the case for stpA(?), after some of an B has been received, the remainder of B★

looks like the remainder of the first B followed by some more B★, so the derivative is defined as
XstpA (? )

(
B★
)
=

(
X? (B)

)
· B★. Finally, XstpB (1,? )

(
B★
)
= X?

(
B★
)
.

4Depending on the rest of the context, it could also require unbounded memory! In Section 7, we discuss how the type

system might allow us to statically detect such space leaks.
5We do not need to distinguish between unbounded finite streams and “truly infinite” ones, because our incremental

operational semantics cannot distinguish between a stream that goes on forever and a finite but as yet incomplete stream.
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Γ ⊢ nil : B★
Star-R-1

Γ ⊢ 41 : B
Δ ⊢ 42 : B

★

Γ;Δ ⊢ 41 :: 42 : B
★

Star-R-2

The typing rules for star are again motivated by the analogy
with lists. There are right rules for nil and cons, and a case anal-
ysis principle for the left rule. The “nil” rule Star-R-1 corresponds
to the left injection of the sum B★ = Y + B · B★. From any context,
we can produce B★ by simply ending the stream. The “cons” rule
Star-R-2 is the right injection. From a context Γ;Δ, we can produce an B★ by producing one B from
Γ and the remaining B★ from Δ. Operationally, this should run the same way as the Cat-R rule: by
first running 41 using the Γ part of the context to produce the first B , and then switching over to
running 42 to produce the tail B

★ once we start to receive Δ-data. The Star-L rule is a case analysis
principle for star streams: either a stream is empty, or it includes one B followed by an B★. The fact
that the head B will come first and the tail B★ later tells us that the variables G : B and GB : B★ should
be separated by a semicolon.

Γ(·) ⊢ 41 : A Γ(G : B; GB : B★) ⊢ 42 : A

Γ(I : B★) ⊢ caseΓ (−),B,A (? ; I, 41, G .GB.42) : A
Star-L

The incremental and batch semantics for
the right rules are straightforward: the rules
for Star-R-1 are like those for Eps-R, while the
rules for Star-R-2 are like those for Cat-R. But like Plus-L rule, the Star-L rule needs to wait until
it knows if the streamwill be empty or include at least one B before it can pick a continuation to run.
For this reason, Star-L must also be generalized to include a prefix buffer, and its semantics are
also blocking in the same way as Plus-L. For full details on the batch and incremental semantics
for star, see Appendix B.10.

4.4 Recursion

At this point, although the _ST type system now includes the type B★, we cannot write very inter-
esting transformers over B★ streams: we need a way to define transformers recursively. Because
_ST has no function types, we accomplish this by adding explicit term-level recursion and recursive
call operators.
The term fix(4) denotes a recursive transformer with body 4 . Recursive calls are made with a

constant term rec, which refers back to 4 . This back-reference works in the same way that uses
of the variable G in the body of a traditional fix point fix(G.4) refer to the term fix(G.4) itself.
This function-free approach is approach is inspired by the concept of cyclic proofs [14, 20, 24] from
proof theory, where derivations may refer back to themselves. Alternatively, one can think of this
construction as defining our terms and proof trees as infinite coinductive trees; then the term-level
fix operator defines terms as cofixpoints. Section 5 shows how these recursion operators can be
used to define recursive transformers that process star streams like map and filter.

Γ ⊢Γ→B rec : B
Rec

Γ ⊢Γ→B 4 : B

Γ ⊢Σ fix(4) : B
Fix

To type these new terms, we extend the Kernel _ST typing judgment to
include a recursion signature Σ ::= NoRec | Γ → B , written on the turnstile:
Γ ⊢Σ 4 : B . The point of this addition is to ensure that recursive calls are well
typed: if a recursive transformer fix(4) is typed in context Γ with type B ,
then all instances of rec in 4 must also occur in a position where a program
from Γ to B is expected. A recursion signature of the form NoRec says that the term being typed
is not in the body of a recursive function, while a recursion signature of the form Γ → B means
that we are under a fix, where the recursive transformer being defined takes Γ to B . The Rec rule
shown on the right says that, if we are in the body of a recursive program from Γ to B , we can
make a recursive call. The Fix rule defines a recursive transformer from Γ to B by typing the body
4 with a recursion signature Γ → B . (Note that Fix clobbers any existing recursion signature, so
using the Rec rule inside a multiply-nested recursive program refers to the innermost one. This
means that _ST does not support mutually recursive definitions. (We have yet to run up against
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this restriction in practice, but generalizing to allow nested recursions is straightforward, though
notationally heavy.)

? ⇒ 4 [fix(4)/use] ↓= 4′ ⇒ ? ′

? ⇒ fix(4) ↓=+1 4′ ⇒ ? ′
P-Fix

Fig. 7. Fix Incremental Semantics

In both the incremental and batch semantics, we only
run transformers that are well typedwith a closed (NoRec)
recursion signature. To run fix(4) in either semantics, we
simply unfold the recursion one step, substituting fix(4)

itself for instances of use in the body 4 . Naturally, this can
lead to non-termination—for example, there are no finite derivations of ? ⇒ fix(rec) ↓ 4 ⇒ ? ′

for any ?, 4, ? ′, since fix(rec) unfolds to itself.6 The bound the depth of evaluation, we step index
both semantic judgments by adding a fuel parameter that decreases when we unfold a use of Fix.
The incremental semantic judgment then looks like ? ⇒ 4 ↓= 4′ ⇒ ? ′ and means that when we
run 4 on ? , it steps to 4′ producing ? ′ and unfolding at most = uses of fix along the way. The
incremental semantics rule for Fix is presented in Figure 7; all the other rules in the incremental
and batch semantics for _ST need to be updated to propagate the step index compositionally. The
only place the step index decreases is in P-Fix, and all base cases run in any amount of gas to
ensure that the step index is monotone.
The inclusion of a step index now means that there are well-typed terms about which the _ST

semantics say nothing at all. In particular, an “infinite generator” term · ⊢NoRec rec(() :: use) : 1
★,

which runs forever and should produce an infinite sequence of unit values, has no meaning in _ST.
Semanticists may find this behavior odd, but it mimics the incremental semantics of present-day
stream processing systems, which wait for a step of computation to terminate before sending out
any of its results.
The inclusion of recursion also requires an update to the correctness theorem: if a well typed

term takes a step on a well-typed input using some amount of gas, then the output and resulting
term are also well typed.

Theorem 4.1 (Incremental Semantics Correctness). If · | Γ ⊢∅ 4 : B , and ? : prefix (Γ),

and ? ⇒ 4 ↓= 4′ ⇒ ? ′, then ? ′ : prefix (B) and · | X? (Γ) ⊢∅ 4
′ : X? ′ (B)

A similarly updated theorem statement for the homomorphism theorem—and many other the-
orems and lemmas used in the proofs of the correctness and homomorphism theorems—can be
found in Appendix B.10.

4.5 Stateful Transformers

In the _ST typing judgment Γ ⊢ 4 : B , the variables in Γ range over future values that have yet to
arrive at the transformer 4 . The ordered nature of semicolon contexts means that variables further
to the right in Γ correspond to data that will arrive further in the future. This imposes a strong
restriction on programming: if earlier values in the stream are to be used at all, they must be used
before later values, and once a value in the stream has “gone past” there is no way to refer to it
again.
This limitation can be seen as arising from an asymmetry in the design of Kernel _ST. By using

variables from the Γ context, a term 4 can refer to values that will arrive in the future; but it has
no way of referring to values that have arrived in the past.
From a programming perspective, referring to variables from the past requires state. Many im-

portant streaming functions (e.g., map and filter) are stateless, but many others (e.g., “running

6Viewed logically, this means that _ST is unsound as a proof system: rec(use) is a proof of any sequent. Cyclic proof

systems usually ensure soundness by imposing a guardedness condition [14] which

requires certain rules be applied before a back-edge can be inserted in the derivation tree. Because we are not primarily

concerned with _ST as a logic at the moment, we leave a guardedness condition to future work.
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sums”) do require state. Moreover, state isn’t just about referring to values that have arrived previ-
ously: many stateful transformers must maintain accumulators and other scratch values that were
never actually received on an input stream.
What types do streams from the past have?We saw in Section 3 that values of completed streams

are batches. And the batches of type B‖C and of type B · C are essentially the same, since the par-
tial order structure of the data no longer matters. For example, once a complete stream of type(
Int★‖Int★

)
· Int★ has been received, we can regard the data that has been received as a value

of the conventional type (list(Int)× list(Int)) × list(Int) from the simply typed lambda-
calculus (STLC). This suggests that, while parts of streams that will arrive in the future have stream
types, parts of streams that have arrived in the past should have standard STLC types.
Accordingly, we define an operation called flatten, written 〈B〉, that transforms stream types into

STLC types. The important cases are 〈B · C〉 = 〈B‖C〉 = 〈B〉 × 〈C〉, and 〈B★〉 = list (〈B〉).
We then extend the typing judgment of _ST to include a second context, Ω, called the historical

context, writing Ω | Γ ⊢Σ 4 : B . The historical context is fully structural: Ω ::= · | Ω, G : �, where
the types � are drawn from some set of STLC types including at least products, sums, a unit, and
a list type. Operationally, the historical context behaves like a standard context in a functional
programming language: at the top level, terms to be run with the batch or incremental semantics
must be typed in an empty historical context; at runtime, historical variables get their values by
way of substitution.

Ω ⊢ " : 〈B〉

Ω | Γ ⊢Σ 〈" : B〉 : B
HistPgm

Rather than giving a set of ad-hoc rules for manipulating values
from the historical context, we parameterize the _ST calculus over
an arbitrary language with terms " , typing judgment Ω ⊢ " : �,
and terminating big-step semantics " ↓ E . We call any such fixed choice of language the his-

tory language. Programs from the history language can be embedded in _ST programs using the
HistPgm rule, which says that a historical program " : 〈B〉 that accesses the historical context
Ω can be used in place of a _ST term of type B . Operationally, as soon as any prefix of the input
arrives, we simply run the embedded historical program to completion and yield the result as its
stream output (after converting it into a batch of type B).
How does information get added to the historical context? Intuitively, a variable in Γ (a stream

that will arrive in the future) can be moved to Ω, where streams that have arrived in the past are
saved, by waiting long enough for the future to become the past! Formally, we define an operation
called “wait,” which allows us to specify part of the incoming context and block this subcompu-
tation until that part of the input stream has arrived in full. Once it has, we can bind it to the
variables in the historical context and continue by running 4 .

Ω, 〈Δ〉 | Γ(·) ⊢Σ 4 : B

Ω | Γ(Δ) ⊢Σ waitΓ (−),Δ,B (4) : B
Wait

TheWait rule encodes the typing content of this behav-
ior. It allows us to specify a subcontext Δ of the input, and
then flatten and move it to the historical context so that
the continuation 4 can refer to its variables as historical variables. Semantically, this works by
waiting for Δ: buffering in prefixes of the context until a whole batch of Δ has arrived. Once we
have a batch, we substitute it into 4 and continue running the resulting term.7 This buffering is
implemented the same way as in the left rules for plus and star, by generalizing the typing rule to
include an explicit prefix buffer. The generalized typing rule for Wait as well as the incremental
and batch semantics for both constructs can be found in Appendix B.8 and Appendix B.10.

7The semantics of the Wait rule is reminiscent of the “blocking reads” of Kahn Process Networks, where every read from

a parallel stream blocks all other reads to ensure determinism. Here, we choose a subcontext and block the rest of the

program until it is complete and in memory. For a subcontext Δ that is a single variable, this is essentially the same.
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Most of the remaining typing rules in _ST change only by adding an Ω to the typing judgment
everywhere; the historical context just goes along for the ride. The only meaningful change is
in the Fix and Rec rules. First, recursion signatures change to include a historical context: Σ ::=
NoRec | (Ω | Γ → B). Then, when defining a recursive transformer, the programmer must set up
the Ω context with any accumulators or auxiliary data that the program needs and provide initial
values for each. Then, when making recursive calls with Rec, the programmer decides how those
values those values will be updated before continuing with the next iteration of the program.

The syntax for recursive calls thus becomes rec@ ["1, . . . , "=], where the "8 are historical
programs computing updated values of the accumulators (i.e., all of the variables in the historical
context in the recursion signature). Similarly, the recursive definition syntax gets extended to
fix (G1 : �1, . . . , G= : �=) @ ["1, . . . ,"=] .4 , where the G8 : �8 define the shape of the historical
context in the body of 4 and the"8 are its initial values. See Appendix B.8 for details.

5 EXAMPLES

In this section, we show how _ST addresses the problems of type-safe programming with tem-
poral patterns and deterministic processing of parallel data from Section 2 and how some other
characteristic streaming idioms are expressed in _ST.
The process of encoding any of these common streaming idioms in _ST begins by determining

the input and output types. Because these idioms are from the homogeneously typed world, we
must work to “extract the stream types” from the situation. Then, we build a term of that type.
In many cases, we will see that the high-level style of _ST means that the streaming programs
we derive strongly resemble well-known standard functional programming idioms. But while the
programs look like high-level functions computing over entire streams at once, the incremental
semantics allows them to be run event by event. We’ve tested all of the incremental semantics on
all of the examples in this section with a prototype interpreter, written in Haskell: see Appendix A
and in the supplementary materials for details about our implementation.
Many of the idioms we’ll discuss are conceptually higher-order functions, like map, filter, and

fold. But _ST is a first-order language: the calculus has no function types. We treat higher-order
functions as macros: transformers like map, filter, and fold are all parameterized by a term which
represents the function argument. In Section 8, we’ll discuss a high level language design which
could support this.
We present all examples in this section with a syntax which is a sugared version of our core

terms. First, type and context annotations on variables, left rules, cut and wait are omitted, and
structural rules are written silently (without their explicit terms subctx (pf , 4)). We also use a
syntax wait x then e end for the waitΔ (4) operator when Δ is a single variable x and e the
continuation. Embedded historical programs are written surrounded with angle brackets: 〈M〉. The
syntax for defining recursive programs is fix with (y1 = M1, ... ,yn = Mn). 4 . This defines a
recursive transformer with accumulator variables y1,...,ynwhich take initial values M1,...Mn.
For recursive calls, we use an argument-passing syntax rec(xs) to make clear which subcontext a
recursive call is being performed on, and write square brackets rec(x1,...xM)[acc1,...,accN]
to update the values of any accumulators in the historical context. Last, we sometimes use a natural
deduction-style elimination form (like let (x,y) = e1 in e2) instead of a left rule: this can be
de-sugared into a cut followed by a use of the corresponding left rule.
We present the full core terms for all these examples in Appendix C. In Section 8, we’ll discuss

potential methods for elaborating a higher-level syntax like this one down into _ST.

Map. Given a transformer from s to t, we can lift it to a transformer from s★ to t★. Note that this
type is more general than the standard map function on homogeneous streams, which has type
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(a → b) → (Stream a → Stream b): our types B and C can be arbitrary stream types: they need
not be singletons.

map (e : s → t) (xs : s★) : t★=

fix. case xs of

| nil => nil

| y :: ys => e(y) :: rec(ys)

The map transformer is parameterized by a transformer e
from B to C . The code for map is essentially identical to the
traditional functional code.

Filter. Similarly, given a “predicate” transformer e from B to
1 + 1 (i.e., Booleans), we can filter an incoming stream of type B★ to include the elements of type B
(and which may consist of many events) for which e outputs inl().

The code is identical to the standard functional filter, yet it runs incrementally: as soon as e
sees that y passes the filter, the function will start to forward it along. See Appendix C.3 for details.

head (xs : B★) : Y + s =

fix. case xs of

| nil => inl(sink)

| y :: ys => inr(y)

Singletons, Head, Tail. In the homogeneous model,
stream types are always conceptually unbounded. But in
practical situations, some streams are only expected to
contain a single element—a constraint that cannot be ex-
pressed with homogeneous streams. Using stream types, we can write stream transformers which
are statically known to only produce a single output. For example, the “head” function is trivially
expressible in the same manner as head on lists. (Exercise: try writing the term for tail on star
streams. This requires a use of wait and an accumulator argument like in fold, as shown below.)

fold (e : 〈t〉 | s → t) (xs : s★) : t =

fix with (y = m0).

case xs of

| nil => y

| x' :: xs' =>

let y' = e(x')[y] in

wait y' then rec(xs')[y'] end

Fold. In _ST, we can can express a fold which returns only
the final accumulator, as opposed to traditional stream-
ing folds which are running folds, outputting a stream of
all intermediate results (we can also do the running fold;
see Appendix C.4). Fold maintains an accumulator of
type 〈C〉 in the historical context, which gets updated by
a streaming step function e : 〈t〉 | s → t that takes
a stream argument of type B and a historical accumulator argument of type 〈C〉, and produces a
C . Then, the whole fold takes a stream GB of type B★ and an initial accumulator init : 〈C〉 and
produces a stream of accumulator values C★.
The code for fold cases on the incoming stream. If the stream is empty, we return the accumulator

y. If there is a head, it uses the term 4 to compute the next accumulator y’ from the head x’ and the
previous accumulator value. Then, we pull y’ into the historical context with a wait and recurse
to handle the tail of the input stream with the updated accumulator y’.

Brightness Levels. The “input protocol” from the brightness-levels example in Section 2 can be

encoded as the type
(
Int · Int★

)
★

: a stream of nonempty sequences of Ints, which represent the
nonempty runs of light levels greater than some threshold.Writing a transformer that assumes the
input invariant is easy. For example, to average the brightness-levels in each run, we can simply
map an average operation—which takes Int · Int★ to Int—over the incoming stream to produce a
stream Int★ of averages: · | xs : (int · int★)★ ⊢ map(avg)(xs) : int★.
By contrast, with a homogeneous stream type like (Start + Int + End)★, this operation would

need to be written in a low-level and stateful manner, remembering the current run of Ints until
an End event arrives, averaging, and handling the divide-by-zero error which could in principle
(although not in practice) occur if no Ints arrived between a Start and an End. In _ST the pro-
gram is instead high-level and functional, describing what happens to each run of Ints above the
threshold.
The actual per-run average operation can be defined by simply waiting on the whole run to

arrive, then computing the average with an embedded historical program, as shown to the right.
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avg (x : int ; xs : int★) : int =

wait x,xs then

〈(x + sum xs) / (length xs + 1)〉

end

The final thresholding operation—which takes Int★

and produces the runs of elements above the threshold(
Int · Int★

)
★

—is somewhat complex because it requires
statefully parsing the input stream, depending on if we’re currently on a run of elements above
the threshold or not. A certain amount of stateful logic for constructing the thresholded stream is
unavoidable: similar code would be required in a language based on homogeneous streams. But
in _ST, type safety guarantees that (1) the transformer does in fact output a stream which adheres
to the protocol, and (2) the downstream transformer does not have to replicate this parsing logic.
The code can be found in Appendix C.5.

Side Outputs & Error Handling. A common streaming idiom is the use of “side outputs” for report-
ing errors. Operations include extra output streams where error messages are sent as they arise at
runtime. Inmost frameworks, side outputs are a second-classmechanism: the error streams cannot
be transformed or used in a manner other than dumping them to a log somewhere. _ST provides
a first-class account of side outputs, by encoding them as a parallel output type. A function B → C

that may produce errors of type 4 can have type B → C ‖4★. Alternately, errors can be handled
inline in the traditional typed functional manner, using a sum type B + 4 .

Partitioning. Partitioning is a crucial streaming idiom where a homogeneous stream of data is
split into two or more parallel streams, which are then routed to different downstream nodes in
the dataflow graph, thus exposing parallelism and increasing potential throughput. Appendix C.6
shows how two different partitioning strategies can be implemented in _ST: a round-robin parti-

tioner, which fairly distributes an incoming stream of type B★ into a parallel pair of streams B★‖B★

by by sending the first element to the left branch, the second to the right, and so on, and a hash-
based partitioner, which routes stream elements based on a hash of their data modulo the number
of downstream processing nodes.

Windowing and Punctuation. Windowing is a core concept in stream processing systems, where
commonaggregation operations likemoving averages or sums are defined over “windows”—groupings
of consecutive events, gathered together into a set. In _ST, these transformers are just maps over a
stream whose elements are windows. Given a per-window aggregation transformer f that takes
an individual window B★ to a result type C plus a “windowing strategy” win which takes a stream
A★ and turns it into a stream of windows B★★, we can write the windowed operation as xs : r★ |-

map(f)(win(xs)) : t★. In Appendix C.7, we define both sliding and tumbling size-based window
operators, as well as punctuation-based windowing, where windows are delimited by punctuation
marks inserted into the stream.

6 COMPILING TO HOMOGENEOUS STREAMS

Our new logical foundation for stream processing represents a significant departure from the tra-
ditional homogeneous view. The values that _ST programs operate over are highly structured syn-
tactic objects, not the simple sequences that modern stream processing systems are designed to
handle. Given this, one might wonder whether we have thrown the baby out with the streamwater
(as it were): have we given up the distributed fault tolerance and message delivery guarantees that
mature implementations have worked so hard to achieve? Fortunately, we have not. We prove in
this section that stream types can be encoded using traditional homogeneous streams. This result
implies that we can build a distributed stream processing application by writing a _ST transformer
to run at each node, equipping each with adapters that convert between the structured prefixes
expected by the _ST incremental semantics and the homogeneous streams of tagged events used
by an industrial-strength stream processing substrate.
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The key idea is that a structured _ST stream with an arbitrarily complex type can be represented
as a homogeneous, totally ordered sequence over a fixed alphabet of events. Sequences of events
can be translated into _ST prefixes and vice versa. Then, given a _ST term 4 and a sequence of
events xs, we can turn xs into a prefix ? , run 4 with ? , and turn the output back into an event
sequence.
Translating from prefixes to event sequences is a kind of serialization: we go from the structured

prefix representation to a wire format in the form of a sequence of tagged events. Formally, this
translation is nondeterministic: a parallel pair prefix parp(?1, ?2) can be serialized to any tagged
interleaving of the serializations of ?1 and ?2. The other direction, going from event sequences to
prefixes, consists of deserializing the unstructured event sequence representation into a structured
one. Crucially, deserializing any event sequence that is a serializations of a given prefix will yield
that prefix back.
The grammar of events is as follows:

G ::= oneev | parevA (G) | parevB (G) | +puncA | +puncB | ·punc | catevA (G)

Like prefixes, events have types. Intuitively, an event of type B is an element that could arrive as
the first element in a stream of type B . We write the typing relation as G : event (B) (the rules are
given in Appendix B.11 and explained intuitively below). Then, the derivative XG (B) ∼ B′ means
that B′ is the type of streams that follow event G in a stream of type B . We lift the definition of
events to sequences by saying that a sequence of events xs has type B if the first event xs0 has type
B , the second event xs1 has type Xxs0 (B), and so on.

The unique event of type 1 is oneev, and there are no events of type Y. The events parevA (G)
and parevB (G) have type B‖C when G is an event of type B and C , respectively—i.e., an event of
a parallel pair type is a tagged event of one of the two types. There are two events of type B + C ,
corresponding to the first bit that says the stream will be of type B (+puncA) or of type C (+puncB).
These events are punctuation [60]: they carry no data and serve only to inform a transformer of
the choice of left or right. The derivatives with respect to these events reduce the stream to the
corresponding branch: X+puncA (B + C) = B , and vice versa.
Finally, an event of type B · C can be one of two possibilities. The first is an event catevA (G),

where G is an event of type B . The second is ·punc, which is a punctuation mark which says that
we’re donewith the B part of B ·C , and are ready to start with the C part. The derivative X ·punc (B · C) = C

moves the stream past the B part.
Moreover, the set of events that will ever be needed to represent a stream of a given type is

finite: for a fixed type B , the size of the possible events that could arrive on a stream of type B is
bounded.

Theorem 6.1 (Bounded Event Size). For all B , there is some # such that for any xs : events (B)
and any G ∈ xs, we have that |G | ≤ # , where |·| denotes the size of the AST.

Serialization and Deserialization. Serializing a prefix ? of type B into a sequence of events is written
with a relation ? †B xs, where ? and B are inputs and xs is an output. For a given ? and B , there may
be many xs for which this holds; in particular, all possible interleavings of any parallel data in ?

give valid serializations. To deserialize, we use a relation going the other way, written xs ↩→B ? .
This one is deterministic but not injective: each event sequence uniquely determines a prefix, but
the same prefix may result frommany sequences of events. Serialization and deserialization round-
trip in the expected way: serializing a prefix to an event sequence and then deserializing it yields
the same prefix that we started with.

Homogeneous Stream Transformers. Now we can finally describe how we compile a _ST term to a
homogeneous stream transformer—that is, an element of the greatest set� satisfying the equation

, Vol. 1, No. 1, Article . Publication date: July 2023.



Stream Types 23

� � Seq(- ) → 1 + 2Seq(- ) × � , where - is the set of all events and Seq(�) is the set of finite
sequences of elements of�. An element ℎ of� is a nondeterministic event handler. Given an input
sequence of events, ℎ may either halt (returning the left injection of the sum), or nondeterministi-
cally produce an output sequence of events and step to a new state ℎ′ ∈ � .
We compile terms to handlers as follows, defining a mapℎ : Ctx×Tm×Ty×N→ � which takes

a 4-tuple of a context, term, type, and amount of gas (for recursive calls) to a handler. Intuitively,
ℎ(Γ, 4, B, =) takes an event sequence xs, deserializes it to obtain a prefix ? , and runs 4 on ? (using
the incremental prefix semantics) to obtain 4′ and ? ′. It then returns nondeterministically one of
the potential serializations of ? ′ and steps to the handler defined by 4′, with the proper derivative
type. If the handler happens to run out of gas because of too many nested recursive calls, it simply
halts and produces no output.

Definition 6.2 (Term to Handler Compilation). If

(1) xs ↩→Γ ?

(2) ? ⇒ 4 ↓= 4′ ⇒ ? ′

(3) . = {ys | ? ′ †B ys}

(4) ℎ′ = ℎ(X? (Γ) , 4
′, X? ′ (B) , =),

then ℎ(Γ, 4, B, =) (xs) = inr(.,ℎ′); otherwise ℎ(Γ, 4, B, =) (xs) = inl().

7 RELATED WORK

Streams as a programming abstraction can be traced back decades, to early work in the program-
ming languages [16, 42, 58, 59] and database [1, 2, 5–7, 19, 48] communities. While streams are com-
monly viewed as homogeneous sequences, more interesting treatments of streams and stream-like
data have been proposed. Streams in the database literature are sometimes viewed as time-varying
relations, while the PL community has produced formalisms like process calculi and functional re-
active programming. To our knowledge, ours is first type system for streams capturing both (1)
heterogeneous patterns of events over time and (2) combinations of parallel and sequential data.
Sequential, homogeneous streams and dataflow programs. Traditionally, streams have been viewed

as coinductive sequences [16]: a stream of A has a single (co)constructor, cocons : Stream� →

(�×Stream �) and acts as a lazily evaluated infinite list. This is the setting of traditional dataflow
programming [58]. A major challenge in reasoning about dataflow over sequential streams is the
nondeterminism arising from operators whose output may depend on the order in which events
arrive on multiple input streams. Kahn’s seminal process networks [42] (including their restric-
tion to synchronous networks [12, 47, 59]) avoid this problem by allowing only blocking reads of
messages passed between processes on FIFO queues. In contrast, the semantics of _ST leverages
the type structure to guarantee deterministic parallel processing without blocking in many cases.
For example, in the context of a Cut rule, if the type system can detect statically that a transformer
is using two parallel streams safely, it can read from them simultaneously.
Partitioned streams. Building on streams as homogeneous sequences, modern stream processing

systems such as Flink [17, 25], Spark Streaming [28, 63], Samza [27, 51], and Storm [29] support
dynamic partitioning: a stream type defines one stream with many parallel substreams (where
the number of substreams and assignment of data to substreams is determined at runtime). The
type Stream t in these systems is implicitly a parallel composition of homogeneous streams:
t★‖ · · · ‖t★. Unlike in _ST, these parallel substreams cannot have more general types. Dynamic
parallelism is difficult to support in the context of universal calculi for streaming; for example,
Brooklet [56] and the DON Calculus [21] support data parallelism only as an optimization pass in
limited cases. This is because stream partitioning does not in general preserve the semantics of
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the source program and can introduce undesirable nondeterminism [34, 49, 55]. While _ST does
not support dynamic partitioning, we hope to address it in future work; see Section 8.
Streams as time-varying relations. In the database literature, streams are often viewed as rela-

tions (sets of tuples) that vary over time. Stream management systems in the early 2000s pio-
neered this paradigm, including Aurora [2] and Borealis [1], TelegraphCQ [19] and CACQ [48],
and STREAM [5]. A time-varying relation can be viewed as either a function from timestamps
to finite relations or an infinite set of timestamped values; this correspondence was elegantly ex-
ploited by early streaming query languages such as CQL [6, 7] and remains popular today [11, 39].
Time-varying relations can be expressed in _ST using Kleene star and concatenation: a relation of

tuples of type T timestamped by Time can be expressed as
(
T★ · Time

)
★

. We can also express the
common pattern where parallel streams are synchronized by a single timestamp (again, modulo

dynamic partitioning) with types like
( (
T★‖T★

)
· Time

)
★

. Each Time event is a punctuation mark
containing the timestamp of the prior set of tuples [41, 61]. Traditional systems include separate
APIs for operations that modify punctuation (e.g., a delay function that increments timestamps);
whereas in our system they are ordinary stream operators and punctuation markers are ordinary
events.
Streams as pomsets. A sweet spot between the homogeneous sequential and relational view-

points is identified by prior work treating streams as pomsets (partially ordered multisets) [3, 43–
45, 49], inspired by prior work in concurrency theory [22, 50]. In a pomset, data items may be
completely ordered (a sequence), completely unordered (a bag), or somewhere in between. While
existing works have proposed pomset-based types for streams[3, 49], their types do not support
concatenation and do not come with type systems—programs must be shown to be well typed
semantically, rather than statically.
Functional reactive programming (FRP) [23] treats programs as incremental, reactive state ma-

chines written using functional combinators. The fundamental abstraction is a “signal”: a time-
varying value Sig(A) = Time -> A. Work on type systems for FRP has used modal and sub-
structural types [8, 9, 18, 46] to guarantee properties like causality, productivity, and space leak
freedom. While our type system is not designed to address these issues, it does incidentally have
bearing on them. For one, the existence of our incremental semantics demonstrates that our type
system enforces causality: since outputs that have been incrementally emitted cannot be retracted
or changed, the type system must ensure that past outputs cannot depend on future inputs. Simi-
larly, potential space leaks can be detected statically by checking if only bounded-sized types are
buffered using wait or the buffering built into the left rules for sums and star. Our current calculus
does not guarantee productivity (new inputs eventually produce new outputs), but in Section 8 we
discuss how to remedy this by imposing guardedness conditions on recursive calls.
Work by Jeffrey [40] permits the type of a signal to vary over time, using dependent types

inspired by Linear Temporal Logic [53]. The system includes an until type that behaves like our
concatenation type: a signal of type �* � is a signal of type �, followed by a signal of type �.
However, unlike parallel streams in our setting, time updates in steps, discretely; i.e., there’s a
synchronous ordering between elements of one signal and elements on another. Concurrentlywith
our work, Bahr and Møgelberg [10] proposes a modal type system to weaken the synchronicity
assumption; however, it still treats signals as homogeneous.
Session types and process calculi. Another large body of work with a vision similar to ours is

session types for process calculi [36], where types describe complex sequential protocols between
communicating processes as they evolve through time. Amain difference from our work is that the
session type of a process describes the protocol for its communications with other processes—i.e.,
the sequence of sends and receives on different channels—while the stream type of a _ST program
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describes only the data that it communicates. Indeed, a stream transformer might display many
patterns of communication with downstream transformers: it can run in “batch mode”—sending
exactly one output after accepting all available input—or in a sequence smaller steps, sending along
partial outputs as it receives partial inputs. Also, a single channel in a process calculus cannot
carry parallel substreams of events that are internally ordered but not ordered relative to each
other. Recently, Frumin et al. [33] proposed a session-types interpretation of BI that the bunched
structure very differently from _ST. In particular, processes of type � ∗ � and � ∧ � both behave
semantically like a process of type� in parallel with a process of type �; in _ST, B ·C and B‖C describe
very different streams.

Concurrent Kleene Algebras and regular expression types. Finally, stream types are also inspired by
Concurrent Kleene Algebras (CKAs) [35] and related syntaxes for pomset languages [45], though
we are apparently the first to use these formalisms as types in a programming language, rather than
as a tool for reasoning about concurrency. In particular, traditional applications of Kleene algebra
such as NetKAT [4] and Concurrent NetKAT [62], use KA to model programs, whereas in _ST we
use the KA structure to describe the data that programs exchange, while the programs themselves
are written in a separate language. We have also been inspired by languages for programming
with XML data [13, 31, 37, etc.] using types based on regular expressions.

8 CONCLUSIONS AND FUTUREWORK

We have proposed a new static type system for stream programming, strongly connected to a
novel variant of BI logic and intended to capture both complex temporal patterns and deterministic
parallel processing.
In Section 5, we presented a speculative higher-level syntax for _ST terms. Two significant chal-

lenges in building a real, statically typed, higher-level language on this foundation are (a) inferring
type and context annotations on variables, cut, and left rules, and (b) inferring usages of structural
rules. The first, we believe, is relatively easy: given a context and a variable, it is straightforward to
find the one-hole context in which the variable resides, and thus the variable’s type. A promising
beginning for the second is a recent “labeled” formulation of the BI sequent calculus [38].
In Section 6, we showed how to run _ST terms as sequential automata, demonstrating the feasi-

bility in principle of compiling _ST down to programs for an existing stream processing system like
Apache Storm and thus inheriting its desirable fault-tolerance and delivery guarantees. We plan to
build such a compiler and use it as a platform for experimenting with type-enabled optimizations
and resource usage analysis.
Finally, we plan to extend the theory of stream types by (1) investigating a denotational seman-

tics in pomsets, (2) adding support for bags (unbounded parallelism, the parallel analog of Kleene
star) to enable dynamic partitioning, and (3) adding a guardedness condition on recursive calls to
ensure termination and hence productivity.
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A MECHANIZATION AND REFERENCE INTERPRETER

The supplemental material contains a Coq formalization of our main results and a reference inter-
preter written in Haskell.
The Coq formalization includes the following:

Table 1. Overview of Coq Development

Name Description Location

Basics Definitions of types, contexts, batches, and prefixes verif/basics.v

CtxSub Context subtyping and its semantics verif/ctxsubty.v

PProj Prefix and batch projection definitions and theorems verif/pproj.v

PrefixConcat Prefix and batch concatenation definitions and theorems verif/prefixconcat.v

Events Events, serialization and deserialization verif/events.v

Language Syntax of terms, the typing judgment, batch and incremental verif/language.v

semantics, correctness and the homomorphism property

The Haskell interpreter assumes well-typed terms, failing if anything is ill-typed; we have not
translated the type system definition to Haskell. We do not have proofs that the interpreter (a
function) and the Coq definition of the semantics (an inductive relation) agree, but we have tested
a majority of the important theorems from Coq via QuickCheck.We also use QuickCheck to check
the homomorphism theorem for fixed terms. The important directories include:

Table 2. Overview of Haskell Interpreter

Name Description Location

Types Types and contexts src/Types.hs

Interpreter Code for the interpreter src/Interpreter.hs

Examples Core terms for examples src/Examples.hs

The Coq development has been tested with Coq version 8.17.0 using CoqHammer Tactics ver-
sion 1.3.2. The Haskell development has been tested with GHC version 9.2.7 and Stack version
2.9.3.
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B TECHNICALITIES

This appendix collects technical definitions that did not fit in the main body of the paper.

B.1 Basics

Stream types are defined by the following grammar. The base types included are the unit type 1
which types streams that contain exactly one unit element, the type of the empty stream Y, and
the type of streams consisting of a single integer, Int. Larger types include the concatenation type
B · C , the sum type B + C , the parallel stream type B‖C , and the star type B★.

B, C, A := 1 | Y | Int | B · C | B + C | B‖C | B★

Contexts in the stream types calculus system have a bunched structure. The context former Γ, Δ
corresponds to the parallel type, while the context former Γ; Δ corresponds to the concatenation
type. The two context formers share a unit, written as “·”.

Γ ::= · | Γ, Γ | Γ; Γ | G : B

A stream type is nullable if it includes no data. Nullable types are parallel combinations of Ys.

Definition B.1 (Nullable). We define a judgment B nullable as follows:

Y nullable

B nullable C nullable

B‖C nullable

We extend to contexts in the natural way:

· nullable

Γ nullable Γ
′ nullable

Γ, Γ′ nullable

Batches are defined as in the paper, with a typing relation 1 : batch (B) and a context typing
relation 6 : batch (Γ).

Definition B.2 (Batch). The grammar of batches is given by:

1 ::= oneb | batchInt (=) | epsb | catb (1,1′) | parb (1,1′) | sumbA (1) |sumbB (1) | [] | 1 ::1′

We define the batch has type relation as:

oneb : batch (1) epsb : batch (Y)

1 : batch (B) 1′ : batch (C)

catb (1,1′) : batch (B · C)

1 : batch (B) 1′ : batch (C)

parb (1,1′) : batch (B‖C)

1 : batch (B)

sumbA (1) : batch (B + C)

1 : batch (C)

sumbB (1) : batch (B + C)

[] : batch
(
B★
)

1 : batch (B) 1′ : batch
(
B★
)

1 ::1′ : batch
(
B★
)

And we lift this to contexts by:

epsb : batch (·)

1 : batch (Γ) 1′ : batch (Δ)

catb (1,1′) : batch (Γ; Δ)

1 : batch (Γ) 1′ : batch (Δ)

parb (1,1′) : batch (Γ, Δ)

Prefixes are also like in the main paper, a typing relation ? : prefix (B) and a context typing
relation ? : prefix (Γ).
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Definition B.3 (Prefix). The grammar of prefixes is given by:

? ::= onepA|>=4?� |epsp|parp(?, ? ′)

|catpA(?) |catpB(1, ?)

|sumpEmp|sumpA(?) |sumpB(?)

|stpEmp|stpDone

|stpA(?) |stpB(1, ?)

epsp : prefix (Y) onepA : prefix (1) onepB : prefix (1)

? : prefix (Γ) ? ′ : prefix (Γ′)

parp(?, ? ′) : prefix (Γ, Γ′)

? : prefix (B)

catpA(?) : prefix (B · C)

1 : batch (B) ? : prefix (C)

catpB(1, ?) : prefix (B · C) sumpEmp : prefix (B + C)

? : prefix (B)

sumpA(?) : prefix (B + C)

? : prefix (C)

sumpB(?) : prefix (B + C) stpEmp : prefix
(
B★
)

stpDone : prefix
(
B★
)

? : prefix (B)

stpA(?) : prefix
(
B★
)

1 : batch (B) ? : prefix
(
B★
)

stpB(1, ?) : prefix
(
B★
)

We lift this to contexts by:

? : prefix (Γ) ? ′ : prefix (Γ′)

parp(?, ? ′) : prefix (Γ, Γ′)

? : prefix (Γ)

catpA(?) : prefix (Γ; Γ′)

1 : batch (Γ) ? : prefix (Γ′)

catpB(1, ?) : prefix (Γ; Γ′)

For each type B , we define the “empty” prefix empB inductively on the structure of B . In principle,
one could define a single empty prefix shared by all types, but this would over-represent in many
cases: the pointed empty prefix empwould not be the same as parp(emp, emp), for example. While
type-indexing the definition requires us to carry around more types at runtime (to compute the
empty prefix of the right type), we view this as a preferable choice.

Definition B.4 (Empty Prefix). The empty prefix is defined as follows:

(Y) empY = epsp

(1) emp1 = onepA

(B‖C ) empB ‖C = parp(empB , empC )

(B + C ) empB+C = sumpEmp

(B · C ) empB ·C = catpA(empB)

(B★) empB★ = stpEmp

We lift this to contexts in the natural way, with emp· = epsp, and empΓ;Δ = catpA(empΓ), and
empΓ, Δ = parp(empΓ, empΔ).

Given a batch, we can forget about its batch structure and demote it to a prefix.

, Vol. 1, No. 1, Article . Publication date: July 2023.



32 Cutler et al.

Definition B.5 (Batch to Prefix Lift).

(oneb)◦ = onepB

(epsb)◦ = epsp

(catb (1,1′))
◦
= catpB(1, (1′)

◦
)

(parb (1,1′))◦ = parp((1)◦ , (1′)◦)

(sumbA (1))◦ = sumpA((1)◦)

(sumbB (1))◦ = sumpB((1)◦)

([])◦ = stpDone

(1 ::1′)◦ = stpB(1, (1′)◦)

This function takes well-typed batches to well-typed prefixes.

Theorem B.6 (Batch To Prefix Lift Well-Typed). If 1 : batch (B), then (1)◦ : prefix (B)

Proof. basics.v:prefixOf_correct �

If a batch converted to a prefix is well-typed, then the batch was also well-typed.

Theorem B.7 (Batch To Prefix Lift Well-Typed Converse). If (1)◦ : prefix (B), then 1 :
batch (B).

Proof. basics.v:prefixOf_inv �

Theorem B.8 (Batch To Prefix Lift Well-Typed (Context)). If 1 : batch (Γ), then (1)◦ :
prefix (Γ)

Proof. basics.v:prefixOf_correct_ctx �

B.2 Derivatives

Definition B.9 (Derivatives). We define a 3-place relation X? (B) ∼ B′ between a prefix and two
types.

Xepsp (Y) ∼ Y XonepA (1) ∼ 1 XonepB (1) ∼ Y

X? (B) ∼ B′

XcatpA (? ) (B · C) ∼ B′ · C

X? (C) ∼ C ′

XcatpB (1,? ) (B · C) ∼ C ′

X? (B) ∼ B′ X? ′ (C) ∼ C ′

Xparp (?,? ′ ) (B‖C) ∼ B′‖C ′ XsumpEmp (B + C) ∼ B + C

X? (B) ∼ B′

XsumpA (? ) (B + C) ∼ B′

X? (C) ∼ C ′

XsumpB (? ) (B + C) ∼ C ′ XstpEmp
(
B★
)
∼ B★ XstpDone

(
B★
)
∼ Y

X? (B) ∼ B′

XstpA (? )
(
B★
)
∼ B′ · B★

X?
(
B★
)
∼ B′

XstpB (_,? )
(
B★
)
∼ B′

We lift this to contexts in the natural way:

X? (Γ) ∼ Γ
′

XcatpA (? ) (Γ; Δ) ∼ Γ
′; Δ

X? (Δ) ∼ Δ
′

XcatpB (1,? ) (Γ; Δ) ∼ Δ
′

X? (Γ) ∼ Γ
′ X? ′ (Δ) ∼ Δ

′

Xparp (?,? ′ ) (Γ, Δ) ∼ Γ
′, Δ′

Derivatives are functions defined when the prefix input is well-typed.

Theorem B.10 (Derivative Function). For any ? and B , there is at most one B′ such that X? (B) ∼

B′. If ? : prefix (B), then such an B′ exists.
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Proof. Existence by basics.v:derivrel_fun, uniqueness by basics.v:derivrel_det. �

When it’s guaranteed to exist, we write this B′ simply as X? (B). The empty prefix is the identity
for the derivative operator.

Theorem B.11 (Empty Prefix Derivative). XempB (B) = B .

Proof. basics.v:derivrel_emp �

Theorem B.12 (Derivative Function (Contexts)). For any ? and Γ, there is at most one Γ
′

such that X? (Γ) ∼ Γ
′. If ? : prefix (Γ), then such an Γ

′ exists.

Proof. Existence by basics.v:derivrelCtx_fun,uniqueness by basics.v:derivrelCtx_det.
�

Theorem B.13 (Empty Prefix Derivative (Contexts)). XempB (Γ) ∼ Γ.

Proof. basics.v:derivrelCtx_emp �

If we take a batch, convert it to a prefix, and then take a derivative by that prefix, the resulting
type is nullable. Intuitively, this is because “the rest” of a stream after a batch should be empty.

Theorem B.14 (Nullable Batch Derivative). If 1 : batch (B) then X (1 )◦ (B) nullable

Proof. basics.v:batch_lift_derivrel �

Theorem B.15 (Nullable Batch Derivative). If 1 : batch (Γ) then X (1 )◦ (Γ) nullable

Proof. basics.v:batch_lift_derivrelCtx �

B.3 Done Batches

For a nullable type B , there is a unique “empty batch”, which we refer to as the done batch.

Definition B.16 (Done Batch).

Y done epsb

B done 1 C done 1′

B‖C done parb (1,1′)

Theorem B.17 (Done Batch Correctness). For any B , there is at most one 1 such that B done 1.

Moreover, such a 1 exists exactly when B nullable.

Proof. Uniqueness by basics.v:doneBatch_det, existence by basics.v:doneBatchTheorem
�

B.4 Concatenation

Prefix-Batch Concatenation. Given a prefix ? of B , and a batch 1 of X? (B), we often want to consider
the batch of B given by ? , followed by1. The following functional relation gives a way of computing
this. We also lift this definition to contexts.

Definition B.18 (Prefix-Batch Concatenation). We define a relation ? ·B 1 ∼ 1′.

, Vol. 1, No. 1, Article . Publication date: July 2023.



34 Cutler et al.

epsp ·Y epsb ∼ epsb onepA ·1 oneb ∼ oneb onepB ·1 epsb ∼ oneb

?1 ·B ?
′
1 ∼ 1′1 ?2 ·C ?

′
2 ∼ 1′2

parp(?1, ?2) ·B ‖C parb (11, 12) ∼ parb
(
1′1, 1

′
2

)
sumpEmp ·B+C 1 ∼ 1

? ·B 1 ∼ 1′

sumpA(?) ·B+C 1 ∼ sumbA (1′)

? ·C 1 ∼ 1′

sumpB(?) ·B+C 1 ∼ sumbB (1′)

? ·B 11 ∼ 1′1

catpA(?) ·B ·C catb (11, 12) ∼ catb
(
1′1, 12

)
? ·C 1

′ ∼ 1′′

catpB(1, ?) ·B ·C 1
′ ∼ catb (1,1′′)

stpEmp ·B★ 1 ∼ 1 stpDone ·B★ epsb ∼ []

? ·B 11 ∼ 1′1

stpA(?) ·B★ catb (11, 12) ∼ 1′1 ::12
? ·B★ 1

′ ∼ 1′′

stpB(1, ?) ·B★ 1
′ ∼ 1 ::1′′

We lift this to contexts in the natural way

?1 ·Γ ?
′
1 ∼ 1′1 ?2 ·Δ ?

′
2 ∼ 1′2

parp(?1, ?2) ·Γ, Δ parb (11, 12) ∼ parb
(
1′1, 1

′
2

)
? ·Γ 11 ∼ 1′1

catpA(?) ·Γ;Δ catb (11, 12) ∼ catb
(
1′1, 12

)

? ·Δ 1
′ ∼ 1′′

catpB(1, ?) ·Γ;Δ 1
′ ∼ catb (1,1′′)

Theorem B.19 establishes the functional behavior of this relation. When the preconditions are
satisfied (? : prefix (B) and 1 : batch

(
X? (B)

)
), we write ? ·B1 for the unique 1

′ that it guarantees.

Theorem B.19 (Batch Prefix Concatenation Function). For all B, ?,1, there is at most one 1′

such that ? ·B 1 ∼ 1′. If ? : prefix (B) and 1 : batch
(
X? (B)

)
, then such a 1′ exists, and it satisfies

1′ : batch (B).

Proof. Existence by prefixconcat.v:prefixBatchConcatRel_fun,
uniqueness by prefixconcat.v:prefixBatchConcatRel_det,
type-correctness by prefixconcat.v:prefixBatchConcatRel_correct. �

If we take a batch 1 and demote it to a prefix with (1)◦, then concatenating any batch 1′ to it
just gives 1 back. Intuitively, this is because if 1 : batch (B), then the type X (1 )◦ (B) is nullable, and
so any batch 1′ of this type contains no data.

TheoremB.20 (BatchPrefix Concatenationof Prefix Lift). If1 : batch (B) and X (1 )◦ (B) ∼
B′ and 1′ : batch (B′), then (1)◦ ·B 1

′
= 1.

Proof. prefixconcat.v:prefixBatchConcatRel_prefixOf �

Conversely, concatenating a batch 1 onto the empty prefix empB gives the whole batch 1. This
theorem relies on Theorem B.13, which ensures that Xemp1 (B) = B .

Theorem B.21 (Batch Prefix Concatenation of Empty). If 1 : batch (B), then empB ·B 1 = 1.

Proof. prefixconcat.v:prefixBatchConcatRel_emp �

All of the three previous theorems all have identical versions for batches and prefixes of contexts.
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Theorem B.22 (Batch Prefix Concatenation Function (Contexts)). For all Γ, ?, 1, there is

at most one 1′ such that ? ·Γ 1 ∼ 1′. If ? : prefix (Γ) and 1 : batch
(
X? (Γ)

)
, then such a 1′ exists,

and it satisfies 1′ : batch (Γ).

Proof. Existence by prefixconcat.v:prefixBatchConcatCtxRel_fun,
uniqueness by prefixconcat.v:prefixBatchConcatCtxRel_det,
type-correctness by prefixconcat.v:prefixBatchConcatCtxRel_correct. �

Theorem B.23 (Batch Prefix Concatenation of Prefix Lift (Contexts)). If 1 : batch (Γ)
and 1′ : batch

(
X (1 )◦ (Γ)

)
, then (1)◦ ·Γ 1

′
= 1.

Proof. prefixconcat.v:prefixBatchConcatCtxRel_prefixOf �

Theorem B.24 (Batch Prefix Concatenation of Empty (Contexts)). If 1 : batch (B), then
empB ·B 1 = 1.

Proof. prefixconcat.v:prefixBatchConcatCtxRel_emp �

Prefix-Prefix Concatenation. More generally, we often want to concatenate a prefix ? of B with a
prefix ? ′ of X? (B). This is defined with another 4-place, type-indexed relation.

Definition B.25 (Prefix Concatenation). We define a relation ? ·B ?
′ ∼ ? ′′.

epsp ·Y epsp ∼ epsp

? : prefix (1)

onepA ·1 ? ∼ ? onepB ·1 epsp ∼ onepB

?1 ·B ?
′
1 ∼ ? ′′1 ?2 ·C ?

′
2 ∼ ? ′′2

parp(?1, ?2) ·B ‖C parp(?
′
1, ?

′
2) ∼ parp(? ′′1 , ?

′′
2 )

? ·B ?
′ ∼ ? ′′

catpA(?) ·B ·C catpA(?
′) ∼ catpA(? ′′)

? ·B 1 ∼ 1′

catpA(?) ·B ·C catpB(1, ?
′) ∼ catpB(1′, ? ′)

? ·C ?
′ ∼ ? ′′

catpB(1, ?) ·B ·C ?
′ ∼ catpB(1, ? ′′)

sumpEmp ·B+C ? ∼ ?

? ·B ?
′ ∼ ? ′′

sumpA(?) ·B+C ?
′ ∼ sumpA(? ′′)

? ·C ?
′ ∼ ? ′′

sumpB(?) ·B+C ?
′ ∼ sumpB(? ′′)

stpEmp ·B★ ? ∼ ? stpDone ·B★ epsp ∼ stpDone

? ·B ?
′ ∼ ? ′′

stpA(?) ·B★ catpA(? ′) ∼ stpA(? ′′)

? ·B 1 ∼ 1′

stpA(?) ·B★ catpB(1, ? ′) ∼ stpB(1′, ? ′)

? ·B★ ? ′ ∼ ? ′′

stpB(1, ?) ·B★ ? ′ ∼ stpB(1, ? ′′)

We lift this to contexts.

?1 ·Γ ?
′
1 ∼ ? ′′1 ?2 ·Δ ?

′
2 ∼ ? ′′2

parp(?1, ?2) ·Γ, Δ parp(? ′1, ?
′
2) ∼ parp(? ′′1 , ?

′′
2 )

? ·Γ ?
′ ∼ ? ′′

catpA(?) ·Γ;Δ catpA(? ′) ∼ catpA(? ′′)

? ·Γ 1 ∼ 1′

catpA(?) ·Γ;Δ catpB(1, ? ′) ∼ catpB(1′, ? ′)

? ·Δ ?
′ ∼ ? ′′

catpB(1, ?) ·Γ;Δ ? ′ ∼ catpB(1, ? ′′)
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This relation is a function when the inputs are well-typed. Because of this, when ? : prefix (B)
and ? ′ : prefix

(
X? (B)

)
, we write ? ·B ?

′ for the unique ? ′′ that the following theorem guarantees.

Theorem B.26 (Prefix Concatenation Function). For all ?, ? ′ and B , there is at most one ? ′′

such that ? ·B ?
′ ∼ ? ′′ . If ? : prefix (B) and ? ′ : prefix

(
X? (B)

)
, then such a ? ′′ exists, and satisfies:

(1) ? ′′ : prefix (B)
(2) X? ′′ (B) = X? ′

(
X? (B)

)

Proof. Existence by prefixconcat.v:prefixConcatRel_fun,
uniqueness by prefixconcat.v:prefixConcatRel_det,
well-typedness and derivative condition by prefixconcat.v:prefixConcatRel_correct. �

Concatenating a prefix ? to the empty prefix yields ? back, and...

Theorem B.27 (Prefix Concatenation Empty 1). If ? : prefix (B), then empB ·B ? = ?

Proof. prefixconcat.v:prefixConcatRel_emp �

Concatenating the empty prefix to a prefix ? also gives ? .

Theorem B.28 (Prefix Concatenation Empty 2). If ? : prefix (B), then ? ·B empX? (B ) = ?

Proof. prefixconcat.v:prefixConcatRel_emp’ �

TheoremB.29 (PrefixConcatenationBatch Lift 1). If1 : batch (B) and ? : prefix
(
X (1 )◦ (B)

)
,

then (1)◦ ·B ? = (1)◦

Proof. prefixconcat.v:prefixConcatRel_prefixOf �

Theorem B.30 (Prefix Concatenation Batch Lift 2). If ? ·B 1 ∼ 1′, then ? ·B (1)
◦ ∼ (1′)◦.

Proof. prefixconcat.v:prefixConcatRel_prefixOf’ �

Batch-to-prefix concatenation is associative.

Theorem B.31 (Batch Prefix Concatenation Associativity). ? ·B

(
? ′ ·X? (B ) 1

)
= (? ·B ?

′) ·B 1

Proof. prefixconcat.v:prefixBatchConcatRel_assoc �

Prefix concatenation is also associative.

Theorem B.32 (Prefix Concatenation Associativity). ? ·B

(
? ′ ·X? (B ) ?

′′
)
= (? ·B ?

′) ·B ?
′′

Proof. prefixconcat.v:prefixConcatRel_assoc �

All of the previous theorems about prefix concatenation for types are also needed for contexts.

Theorem B.33 (Prefix Concatenation Function (Contexts)). For all ?, ? ′ and Γ, there is at

most one ? ′′ such that ? ·Γ ?
′ ∼ ? ′′ . If ? : prefix (Γ) and ? ′ : prefix

(
X? (Γ)

)
, then such a ? ′′

exists, and satisfies:

(1) ? ′′ : prefix (Γ)
(2) X? ′′ (Γ) = X? ′

(
X? (Γ)

)

Proof. Existence by prefixconcat.v:prefixConcatCtxRel_fun,
uniqueness by prefixconcat.v:prefixConcatCtxRel_det,
well-typedness and derivative condition by prefixconcat.v:prefixConcatCtxRel_correct. �
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TheoremB.34 (Batch Prefix ConcatenationAssociativity (Contexts)). ? ·Γ

(
? ′ ·X? (Γ) 1

)
=

(? ·Γ ?
′) ·Γ 1

Proof. prefixconcat.v:prefixBatchConcatCtxRel_assoc �

TheoremB.35 (PrefixConcatenationAssociativity (Contexts)). ? ·Γ

(
? ′ ·X? (Γ) ?

′′
)
= (? ·Γ ?

′)·Γ

? ′′

Proof. prefixconcat.v:prefixConcatCtxRel_assoc �

Theorem B.36 (Prefix Concatenation Batch Lift 1 (Contexts)). If 1 : batch (Γ) and ? :
prefix

(
X (1 )◦ (Γ)

)
, then (1)◦ ·Γ Γ = (1)◦

Proof. prefixconcat.v:prefixConcatCtxRel_prefixOf �

TheoremB.37 (Prefix ConcatenationBatch Lift 2 (Contexts)). If ? ·Γ1 ∼ 1′, then ? ·Γ (1)
◦ ∼

(1′)◦.

Proof. prefixconcat.v:prefixConcaCtxtRel_prefixOf’ �

B.5 Projection Relations

Batch Projection. Given a batch or prefix of a context Γ(Δ), we often want to project out the part of
the data corresponding to the subtree Δ. In the case of batches, this always exists: a batch of Γ(Δ)
contains a full batch of Δ, located by following the hole in Γ(−) down to Δ. We also often want to
substitute a new batch in where the old one was — this corresponds to a sort of “re-binding” of the
subcontext Δ′ to a new one. The batch projection relation 1 {Γ (−) 1

′, 5 computes both of these
things: 1′ is the batch found at the Γ(−)-position in 1, and 5 is a function from batches to batches
such that 5 (1′′) is the batch 1, but with 1′′ where 1′ used to be.

Definition B.38 (Batch Projection). We inductively define the relation 1 {Γ (−) 1
′ as follows

1 {− 1, id

11 {Γ1 (−) 1, 5 6(1′) = parb (5 (1′), 12)

parb (11, 12) {Γ1 (−), Γ2 1,6

12 {Γ2 (−) 1, 5 6(1′) = parb (11, 5 (1
′))

parb (11, 12) {Γ1, Γ2 (−) 1,6

11 {Γ1 (−) 1, 5 6(1′) = catb (5 (1′), 12)

catb (11, 12) {Γ1 (−) ; Γ2 1,6

12 {Γ2 (−) 1, 5 6(1′) = catb (11, 5 (1
′))

catb (11, 12) {Γ1 ; Γ2 (−) 1,6

Batch projection is deterministic, in the sense that the batch 1 and the context Γ(−) determine
1′ and 5 .

Theorem B.39 (Batch Projection Determinism). For all 1, and Γ(−), there is at most one pair

(1′, 5 ) such that 1 {Γ (−) 1
′, 5 .

Proof. pproj.v:bproj_det �

The following establishes the fact that batch projection is a function: if the input is well-typed,
there is an output pair which makes the relation hold (exactly one, by the previous theorem).

Theorem B.40 (Batch Projection Function). For all 1, and Γ(−), if 1 : batch (Γ(Δ)), then

there are 1′ and 5 such that 1 {Γ (−) 1
′, 5 .

Proof. pproj.v:bproj_fun �
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This theorem establishes the correctness condition for batch projection. If the input is well-
typed and the relation 1 {Γ (−) 1

′, 5 holds, then 1′ has the expected type (Δ), and the substitution
function takes well-typed batches to well-typed batches.

TheoremB.41 (BatchProjectionCorrectness). If1 {Γ (−) 1
′, 5 , then for all Δ, if1 : batch (Γ(Δ)),

we have that 1′ : batch (Δ) and 5 (1′) = 1. Moreover, for any Δ
′ and 1′′ such that 1′′ : batch (Δ′),

we have 5 (1′′) : batch (Γ(Δ′)).

Proof. pproj.v:brpoj_correct �

Prefix Projection. With prefixes, the projection story is a bitmore complicated. If? : prefix (Γ(Δ)),
exactly one of three possibilities can occur. First, ? can contain no Δ-data, like in the case Γ(−) =
·; −, with ? = catpA(epsp). Next, ? may contain some prefix of Δ, like when Γ(−) = −, Γ′, and
? = (?1, ?2). In this case, the prefix of Δ that ? contains is precisely ?1. Last, ? may contain an
entire batch of Δ, as in the case Γ(−) = −; ·, with ? = catpB(1, epsp). In this case, the batch in
question is exactly 1.
Because of this trichotomy, prefix projection actually consists of three mutually disjoint rela-

tions, exactly one of which must hold when ? is well-typed. They are written as follows:

• ?@Γ(−) { ⊥@Γ
′ (−) holds when ? contains none of Δ

• ?@Γ(−) { ? ′@Γ
′(−)@5 holds when ? contains a prefix ? ′ of Δ

• ?@Γ(−) { 1@5 holds when ? contains a batch 1 of Δ.

In some cases where we use prefix projection, we will also need to compute how the context
Γ(−) context changeswhen we take the derivative of Γ(Δ)with respect to the ? . When ? {Γ (−) ⊥,
the derivative X? (Γ(Δ)) looks like Γ

′(Δ): some of the surrounding context has been chipped away,
but since ? contains none of Δ, it remains untouched. When ? {Γ (−) ?

′, the derivative X? (Γ(Δ))

looks like Γ′
(
X? ′ (Δ)

)
. The outer context has changed, and Δ has been reduced by ? ′. Lastly, when

? {Γ (−) 1, the derivative X? (Γ(Δ)) is a hole-free context Γ
′: because ? contained a whole batch of

Δ, the derivative context has no Δ left. In the first two cases, the semantics will need these Γ′(−)s,
and so we include computing them in the prefix projection relation.
These relations also include one feature that wasn’t presented in the body of the paper: when

some of Δwas found (a prefix or a batch), we also need a function for substituting a different prefix
or a batch (respectively) back in – this is the 5 in the ?@Γ(−) { ? ′@Γ

′(−)@5 and ?@Γ(−) {

1@5 . For example, if ? = parp(?1, ?2) and Γ(−) = −, Γ′, then ?@Γ(−) { ?1@
(
−, X?2 (Γ

′)
)
@5 ,

and for all ? ′, we have that 5 (? ′) = parp(? ′, ?2): the prefix ?
′ replaces the projected out prefix.

Definition B.42 (Prefix Projection).

For a well-typed ? , exactly one of these three relations must hold.

Theorem B.43 (Prefix Projection Trichotomy). For any prefix ? and Γ(−), at most one of the

following three things holds:

(1) ?@Γ(−) { ⊥@Γ
′ (−)

(2) ?@Γ(−) { ? ′@Γ
′(−)@5 , where 5 is a function from prefixes to prefixes.

(3) ?@Γ(−) { 1@5 , where 5 is a function from batches to prefixes.

Moreover, when ? : prefix (Γ(Δ)), exactly one of three holds.

Proof. Existence is pproj.v:pproj_tricot, and uniqueness is pproj.v:pproj_det. �

The following theorem establishes the correctness of empty prefix projection. If there is no Δ in
? , then ? is actually a prefix of Γ(Δ′) for any Δ

′ (because it contains only data for the surrounding
Γ(−)), and all the derivatives line up.
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pproj-here

?@− { ?@ −@83

pproj-,1-emp

?1@Γ1 (−) { ⊥@Γ
′
1 (−) X?2 (Γ2) ∼ Γ

′
2

parp(?1, ?2)@Γ1(−), Γ2 { ⊥@Γ
′
1 (−), Γ

′
2

pproj-,1-pfx

?1@Γ1(−) { ? ′@Γ
′
1 (−)@5 5 ′ (? ′′) = parp(5 (? ′′), ?2) X?2 (Γ2) ∼ Γ

′
2

parp(?1, ?2)@Γ1(−), Γ2 { ? ′@Γ
′
1 (−), Γ

′
2@5 ′

pproj-,1-bat

?1@Γ1 (−) { 1@5 5 ′ (1′) = parp(5 (1′), ?2)

parp(?1, ?2)@Γ1(−), Γ2 { 1@5 ′

pproj-,2-emp

?2@Γ2(−) { ⊥@Γ
′
2 (−) X?1 (Γ1) ∼ Γ

′
1

parp(?1, ?2)@Γ1, Γ2(−) { ⊥@Γ
′
1 , Γ

′
2 (−)

pproj-,2-pfx

?2@Γ2(−) { ? ′@Γ
′
2 (−)@5 5 ′ (? ′′) = parp(?1, 5 (?

′′)) X?1 (Γ1) ∼ Γ
′
1

parp(?1, ?2)@Γ1, Γ2(−) { ? ′@Γ
′
1 , Γ

′
2 (−)@5 ′

pproj-,2-bat

?2@Γ2(−) { 1@5 5 ′ (? ′′) = parp(?1, 5 (?
′′))

parp(?1, ?2)@Γ1(−), Γ2 { 1@5 ′

pproj-;1-A-emp

?@Γ1(−) { ⊥@Γ
′
1 (−)

catpA(?)@Γ1(−); Γ2 { ⊥@Γ
′
1 (−); Γ2

pproj-;1-A-pfx

?@Γ1(−) { ? ′@Γ
′
1 (−)@5 5 ′(? ′′) = catpA(5 (? ′′))

catpA(?)@Γ1(−); Γ2 { ? ′@Γ
′
1 (−); Γ2@5 ′

pproj-;1-A-bat

?@Γ1(−) { 1@5 5 ′(1′) = catpA(5 (1′))

catpA(?)@Γ1(−); Γ2 { 1@5 ′

pproj-;1-B

?@Γ1(−) { 1′@5 5 ′(1′′) = catpB(1, 5 (1′′)) X? (Γ2) ∼ Γ
′
2

catpB(1, ?)@Γ1(−); Γ2 { 1′@5 ′

pproj-;2-A

X? (Γ1) ∼ Γ
′
1

catpA(?)@Γ1; Γ2(−) { ⊥@Γ
′
1 ; Γ2(−)

pproj-;2-B-emp

?@Γ2(−) { ⊥@Γ
′
2 (−)

catpB(1, ?)@Γ1; Γ2(−) { ⊥@Γ
′
2 (−)

pproj-;2-B-pfx

?@Γ2(−) { ? ′@Γ
′
2 (−)@5 5 ′ (? ′′) = catpB(1, 5 (? ′′))

catpB(1, ?)@Γ1; Γ2(−) { ? ′@Γ
′
2 (−)@5 ′

pproj-;2-B-pfx

?@Γ2(−) { 1′@Γ
′
2@5 5 ′(1′′) = catpB(1, 5 (1′′))

catpB(1, ?)@Γ1; Γ2(−) { 1′@Γ
′
2@5 ′

Fig. 8. Prefix Projection Rules

Theorem B.44 (Prefix Projection Empty Coherence). If ? : prefix (Γ(Δ)) and ?@Γ(−) {

⊥@Γ
′(−) then for all Δ′, we have ? : prefix (Γ(Δ′)) and X? (Γ(Δ

′)) = Γ
′(Δ′)

Proof. pproj.v:pproj_emp �

The following theorem says that if we get a prefix ? ′ out of prefix projection, then (1) it actually
is a prefix of Δ, (2) substituting it back into ? just gives ? again, and (3) for any prefix ? ′′ of a
context Δ′, substituting it into ? (i.e. 5 (? ′′)) gives a prefix of Γ(Δ′) such that X5 (? ′′ ) (Γ(Δ

′)) is of
the form Γ

′ (X? ′′ (Δ′)), where Γ′ does not depend on Δ
′ or ? ′′.
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Theorem B.45 (Preifx Projection Prefix Coherence). If ? : prefix (Γ(Δ)) and ?@Γ(−) {

? ′@Γ
′(−)@5 , then

(1) ? ′ : prefix (Δ)
(2) 5 (? ′) = ?

(3) For any Δ′ and any ? ′′ : prefix (Δ′), we have 5 (? ′′) : prefix (Γ(Δ′)) and X5 (? ′′ ) (Γ(Δ
′)) =

Γ
′(X? ′′ (Δ′))

Proof. pproj.v:pproj_pfx �

The following theorem is basically the same story as Theorem B.45. If we look for the Δ bit of
? : prefix (Γ(Δ)) and get out a whole batch 1, then (1) 1 actually has type Δ, (2) substituting
1 back into ? just yields ? again, and (3) for all contexts Δ′ and all batches 1′ of Δ′, substituting
1′ into ? gives a prefix of Γ(Δ′), and all the derivatives of such substitutions are equal to a fixed
context (without a hole) Γ′, which is given by the relation.

Theorem B.46 (Prefix Projection Batch Coherence). If ? : prefix (Γ(Δ)) and ?@Γ(−) {

1@5 , then

(1) 1 : batch (Δ)
(2) 5 (1) = ?

(3) For any Δ
′ and any 1′ : prefix (Δ′), we have 5 (1′) : prefix (Γ(Δ′))

Proof. pproj.v:pproj_bat �

Projection Concatenation Theorems. This section includes a handful of theorems about how prefix
and batch projection relate to prefix concatenation. Given a prefix ? : prefix (Γ(Δ)) and a prefix
? ′ : prefix

(
X? (Γ(Δ))

)
, and prefix projections for ? and ? ′, how can we characterize the projec-

tion for the concatenation of ? with ? ′? This section answers all such questions. Note that if the
prefix projection for ? is empty or a prefix and gives back the new context Γ′(−), then ? ′ has type
Γ
′(. . . ), and so its projection happens in context Γ′(−). All of the following theorems are required

to prove subcases of the homomorphism theorem.
If a prefix ? contains none of Δ and is followed by a batch 1, then the resulting batch ? · 1 has

exactly the same batch projection behavior as 1.

Theorem B.47 (Batch Projection Empty Concatenation). Suppose the following:

(1) ? : prefix (Γ(Δ))
(2) ?@Γ(−) { ⊥@Γ

′ (−)

(3) 1 : batch (Γ′(Δ))
(4) 1 {Γ′ (−) 1

′, 5

Then, there is an 5 such that:

(1) ? ·Γ (Δ) 1 {Γ (−) 1
′, 5 ′

(2) For any 1′′ and Δ
′ with 1′′ : batch (Δ′), we have 5 ′ (1′′) = ? ·Γ (Δ′ ) 5 (1

′′).

Proof. pproj.v:bproj_hom_emp �

If a prefix ? contains a prefix of Δ and is followed by a batch 1, then the batch projection of ? · 1
is the concatenation of the projections of ? and 1, respectively, and the substitution functions also
line up correctly.

Theorem B.48 (Batch Projection Prefix Concatenation). Suppose the following:

(1) ? : prefix (Γ(Δ))
(2) ?@Γ(−) { ?3@Γ

′(−)@5
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(3) 1 : batch
(
Γ
′
(
X?3 (Δ)

) )

(4) 1 {Γ′ (−) 13 , 5
′

Then, there is some 5 ′′ such that

(1) ? ·Γ (Δ) 1 {Γ (−) ?3 ·Δ 1B , 5
′′

(2) For any ? ′′ 1′′ and Δ
′ with ? ′′ : prefix (Δ′) 1′′ : batch

(
X? ′′ (Δ′)

)
, we have 5 ′′ (1′′) =

5 (? ′′) ·Γ (Δ′ ) 5
′ (1′′).

Proof. pproj.v:bproj_hom_pfx �

If a prefix ? contains a batch of Δ and is followed by a batch 1, then the batch projection of ? · 1
is just the original batch of Δ.

Theorem B.49 (Batch Projection Batch Concatenation). Suppose the following:

(1) ? : prefix (Γ(Δ))
(2) ?@Γ(−) { 13@5

(3) 1 : batch
(
X? (Γ(Δ))

)

Then, there is some 5 ′ such that

(1) ? ·Γ (Δ) 1 {Γ (−) 13, 5
′

(2) For any ? ′ 1′ and Δ
′ with ? ′ : prefix (Δ′) 1′ : batch

(
X? (Γ(Δ

′))
)
, we have 5 ′ (1′) =

5 (? ′) ·Γ (Δ′ ) 1
′.

Proof. pproj.v:bproj_hom_bat �

If two subsequent prefixes ? and ? ′ both have empty projections, then their concatenation does
as well.

Theorem B.50 (Prefix Projection Empty Empty Concatenation). Suppose the following

(1) ? : prefix (Γ(Δ))
(2) ?@Γ(−) { ⊥@Γ

′ (−)

(3) ? ′ : prefix (Γ′(Δ′))

(4) ? ′@Γ
′(−) { ⊥@Γ

′′ (−)

Then, for any Δ
′′, we have ? ·Γ (Δ′′ ) ?

′@Γ(−) { ⊥@Γ
′′ (−).

Proof. pproj.v:pproj_hom_emp_emp �

If subsequent prefixes ? and ? ′ are such that ? has an empty projection and ? ′ has a prefix
projection, then the projection of ? · ? ′ is that of ? ′.

Theorem B.51 (Prefix Projection Empty Prefix Concatenation). Suppose the following:

(1) ? : prefix (Γ(Δ))
(2) ?@Γ(−) { ⊥@Γ

′ (−)

(3) ? ′ : prefix (Γ′(Δ))
(4) ? ′@Γ

′(−) { ?3@Γ
′′ (−)@5

Then, there exists 5 ′ such that

(1) ? ·Γ (Δ) ?
′@Γ(−) { ?3@Γ

′′ (−)@5 ′

(2) For any Δ
′ and ? ′′ such that ? ′′ : prefix (Δ′), we have 5 ′ (? ′′) = ? ·Γ (Δ′ ) 5 (?

′′)

Proof. pproj.v:pproj_hom_emp_pfx �

If subsequent prefixes ? and ? ′ are such that ? has an empty projection and ? ′ has a batch
projection, then the projection of ? · ? ′ is again that of ? ′.
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Theorem B.52 (Prefix Projection Empty Batch Concatenation). Suppose the following:

(1) ? : prefix (Γ(Δ))
(2) ?@Γ(−) { ⊥@Γ

′ (−)

(3) ? ′ : prefix (Γ′(Δ))
(4) ? ′@Γ

′(−) { 13@5

Then, there exists 5 ′ such that

(1) ? ·Γ (Δ) ?
′@Γ(−) { 13@5 ′

(2) For any Δ
′ and 1 such that 1 : batch (Δ′), we have 5 ′(1) = ? ·Γ (Δ′ ) 5 (1)

Proof. pproj.v:pproj_hom_emp_bat �

It is impossible for subsequent prefixes ? and ? ′ to be such that ? has a prefix projection and
? ′ has an empty projection. Once a prefix has reached the hole part of the context, all subsequent
prefixes have projection which is at least a prefix, if not a batch.

Theorem B.53 (Prefix Projection Prefix Not Empty Concatenation). Suppose the follow-

ing:

(1) ? : prefix (Γ(Δ))
(2) ?@Γ(−) { ?3@Γ

′(−)@
(3) ? ′ : prefix

(
Γ
′
(
X?3 (Δ)

) )

Then, it is never the case that ? ′@Γ
′(−) { ⊥@Γ

′′ (−), for any Γ
′′ (−)

Proof. pproj.v:pproj_hom_pfx_not_emp �

If subsequent prefixes ? and ? ′ both have prefix projections, then then the projection of ? · ? ′

is the concatenation of those of ? and ? ′. The substitution function for ? · ? ′ is just the pointwise
concatenation of the substitution functions for ? and ? ′.

Theorem B.54 (Prefix Projection Prefix Prefix Concatenation). Suppose the following:

(1) ? : prefix (Γ(Δ))
(2) ?@Γ(−) { ?3@Γ

′(−)@5

(3) ? ′ : prefix
(
Γ
′
(
X?3 (Δ)

) )

(4) ? ′@Γ
′(−) { ? ′

3
@Γ

′′ (−)@5 ′

Then, there exists 5 ′′ such that:

(1) ? ·Γ (Δ) ?
′@Γ(−) { ?3 ·Δ ?

′
3
@Γ

′′ (−)@5 ′

(2) For any ?0, ?
′
0 and Δ0, if ?0 : prefix (Δ0) and ?

′
0 : prefix

(
X?0 (Δ0)

)
, then 5 ′′ (?0 ·Δ0 ?

′
0) =

5 (?0) ·Γ (Δ0 ) 5
′ (? ′0).

Proof. pproj.v:pproj_hom_pfx_pfx �

Theorem B.55 (Prefix Projection Prefix Batch Concatenation). Suppose the following:

(1) ? : prefix (Γ(Δ))
(2) ?@Γ(−) { ?3@Γ

′(−)@5

(3) ? ′ : prefix
(
Γ
′
(
X?3 (Δ)

) )

(4) ? ′@Γ
′(−) { 13@5 ′

Then, there exists 5 ′′ such that:

(1) ? ·Γ (Δ) ?
′@Γ(−) { ?3 ·Δ 13@5 ′

(2) For any ?0, 10 and Δ0, if ?0 : prefix (Δ0) and 10 : batch
(
X?0 (Δ0)

)
, then 5 ′′ (?0 ·Δ0 10) =

5 (?0) ·Γ (Δ0 ) 5
′ (10).
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Proof. pproj.v:pproj_hom_pfx_bat �

Theorem B.56 (Prefix Projection Batch Concatenation). Suppose the following:

(1) ? : prefix (Γ(Δ))
(2) ?@Γ(−) { 13@5

(3) ? ′ : prefix
(
X? (Γ(Δ))

)

Then, there exists 5 ′ such that:

(1) ??A> 9�0C? ·Γ (Δ) ?
′
Γ(−)13X? ′

(
X? (Γ(Δ))

)
5 ′

(2) For all 1′ and Δ
′ such that 1′ : batch (Δ′), we have that 5 ′ (1′) = 5 (1′) ·Γ (Δ′ ) ?

′.

Proof. pproj.v:pproj_hom_bat �

B.6 Historical Contexts

Definition B.57 (Historical Context). Contexts Ω := · | Ω, G : � are fully structural contexts, where
the � are STLC types.

A stream type is “flattened” into an STLC type by turning concatenations and parallels into
products, and stars into lists.

Definition B.58 (Type and Context Flatten). For B a stream type, we define its flattening into an
STLC type, denoted 〈B〉, inductively:

• 〈1〉 = 1
• 〈Y〉 = 1
• 〈B · C〉 = 〈B〉 × 〈C〉

• 〈B‖C〉 = 〈B〉 × 〈C〉

• 〈B + C〉 = 〈B〉 + 〈C〉

• 〈B★〉 = list (〈B〉)

For Γ a bunched context, we define its flattening to a standard context, 〈Γ〉 inductively:

• 〈·〉 = ·

• 〈G : B〉 = G : 〈B〉
• 〈Γ; Γ′〉 = 〈Γ〉, 〈Γ′〉

• 〈Γ, Γ′〉 = 〈Γ〉, 〈Γ′〉

For an STLC value E : 〈B〉, we write toBatchB (E) for the batch of type B that it corresponds to.
Dually, for 1 : batch (B), we write 〈1〉 for the STLC value of type 〈B〉 it corresponds to.

Definition B.59 (Historical Programs and Substitutions). Fix a language of terms " , with type
system Ω ⊢ " : �. Write its semantics as" ↓ E . We assume that this relation is a decidable partial
function, in the sense that" evaluates to at most one E , and it is decidable whether or not such a
E exists. We write substitutions \ : Ω′ → Ω. Substitutions have a contravariant action on terms,
written " [\ ]: if Ω ⊢ " : �, then Ω

′ ⊢ " [\ ] : �.

B.7 Context Subtyping

The following is a full listing of subtyping rules. This includes:

• The commutative monoid equations for comma contexts
• The non-commutative monoid equations for semicolon contexts.
• Weakenings for comma and semicolon. The semicolon weakenings need to record the con-
text not being weakened away in the term for semantic reasons: transporting along these
subtyping relations will require emitting empty prefixes, which require the context to con-
struct.
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• A rule SubtyNullable(Δ) which says that every context is a subtype of a context Δ if Δ is
nullable. This is not intended to be used in terms (or needed in any we have written), but is
needed to make the subtyping derivative operation work.

• A rule SubtyWknAllwhich is a global weakening: every context is a subtype of the empty
context.

• A rule SubtyDistrwhich says that semicolon distributes over comma: Γ; (Δ1, Δ2) ≤ (Γ; Δ1) , (Γ; Δ2).
Semantically, we can turn a prefix of Γ; (Δ1, Δ2) into (Γ; Δ1) , (Γ; Δ2) by copying the Γ to
both parallel components, and then forwarding the Δ components. A program that has the
same batch behavior as this is implementable without the structural rule (using wait), but it
is less incremental, instead waiting until the entire Γ arrives, and then sending Γ all at once
and forwarding the Δs.

• A congruence rule, allowing subtyping rules to be applied in a subcontext.

Definition B.60 (Context Subtyping).

? 5 : Δ ≤ Δ
′

SubtyCong(Γ(−), ? 5 ) : Γ(Δ) ≤ Γ(Δ′) SubtyUnitSemicL : Γ ≤ ·; Γ

SubtyUnitSemicR : Γ ≤ Γ; · SubtyUnitCommaL : Γ ≤ ·, Γ

SubtyUnitCommaR : Γ ≤ Γ, · SubtyCommaContr : Γ ≤ Γ, Γ

SubtyCommaComm : Γ1, Γ2 ≤ Γ2, Γ1 SubtyCommaWkn1 : Γ, Γ′ ≤ Γ

SubtyCommaWkn2 : Γ′, Γ ≤ Γ SubtySemicWkn1(Γ) : Γ; Γ′ ≤ Γ

SubtySemicWkn2(Γ) : Γ′; Γ ≤ Γ SubtyWknAll : Γ ≤ ·

Γ nullable

SubtyNullable(Γ) : Γ′ ≤ Γ

SubtySemicAssoc1 : (Γ1; Γ2) ; Γ3 ≤ Γ1; (Γ2; Γ3) SubtySemicAssoc2 : Γ1; (Γ2; Γ3) ≤ (Γ1; Γ2) ; Γ3

SubtyCommaAssoc1 : (Γ1, Γ2) , Γ3 ≤ Γ1, (Γ2, Γ3) SubtyCommaAssoc2 : Γ1, (Γ2, Γ3) ≤ (Γ1, Γ2) , Γ3

SubtyDistr : Γ; Δ, Δ′ ≤ Γ; Δ, Γ; Δ′

Subtyping is deterministic in the sense that a choice of a subtyping rule and a left context Γ
determine the context Δ for which ? 5 : Γ ≤ Δ.

Theorem B.61 (Subtyping Proof and Left Context Determine Right Context). If ? 5 :
Γ ≤ Δ and ? 5 : Γ ≤ Δ

′, then Δ = Δ
′,.

Proof. ctxsubty.v:tckCtxSubyPf_det �

Subtyping relations can be interpreted as functionswhich cast batches of the left context to those
of the right context. In other words, a subtyping pf : Γ ≤ Δ should denote a function batch(Γ) →

batch(Δ). We operationalize this with the following definition: the judgment coeBatch (pf , 1) ∼
1′ means that the subtyping proof term turns 1 (of type Γ) into 1′ (of type Δ).
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Definition B.62 (Context Subtyping Batch Transport).

1 {Γ (−) 1
′, 5 coeBatch (? 5 , 1′) ∼ 1′′

coeBatch (SubtyCong(Γ(−), ? 5 ), 1) ∼ 5 (1′′)

coeBatch (SubtyUnitSemicL, catb (epsb, 1)) ∼ 1 coeBatch (SubtyUnitSemicR, 1) ∼ catb (1, epsb)

coeBatch (SubtyUnitCommaL, parb (epsb, 1)) ∼ 1 coeBatch (SubtyUnitCommaR, parb (1, epsb)) ∼ 1

coeBatch (SubtyCommaContr, 1) ∼ parb (1,1) coeBatch (SubtyCommaComm, parb (11, 12)) ∼ parb (12, 11)

coeBatch (SubtyCommaWkn1, parb (1,1′)) ∼ 1′ coeBatch (SubtyCommaWkn2, parb (1,1′)) ∼ 1

coeBatch (SubtySemicWkn1(_), catb (1,1′)) ∼ 1′ coeBatch (SubtySemicWkn2(_), catb (1,1′)) ∼ 1

coeBatch (SubtyWknAll, 1) ∼ epsb

Γ done 1′

coeBatch (SubtyNullable(Γ), 1) ∼ 1′

coeBatch (SubtySemicAssoc1, catb (catb (11, 12) , 13)) ∼ catb (11, catb (12, 13))

coeBatch (SubtySemicAssoc2, catb (11, catb (12, 13))) ∼ catb (catb (11, 12) , 13)

coeBatch (SubtyCommaAssoc1, parb (parb (11, 12) , 13)) ∼ parb (11, parb (12, 13))

coeBatch (SubtyCommaAssoc2, parb (11, parb (12, 13))) ∼ parb (parb (11, 12) , 13)

coeBatch (SubtyDistr, catb (1, parb (11, 12))) ∼ parb (catb (1,11) , catb (1,12))

Naturally, this relation is functional: when the inputs arewell-typed, there is a uniquewell-typed
output.

Theorem B.63 (Context Subtyping Batch Transport Function). For any ? 5 , 1, there is at

most one 1′ such that coeBatch (? 5 , 1) ∼ 1′. If 1 : batch (Γ) and ? 5 : Γ ≤ Γ
′, such a 1′ must exist,

and it satisfies 1′ : batch (Γ′).

Proof. Existence by ctxsuby.v:ctxSubtyPfBatchTransport_fun,
uniqueness by ctxsubty.v:ctxSubtyPfBatchTransport_det,
well-typedness of 1′ by ctxsubty.v:ctxSubtyPfBatchTransport_correct. �
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Definition B.64 (Context Subtyping Prefix Transport).

?@Γ(−) { ⊥@Γ
′(−)

coePfx (SubtyCong(Γ(−), ? 5 ), ?) ∼ ?

?@Γ(−) { ? ′@Γ
′(−)@5 coePfx (? 5 , ? ′) ∼ ? ′′

coePfx (SubtyCong(Γ(−), ? 5 ), ?) ∼ 5 (? ′′)

?@Γ(−) { 1@5 coeBatch (? 5 ,1) ∼ 1′

coePfx (SubtyCong(Γ(−), ? 5 ), ?) ∼ 5 (1′)

coePfx (SubtyUnitSemicL, ?) ∼ catpB(epsb, ?)

coePfx (SubtyUnitSemicR, ?) ∼ catpA(?)

coePfx (SubtyUnitCommaL, ?) ∼ parp(epsp, ?)

coePfx (SubtyUnitCommaR, ?) ∼ parp(?, epsp)

coePfx (SubtyCommaContr, ?) ∼ parp(?, ?)

coePfx (SubtyCommaComm, parp(?, ? ′)) ∼ parp(?, ? ′)

coePfx (SubtyCommaWkn1, parp(?, ? ′)) ∼ ? ′

coePfx (SubtyCommaWkn2, parp(?, ? ′)) ∼ ?

coePfx (SubtySemicWkn1(Γ), catpA(?)) ∼ empΓ

coePfx (SubtySemicWkn1(_), catpB(1, ?)) ∼ ?

coePfx (SubtySemicWkn2(_), catpA(?)) ∼ ?

coePfx (SubtySemicWkn2(_), catpB(1, ?)) ∼ (1)◦

coePfx (SubtyWknAll, ?) ∼ epsp

coePfx (SubtyNullable(Γ), ?) ∼ empΓ

coePfx (SubtySemicAssoc1, catpA(catpA(?))) ∼ catpA(?)

coePfx (SubtySemicAssoc1, catpA(catpB(1, ?))) ∼ catpB(1, catpA(?))

coePfx (SubtySemicAssoc1, catpB(catb (1,1′) , ?)) ∼ catpB(1, catpB(1′, ?))

coePfx (SubtySemicAssoc2, catpA(?)) ∼ catpA(catpA(?))

coePfx (SubtySemicAssoc2, catpB(1, catpA(?))) ∼ catpA(catpB(1, ?))

coePfx (SubtySemicAssoc2, catpB(1, catpB(1′, ?))) ∼ catpB(catb (1,1′) , ?)

coePfx (SubtyCommaAssoc1, parp(parp(?1, ?2), ?3)) ∼ parp(?1, parp(?2, ?3))

coePfx (SubtyCommaAssoc2, parp(?1, parp(?2, ?3))) ∼ parp(parp(?1, ?2), ?3)

coePfx (SubtyDistr, catpA(?)) ∼ parp(catpA(?), catpA(?))

coePfx (SubtyDistr, catpB(1, parp(?1, ?2))) ∼ parp(catpB(1, ?1), catpB(1, ?2))
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Theorem B.65 (Context Subtyping Prefix Transport Function). For any ? 5 and ? , there is

at most one ? ′ such that coePfx (? 5 , ?) ∼ ? ′. If ? : prefix (Γ) and ? 5 : Γ ≤ Γ
′, then such a ? ′

exists, and ? ′ : prefix (Γ′)

Proof. Existence by ctxsubty.v:ctxSubtyPfPrefixTransport_fun,
uniqueness by ctxsubty.v:ctxSubtyPfPrefixTransport_det.
well-typedness of ? ′ by ctxsubty.v:ctxSubtyPfPrefixTransport_correct �

The proof terms themselves also need to update with prefixes: if ? : prefix (Γ) and ? 5 : Γ ≤ Γ
′,

then we should be able to find X? (? 5 ) so that X? (? 5 ) : X? (Γ) ≤ Xcoepfx (? 5 ,? )Γ
′. However, it is

sometimes the case that X? (Γ) = Xcoepfx (? 5 ,? )Γ
′, in which case the subtyping is no longer needed.

To this end, we define a pair of relations, written X? (pf ) ∼ ⊥ and X? (pf ) ∼ pf ′. The first defines
the situation where after? , the contexts that pf relates agree and the subtyping is no longer needed.
The second gives pf ′, the updated proof term relating the derivative contexts, when necessary. We
call these two relations the “none” and “some” subtyping proof term derivative relations because
of the use of an option type in the Coq formalism.
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Definition B.66 (Context Subtyping Proof Term Derivatives).

cspd-cong-emp

?@Γ(−) { ⊥@Γ
′ (−)

X? (SubtyCong(Γ(−), ? 5 )) ∼ SubtyCong(Γ′(−), ? 5 )
cspd-cong-pfx0

?@Γ(−) { ? ′@Γ
′(−)@5 X? ′ (? 5 ) ∼ ⊥

X? (SubtyCong(Γ(−), ? 5 )) ∼ ⊥
cspd-cong-pfx1

?@Γ(−) { ? ′@Γ
′(−)@5 X? ′ (? 5 ) ∼ ? 5 ′

X? (SubtyCong(Γ(−), ? 5 )) ∼ SubtyCong(Γ′(−), ? 5 ′)

cspd-cong-bat

?@Γ(−) { 1@5

X? (SubtyCong(Γ(−), ? 5 )) ∼ ⊥
cspd-unitsemicl

X? (SubtyUnitSemicL) ∼ ⊥

cspd-unitsemicr

X? (SubtyUnitSemicR) ∼ SubtyUnitSemicR
cspd-unitcommal

X? (SubtyUnitCommaL) ∼ SubtyUnitCommaL

cspd-unitcommar

X? (SubtyUnitCommaR) ∼ SubtyUnitCommaR
cspd-commacontr

X? (SubtyCommaContr) ∼ SubtyCommaContr

cspd-commacomm

X? (SubtyCommaComm) ∼ SubtyCommaComm
cspd-commawknA

X? (SubtyCommaWkn1) ∼ SubtyCommaWkn1

cspd-commawknB

X? (SubtyCommaWkn2) ∼ SubtyCommaWkn2
cspd-semicwknA-A

XcatpA (? ) (SubtySemicWkn1(Δ)) ∼ SubtySemicWkn1(Δ)

cspd-semicwknA-B

XcatpB (1,? ) (SubtySemicWkn1(Δ)) ∼ ⊥
cspd-semicwknB-A

X? (Δ) ∼ Δ
′

XcatpA (? ) (SubtySemicWkn2(Δ)) ∼ SubtySemicWkn2(Δ′)
cspd-semicwknB-B

X (1 )◦ (Δ) ∼ Δ
′

XcatpB (1,? ) (SubtySemicWkn2(Δ)) ∼ SubtyNullable(Δ′)
cspd-wknall

X? (SubtyWknAll) ∼ SubtyWknAll

cspd-nullable

X? (SubtyNullable(Δ)) ∼ SubtyNullable(Δ)
cspd-semicassocA-A-A

XcatpA (catpA (? ) ) (SubtySemicAssoc1) ∼ SubtySemicAssoc1
cspd-semicassocA-A-B

XcatpA (catpB (1,? ) ) (SubtySemicAssoc1) ∼ ⊥

cspd-semicassocA-B

XcatpB (1,? ) (SubtySemicAssoc1) ∼ ⊥
cspd-semicassocB-A

XcatpA (? ) (SubtySemicAssoc2) ∼ SubtySemicAssoc2
cspd-semicassocB-B-A

XcatpB (1,catpA (? ) ) (SubtySemicAssoc2) ∼ ⊥

cspd-semicassocB-B-B

XcatpB (1,catpB(1′,? ) ) (SubtySemicAssoc2) ∼ ⊥
cspd-commaassocA

X? (SubtyCommaAssoc1) ∼ SubtyCommaAssoc1

cspd-commaassocB

X? (SubtyCommaAssoc2) ∼ SubtyCommaAssoc2
cspd-distr-A

XcatpA (? ) (SubtyDistr) ∼ SubtyDistr

cspd-distr-B

XcatpB (1,? ) (SubtyDistr) ∼ ⊥

, Vol. 1, No. 1, Article . Publication date: July 2023.



Stream Types 49

Theorem B.67 (Context Subtyping Proof Derivative Function). For any ? and pf , there is

at most one G (either some pf ′ or ⊥) such that X? (? 5 ) ∼ G .

Proof. Existence by ctxsubty.v:ctxSubtyPfDeriv_fun,
uniqueness by ctxsubty.v:ctxSubtyPfDeriv_det. �

Theorem B.68 (Context Subtyping Proof Derivative Correctness (Some)). If

(1) ? : prefix (Γ)
(2) pf : Γ ≤ Γ

′

(3) coePfx (? 5 , ?) ∼ ? ′

(4) X? (pf ) ∼ pf ′

Then ? 5 : X? (Γ) ≤ X? ′ (Γ′).

Proof. ctxsubty.v:ctxSubtyPfDeriv_correct_some �

Theorem B.69 (Context Subtyping Proof Derivative Correctness (None)). If

(1) ? : prefix (Γ)
(2) pf : Γ ≤ Γ

′

(3) coePfx (? 5 , ?) ∼ ? ′

(4) X? (pf ) ∼ ⊥

Then X? (Γ) = X? ′ (Γ′).

Proof. ctxsubty.v:ctxSubtyPfDeriv_correct_some �

The following four theorems are required as lemmas for the homomorphism theorem. They
describe what happens when you coerce two prefixes (or a prefix then a batch) along a subtyping
relation one after the other. In short, it’s equivalent to coercing the concatenated prefix (or batch).
The exact theorem statements depend on the derivative of the proof term pf with respect to the
first prefix ? . If the result is none, the second batch or prefix does not need to be coerced, as it
already has the right type on both sides of the subtyping. If the result is some pf ′,the second batch
or prefix gets transported across it.

Theorem B.70 (Prefix and Batch Transport Concatenation (None)). Suppose the follow-

ing:

(1) ? 5 : Γ ≤ Δ

(2) ? : prefix (Γ)
(3) 1 : batch

(
X? (Γ)

)

(4) coePfx (? 5 , ?) ∼ ? ′

(5) X? (? 5 ) ∼ ⊥

Then, coeBatch (? 5 , ? ·Γ 1) ∼ ? ′ ·Δ 1

Proof. ctxsubty.v:ctxSubtyPfBatchTransport_hom_none �

TheoremB.71 (Prefix and Batch Transport Concatenation (Some)). Suppose the following:

(1) ? 5 : Γ ≤ Δ

(2) ? : prefix (Γ)
(3) 1 : batch

(
X? (Γ)

)

(4) coePfx (? 5 , ?) ∼ ? ′

(5) X? (? 5 ) ∼ ? 5 ′

(6) coeBatch (? 5 ′, 1) ∼ 1′

Then, coeBatch (? 5 , ? ·Γ 1) ∼ ? ′ ·Δ 1
′
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Proof. ctxsubty.v:ctxSubtyPfBatchTransport_hom_some �

Theorem B.72 (Prefix Transport Concatenation (None)). Suppose:

• ? 5 : Γ ≤ Δ

• ?1 : prefix (Γ)
• ?2 : prefix

(
X?1 (Γ)

)

• coePfx (? 5 , ?1) ∼ ? ′1
• X?1 (? 5 ) ∼ ⊥

Then, coePfx (? 5 , ?1 ·Γ ?2) ∼ ? ′1 ·Δ ?2

Proof. ctxsubty.v:ctxSubyPfPrefixTransport_hom_none �

Theorem B.73 (Prefix Transport Concatenation (Some)). Suppose:

• ? 5 : Γ ≤ Δ

• ?1 : prefix (Γ)
• ?2 : prefix

(
X?1 (Γ)

)

• coePfx (? 5 , ?1) ∼ ? ′1
• X?1 (? 5 ) ∼ ? 5 ′

• coePfx (? 5 ′, ?2) ∼ ? ′2

Then, coePfx (? 5 , ?1 ·Γ ?2) ∼ ? ′1 ·Δ ?
′
2

Proof. ctxsubty.v:ctxSubyPfPrefixTransport_hom_some �

Theorem B.74 (Subtyping Proof Term Derivative Concatenation (None)). Suppose:

(1) ? 5 : Γ ≤ Δ

(2) ? : prefix (Γ)
(3) ? ′ : prefix

(
X? (Γ)

)

(4) X? (pf ) ∼ ⊥

Then, X? ·Γ? ′ (pf ) ∼ ⊥

Proof. ctxsubty.v:ctxSubyPfDeriv_hom_none �

Theorem B.75 (Subtyping Proof Term Derivative Concatenation (Some)). Suppose:

(1) ? 5 : Γ ≤ Δ

(2) ? : prefix (Γ)
(3) ? ′ : prefix

(
X? (Γ)

)

(4) X? (? 5 ) ∼ ? 5 ′

(5) X? ′ (? 5 ′) ∼ G

Where G could either be some pf ′′ or ⊥. Then, X? ·Γ? ′ (? 5 ) ∼ G

Proof. ctxsubty.v:ctxSubyPfDeriv_hom_some �

B.8 Type System

Definition B.76 (Recursion Signature). A recursion signature Σ is either empty (signaling that
typechecking is not in the body of a recursive function), or the signature Ω | Γ → B of a sequent
which defines the recursive function we are currently checking the body of. Σ ::= ∅ | (Ω | Γ → B)
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Definition B.77 (Type System).

Var

Ω | Γ(G : B) ⊢Σ (G : B@Γ(−)) : B

HistPgm

Ω ⊢ " : 〈B〉

Ω | Γ ⊢Σ 〈" : B〉 : B

Par-R

Ω | Γ ⊢Σ 41 : B Ω | Γ ⊢Σ 42 : C

Ω | Γ ⊢Σ (41, 42) : B‖C
Par-L

Ω | Γ(G : B,~ : C) ⊢Σ 4 : A

Ω | Γ(I : B‖C) ⊢Σ letΓ (−) (G,~) = I in4 : A

Cat-R

Ω | Γ ⊢Σ 41 : B Ω | Δ ⊢Σ 42 : C

Ω | Γ; Δ ⊢Σ (41; 42) : B · C
Cat-L

Ω | Γ(G : B;~ : C) ⊢Σ 4 : A

Ω | Γ(I : B · C) ⊢Σ letΓ (−) (G ;~) = I in 4 : A

Eps-R

Ω | Γ ⊢Σ sink : Y

Plus-R-1

Ω | Γ ⊢Σ 4 : B

Ω | Γ ⊢Σ inl (4) : B + C
Plus-R-2

Ω | Γ ⊢Σ 4 : C

Ω | Γ ⊢Σ inr (4) : B + C
Plus-L

? : prefix (Γ(I : B + C)) Ω | Γ(G : B) ⊢Σ 41 : A Ω | Γ(~ : C) ⊢Σ 42 : A

Ω | X? (Γ(I : B + C)) ⊢Σ caseΓ (−),B,C,A (? ; I, G .41,~.42) : A

Star-R-1

Ω | Γ ⊢Σ nil : B★

Star-R-2

Ω | Γ ⊢Σ 41 : B Ω | Δ ⊢Σ 42 : B
★

Ω | Γ; Δ ⊢Σ 41 ::42 : B
★

Star-L

? : prefix
(
Γ(I : B★)

)
Ω | Γ(·) ⊢Σ 41 : A Ω | Γ(G : B; GB : B★) ⊢Σ 42 : A

Ω | X?
(
Γ(I : B★)

)
⊢Σ caseΓ (−),B,A (? ; I, 41, G .GB.42) : A

Wait

? : prefix (Γ(Δ)) Ω, 〈Δ〉 | Γ(·) ⊢Σ 4 : B

Ω | X? (Γ(Δ)) ⊢Σ waitΓ (−),Δ,B (? ; 4) : B
Fix

Ω
′
= G1 : �1, . . . , G= : �= Ω

′ | Γ ⊢Ω′ |Γ→B 4 : B Ω ⊢ "8 : �8

Ω | Γ ⊢Σ fix (G1 : �1, . . . , G= : �=) @ ["1, . . . ,"=] .4 : B
Rec

Ω
′
= G1 : �1, . . . , G= : �= Ω ⊢ "8 : �8

Ω | Γ ⊢(Ω′ |Γ→B ) rec@ ["1 : �1, . . . ,"= : �=] : B

Cut

Ω | Δ ⊢Σ 41 : B Ω | Γ(G : B) ⊢Σ 42 : A

Ω | Γ(Δ) ⊢Σ letΓ (−) G = 41 in 42 : A
SubCtx

pf : Γ ≤ Γ
′
Ω | Γ′ ⊢Σ 4 : B

Ω | Γ ⊢Σ subctx (pf , 4) : B

Buffering Rules. Some typing rules are different from those presented in the body of the paper. In
particular, the left rules for star and sums, as well as Wait, include a buffer in the term: a prefix
of the input context, where we store inputs until we have received enough to run the term. For
example, the Wait rule has this buffer ? , which we gather until it includes a whole batch of Δ.

Wait

? : prefix (Γ(Δ)) Ω, 〈Δ〉 | Γ(·) ⊢Σ 4 : B

Ω | X? (Γ(Δ)) ⊢Σ waitΓ (−),Δ,B (? ; 4) : B

The buffer is included in the syntax of the term. Additionally, the context in the conclusion is
X? (Γ(Δ)). If we’ve buffered ? of the input, the term is expecting the rest of the context. Users of the
calculus need not worry about this detail: when writing programs and when the program starts
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running, the buffer is empty: ? = empΓ (Δ) . By Theorem B.13, X? (Γ(Δ)) = Γ(Δ), which returns
Wait to the expected rule presented in the body of the paper. The other rules that include buffers
are Plus-L and Star-L.

Generalized Fixpoints. To account for the inclusion of the historical context, the rules for defining
recursive programs by fixpoint and making recursive calls are generalized from the ones in the
body of the paper to the rules shown below. The main idea is the same: fix registers a term as a
recursive function, and rec can be used inside the body of the term to refer back to the function
being defined. Since the full _ST calculus includes memory by means of the historical context, we
need a mechanism to (a) kick off a recursive function with initial values in bound to historical
context, and (b) change values as we make recursive calls.

Fix

Ω
′
= G1 : �1, . . . , G= : �= Ω

′ | Γ ⊢Ω′ |Γ→B 4 : B Ω ⊢ "8 : �8

Ω | Γ ⊢Σ fix (G1 : �1, . . . , G= : �=) @ ["1, . . . ,"=] .4 : B
Rec

Ω
′
= G1 : �1, . . . , G= : �= Ω ⊢ "8 : �8

Ω | Γ ⊢(Ω′ |Γ→B ) rec@ ["1 : �1, . . . ,"= : �=] : B

When defining a recursive transformer with Fix, the programmer can choose a context Ω′, dif-
ferent from the current context Ω for the recursive function to run in. This context includes any
accumulators that the transformer will maintain. At definition time, the programmermust provide
initial values for each of the accumulator values. Formally, this looks like a list of terms"8 , one for
each position in the context Ω′, typed in the defining context Ω. The context Ω′ is also included in
the updated recursion signature, Ω′ | ΓC>B . Then, when making recursive calls, the programmer
decides how these values should be updated before continuing with the next iteration. As we will
see in Appendix C, accumulator values are often updated with data computed from the stream
that has arrived since the last recursive call was made. This new recursion term is written with
rec@ ["1, . . . , "=], where the terms "8 compute define the new accumulator values from the
current historical context Ω.

B.9 Sink Terms

Once we have produced an entire batch 1 : batch (B), a program 4 of type B needs to transition to
a program emitting nothing: we compute this term from 1 with sink1 .

Definition B.78 (Sink Terms). We define sink terms by recursion on 1, as follows:

(1) sinkepsb = sinkoneb = sink[] = sink11 ::12 = sink

(2) sinkparb (11,12 ) =
(
sink11 , sink12

)

(3) sinkcatb (11,12 ) = sink12
(4) sinksumbA (1 ) = sinksumbB(1 ) = sink1

This program is closed, and has type we expect for a stream transformer that has just emitted
an entire batch 1 of type B .

Theorem B.79 (Sink Term Correctness). When 1 : batch (B), we have · | · ⊢∅ sink1 :
X (1 )◦ (B).

Proof. language.v:sinkexpr_tck �

The relevant concatenation property of sink terms is that they only depend on the the shape
of the type B after the batch has been emitted, so adding more to the beginning does not change
anything.
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Theorem B.80 (Sink Term Concatenation). If ? : prefix (B) and 1 : batch
(
X? (B)

)
, then

sink1 = sink? ·B1 .

Proof. language.v:sinkepr’_hom �

Theorem B.81 (Fixpoint Substitution). For 4, 45 terms, we define 4
[
45 /use

]
compositionally

over the structure of 4 , with
(
rec@

[
" : �

]) [
45 /use

]
= fix

(
G : �

)
@

[
"
]
.45

Then, if Ω | Γ ⊢Σ∪{ 5 :Ω′ |Δ→C } 4 : B and Ω
′ | Δ ⊢(5 :Ω′ |Δ→C ) 45 : C , we have Ω | Γ ⊢Σ 4

[
45 /use

]
: B .

Proof. language.v:fixSubst_correct �

B.10 Semantics

Batch Semantics. We define a whole-batch semantics of the language: given an input batch and a
program 4 , we way that 1 ⇒ 4 ⇒= 1′ if 4 produces output 1′ after doing at most = unfoldings of
fixpoints.

Definition B.82 (Batch Semantics). We define a 4-place relation 1 ⇒ 4 ⇒= 1′ as follows.

B-Var

1 {Γ (−) 1
′, _

1 ⇒ (G : B@Γ(−)) ⇒= 1′

B-HistPgm

" ↓ E

1 ⇒ 〈" : B〉 ⇒= toBatchB (E)
B-Par-R

1 ⇒ 41 ⇒
=1 11 1 ⇒ 42 ⇒

=2 12

1 ⇒ (41, 42) ⇒
=1+=2 parb (11, 12)

B-Par-L

1 ⇒ 4 ⇒= 1′

1 ⇒ letΓ (−) (I, G) = ~ in4 ⇒= 1′

B-Cat-R

11 ⇒ 41 ⇒
=1 1′1 12 ⇒ 42 ⇒

=2 1′2

catb (11, 12) ⇒ (41; 42) ⇒
=1+=2 catb

(
1′1, 1

′
2

)
B-Cat-L

1 ⇒ 4 ⇒= 1′

1 ⇒ let_ (I; G) = ~ in 4 ⇒= 1′

B-Eps-R

1 ⇒ sink ⇒= epsb
B-Plus-R-1

1 ⇒ 4 ⇒= 1′

1 ⇒ inl (4) ⇒= sumbA (1′)

B-Plus-R-2

1 ⇒ 4 ⇒= 1′

1 ⇒ inr (4) ⇒= sumbB (1′)
B-Plus-L-1

? ·Γ (I:B+C ) 1 ∼ 1′ 1′ {Γ (−) sumbA (1
′′) , 5 5 (1′′) ⇒ 41 ⇒

= 1′′′

1 ⇒ caseΓ (−),B,C,A (? ; I, G .41, ~.42) ⇒
= 1′′′

B-Plus-L-2

? ·Γ (I:B+C ) 1 ∼ 1′ 1′ {Γ (−) sumbB (1
′′) , 5 5 (1′′) ⇒ 42 ⇒

= 1′′′

1 ⇒ caseΓ (−),B,C,A (? ; I, G .41, ~.42) ⇒
= 1′′′

B-Star-R-1

1 ⇒ nil ⇒= []

B-Star-R-2

11 ⇒ 41 ⇒
=1 1′1 12 ⇒ 42 ⇒

=2 1′2

catb (11, 12) ⇒ 41 :: 42 ⇒
=1+=2 1′1 ::1

′
2
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B-Star-L-1

? ·Γ (I:B★ ) 1 ∼ 1′ 1′ {Γ (I:B★ ) [], 5 5 (epsb) ⇒ 41 ⇒
= 1′′

1 ⇒ caseΓ (−),B,A (? ; I, 41, G .GB.42) ⇒
= 1′′

B-Star-L-2

? ·Γ (I:B★ ) 1 ∼ 1′ 1′ {Γ (I:B★ ) 11 ::12, 5 5 (catb (11, 12)) ⇒ 42 ⇒
= 1′′

1 ⇒ caseΓ (−),B,A (? ; I, 41, G .GB.42) ⇒
= 1′′

B-Wait

? ·Γ (Δ) 1 ∼ 1′ 1′ {Γ (−) 1Δ, 5 5 (epsb) ⇒ 4 [〈1Δ〉/〈Δ〉] ⇒
= 1′′

1 ⇒ waitΓ (−),Δ,B (? ; 4) ⇒
= 1′′

B-SubCtx

coeBatch (pf , 1) ∼ 1′ 1′ ⇒ 4 ⇒= 1′′

1 ⇒ subctx (pf , 4) ⇒= 1′′

B-Fix

"8 ↓ E8 1 ⇒ 45
[
45 /use

] [
E8/G8

]
⇒= 1′

1 ⇒ fix

(
G8 : �8

)
@

[
"8

]
.45 ⇒=+1 1′

B-Cut

1 {Γ (−) 1
′, 5 1′ ⇒ 41 ⇒

=1 1′′ 5 (1′′) ⇒ 42 ⇒
=2 1′′′

1 ⇒ letΓ (−) G = 41 in 42 ⇒
=1+=2 1′′′

Theorem B.83 (Batch Semantics Gas Monotonicity). If 1 ⇒ 4 ⇒= 1′ and =′ ≥ =, then

1 ⇒ 4 ⇒=′
1′.

Proof. language.v:batch_sem_mono �

The batch semantics relation is deterministic in the sense that for any term 4 and any input
batch 1, it will only ever terminate with at most one value. Note that this is independent of the gas
provided: any terminating evaluation will terminate with the same value.

Theorem B.84 (Batch Semantics Inputs Determine Outputs). If 1 ⇒ 4 ⇒=1 11 and 1 ⇒

4 ⇒=2 12, then 11 = 12.

Proof. language.v:batch_sem_det �

Theorem B.85 (Batch Step Correctness). Suppose the following:

(1) · | Γ ⊢∅ 4 : B
(2) 1 ⇒ 4 ⇒= 1′

(3) 1 : batch (Γ)

Then, 1′ : batch (B).

Proof. language.v:batch_pres �

Incremental Semantics.

Definition B.86 (Incremental Semantics). We define a relation ? ⇒ 4 ↓= 4′ ⇒ ? ′.
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P-Var-1

?@Γ(−) { ⊥@Γ
′ (−)

? ⇒ (G : B@Γ(−)) ↓= (G : B@Γ
′(−)) ⇒ empB

P-Var-2

?@Γ(−) { ? ′@Γ
′(−)@5 X? ′ (B) ∼ B′

? ⇒ (G : B@Γ(−)) ↓= (G : B′@Γ
′(−)) ⇒ ? ′

P-Var-3

?@Γ(−) { 1@Γ
′@5 X (1 )◦ (B) ∼ B′

? ⇒ (G : B@Γ(−)) ↓= subctx (SubtyWknAll, sink1) ⇒ (1)◦

P-HistPgm

" ↓ E 1 = toBatchB (E)

? ⇒ 〈" : B〉 ↓= subctx (SubtyWknAll, sink1) ⇒ (1)◦

P-Par-R

? ⇒ 41 ↓
=1 4′1 ⇒ ?1 ? ⇒ 42 ↓

=2 4′2 ⇒ ?2

? ⇒ (41, 42) ↓
=1+=2

(
4′1, 4

′
2

)
⇒ parp(?1, ?2)

P-Par-L-1

(?@Γ(−) { ⊥@Γ
′(−)) ∨ (?@Γ(−) { ? ′@Γ

′(−)@_) ? ⇒ 4 ↓= 4′ ⇒ ? ′

? ⇒ letΓ (−) (G,~) = I in 4 ↓= letΓ′ (−) (G,~) = I in 4′ ⇒ ? ′

P-Par-L-2

?@Γ(−) { _@_? ⇒ 4 ↓= 4′ ⇒ ? ′

? ⇒ letΓ (−) (G,~) = I in4 ↓= 4′ ⇒ ? ′

P-Cat-R-1

? ⇒ 41 ↓
= 4′1 ⇒ ? ′

catpA(?) ⇒ (41; 42) ↓
=
(
4′1; 42

)
⇒ catpA(? ′)

P-Cat-R-2

1 ⇒ 41 ⇒
=1 1′ ? ⇒ 42 ↓

=2 4′2 ⇒ ? ′

catpB(1, ?) ⇒ (41; 42) ↓
=1+=2 4′2 ⇒ catpB(1′, ? ′)

P-Cat-L-1

(?@Γ(−) { ⊥@Γ
′(−)) ∨ (?@Γ(−) { catpA(_)@Γ

′(−)@_) ? ⇒ 4 ↓= 4′ ⇒ ? ′

? ⇒ letΓ (−) (I; G) = ~ in 4 ↓= letΓ′ (−) (I; G) = ~ in 4′ ⇒ ? ′

P-Cat-L-2

(?@Γ(−) { catpB(_, _)@_@_) ∨ (?@Γ(−) { 1@_) ? ⇒ 4 ↓= 4′ ⇒ ? ′

? ⇒ letΓ (−) (I; G) = ~ in 4 ↓= 4′ ⇒ ? ′

P-Eps-R

? ⇒ sink ↓= sink ⇒ epsp

P-Plus-R-1

? ⇒ 4 ↓= 4′ ⇒ ? ′

? ⇒ inl (4) ↓= 4′ ⇒ sumpA(? ′)
P-Plus-R-2

? ⇒ 4 ↓= 4′ ⇒ ? ′

? ⇒ inr (4) ↓= 4′ ⇒ sumpB(? ′)
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P-Plus-L-1

? ′ ·Γ (I:B+C ) ? ∼ ? ′′ (? ′′@Γ(−) { ⊥@_) ∨ (?@Γ(−) { sumpEmp@_@_)

? ⇒ caseΓ (−),B,C,A (?
′; I, G .41, ~.42) ↓

= caseΓ (−),B,C,A (?
′′ ; I, G .41,~.42) ⇒ empA

P-Plus-L-2-1

? ′ ·Γ (I:B+C ) ? ∼ ? ′′ ? ′′@Γ(−) { sumpA(?B)@Γ
′ (−)@5 5 (?B) ⇒ 41 ↓

= 4′1 ⇒ ?A

? ⇒ caseΓ (−),B,C,A (?
′; I, G .41,~.42) ↓

= 4′1 ⇒ ?A
P-Plus-L-2-2

? ′ ·Γ (I:B+C ) ? ∼ ? ′′ ? ′′@Γ(−) { sumpB(?C )@Γ
′ (−)@5 5 (?C ) ⇒ 42 ↓

= 4′2 ⇒ ?A

? ⇒ caseΓ (−),B,C,A (?
′; I, G .41,~.42) ↓

= 4′2 ⇒ ?A
P-Plus-L-3-1

? ′ ·Γ (I:B+C ) ? ∼ ? ′′ ? ′′@Γ(−) { sumbA (1)@5 5 (1) ⇒ 41 ↓
= 4′1 ⇒ ?A

? ⇒ caseΓ (−),B,C,A (?
′; I, G .41,~.42) ↓

= 4′1 ⇒ ?A
P-Plus-L-3-2

? ′ ·Γ (I:B+C ) ? ∼ ? ′′ ? ′′@Γ(−) { sumbB (1)@5 5 (1) ⇒ 42 ↓
= 4′2 ⇒ ?A

? ⇒ caseΓ (−),B,C,A (?
′; I, G .41,~.42) ↓

= 4′2 ⇒ ?A

P-Star-R-1

? ⇒ nil ↓= sink ⇒ stpDone

P-Star-R-2-1

? ⇒ 41 ↓
= 4′1 ⇒ ? ′

catpA(?) ⇒ 41 :: 42 ↓
=
(
4′1; 42

)
⇒ stpA(? ′)

P-Star-R-2-2

1 ⇒ 41 ⇒
= 1′ ? ⇒ 42 ↓

= 4′2 ⇒ ? ′

catpB(1, ?) ⇒ 41 :: 42 ↓
= 4′2 ⇒ stpB(1′, ? ′)

P-Star-L-Emp

? ′ ·Γ (G :B★ ) ? ∼ ? ′′ (? ′′@Γ(−) { ⊥@Γ
′(−)) ∨ (? ′′@Γ(−) { stpEmp@Γ

′ (−)@5 )

? ⇒ caseΓ (−),B,C (?
′; I, 41, G .GB.42) ↓

= caseΓ (−),B,C (?
′′ ; I, 41, G .GB.42) ⇒ empC

P-Star-L-Done-1

? ′ ·Γ (G :B★) ? ∼ ? ′′ ? ′′@Γ(−) { stpDone@Γ
′(−)@5 5 (epsp) ⇒ 41 ↓

= 4′1 ⇒ ? ′′′

? ⇒ caseΓ (−),B,C (?
′; I, 41, G .GB.42) ↓

= subctx
(
SubtyCong(Γ′ (−), SubtyWknAll), 4′1

)
⇒ ? ′′′

P-Star-L-Done-2

? ′ ·Γ (G :B★ ) ? ∼ ? ′′ ? ′′@Γ(−) { []@5 5 (epsb) ⇒ 41 ↓
= 4′1 ⇒ ? ′′′

? ⇒ caseΓ (−),B,C (?
′; I, 41, G .GB.42) ↓

= 4′1 ⇒ ? ′′′

P-Star-L-Cons-1

? ′ ·Γ (G :B★ ) ? ∼ ? ′′ ? ′′@Γ(−) { stpA(?B)@Γ
′(−)@5 5 (?B) ⇒ 42 ↓

= 4′2 ⇒ ? ′′′

? ⇒ caseΓ (−),B,C (?
′; I, 41, G .GB.42) ↓

= letΓ (−) (G ; GB) = I in 4′2 ⇒ ? ′′′

P-Star-L-Cons-2

? ′ ·Γ (G :B★ ) ? ∼ ? ′′

? ′′@Γ(−) { stpB(1, ?B)@Γ
′(−)@5 5 (catpB(1, ?B)) ⇒ 42 ↓

= 4′2 ⇒ ? ′′′

? ⇒ caseΓ (−),B,C (?
′; I, 41, G .GB.42) ↓

= 4′2 ⇒ ? ′′′

P-Star-L-Cons-3

? ′ ·Γ (G :B★ ) ? ∼ ? ′′ ? ′′@Γ(−) { 11 ::12@5 5 (catb (11, 12)) ⇒ 42 ↓
= 4′2 ⇒ ? ′′′

? ⇒ caseΓ (−),B,C (?
′; I, 41, G .GB.42) ↓

= 4′2 ⇒ ? ′′′
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P-Wait-1

? ′ ·Γ (Δ) ? ∼ ? ′′ (? ′′@Γ(−) { ⊥@_) ∨ (? ′′@Γ(−) { _@_@_)

? ⇒ waitΓ (−),Δ,B (?
′; 4) ↓= waitΓ (−),Δ,B (?

′′; 4) ⇒ empB
P-Wait-2

? ′ ·Γ (Δ;Δ′ ) ? ∼ ? ′′ ? ′′@Γ(−) { 1Δ@5 5 (epsb) ⇒ 4 [〈1Δ〉/〈Δ〉] ↓
= 4′ ⇒ ?B

? ⇒ waitΓ (−),Δ,B (? ; 4) ↓
= 4′ ⇒ ?B

P-SubCtx-Some

coePfx (pf , ?) ∼ ? ′ ? ′ ⇒ 4 ↓= 4′ ⇒ ? ′′X? (pf ) ∼ pf ′

? ⇒ subctx (pf , 4) ↓= subctx (pf ′, 4′) ⇒ ? ′′

P-SubCtx-None

coePfx (pf , ?) ∼ ? ′ ? ′ ⇒ 4 ↓= 4′ ⇒ ? ′′X? (pf ) ∼ ⊥

? ⇒ subctx (pf , 4) ↓= 4′ ⇒ ? ′′

P-Cut-Emp

?@Γ(−) { ⊥@Γ
′ (−) ? ⇒ 42 ↓

= 4′2 ⇒ ? ′

? ⇒ letΓ (−) G = 41 in 42 ↓
= letΓ′ (−) G = 41 in 4

′
2 ⇒ ? ′

P-Cut-Pfx

?@Γ(−) { ? ′@Γ
′(−)@5 ? ′ ⇒ 41 ↓

=1 4′1 ⇒ ? ′′ 5 (? ′′) ⇒ 42 ↓
=2 4′2 ⇒ ? ′′′

? ⇒ letΓ (−) G = 41 in42 ↓
=1+=2 letΓ′ (−) G = 4′1 in 4

′
2 ⇒ ? ′′′

P-Cut-Bat

?@Γ(−) { 1@5 1 ⇒ 41 ⇒
=1 1′ 5 (1′) ⇒ 42 ↓

=2 4′2 ⇒ ? ′

? ⇒ letΓ (−) G = 41 in 42 ↓
=1+=2 4′2 ⇒ ? ′

P-Fix

"8 ↓ E8 ? ⇒ 45
[
45 /use

] [
E8/G8

]
↓= 4′ ⇒ ? ′

? ⇒ fix

(
G8 : �8

)
@

[
"8

]
.45 ↓=+1 4′ ⇒ ? ′

Incremental Semantics of Buffering. The incremental semantics for Plus-L andStar-L and Wait

buffer in their inputs until enough of the input has arrived to run the term, where the particular
value of “enough” depends on the rule in question.

To illustrate, consider the rules for Wait.

P-Wait-1

? ′ ·Γ (Δ) ? ∼ ? ′′ (? ′′@Γ(−) { ⊥@_) ∨ (? ′′@Γ(−) { _@_@_)

? ⇒ waitΓ (−),Δ,B (?
′; 4) ↓= waitΓ (−),Δ,B (?

′′ ; 4) ⇒ empB
P-Wait-2

? ′ ·Γ (Δ;Δ′ ) ? ∼ ? ′′ ? ′′@Γ(−) { 1Δ@5 5 (epsb) ⇒ 4 [〈1Δ〉/〈Δ〉] ↓
= 4′ ⇒ ?B

? ⇒ waitΓ (−),Δ,B (? ; 4) ↓
= 4′ ⇒ ?B

In both cases, we take the incoming prefix ? , and concatenate it onto the buffer ? ′ at the context
type Γ(Δ), to get the combined prefix ? ′′. We then dispatch on whether ? ′′ is enough input to run
the continuation 4 . In this case, “enough” means that ? ′′ contains a whole batch 1 of Δ. If it does
(P-Wait-2), we run the continuation, substituting the batch in. If it does not — ? ′′ either gives an
empty projection or just a prefix — we simply save ? ′′ as the new buffer in the resulting wait term,
and return the empty prefix in P-Wait-1.
The semantics for Plus-L and Star-L are similar: in all cases, we add the incoming prefix to the

buffer, and then project from the buffer. If not enough data has arrived, we return the empty prefix
and step to the same term but with an updated buffer.
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Incremental Semantics of Cut. To run a cut term letΓ (−) G = 41 in 42 incrementally, we use the
prefix projection operation to pull out the part of the input prefix in the Γ(−) hole, run it through
41, substitute the result back into the input prefix, and then run 42. This makes critical use of
our prefix projection operation (Appendix B.5), and we have three incremental semantics rules
corresponding to its three possibilities.
The first rule (P-Cut-1) covers the case where the input prefix ? contains noΔ-data, and includes

only data relevant to 42. So, we bypass 41 entirely and run? through 42, stepping to 4
′
2 and producing

output ? ′. The prefix ? ′ is returned as the final output, and resulting term is the cut of 41 with the
updated term 4′2. In the second case (P-Cut-2), the input prefix ? contains a prefix ? ′ of type Δ.
We run this through 41, which steps to 4′1 and produces ? ′′. We then substitute ? ′′ into ? with
the computed substitution function 5 , binding ? ′′ to G in the context, and then run it through 42,
which steps to 4′2 and produces ?

′′′ . The entire term then returns ? ′′′ , and steps to the let term with
both 4′1 and 4

′
2 replacing 41 and 42. In the third and final case (P-Cut-3), the input prefix contains

a batch 1 of Δ. We then use the batch semantics to run this through 41, producing a batch 1′. We
then substitute 1′ into ? where 1 was with 5 and run the resulting prefix through 42, which steps
to 4′2 and produces ? ′. Because the part of the stream (Δ) used to produce the G : B that the cut
served to bind has completed, the cut is no longer needed, and so the whole term transitions to 4′2,
returning ? ′ as output.

Incremental Semantics Theorems.

Theorem B.87 (Incremental Semantics Inputs Determine Outputs). If ? ⇒ 4 ↓= 4′ ⇒ ? ′

and ? ⇒ 4 ↓=
′

4′′ ⇒ ? ′′, then 4′ = 4′′ , and ? ′ = ? ′′.

Proof. language.v:prefix_sem_det �

Theorem B.88 (Incremental Semantics Monotonicity). If ? ⇒ 4 ↓= 4′ ⇒ ? ′ and =′ ≥ =,

then ? ⇒ 4 ↓=
′
4′ ⇒ ? ′.

Proof. language.v:prefix_sem_mono �

Theorem B.89 (Prefix Correctness). Suppose

(1) · | Γ ⊢∅ 4 : B
(2) ? ⇒ 4 ↓= 4′ ⇒ ? ′

(3) ? : prefix (Γ)

Then, ? ′ : prefix (B) and · | X? (Γ) ⊢∅ 4
′ : X? ′ (B).

Proof. language.v:prefix_pres �

The following theorem proves that sink terms live up to their names. Given any input prefix ? ,
the program sink1 will output an empty prefix of the appropriate type, and then step to itself.

Theorem B.90 (Sink Term Semantics Characterization). If 1 : batch (B), then for all = and

? , we have ? ⇒ sink1 ↓= sink1 ⇒ empX (1) ◦ (B ) .

The following theorem is a lemma on the way to the homomorphism theorem. If 4 is run on a
prefix ?1, outputting ?2 and stepping to 4′, and then 4′ is evaluated on an batch 11 outputting a
batch 12, then running 4 on the concatenated input ?1 · 11 yields the concatenated output ?2 · 12.
The proof proceeds by induction on the derivation of 4 running on ?1.

Theorem B.91 (Prefix/Batch Semantics Concatenation). Suppose the following:

(1) ?1 : prefix (Γ)
(2) 11 : batch

(
X?1 (Γ)

)
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(3) ?2 : prefix (B)
(4) · | Γ ⊢∅ 4 : B
(5) ?1 ⇒ 4 ↓=1 4′ ⇒ ?2
(6) 11 ⇒ 4′ ⇒=2 12

Then, ?1 ·Γ 11 ⇒ 4 ⇒=1+=2 ?2 ·B 12

Proof. language.v:prefix_batch_hom �

Theorem B.92 (Homomorphism Theorem). Suppose:

• · | Γ ⊢∅ 4 : B
• ?1 : prefix (Γ)
• ?2 : prefix

(
X?1 (Γ)

)

• ?1 ⇒ 4 ↓=1 4′ ⇒ ? ′1
• ?2 ⇒ 4′ ↓=2 4′′ ⇒ ? ′2

Then, ?1 ·Γ ?2 ⇒ 4 ↓=1+=2 4′′ ⇒ ? ′1 ·B ?
′
2

Proof. language.v:prefix_hom �

B.11 Events

Events (see Section 6) allow us to represent a data stream as a sequence of totally ordered items,
while retaining information needed to infer the rich structure of the batch or prefix representations.
to Events. The grammar of events is:

G ::= oneev | parevA (G) | parevB (G) | +puncA | +puncB | ·punc | catevA (G)

Definition B.93 (Event Typing Relation). We define a binary relation G : event (B) when G ∈ Σ

and B is a stream type.

oneev : event (1)

G : event (B)

parevA (G) : event (B‖C)

G : event (C)

parevB (G) : event (B‖C)

+puncA : event (B + C) +puncB : event (B + C)

B nullable

·punc : event (B · C)

G : event (B)

catevA (G) : event (B · C) +puncA : event
(
B★
)

+puncB : event
(
B★
)

Note that B + C and B★ share the same punctuation events. Intuitively, this is because B★ can be
unrolled as Y + (B · B★).

Definition B.94 (Event Derivative Relation). We define a ternary relation XG (B) ∼ B′.

Xoneev (1) ∼ Y

XG (B) ∼ B′

XparevA (G ) (B‖C) ∼ B′‖C

XG (C) ∼ C ′

XparevB (G ) (B‖C) ∼ B‖C ′ X+puncA (B + C) ∼ B

X+puncB (B + C) ∼ C

B nullable

X ·punc (B · C) ∼ C

XG (B) ∼ B′

XcatevA (G ) (B · C) ∼ B′ · C X+puncA
(
B★
)
∼ Y

X+puncB
(
B★
)
∼ B · B★

Theorem B.95 (Event Derivative Function). If G : event (B), there is a unique B′ such that

XG (B) ∼ B′.
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Proof. events.v:derivrelEv_fun �

Because of Theorem B.95, if we know G : event (B), we may write the unique B′ such that
XG (B) ∼ B′ as XG (B).

Definition B.96 (Events Typing and Derivatives Relations). We lift event typing to lists by deriva-
tives.

[] : events (B)

G : event (B) XG (B) ∼ B′ GB : events (B′)

G::GB : events (B)

We also lift derivatives to lists of events in the natural way.

X [ ] (B) ∼ B

XG (B) ∼ B′ XGB (B
′) ∼ B′′

XG::GB (B) ∼ B′′

Theorem B.97 (Events Derivative Function). If GB : events (B), there is a unique B′ such that
XG= (B) ∼ B′.

Proof. events.v:derivrelEv_list_fun �

Because of Theorem B.97, if we know GB : events (B), we may write the unique B′ such that
XGB (B) ∼ B′ as XGB (B).

Theorem B.98 (Empty List of Events). For all B , we have [] : events (B), and X [ ] (B) ∼ B

Proof. Immediate. �

Theorem B.99 (Events Concatenation). If

(1) GB : events (B)
(2) XGB (B) ∼ B′

(3) ~B : events (B′)
(4) X~B (B

′) ∼ B′′

Then, GB++~B : events (B), and XGB++~B (B) ∼ B′′.

In other words, if GB : events (B) and ~B : events (XGB (B)), then GB++~B : events (B) and

XGB++~B (B) = X~B (XGB (B)).

Proof. events.v:Ev_list_concat �

Events

Events to Prefix

Definition B.100 (Event(s) to Prefix).

oneev ↩→1 onepB

G ↩→B ?

parevA (G) ↩→B ‖C parp(?, empC )

G ↩→C ?

parevB (G) ↩→B ‖C parp(empB , ?)

G ↩→B ?

catevA (G) ↩→B ·C catpA(?)

B nullable B done 1

·punc ↩→
B ·C catpB(1, empC ) +puncA ↩→

B+C sumpA(empB)

+puncB ↩→
B+C sumpB(empC ) +puncA ↩→

B★ stpDone +puncB ↩→
B★ stpA(empB )

[] ↩→B empB

C ↩→B ? X?B ∼ B′ CB ↩→B′ ? ′ ? ′ · ? ∼ ? ′′

C :: CB ↩→B ? ′′

Theorem B.101 (Event to Prefix Function). If 4 ∈ 4E4=C (B) then there is a unique ? ∈

?A4 5 8G (B) such that G ↩→B ? .
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Proof. events.v:evToPfx_fun �

Theorem B.102 (Events to Prefix Function). If GB : events (B), then there is a unique ? ∈

?A4 5 8G (B) such that GB ↩→B ? .

Proof. events.v:evToPfx_list_fun �

Theorem B.103 (EToP Relation). If G : event (B) and G ↩→B ? then ? ∈ ?A4 5 8G (B).

Proof. events.v:evToPfx_correct �

Theorem B.104 (ESToP Relation). If GB : events (B) and GB ↩→B ? then ? ∈ ?A4 5 8G (B).

Proof. events.v:evToPfx_list_correct �

Prefix to Events

Definition B.105 (PToES). In this definition, we write occasionally lift event constructors to lists,

writing 5̂ (GB) for [5 (G) | G ∈ GB]. Also, we write GB‖~B for the set of shuffles of the lists GB and ~B .

PToES-Eps

epsp †Y []

PToES-One-A

onepA †1 []

PToES-One-B

onepB †1 [oneev]
PToES-Par

? †B GB ? ′ †C ~B IB ∈ �parevA (GB) ‖�parevB (~B)
parp(?, ? ′) †B ‖C IB

PToES-Cat-A

? †B GB

catpA(?) †B ·C �catevA (GB)
PToES-Cat-B

1◦ †B GB ? †C ~B

catpB(1, ?) †B ·C �catevA (GB) ++ ·punc ::~B

PToES-Sum-Emp

sumpEmp †B+C []

PToES-Sum-A

? †B GB

sumpA(?) †B+C +puncA::GB
PToES-Sum-B

? †C GB

sumpB(?) †B+C +puncB::GB

PToES-Star-Emp

stpEmp †B
★

[]

PToES-Star-Done

stpDone †B
★

+puncA
PToES-Star-A

? †B GB

stpA(?) †B
★

+puncB::�catevA (GB)

PToES-Star-B

1◦ †B GB ? †B
★

~B

stpB(1, ?) †B
★

+puncB::�catevA (GB)++·punc::~B
Theorem B.106 (PToES Empty). If ? †B GB , then GB = [] iff ? = empB

Proof. events.v:PfxToEvs_Empty and events.v:pfxToEvs_empty’ �

Theorem B.107 (PToES Left Total). If ? ∈ ?A4 5 8G (B) then there exists (not necessarily unique)

GB such that ? †B GB

Proof. events.v:PfxToEvs_left_total �

Lemma B.108 (PToES Relation Derivative Agreement). If

(1) ? : prefix (B)
(2) ? †B GB

(3) X? (B) ∼ B′

then GB : events (B) and XGB (B) ∼ B′

Proof. events.v:pfxToEvs_derivrelEv_correct_and_conf �

The preceding lemma provides the following:

Theorem B.109 (PToES Relation). If ? ∈ ?A4 5 8G (B) and ? †B GB then GB : events (B)

Proof. events.v:pfxToEvs_correct �
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Event Size

Each event carries tag information about where it appears within a structured stream; this is nec-
essary for us to recover the rich prefix structure. Importantly, for a given stream type there is an
upper bound on the amount of tag information to be included on any event in any stream of that
type.

Definition B.110 (Event size). We define the size of an event recursively:

size(oneev) = 1

size(parevA (G)) = 1 + size(G)

size(parevB (G)) = 1 + size(G)

size(+puncA) = 1

size(+puncB) = 1

size(·punc) = 1

size(catevA (() G)) = 1 + size(G)

We lift this to lists of events in the natural way:

Definition B.111 (Event List Size).

size( []) = 0

size(G::GB) = size(G) + size(GB)

To construct an a priori bound on the size of any event to appear in stream, we recurse on the
type of the stream:

Definition B.112 (Event size bound).

evSizeBound(Y) = 0

evSizeBound(1) = 1

evSizeBound(B‖C) = 1 +max (evSizeBound(B), evSizeBound(C))

evSizeBound(B · C) = max (1 + evSizeBound(B), evSizeBound(C))

evSizeBound(B + C) = max (1, evSizeBound(B), evSizeBound(C))

evSizeBound(B★) = max (1, 1 + evSizeBound(B))

We now re-state and prove Theorem 6.1:

Theorem B.113 (Bounded Event Size). For all B , there is some # = evSizeBound(()B) such that

for any xs : events (B) and any G ∈ xs, we have that |G | ≤ # , where | · | denotes the size of the AST.

Proof. events.v:sizeBound_correct �

Serialization and Deserialization

We turn now to the final result of 6, that we can serialize a prefix ? into a list of events GB , secure
in the knowledge that when we deserialize GB we will obtain the same prefix ? .
Towards this result, we introduce a series of lemmas that allow us to use the tag information

encoded in each event to recover the prefix structure during deserialization. Observe that the shape
of each lemma mirrors that of the corresponding serialization (†) constructor.

Lemma B.114 (EsToP Par Recovery). If

(1) IB ∈ �parevA (GB) ‖�parevB (~B)
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(2) GB ↩→B ?

(3) ~B ↩→C ? ′

then IB ↩→B ‖C parp(?, ? ′)

Proof. events.v:evToPfx_list_par_structural �

Lemma B.115 (EsToP Cat Recovery). If GB ↩→B (1)◦ and ~B ↩→C ? then

�catevA (GB) ++ ·punc ::~B ↩→
B ·C catpB(1, ?)

Proof. events.v:evToPfx_list_cat_structural �

Lemma B.116 (EsToP Star Recovery). If GB ↩→B (1)◦ and ~B ↩→B★ ? then

+puncB::�catevA (GB) ++ ·punc ::~B ↩→
B★ stpB(1, ?)

Proof. events.v:evToPfx_list_star_structural �

Theorem B.117 (Serialization/Deserialization Round Trip). If ? †B xs, then xs ↩→B ? .

Proof. events.v:roundTrip_dir1 �
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C EXAMPLES

This appendix collects some additional examples of programming with our stream types.

C.1 Examples Illustrating Kernel _ST

The parallel swap term from Section 3 is:

I : B‖C ⊢ let− (G ;~) = I in ((~ : C@ (G : B, −)) , (G : B@−, ~ : C)) : C ‖B

And the “prepend” term is:

G : B ⊢ subctx (SubtyUnitSemicL, ((); (G : B@−))) : 1 · B

C.2 Map

Below is the sugared term for map, as presented in Section 5.

map (e : s → t) (xs : s★) : t★ =

fix. case xs of

| nil => nil

| y :: ys => e(y) :: rec(ys)

The Haskell encoding of the core term can be found in Events.hs:maptm.

C.3 Filter

Here is the code for the filter transformer described in Section 5.

filter (e : s → 2) (xs : s★) : s★ =

fix. case xs of

| nil => nil

| y :: ys => let b = e(y) in

case b of

| inl() => y :: rec(ys)

| inr() => rec(ys)

The core term corresponding to this one can be found at Examples.hs:filtertm.

C.4 Running Fold

We can also define a running fold operation on star streams, which outputs its partial results as it
goes.

runningfold (e : 〈t〉 | s → t) (xs : s★) : t★ =

fix with (acc = init).

case xs of

| nil => nil

| y :: ys =>

let acc' = e(y)[acc] in

wait acc' then

〈 acc' 〉 :: rec(ys)[acc']

end

This core term can be found at Examples.hs:foldtm.

C.5 Thresholding

The parseLL transformer parses a homogeneous stream of ints — as it would be sent from an
actual IOT device — into the parsed representation that we can use to define the per-run averaging
operation from Section 5. This transformer consumes the input stream, grouping together runs of
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elements larger than the threshold t. The program operates the same as the functional program
of type [Int] -> [NonEmpty Int] which computes these runs by way of a fold. The function
parseLL consumes the input stream until a run starts (an element is larger than the threshold t),
and then starts running an auxiliary function parseLLAuxwhich actually builds the runs.

parseLL (t : int) (xs : int★) : (int · int★)★ =

fix. case xs of

| nil => nil

| y :: ys => wait y then

case 〈 y > t 〉 of

| true => let (zs,zss) = parseLLAux t xs in (y;zs);zss

| false => rec(ys)

end

parseLLAux takes in a stream GB of ints, and returns (1) the maximal initial prefix of the stream
which is all larger than the threshold, followed by (2) the stream of runs after the first. This is
strengthened specification is required to define the operation as a fold-left. parseLLAuxmaintains
a Boolean b which indicates if the stream is currently in the middle of a run.

parseLLAux (t : int) (xs : int★) : int★ · (int · int★)★ =

fix with (b = true).

case xs of

| nil => (nil ; nil)

| y :: ys => wait y then

case 〈 y > t 〉 of

| true => let (zs,zss) = rec(ys)[true] in

case b of

| true => (y:zs;zss)

| false => (nil;(y;zs)::zss)

| false => rec(ys)[false]

end

The program begins by casing on the input, and buffering in the head. If the head is less than the
threshold, we simply continue. If the head is above the threshold, then we make a recursive call to
compute the runs of the rest. If we are already on a run (b is true), we cons y onto the current head
zs, and return (y:zs;zss). If we were not on a run, then the initial prefix is empty, and we return
(nil;(y;zs):zss). The core terms for this program can be found at Examples.hs:parseLL and
Examples.hs:parseLLAux.

C.6 Partitioning

A crucial streaming idiom is partitioning, where a homogeneous stream of data is split into two
or more parallel streams, which are then routed to different downstream nodes in the dataflow
graph. The purpose of partitioning is to expose parallelism: the different downstream operators
can be run separately, potentially on different physical machines. Depending on the situation, a
programmermay choose to use different partitioning strategies. In _ST, some common partitioning
strategies are implementable as transformers.

Round Robin Partitioning. A round-robin partitioner fairly distributes an incoming stream of type
B★ into a parallel pair of streams B★‖B★. It does this by sending the first element to the left branch,
the second to the right, the third to the left, and so on. In _ST, we write this by maintaining a
Boolean accumulator, and negating after each item. If the Boolean is true, we send the element
left, if it’s false, we send it right.
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roundRobin (xs : s★) : s★ ‖ s★ =

fix with (b = false).

case xs of

| nil => (nil, nil)

| y :: ys => let (zs,ws) = rec(ys)[not b] in

if b then (y :: zs,ws) else (zs, y :: ws)

The core term for this program can be found at Examples.hs:roundRobin

Hash-Based Partitioning. A hash-based partitioner routes stream elements based on a hash of their
data, mod the number of routes: . We fix: = 2 for simplicity, and abstract this hashing function as a
transformer hm2which accepts a stream of type B and produces a stream of type B+B . Conceptually,
we assume that this program computes a hash mod 2, and returns the input in the left or right
position accordingly. Then we can write the hash-based partitioner like this:

sumRouter (xs : s★) : s★ ‖ s★ =

fix. case xs of

| nil => (nil, nil)

| y :: ys => let (zs,ws) = rec(ys) in

case hm2(y) of

| inl(z) => (z :: zs, ws)

| inr(w) => (zs, w :: ws)

The core term for this program can be found at Examples.hs:sumRouter

C.7 Windowing and Punctuation

Many kinds of windows have been considered in the literature. The most common windows are
event-based — windows defined by the number of elements they’ll contain — and time-based —
windows which contain all the events from a fixed length of time. Windows can also be tumbling
— the next window starts after the previous ends — or sliding — every event could begin a new
window.

In _ST, windowed operators are just maps over a stream whose elements are windows. Given a
per-window stream transformer f which takes windows B★ to a result type C , and a “windowing

strategy” win which takes a stream A★ and turns it into a stream of windows
(
B★
)
★

, we can write
a windowed operation of type A★ → C★ as follows: xs : r★ |- map(f)(win(xs)) : t★.
For example, if we wanted to compute a size-3 sliding sum of a stream of Ints, we would use a

windower winwhich takes Int★ to
(
Int★

)
★

where the inner streams are the windows, and f from
Int★ to Int is the sum operation.
Every per-window function commonly used in stream processing practice operates on entire

windows at once, which is accomplished in _ST by wait-ing on the whole window, and then aggre-
gating it with an embedded historical program. For this reason, we focus primarily on the window
construction aspect.

Fixed-Size Tumbling Windows. The :-size tumbling windower creates windows of size : , where
each new window starts immediately after the last window ended. For instance when : = 2, a
stream 1, 2, 4, 7, 3, 8, . . . turns into a stream 〈1, 2〉, 〈4, 7〉, 〈3, 8〉, . . . . The code for a fixed-size tum-
bling window is exactly the functional code for computing :-strides of a list using a fold. We main-
tain a counter of the current window size, and compute a concat-pair of the first (partial) window,
and the windows of the remaining stream. The actual size-: tumbling windower is computed by
post-composing this transformer with a cons operation.

tumblingWindow (k : int) (xs : s★) : s★ · s★★ =
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fix with (n = 0).

case xs of

| nil => (nil;nil)

| y :: ys => if n + 1 >= k then let (cur;rest) rec(ys)[0] in (y :: nil; cur :: rest)

else let (cur;rest) = rec(ys)[n+1] in (y :: cur; rest)

The core term for this program can be found at Examples.hs:tumblingWindow

:-size window transformers can actually have the even stronger output type
(
B:
)★
, where B:

is the :-fold concatenation of B . If the window function being used requires that the windows all
have exactly size : (like taking pairwise differences for : = 2), this type can be used instead. The
following program implements size-2 windows with this stronger type by casing two-deep into
the stream at a time, and pairing up elements into concatenation pairs.

wind2 (xs : s★) : (s · s)★

fix. case xs of

| nil => nil

| y :: ys => case ys of

| nil => nil

| z :: zs => (y;z) :: rec(zs)

The core term for this program can be found at Examples.hs:sumRouter

Fixed-Size Sliding Windows. A :-sized sliding windower produces a new window for each new
element, including both the new element and the : − 1 previous ones. The code for this windower
keeps the current window under construction in memory.When each new stream element arrives,
we emit the current window. For the first : elements, we only add to the window. After : , we start
evicting from the window.

slidingWindower (xs : s★) : s★★ =

fix with (acc = []).

case xs of

| nil => acc :: nil

| y::ys => wait y then

let next = 〈if |acc| < k then y :: acc else y :: (init acc)〉 in

〈next〉 :: rec(ys)[next]

end

The core term for this program can be found at Examples.hs:slidingWindower

Punctuation-Based Windows. Time-based windows are commonly implemented by way of punctu-
ation: unit elements inserted into a stream to authoritatively mark that a period of time has ended.
This is required because in the presence of network delays, it’s impossible to know if a time period
is over (and so a window can be emitted) or if there are more elements in the period to arrive.
A punctuated stream has type (1 + B)★, where the punctuation events mark the end of each time
period.

The following code computes a windowed stream
(
B★
)
★

from a punctuated stream (1 + B)★ by
emitting windows which are the (potentially empty) runs of Bs between punctuation marks. Like
fixed-size tumbling windows, we generalize the return type to compute with a fold, and then the
actual operator is defined by post-composing with a cons.

puncWindow (xs : (1+s)★) : s★ · s★★ =

fix.

case xs of

| nil => (nil ; nil)
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| y :: ys => let (cur;rest) = rec(ys) in

case y of

| inl() => (nil ; cur :: rest)

| inr(z) => (z :: cur ; rest)

The core term for this program can be found at Examples.hs:puncWindow

Merging Streams and Synchronizing Punctuation. Parallel streams of star type can be synchronized,
pairing off one element from one stream with one element of another. Given a stream of type
B★‖C★, we can produce a stream of type (B‖C)★. This type’s similarity to the standard functional
program zip is more than just surface level: the program below has essentially the same code.

sync (xs : s★, ys : t★) : (s ‖ t)★ =

fix.

case xs of

| nil => nil

| x' :: xs' =>

case ys of

| nil => nil

| y' :: ys' =>

wait x',y'then

〈(x',y')〉 :: rec(xs,ys)

end

The core term for this program can be found at Examples.hs:sync
Semantically, this program waits until a full element from each of the parallel input streams has

arrived, sends them both out, and then continues with zipping the two tails. This is necessarily
blocking: the output type guarantees that exactly one B and C will be produced before the next
pair begins, and so we must wait for both to arrive before sending the other out. The upshot is
that because this program is well typed in _ST, it is necessarily deterministic. This gives us the
deterministic merge operation that was needed to prevent the bug when averaging data from a
pair of sensors in Section 2.
Moreover, for parallel streams of windows, synchronization enables databases-style streaming

joins . Given parallel streams
(
B★
)
★

and
(
C★
)
★

, we can synchronize to get
(
B★‖C★

)
★

, and then apply
a join operation to each parallel pair of windows.
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