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Abstract Elixir is a dynamically-typed functional language running on the Erlang Virtual
Machine, designed for building scalable and maintainable applications. Its characteristics
have earned it a surging adoption by hundreds of industrial actors and tens of thousands of
developers. Static typing seems nowadays to be the most important request coming from the
Elixir community. We present a gradual type system we plan to include in the Elixir compiler,
outline its characteristics and design principles, and show by some short examples how to use
it in practice.

Developing a static type system suitable for Erlang’s family of languages has been an open
research problem for almost two decades. Our system transposes to this family of languages a
polymorphic type system with set-theoretic types and semantic subtyping. To do that, we had
to improve and extend both semantic subtyping and the typing techniques thereof, to account
for several characteristics of these languages—and of Elixir in particular—such as the arity of
functions, the use of guards, a uniform treatment of records and dictionaries, the need for a
new sound gradual typing discipline that does not rely on the insertion at compile time of
specific run-time type-tests but, rather, takes into account both the type tests performed by
the virtual machine and those explicitly added by the programmer.

The system presented here is “gradually” being implemented and integrated in Elixir, but a
prototype implementation is already available.

The aim of this work is to serve as a longstanding reference that will be used to introduce
types to Elixir programmers, as well as to hint at some future directions and possible evolutions
of the Elixir language.

1 Introduction

Elixir is a functional programming language that runs on the Erlang Virtual Ma-
chine [17]. The language has been gaining adoption over the last years in areas such
as web applications, embedded systems, data processing, and distributed systems,
and used by companies like Discord and PepsiCo.

The success of Elixir is primarily attributed to the underlying Erlang VM, developed
by Ericsson in the eighties, and considered to be a great feat of engineering for
concurrency, distribution, and fault tolerance.

A limitation of both Erlang and Elixir is that they are dynamically typed, meaning
they do not enjoy the safety features of a static type system that ensure at compile-time
the absence of a given class of run-time errors.
Developing a static type system suitable for Erlang has been an open research

problem for almost two decades. The earliest effort was attempted by Marlow and
Wadler [29], which typed a subset of Erlang using subtyping unification constraints.
However, their system was not adopted as type inference was slow, and the inferred
types were large and complex. Ever since then, several attempts—either practical,
theoretical, or both—have followed [32, 27, 42, 35, 18, 25, 39].
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The Design Principles of the Elixir Type System

We present a gradual type system for Elixir, based on the framework of semantic
subtyping [10, 19]. This framework, developed for and implemented by the CDuce
programming language [3, 15], provides a type system centered on the use of set-
theoretic types (unions, intersections, negations) that satisfy the commutativity and
distributivity properties of the corresponding set-theoretic operations [19]. The system
is a polymorphic type system with local type inference, that is, functions are explicitly
annotated with types that may contain type variables, but their applications do not
require explicit instantiations: the system deduces the right instantiations of every
type variable. It also features precise typing of pattern matching combined with type
narrowing: the types of the capture variables of the pattern and of some variables of
the matched expression are refined in the branches to take into account the results of
pattern matching. With respect to the system implemented for the CDuce language,
the system we define for Elixir brings several novelties and new features. Its main
contributions can be summarized as follows:

Semantic subtyping. An extension of the semantic subtyping framework to fit
Elixir/Erlang, in particular, the definition of new function domains to account for
the tight connection between Elixir/Erlang functions and their arity.
Guards. A precise type system for analyzing guards in pattern matching.
Records and dictionaries. A new typing discipline unifying records and dictionaries.
Dynamic type. The integration of the dynamic type in the type system, which is
used to describe untyped parts of the code, and how they interact with statically
typed parts. This uses techniques of the gradual typing literature.
Strong arrows. A new gradual typing technique for typing functions that takes into
account runtime type tests performed by the virtual machine or inserted by the
programmer. This makes it possible to guarantee the soundness of the gradual
typing system with more precise static types without modifying the compilation of
the source code.

Outline In Section 2, we provide an overview of the specific typing issues that arise
in Elixir and the reasons why set-theoretic types are a good fit to type it. In Section 3,
we demonstrate the various typing techniques we developed specifically for Elixir. We
outline the formal approach to typing programs in Elixir in Section 4. Section 5 covers
our design principles for integrating the type system into the Elixir compiler and the
impact on programmers. Section 6 discusses related work, while Section 7 concludes
our presentation and outlines some features planned as future work.

Outreach This paper serves as a reference for our designing of a complete type
system for Elixir. The technical details are being developed in separate publications
and will form the basis of the second author’s PhD dissertation. We hope that it will be
useful to the Elixir community and that it will help us reach out to other communities,
such as the one of static type systems for dynamic languages. We recognize that
bringing types to a popular language like Elixir, with an established community of
users and contributors, requires not only the careful design of sensible typing rules
but also significant outreach and communication with the community to ensure that
programming practices translate well to the new type system.
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2 Typing Elixir: an overview

2.1 Why Types

Static typing seems nowadays to be the biggest need for the Elixir community. Today,
Elixir supports "Typespecs", a mechanism for annotating functions with types. However,
Typespecs are not verified by the compiler. Instead a tool called Dialyzer, which ships
with the Erlang standard library, can be used to find discrepancies in your source code
and type annotations. Dialyzer is based on success typing [27], which guarantees no
false positives, but may leave several bugs uncaught.

As the Elixir community grows, the general feedback is that, while Dialyzer is helpful
and provides developers with some guarantees, its ergonomics and functionality do not
fully match the community expectations. Based on our experience with the language
and its ecosystem, we speculate developers would accept more false positives from
the compiler in exchange of catching more bugs. Hence the interest of the authors in
fully baking static typing into the Elixir compiler.
The benefits we expect are essentially twofold. The first benefit of types is to aid

documentation (emphasis on the word “aid” since we don’t believe types can replace
textual documentation). Elixir already reaps similar benefits from Typespecs and we
expect an integrated type system to be even more valuable in this area.

The second benefit of static types revolves around contracts. If function caller(arg)
calls a function named callee(arg), we want to guarantee that, as these functions
change over time, the caller passes valid arguments into the callee and correctly
handles the return types from the callee.
This may seem like a simple guarantee, but we can run into tricky scenarios even

on small code samples. For example, imagine that we define a negate function, that
negates numbers. One may implement it like this:

1 $ integer() -> integer()
2 def negate(x) when is_integer(x), do: -x

The negate function receives an integer() and returns an integer().1 Type specifi-
cations are prefixed by $ and each specification applies to the definition it precedes.
With our custom negation in hand, we can implement a custom subtraction:

3 $ (integer(), integer()) -> integer()
4 def subtract(a, b) when is_integer(a) and is_integer(b) do
5 a + negate(b)
6 end

This would all work and typecheck as expected, as we are only working with integers.
Now, imagine in the future someone decides to make negate polymorphic (here,

ad hoc polymorphic), by including an additional clause so it also negates booleans:

1We follow Erlang convention that basic types are suffixed by “ () ”, for instance, string() .
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7 $ (integer() or boolean()) -> (integer() or boolean())
8 def negate(x) when is_integer(x), do: -x
9 def negate(x) when is_boolean(x), do: not x

The specification at issue uses integer() or boolean() stating that both the argu-
ment and the result are either an integer or a boolean. This is a union type which has
become common place in many programming languages.
The type specified for negate is not precise enough for the type system to deduce

that when negate is applied to an integer the result is also an integer.

10 Type warning:
11 | def subtract(a, b) when is_integer(a) and is_integer(b) do
12 | a + negate(b)
13 ^ the operator + expects integer(), integer() as arguments,
14 but the second argument can be integer() or boolean()

Such a type system would not be enough to capture many of Elixir idioms and it would
probably lead to too many false positives. Therefore, in order to evolve contracts over
time, we need more expressive types. In particular, to solve this issue we need an
intersection type, which specifies that negate has both type integer()->integer()
(i.e., it is a function that maps integers to integers) and type boolean()->boolean()
(i.e., it is a function that maps booleans to booleans). This type is more precise than
the previous one and is written as:

15 $ (integer() -> integer()) and (boolean() -> boolean())

With this type, the type checker can infer that applying negate to an integer will
return an integer. Therefore, in the definition of subtract, the application negate(b)
has type integer(), and the function subtract is well-typed.

2.2 Set-Theoretic Types and Subtyping Relation

Unions, intersections, and—see later on—negations are called set-theoretic types,
insofar as they can be thought of in terms of sets: if we think of a type as the set of
all values of that type (e.g., integers() as the set of all integer constants, boolean()
as the set containing just true and false, ...), then the union of two types is the set
that contains the union of their values (e.g., a value of type integer() or boolean()
is either an integer value or a boolean value), the intersection of two types is the
set that contains the values that are in both types (e.g, a value in the intersec-
tion (integer()->integer()) and (boolean()->integer()) is a function that both
maps integers to integers and maps booleans to integers), and, finally, the negation
of a type is its complement, that is, it contains all the (well-typed) values that are not
in the type (e.g., a value in not integer() is any value that is not an integer).
Notice that an intersection of arrows does not necessarily correspond to multiple

definitions of a function. For instance, the following definition is well-typed:
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16 $ (integer() -> integer()) and (boolean() -> boolean())
17 def negate_alt(x), do: (if is_integer(x), do: -x, else: not x)

We have seen that we can specify two different types for negate, that is:
(1) (integer() or boolean()) -> (integer() or boolean())
(2) (integer() -> integer()) and (boolean() -> boolean())

and we said that the latter type is “more precise” than the former. Formally, we state
that the latter is a subtype of the former, meaning that every value of the latter is also
a value of the former. In the case of the two types above, the subtyping relation is also
strict: every function that maps integers to integers and booleans to booleans, is also
a function that maps an integer or a boolean to an integer or a boolean, but not vice
versa (e.g. the constant function fn x -> 42 end maps both integers and booleans
to integers and thus to integer() or boolean(); thus it does not map booleans to
booleans and, therefore, it is not in the intersection type). When two types are one
subtype of each other they are said to be equivalent, since they denote the same set of
values (e.g., (integer()->integer()) and (boolean()->integer()) is equivalent
to (integer or boolean())->integer())

The type of negate or negate_alt can also be expressed without intersections, by
using parametric bounded quantification,2 but this is seldom the case. For instance,
Elixir provides a negation operator named !, which is defined for all values. The values
nil and false return true, while all other values return false. With set-theoretic
types, we can give to this operator the following intersection type:

18 $ (false or nil -> true) and (not (false or nil) -> false)

This type introduces two further ingredients of our type syntax: singleton types
and negation types. Namely, the atoms true, false, and nil,3 are also types, called
singleton types, because they contain only the constant/atom of the same name. The
connective not denotes the negation of a type, that is, the type that contains all the
well-typed values that are not in the negated type, whence the interpretation of the
functional type above.⁴
The advantage of interpreting types as the set of their values is that, thus, types

satisfy the distributivity and commutativity laws of their set-theoretic counterparts.
For instance, a well-known property of products is that unions of products with a

same projection factorize, that is,{s1,t} or {s2,t} is equivalent to{s1 or s2, t}
(Elixir uses curly brackets for products). This is reflected by the behavior of our
type-checker that accepts the following definitions:

19 $ type t() = {integer() or string(), boolean()}
20 $ type s() = {integer(), boolean()} or {string(), boolean()}

2 Precisely as $ a -> a when a: integer() or boolean() : see Section 2.3.
3 In Elixir, atoms are user-defined constants obtained by prefixing an identifier by colon, as

in :ok , :error , and so on. The atoms true , false , and nil are supported without
colon for convenience.

4 The precedence of and and or is higher than type constructors (arrows, tuples, records,
lists), and the negation not has the highest precedence of them all.
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21 $ ((t() -> t()), s()) -> s()
22 def apply(f,x) do: f.(x)

The first two lines define the types t() and s() while lines 21-22 define a function
whose typing demonstrates that the type-checker considers t() and s() to be equiva-
lent. This is because it allows an expression of type t() to be used where an expression
of type s() is expected (i.e., f which expects an argument of type t() is given an
argument x, which is of type s()) and an expression of type of type s() where an
expression of type t() is expected (i.e., the type specification declares that apply
returns a result of type s(), but the body returns f(x)) which is of type t()). In
contrast, languages that use a syntactic definition of subtyping, such as Typed Racket,
Flow, or TypeScript, accept the application f(x) but reject the typing of apply: they
cannot deduce that t() is a subtype of s().
Finally, we use term() to represent the top type (i.e., the type of all values) and

none() to denote the empty type, that is, the type that has no value and which is
equivalent to not term() (likewise, term() is equivalent to not none()).

2.3 Applying set-theoretic types to Elixir

The existing set-theoretic types literature enables our type system to represent several
Elixir idioms. We outline some examples in this section.

Nullability Elixir supports null values via the nil atom. Thanks to union and singleton
types, an integer() argument of a function may become nullable by specifying it as
integer() or nil.

Parametric polymorphism with local type inference Set-theoretic type-systems feature
parametric polymorphism with local type inference: expressions (in particular func-
tions) can be given types containing type variables, but to use them it is not necessary
to specify how to instantiate these variables, since the system deduces it [14, 13].
In our implementation, type variables are identifiers that are quantified by using

a postfix when in which variables come with their upper bound.⁵ Type variables are
distinguishable from basic types, since they are not suffixed by “()”. We feature only
first order polymorphism, so when can only occur outside a type (never inside it).

The map and reduce operations over lists are good examples of need for polymorphic
types, since most of the functions working with collections (known as “enumerables”
in Elixir) cannot be sensibly typed without them. For instance, we have

23 $ ([a], (a -> b)) -> [b] when a: term(), b: term()
24 def map([h | t], fun), do: [fun.(h) | map(t, fun)]
25 def map([], _fun), do: []

5We did not specify lower bounds since they are not frequently used and they can be encoded
by union types, e.g., ∀(s ≤ α).α→ α de f

= ∀(α).(s∨α→ s∨α); upper bounds can be encoded,
too, this time by intersections (e.g., ∀(s ≤ α≤ t).α→ α de f

= ∀(α).((s ∨α)∧ t)→ (s ∨α)∧ t)),
but their frequency justifies the introduction of specific syntax.
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26 $ ([a], b, (a, b -> b)) -> b when a: term(), b: term()
27 def reduce([h | t], acc, fun), do: reduce(t, fun.(h, acc), fun)
28 def reduce([], acc, _fun), do: acc

meaning that for all types a and b (i.e., for all a and b subtypes of term())
map is a binary function that takes a list of elements of type a (notation [a]), a
function from a to b and returns a list of elements of type b;
reduce is a ternary function that takes a list of a elements, an initial value of type
b, a binary function that maps a’s and b’s into b’s, and returns a b result.

Local type inference infers that for map([1, 4], fn x -> negate(x) end) both type
variables must be instantiated by integer(), deducing the type [integer()] for it.

Intersection can also be used to define the type specification of reduce for the case
of empty lists (in which case the third argument can be of any type):

29 $ (([a] and not [], b, (a, b -> b)) -> b) and
30 (([], b, term()) -> b) when a: term(), b: term()

Polymorphic types make inference more precise for other functions. For instance, if
we add a default case to the negate example (lines 62-63) we obtain the code

31 def negate(x) when is_integer(x), do: -x
32 def negate(x) when is_boolean(x), do: not x
33 def negate(x), do: x

for which we can deduce—or at least check—the type (notice the use of bounded
quantification in line 36)

34 $ (integer() -> integer()) and
35 (true -> false) and (false -> true) and
36 (a -> a) when a: not(integer() or boolean())

and thus deduce for some function such as
37 def foo(x) when is_atom(x), do: negate(x)

the type atom() -> atom(), since an atom is neither an integer nor a Boolean.
It is possible to define polymorphic types with type parameters. For instance, we

can define the type tree(a), the type of nested lists whose elements are of type a, as

38 $ type tree(a) = (a and not list()) or [tree(a)]

and then use it to type the polymorphic function flatten that flattens a tree(a)
returning a list of a elements:

39 $ tree(a) -> [a] when a: term()
40 def flatten([]), do: []
41 def flatten([x | xs]), do: flatten(x) ++ flatten(xs)
42 def flatten(x), do: [x]

If the argument is not a list, then a is instantiated to the type of the argument. If it
is a list, then a is instantiated to the union of the types of the non-list elements of this
nested list. For instance, the type statically deduced for the application
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43 flatten [3, "r", [4, [true, 5]], ["quo", [[false], "stop"]]]

is [integer() or boolean() or binary()] (where binary() is the type for strings).

Protocols. Elixir supports a kind of polymorphism akin to Haskell’s typeclasses,
via protocols. A protocol defines a set of operations that can be implemented for
any type. For example, the String.Chars protocol requires the implementation of
the to_string function. This function can convert any data type to a human rep-
resentation as long as an implementation of the String.Chars protocol (viz., of
to_string) has been defined for that data type. The union of all types that imple-
ment String.Chars is automatically filled in by the Elixir compiler and denoted by
String.Chars.t(). In the absence of set-theoretic types this union would be approxi-
mated by term().
Protocols can combine with parametric polymorphism to define more expressive

types, such as collections. In Elixir, lists, sets, and ranges are all said to implement
the Enumerable protocol which is represented by the type Enumerable.t(a), that is,
the enumerables whose elements are of type a (i.e., a-lists, a-sets, and a-ranges).
Similarly, the Collectable protocol specifies data types that can collect elements,
one by one. The latter is implemented for lists and sets, but not ranges, as ranges
cannot represent—and therefore cannot collect—elements in arbitrary order. Thanks
to set-theoretic types, we can precisely type protocol functions parametric in the type
of the elements. For instance, the Enum.into/2 function takes two parameters, an
Enumerable and a Collectable collection and puts the elements of the former into
the latter. Its type is

44 $ Enumerable.t(a), Collectable.t(b) -> Collectable.t(a or b)
45 when a: term(), b: term()

As a matter of fact, the union in the result type is not necessary, since it can be handled
by unification. In practice, giving into the following type instead of the previous one

46 $ Enumerable.t(a), Collectable.t(a) -> Collectable.t(a) when a: term()

is equivalent since when into is applied to, say, an Enumerable.t(integer()) and a
Collectable.t(boolean()), then we can deduce for the result of this application the
type Collectable.t(integer() or boolean()) by unifying the type variable a with
the type integer() or boolean(). We can also give to into a type more polymorphic
than the one in line 46:

47 $ Enumerable.t(a), b -> b when a: term(), b: Collectable.t(a)

This type states that the collection in the result is of the same type as the collection in
the argument (e.g., if the second argument is a list, then the result will be also a list).

There is also a ternary version of into which takes as third parameter a function that
transforms the elements of the enumerable before inserting them in the collectable:

8



Giuseppe Castagna, Guillaume Duboc, and José Valim

48 $ Enumerable.t(a), b, (a -> c) -> b
49 when a: term(), c: term(), b: Collectable.t(c)

By using intersection types we can compose protocols without syntactical extensions
to the type system. For instance, we may say that a data type is traversable if it is
both enumerable and collectable. We can define this type as the intersection between
all enumerable and collectable types:

50 $ type traversable(a) = Enumerable.t(a) and Collectable.t(a)

This type can then be used to type the following echo function that uses the above
mentioned Enum.into/3 function

51 $ a, (b -> b) -> a when b: term(), a: traversable(b)
52 def echo(x,f), do: Enum.into(x,x,f)

which we can then apply to the IO.stream() and a string transformation function so
that we have an echo of the standard input that is transformed by the function:

53 iex(1)> echo(IO.stream(), &String.upcase/1)
54 ahah
55 AHAH

Above we used Elixir interactive toplevel to transform the input in upper cases by the
function String.upcase/1. The type statically deduced for this application is the one
of the first argument, that is, IO.stream().t().

3 Extending Semantic Subtyping for Elixir

All features presented so far adapt to Elixir what is already possible in the type
system of CDuce, defined via the set-theoretic interpretation of types of semantic
subtyping [19]. There are however several key specific characteristics of Elixir that
require the semantic subtyping framework to be modified, improved, and/or extended.

3.1 Function Arity

A first such characteristic is the arity of functions which plays an important role in Elixir.
While it is possible to test the arity of a function using the expression is_function
(e.g., is_function(foo, 2) tests whether foo is a binary function), it is not possible
in semantic subtyping to express the type of exactly all functions with a specific
arity.⁶ This is because, in CDuce, all functions are unary, with a function that takes
two arguments being considered a unary function that expects a pair. Although it is
possible to define a type for all functions as none() -> term(), ⁷ it is not possible to
6 In our system, to be able to express arity tests in terms of types is crucial for the precise

typing of guards and, thus, of functions and pattern matching: cf. Section 3.2.
7 The top type of functions of arity one is not term()->term() . In our system, every function

of this type can be safely applied to any argument of type term() , that is, every well-typed
argument. But of course not every function satisfies this property: only the total ones.
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give a type specifically for, say, binary functions using{none(),none()} -> term() ,
for the simple reason that a product of the empty set is equivalent to the empty set,
and thus the latter type is equivalent to the former. To address this issue, we introduce
a special syntax for function types, written as (t1, · · ·,tn) -> t which outlines the
arity of the functions and that we already used in the previous examples. This allows
the type of all binary functions to be written as (none(),none()) -> term(), but
it requires a non-trivial modification to the set-theoretic interpretation of function
spaces—detailed in Appendix A.1—and, ergo, of the subtyping decision algorithm.

3.2 Guards and Pattern Matching

A second characteristic of Elixir that is not captured by the current research on
semantic subtyping is the extensive use of guards both in function definitions and
pattern matching.
In the previous examples, we have explicitly declared the type signature of all

functions we defined, such as:

56 $ integer() -> integer()
57 def negate(x) when is_integer(x), do: -x

However, our type system is capable to infer the types of functions as the above
even in the absence of their type declaration, by considering guards as explicit type
annotations for the respective parameters. This not only applies to simple type tests
of the parameters, but also to more complex tests. For example, for

58 def get_age(person) when is_integer(person.age), do: person.age

our system deduces from the guard that person must be a record with at least the
field age defined and containing a value of type integer(), that is, an expression of
type %{age: integer(), ...} . This is a record type: records are prefixed by % to
distinguish them from tuples; the three dots indicate that the record type is open, that
is, it types records where other fields may be defined (cf. Section 3.3). Since the dot in
person.age denotes field selection, then our system deduces for the function get_age

the type %{age: integer(), ...} -> integer() . One novelty of our system is that
it can precisely express (most) guards in terms of types, in the sense that the set of
values that satisfy a guard (e.g., is_integer(person.age)) is the set of values that
belong to a given type (i.e., %{age: integer(), ...} ).
Note that, in the absence of such guards, it is the task of the programmer to

explicitly provide the type of the whole function by preceding its definition by a
type specification. It is also possible to elide parts of the return type of non-recursive
functions by using the underscore symbol “_”:

59 $ integer() -> _
60 def negate(x) when is_integer(x), do: -x

or
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61 $ (integer() -> _) and (boolean() -> _)
62 def negate(x) when is_integer(x), do: -x
63 def negate(x) when is_boolean(x), do: not x

leaving to the type system the task of deducing the best possible types to replace for
each occurrence of the underscore.

Type Information in Guards The different clauses that define a function are applied
on a first-match basis such that the domain of a clause excludes the domain of all
previous clauses. If no guards are present, the top type term() is given. This allows us
to infer the precise type of all definitions of the negate() from the previous subsection,
including:

64 def negate(x) when is_integer(x), do: -x
65 def negate(x) when is_boolean(x), do: not x

The domain of the second clause of the function is boolean() and not integer(),
which is equivalent to just boolean().

Similarly, the ! operator we described in Section 2.2 could be defined as:

66 def !(x) when x == false or x == nil, do: true
67 def !(x), do: false

This time, the second clause has domain term() and not (false or nil) which is
simply not (false or nil).

Furthermore, in Elixir, defining several clauses for a function is equivalent to writing
a function with a single case expression. That is, the two-clause negate definition
given in lines 62-63 can be equivalently written using a case expression for its body:

68 def negate(x), do: (case x do
69 x when is_integer(x) -> -x
70 x when is_boolean(x) -> not x
71 end)

Therefore, the task of inferring the return type of a function with multiple clauses is
equivalent to achieving precise typing for pattern matching.
The use of guards in Elixir provides a powerful mechanism for expressing and

combining constraints on the type, size, and structure of matched values, which pro-
vides many opportunities to gather type information. However, this also necessitates
a thorough analysis and the utilization of type approximations for guards that cannot
be expressed through a specific type. Here is a review of the features and capabilities
brought by typing pattern matching.

Exhaustivity Checking. Type analysis makes it possible to check whether clauses of
a function definition, or patterns in a case expression, are exhaustive, that is, if they
match every possible input value. For instance, consider the following code:

11
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72 $ type result() =
73 %{output: :ok, socket: socket()} or
74 %{output: :error, message: :timeout or {:delay, integer()}}
75
76 $ result() -> string()
77 def handle(r) when r.output == :ok, do: "Msg received"
78 def handle(r) when r.message == :timeout, do: "Timeout"

We define the type result() as the union of two record types: the first maps the
atom :output to the (atom) singleton type :ok and the atom :socket to the type
socket(); the second maps :output to :error and maps :message to a union type
formed by an atom and a tuple. Next consider the definition of handle: values of
type %{output: error, message: {:delay, integer()}} are going to escape every
pattern used by handle, triggering a type warning:

79 Type warning:
80 | def handle(r) do
81 ^^^^^^^^^
82 this function definition is not exhaustive.
83 there is no implementation for values of type:
84 %{output: :error, message: {:delay, integer()}}

Note that the type checker is able to compute the exact type whose implementation
is missing, which enables fast refactoring since, as the type of result() or the imple-
mentation of handle are modified, the type checker will issue precise new warnings
to point out the places where code changes are required.

Redundancy Checking. Similarly, it is possible to find useless branches—i.e., branches
that cannot ever match. For instance, if we add a clause to the previous example:

85 $ result() -> string()
86 def handle(r) when r.output == :ok, do: "Msg received"
87 def handle(r) when r.message == :timeout, do: "Timeout"
88 def handle({:ok, msg}), do: msg

then since the specified input type is result() (which is a subtype of maps), the third
branch will never match (its pattern matches only pairs) and can be deleted.
This will remove useless code, detect unused function definitions, or reveal more

complex problems as these hints can indicate areas where the programmer’s expecta-
tions and the actual logic of the program do not match.

Narrowing Narrowing is the typing technique that consists in taking into account
the result of a (type-related) test to refine (i.e., to narrow) the type of variables
in the different branches of the test. In Section 2.2 we have already presented a
simple example in which narrowing is used, namely, in the function negate_alt
(code in line 17) the type-checker uses the test to narrow the type of x, which is
(integer() or boolean()), to integer() in the “do” branch and to boolean() in
the “else” branch. This is a simple application of narrowing, where the narrowing is

12
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performed on the type of a variable whose type is directly tested. However, our system
is also able to narrow the type of the variables that occur in the expression tested by a
“case” or a “if”, even if this expression is not a single variable (some exceptions apply
though: see future works). Here is a more complete example where we test the field
selection on a variable

89 $ result() -> _
90 def handle(r) when r.output == :ok, do: {:accepted, r.socket}
91 def handle(r) when is_atom(r.message), do: r.message
92 def handle(r), do: {:retry, elem(r.message, 1)}

In the example the type of r which initially is result() is narrowed in the first branch
to %{output: :ok, socket: socket()} , to %{output: :error, message: :timeout} in
the second branch, and to %{output: :error, message: {:delay, integer())}} in the
last one. This precision is shown by the fact that handle type-checks the following
type specification too:

93 $ (%{output: :ok, socket: socket()} -> {:accept, socket()}) and
94 (%{output: :error, message: :timeout} -> :timeout) and
95 (%{output: :error, message: {:delay, integer()}} -> {:retry, integer()})

As a matter of fact, deducing the type of the parameters of a function by examining
its guards is just yet another application of narrowing where the function parameters
are initially given the type term() and narrowed by the types deduced for the guards.

Conservative Approximations When performing a type analysis on patterns with
guards, it may not always be possible to determine the precise type of the captured
values. In such cases, we use both lower and upper approximations to ensure that
narrowing and exhaustivity/redundancy checking still work. As an example, consider
the following simplistic function:

96 def foo(x) when map_size(x) == 2, do: Map.to_list(x)

We are unable to express by a type the exact domain of this function, which is the set
of “all maps of size 2”. However, when the guard succeeds, it is clear that x is a map,
and this assumption is enough to deduce by narrowing that the body of the function
is well-typed. Using the type of all maps to approximate the set of all maps of size
2 is an over-approximation. We call such a type the potentially accepted type of the
pattern/guard since it contains all the values that may match it. Conversely, consider
the following example:

97 def bar(x) when (is_map(x) and map_size(x) == 2) or is_list(x), do:
to_string(x),→

98 def bar(x) when length(x) == 2, do: x

The first clause matches both the maps of size 2 (but no other map) and any lists.
Although we cannot characterize by a type all the values matched by the first clause, we
do know that all lists are captured by it and, therefore, the second clause is redundant
(length being defined only for lists). The type of all lists is an under-approximation
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(i.e., a subset) of the set of all values that satisfy the guard in the first clause. We refer
to this under-approximation as the surely accepted type of the pattern/guard since it
contains only values that do match it. Our system makes a distinction between guards
that require approximation and those that do not, as further described in Section 4.

Complex Guards The analysis of guards is more sophisticated than it appears. First
of all, guards are examined left to right by incrementally generating environments
during their analysis. An example is the guard in line 97: if we compare it with line 96
we see that we added an is_map(x) test. Without it the guard in line 97 would be
equivalent to the one in line 96, since when x is a list, then map_size(x) == 2 fails
(rather than return false), and so does the whole guard: the is_list(x) would
never be evaluated. To account for this, our analysis examines is_list(x) only if
the preceding clause may not fail, which is always the case—though, it can return
false— and map_size(x) is examined only in the environments in which is_map(x)
succeeds.

Another stumbling block is that the analysis may need to generate for a single guard
different type environments under which the continuation of the program is checked,
as the following definition shows:

99 $ (term(),term()) -> {integer(),term()} or {term(),boolean()} or nil
100 def baz(x, y) when is_boolean(x) or is_integer(y), do: {y,x}
101 def baz(_, _), do: nil

The definition above type-checks, but this is possible only because the analysis of the
guard is_boolean(y) or is_integer(z) in line 100 generates two distinct environ-
ments (i.e., one where z has type integer() and y type term(), and a second one
where their types are inversed) which are both used to deduce two types for{z,y}
which are then united in the result. By the same technique, in the absence of a type
specification our system deduces for the definition of baz in line 100 the type

102 ((term(),integer()) -> {integer(),term()}) and
103 ((boolean(),term()) -> {term(),boolean()})

and the analysis of the code defined in line 101 adds to this intersection the following
arrow: (not(boolean()),not(integer())) -> nil.
Finally, our type system can analyze arbitrarily nested Boolean combinations of

guards which are type tests of complex selections primitives, as the following definition
of a parametric guard is_data(d) shows:

104 defguard is_data(d) when is_tuple(d) and tuple_size(d) == 2 and
105 (elem(d, 0) == :is_an_int and is_integer(elem(d, 1)) or
106 elem(d, 0) == :is_a_bool and is_boolean(elem(d, 1)))

Our system deduces that the guard is_data(d) succeeds if and only if d is of type
data() defined as follows:

107 $ type data() = {:is_an_int, integer()} or {:is_a_bool, boolean()}

14
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3.3 Records and Dictionaries

In Elixir, maps are a key-value data structure that serves as the primary means of
storing data. There are two distinct use cases for maps: as records, where a fixed set
of keys is defined, and as dictionaries, where keys are not known in advance and can
be dynamically generated. A map type should unify both, allowing the type-checker
to sensibly choose when it needs to ensure that some expected keys are present while
enforcing type specifications for queried values.

Maps as Records When used as records, Elixir provides the map.key syntax, where
:key is an atom(). If the map returned by the expression map does not contain said
key at runtime, an error is raised. In Section 3.2, we saw the following definition:

108 $ %{age: integer(), ...} -> integer()
109 def get_age(person) when is_integer(person.age), do: person.age

In more precise terms, the above type is equivalent to:

110 $ %{required(:age)=>integer(),optional(term())=>term()} -> integer()

Each “key type” in a map type is either required or optional. Singleton keys are
assumed to be required, unless otherwise noted.⁸ The triple dot notation means the
type also types records values that define more keys than those specified in the type
and corresponds to optional(term()) => term(). We refer to those as open maps.
A program similar to the above but with optional keys

111 $ %{optional(:age) => integer()} -> _
112 def get_age(person), do: person.age

raises a type error pointing out the possibly undefined key:

113 Type warning:
114 | def get_age(person), do: person.age
115 ^^^^^^^^^^
116 key :age may be undefined in type: %{optional(:age) => integer()}

Hence typing gets rid of all KeyError exceptions for every use of map.key, by restricting
the use of dot-selection to maps that are known to have the key.

Maps as Dictionaries When working with maps as dictionaries, we use the m[e]
syntax to access fields, where m and e are expressions returning a map and a key,
respectively. In this notation, the field may not exist, in which case nil is returned.
For the given function

8 The compiler will reject required(term()), as that would require a map with an infinite
amount of keys. However, because a finite type such as boolean() can be either required
or optional, we require all non-singleton types to be accordingly tagged to avoid ambiguity.
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117 $ %{optional(:age) => integer()} -> _
118 def get_age(person), do: person[:age]

the system infers integer() or nil as return type. If the type-checker can infer that
the keys are present, then it will omit the nil return. For instance, the following
function is well typed since both fields are required and, thus, cannot return nil:

119 $ %{foo: integer(), bar: integer()} -> integer()
120 def add(m), do: m[:foo] + m[:bar]

The type-checker distinguishes when a key is present,may be present, or is not present.
To summarize, for the following function (where %{} is the empty map),

121 $ %{foo: integer()}, %{optional(:foo) => integer()}, %{} -> _
122 def f(m1, m2, m3), do: {m1[:foo], m2[:foo], m3[:foo]}

the return type{integer(), integer() or nil, nil} is inferred.

The fetch! operation Further interactions with maps happen via the Map module.
We look at the the Map.fetch!(map, key) function,⁹ which expects an arbitrary key
to exist in the map, raising a KeyError otherwise. A developer may use fetch! to
denote that a given key was explicitly added in the past and it must exist at this given
point. While map.key is ill-typed if the key may be undefined, fetch! is ill-typed only
if the key is always undefined. So the following program is rejected

123 $ %{not_age: integer()} -> _
124 def get_age(m), do: fetch!(m, :age)

because the field :foo cannot appear in m, but the following one is accepted

125 $ map() -> term()
126 def get_age(m), do: fetch!(m, :age)

because key :age may be present in m, since map() represents any possible map.

Dictionary Keys We have shown how to interact with maps as records and dictionaries
where the keys were restricted to singleton types. But e[e′] (and other map operations)
allows for generic use of maps as dictionaries, where the key is the result of an arbitrary
expression e′. Tomodel this behavior, map types can specify the type of values expected
by querying over certain fixed key domains, e.g.,

127 $ integer() -> %{optional(integer()) => integer()}
128 def square_map(i), do: %{i => i ** 2}

The map %{optional(integer()) => integer()} associates integers to integers,
but since integer() represents an infinite set of values, all fields cannot be required.
Hence it must be annotated as optional.
9 In Elixir, ending a function name with ! is a convention that implies the function may raise

for valid domains. For example, File.read!("foo") will raise if the file does not exist,
compared to File.read("foo") which would instead return :error.
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Key domains cannot overlap. To ensure this property in our system it is possi-
ble to use as key domains only a specific set of basic types of Elixir Typespecs:
integer(), float(), atom(), tuple(), map(), list(), function(), pid(), port(),
and reference(). However, our type system allows the programmer to define map
types that mix dictionary and record fields, that is, types where fields are declared
both for singleton keys and for key domains. In that case it is possible to specify in
the same type both some singleton keys and the domain keys of these singleton keys,
the former taking precedence over the latter. This means that the type

129 $type t() = %{ foo: atom(), bar: atom(), optional(atom()) => integer() }

represents maps with two fields :foo and :bar set to atoms, and where any other
key is an atom associated to an integer.

If e is an expression of type the t() above, then the type of the selection e[e′] will
be computed according to the type of the expression e′: if e′ has type :foo or :bar,
then the selection has type atom(); if the type of e′ intersects atom() but it is not a
subtype of it, then the selection will be typed by atom() or integer() or nil. If e′

has type not atom() then the selection will have type nil and will issue a warning.
If the fetch! operation is used, it will raise if e′ is of type not atom().

Deletions and updates It is possible to specify missing keys by adding an optional
field that points to none() (i.e., the key must be absent since if it were present, then
it should be associated to a value of the empty type none(), which does not exist).
This makes it possible to precisely type the delete operation:1⁰

130 $ map() -> %{optional(:foo) => none(), ...}
131 def delete_foo(map), do: Map.delete(map, :foo)

Similarly to map access, there are different ways to replace a field in a map. The
syntax %{map | key => value} requires that the key is present and otherwise raises
a KeyError exception.

3.4 Gradual Typing and Strong Arrows

There is an important base of existing code for Elixir. If we want to migrate this code
to a typed setting, the ability to blend statically typed and dynamically typed code
is crucial. Some code that is working fine may not pass type-checking, therefore a
gradual migration approach is preferred to converting the entire codebase to comply
with static typing at once. This is the goal of gradual typing [41]. For that, we introduce
the type dynamic(), which essentially puts the type-checker in dynamic typing mode.
In practice, the programmer can think of dynamic() as a type that can become at
run-time (technically, that materializes into: see [11]) any other type: an expression of
type dynamic() can be used wherever any other type is expected, and an expression
of any type can be used where a dynamic() type is expected since, in both cases,
10 The type of delete_foo is not very useful in practice. It will be useful when

combined with “row polymorphism” which permits to check the following type:
%{ a } -> %{optional(:foo) => none(), a} when a : fields() see future work.
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dynamic() may become at run-time that type.11 The simplest use case is to declare
that a parameter of a function has type dynamic():

132 $ dynamic() -> _
133 def foo1(x), do: · · ·

meaning that in the body of foo1 the parameter x can be given any type—possibly a
different type for each occurrence of x—and that foo1 can be applied to arguments
of any type. The type dynamic() is a new basic type, that can occur in other type
expressions. This can be used to constrain the types arguments can have. For instance

134 $ (dynamic() -> dynamic()) -> _
135 def foo2(f), do: · · ·

requires the argument of foo2 to have a function type. This means that in the body of
foo2 the parameter f can be applied to arguments of any type and its result can be
used in any possible context, but a use of f other than as a function—e.g., f + 42—will
be rejected. Likewise an application of foo2 to an argument not having a functional
type—e.g., foo2({7,42})—will be statically rejected, as well.

Gradual typing guarantees. Using dynamic() does not mean that type-checking be-
comes useless. Even in the presence of dynamic() type annotations, our type system
guarantees that if an expression is given type, say, integer(), then it will either
diverge, or return an integer value, or fail on a run-time type-check verification. This
safety guarantee characterizes the approach known as sound gradual typing [41]. This
approach was developed for set-theoretic types in Lanvin’s PhD thesis [26] whose
results we use here to define subtyping and precision relations using the subtyping
relation on non-gradual types (i.e., types in which dynamic() does not occur).
There is however a fundamental difference between our approach and the one of

sound gradual typing: the latter uses the gradual type annotations present in the
source code to insert into the compiled code the run-time type-checks necessary to
ensure the above type safety guarantee. Instead, one of our requirements is that the
addition of types must not modify the compilation of Elixir. Therefore, we have to
design our gradual type system so that it ensures the type safety guarantee by taking
into account both the dynamic type-checks performed by the Erlang VM and those
inserted by the programmer. The goal, of course, is to deduce for every well-typed
expression a type which is gradual as little as possible, the best deduction being that
of a non-gradual type (the less gradual the type, the more the errors captured at
compile time). To that end we introduce the notion of strong function types.

11Oversimplifying, one can consider dynamic() to be both a supertype and subtype of every
other type (while term() is only the former) with a caveat, subsumption does not apply
to dynamic() since we cannot consider an expression of a type different from dynamic()
to be of type dynamic() : the application of dynamic()->dynamic() to an integer is well-
typed because the arrow type materializes in integer()->dynamic() and not because
integer() materializes into dynamic() .
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Strong Function Types. We have seen that our system can deduce the type of a function
also in the absence of an explicit annotation when there are guards on the parameters.
So from a typing point of view the following two definitions are equivalent since they
both define the identity function of type integer() -> integer():

136 $ integer() -> integer()
137 def id_weak(x), do: x

$ integer() -> integer()
def id_strong(x) when is_integer(x), do: x

However, from a runtime perspective, the two definitions above differ as the latter
checks that its argument is of type integer(), while the former does not. Therefore,
if these functions are applied to an argument that may not be an integer (e.g., of type
dynamic()), then we can only be certain that the resulting output is an integer for the
function id_strong. This distinction appears when we type the following function:

140 $ dynamic() -> {dynamic(), integer()}
141 def foo3(x), do: {id_weak(x), id_strong(x)}

which is accepted by our system since it deduces that when id_weak is applied to an
argument of an unknown dynamic() type, then it cannot give to the result a type more
precise than dynamic(), while for the same application with id_strong it deduces
that whenever the application returns a result, this result will be of type integer.
We refer to the function id_strong as having a “strong” function type, since it

guarantees that when applied to an argument that is not within its domain, it will
either return a result within its codomain or fail on dynamic type check (or diverge).
Likewise, the function id_weak has a “weak” function type, since it may return (and
actually, does return) a result not of type integer() when applied to an argument
that is not of type integer().
Actually, our system deduces for foo3 a type more precise than the one given in

line 140. If we omit the type annotation and, like for foo3, there is no explicit guard,
then our system assumes that the parameter x has type dynamic() and deduces
for foo3 the type dynamic() -> {dynamic(), (integer() and dynamic)} which is
a subtype of the type in line 140 (a classic sound gradual typing approach such
as those by [41] or [11, 26] would have deduced for this function the return type
{integer(), integer()}, but also modified its standard compilation by inserting two
run-time integer type-checks, one for each occurrence of x in the body of foo3). The
reason why the second projection of the result is intersected with dynamic() is that
this improves the typability of existing code via gradual typing. An expression of type
t() and dynamic() can be used not only in all contexts where an expression of type
t() is expected, but also in all contexts where a strict subtype of t() is expected (in
which case the use of dynamic() will be propagated). This is useful especially for
(strong) functions whose codomain is a union type. For instance, consider again the
function negate as defined in lines 62–63. This is a strong function whose codomain is
integer() or boolean(). If this code is coming from some existing base—i.e., with-
out any annotation—then the system deduces that this function takes a dynamic()
input and returns a result of type (integer() or boolean()) and dynamic(): thanks
to the intersection with dynamic() in the result type, it is then possible to use the
result of negate not only where an expression of type integer() or boolean() is

19



The Design Principles of the Elixir Type System

expected, but also where just an integer() or just a boolean() is expected, then prop-
agating the dynamic type. Concretely, in this dynamic setting, the type of subtract
as defined in lines 4–6 would still be well typed since the type of negate(b) in
line 5 could materialize into integer() and in the absence of an explicit annota-
tion, by the propagation of dynamic() the type deduced for the result of subtract
would be integer() and dynamic() which thus in turn could be passed to a func-
tion expecting a subtype of integer (e.g., a modulo function expecting an input
of type integer() and not 0). Finally, notice that if we had explicitly defined the
type of negate to be dynamic() -> integer() or boolean() (as we did above in
line 140 for foo3), then the result of negate(b) in line 5 would have been typed as
integer() or boolean() thus precluding the materialization and the consequent
typing of subtract. Therefore, as a good programming practice it is better to leave
the system to deduce the return types of all functions whenever gradual typing is used,
by systematically using the underscore _ for return types, since an explicit return type
may hinder the propagation of dynamic().

We have extended the semantic subtyping framework to add strong function types,
which are inhabited by functions satisfying the property we described above (see [9]).
Strong function types are the key feature that allows the type-system to take into
account the run-time typechecks, either performed by the VM or inserted by the
programmer. Built-in operations, such as field selection, tuple projections, etc, are,
by implementation, strong: the virtual machine dynamically checks that, say, if the
field a of a value is selected, then the value is a record and the field a is defined in
it. Our theory extends this kind of checks to user-defined operations—i.e., functions
definitions—by fine-grainedly analyzing their bodies to check that all the necessary
dynamic checks are performed. The functions for which this holds have a strong type,
and the system can safely deduce that when they are applied to an argument that may
be not in their domain (e.g., an argument of type dynamic()), then the application
will return a value in their codomain (rather than a result of type dynamic()), and as
explained above, to maximize typability of existing code this codomain is intersected
with dynamic().

All this is currently transparent to the programmer since strong types are only
used internally by the type checker to deduce the type of functions such as foo3. A
possible extension of our system would be to allow the programmer to specify whether
higher-order parameters require a strong type or not.

4 A Pinch of Formalization

Elixir is, in essence, a minimalist language, with most of its constructs being syntactic
sugar for the language’s core expressions: functions and pattern matching. In this
section we just outline the formalization of this core (in which a significant part of
Elixir can be encoded), its typing and its extension to gradual typing. We omit the
formalization of maps, the theoretical properties of the type system and its algorithmic
aspects since they are fully detailed in two companion papers: [8] which formalizes
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Base types b ::= int | atom | 1fun | 1tup
Types t, s ::= b | c | α | t → t | { t } | t ∨ t | ¬t

Expressions e, f ::= c | x | λ ( x . e) | f ( e ) | { e } | elem (e, e) | e+ e

| let x : t = e in e | case e do pg → e

Patterns p ::= x | c | { p }
Guards g ::= g and g | g or g | not g | is_integer (d)

| is_atom (d) | is_tuple (d) | is_function (d, d)
| d == d | d != d | d < d | d <= d

Selectors d ::= c | x | elem (d, d) | tuple_size (d)

Figure 1 Expressions and Types

the record and maps we presented in Section 3.3 and [9] which covers the aspects of
function arity, guard analysis, and gradual typing.
The syntax and types of Core Elixir are illustrated in Figure 1 where we use c to

range over constants (i.e., atoms or integers), x to range over expression variables, α
to range over type variables, and the notation u to denote the sequence u1, . . . , un.
Types are polymorphic, set-theoretic, and can be recursively defined (technically,

they are the contractive regular terms coinductively generated by the grammar:
see [7]). They are built from basic types (the types of all integers, all atoms, all
functions, and all tuples, respectively), type variables, value constants (to represent
singleton types), and by applying two constructors for function types ( t → t) and
tuple types ({ t }) of given arity, and two connectives union and negation (∨, ¬), with
intersection ∧ encoded as t1 ∧ t2 = ¬ (¬t1 ∨¬t2). We also encode the top type 1, the
type of all values, as 1= int∨ atom∨ 1fun ∨ 1tup, and the bottom type O as O= ¬1:
they correspond to Elixir’s term() and none(), respectively.
Expressions include constants and variables, functions and applications, tuples

and their projections, annotated let-expressions to model type annotations, and case
expressions. The latter are composed by branches that are guarded by a pattern p
followed by a guard g. Patterns are either variables or constants or tuples thereof,
while guards are Boolean combinations of tests of basic types and of relations on
selector expressions.

The expressions of Core Elixir are translated into an intermediate calculus (defined
in Figure 2 in Appendix B) in which all the negations in guards are eliminated
(by pushing them to the leaves) and where all specific type tests are replaced by a
generic one. This intermediate language can be typed by a type system (Figure 3 also
in Appendix B) which is essentially a merge of the type system of polymorphic
CDuce [14, 13] and of the type system for occurrence typing with set-theoretic
types [12]. A sound algorithm to check whether an expression is well-typed in this
type system is easily obtained simply by reusing the algorithmic techniques developed
in the cited papers and embedding them in a bidirectional type system that uses the
information of the type annotations in the let-expressions. There are however two
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exceptions which differentiate this system from the one in the cited works. First, in
Elixir and, thus, in our core calculus, the index of a tuple projection can be the result
of an expression, thus the typing rules for projections have to be reworked to take into
account this aspect and our type system cannot statically ensure that the projection
of a tuple will be in the bound of the tuple size (this happens only if any rule (projΩ)
in Figure 3 is used, in which case the compiler emits a warning). Second, and more
importantly, the typing rule for case expressions is new since it must perform the
analysis of Elixir guards. Let us look at it in detail (where

L
< is the strict lexicographical

order on pairs):
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This rule types a case expression with n branches, where the i-th branch is guarded
by the pattern pi and guard gi. To type the expression ei of the corresponding branch,
the system must estimate which values may reach the pair pi gi: these are the values
that can be returned by e (i.e., those of type t) minus those that are surely matched
in one of the branches preceding i, that is, those in the surely accepted type of a
pair p j g j for some j<i. We note by HpgI and Ipg Hthe surely accepted type and the
potentially accepted type of the pair pg. Then the values that may reach pi gi are those
in (t \
∨

j<i Hp j g jI). But not all these values are then matched by the rule against the
pattern pi, only those that may be accepted by gi. To compute the set of these values,
as we anticipated in Section 3.2, our system computes for each pair pi gi a list of types
t i1, ..., t imi

whose union contains these values. Then the rule types ei mi-times, by
generating each type environment

�

t i j/pi

�

, which assigns the type for the capture
variables of the pattern pi under the hypothesis that the pattern is matched against a
value in t i j. The various t i j ’s are computed thanks to an auxiliary deduction system
that computes them for all the branches of the case: Γ ; t ⊢ (pi gi)i≤n⇝ (si j ,bi j)i≤n, j≤mi

.
This auxiliary judgment, whose definition is given in [9] essentially scans each gi

from left to right looking for OR-clauses, and for each clause, it generates a pair
(s,b) where s is the type of the values for which the clause may be true and b is a
Boolean value that indicates whether s is exact or not. For instance, for the guard
(is_map(x) and map_size(x) == 2) or is_list(x), which we used in line 97, it
will generate two pairs: (map(), false) since the first clause may be true for some
maps but not all of them, and (list(), true) since the second clause is true for all
lists. Guards are parsed from left to right to take into account Elixir evaluation order
and possible failures (a clause is typed only if the preceding clauses may not fail). The
computation for a guard gi needs both Γ and pi since gi can use variables that are
in the environment or are introduced by pi. Given Γ ; t ⊢ (pi gi)i≤n⇝ (si j ,bi j)i≤n, j≤mi

,
then the potentially accepted type of pi gi is the union of all t i j ’s, while the surely
accepted type of pi gi is the union of all t i j ’s for which bi j is true:

Ipi gi

H=
∨

j≤mi
si j

and Hpi giI=
∨

{ j≤mi |bi j} si j. On our example, if g is the guard above that we used in
line 97 then Ix g H= map() or list() and Hx gI= list(), as expected. It is now clear
how t i j is computed: it is the type of all values that are generated by e and for which
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the j-th OR-clause of gi may evaluate to true (i.e., t ∧ si j) minus all the values that are
surely captured either in a preceding branch or a preceding OR-clause of the branch
(i.e.,
∨

{(h,k) | (h,k)
L
<(i, j) and bhk}

shk). Finally, the side condition of the rule, t ≤
∨

i<n

Ipi gi

H,
checks exhaustiveness: every possible result of e (i.e., every value of type t) must be
in the potentially accepted type of some branch. Finally, if the stronger condition
t ≤
∨

i<n Hpi giI also holds, then the pattern matching is exhaustive; otherwise, the
type-checker emits a warning that the pattern matching may not be exhaustive (rule
(caseΩ) in Figure 3).

Gradual Typing and Strong Arrows We extend the previous system by adding gradual
typing. This consists of adding a new base type ? (corresponding to the dynamic()
type of Section 3.4) and defining strong arrows and ? propagation.

To determine whether a function of type s→ t is strong, we check whether the body
e of the function strongly ensures that it will return a result in t (noted e ⦂⦂ t) under
the hypothesis that the parameter is not in the domain of the function (i.e., x : ¬s).
This uses an auxiliary deduction system where, for instance, built-in operations are
strong

(λ⋆)
Γ , x : s ⊢ e : t Γ , x : ¬ s ⊢ e ⦂⦂ t

Γ ⊢ λ ( x . e) : (s→ t)⋆
(add)

Γ ⊢ e1 ⦂⦂ 1 Γ ⊢ e2 ⦂⦂ 1
Γ ⊢ e1 + e2 ⦂⦂ int

and where the rule for case expressions does not check exhaustiveness (since if no
branch match, then the case fails and the expression is strong).

The addition of “?” is then handled by defining a precision relation ≼. The intuition
is that a type t is more precise than a type s, written s ≼ t if t can be obtained by
replacing in s some occurrences of ? by other types.12

Whenever we need to use the precision relation to type an application, we propagate
?. If the function is weak, then the application can only be given type ?, while for
strong functions we use the result type of the function intersected with ?, in order to
improve the typability of gradually-typed programs:

Γ ⊢ f : ( s→ t)⋆ Γ ⊢ e : s′ s′≼s1 ≤ s2≽s

Γ ⊢ f (e) : ?∧ t

Γ ⊢ f : s→ t Γ ⊢ e : s′ s′≼s1 ≤ s2≽s

Γ ⊢ f (e) : ?

In the future, we plan to experiment with different disciplines for ? propagation,
for instance, to propagate ?, not only when the precision relation is needed, but also
just when the types involved in the application have some ? components: this would
enhance typability of untyped code but at the expense of the precision of the static
detection of type errors and will have to be tested against existing bases of code.

5 Integration into Elixir

Design Principles. A type system tailored for Elixir needs to carefully balance the
need to bring static error detection to existing users of the language without changing
12Actually, we use a semantic definition of ≼, due to [26], which takes into account type

equivalences: e.g., ({?,int} ∨ {1fun,?})≼ {1fun,int∨atom} or ¬?≼ ?
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their experience, while still appealing to programmers coming from statically-typed
languages. To fulfill these requirements we established few basic design principles:

the introduction of typing must not require any modification to the syntax of Elixir
expressions (not even the addition of type annotations for function parameters)
gradual typing should suffice to ensure that programmers are not forced to annotate
existing code (apart from some corner cases);
the system must extract a maximum of type information from patterns and guards.
This should to help find typing errors in current programs and encourage skeptical
developers to provide types on more occasions ;
programmers who prefer a fully statically typed environment should be able to
reduce (or remove altogether) the reliance on gradual types within their code by
emitting warnings when dynamic() is used;
we assume that most users who choose static typing over dynamic one would prefer
to annotate all functions explicitly, for documentation and readability reasons.
Hence, priority is given to type most (if not all) Elixir idioms before turning our
attention to more advanced (and computationally expensive) features such as type
reconstruction.

Type syntax. Elixir is a language defined by minimal syntax with direct translation to
Abstract Syntax Tree, similar to M-expressions introduced by McCarthy for LISP[30]
A large part of Elixir is written in itself through macros, and therefore it does not
provide special syntax for defining modules, functions, conditionals, etc.
From the typing perspective, this means Elixir shall not provide special syntax

for types, and all the operators and notation found in types must match their uses
outside of types, including associativity and precedence. While new operators can be
introduced (as long as they consistently apply everywhere in the language), there is
also a concern from the Elixir team about relying too much on punctuation and its
impact on the language adoption.
With this in mind, we choose to use the operators or, and, and not to represent

our fundamental set-theoretic operations. All of those operators exist in the lan-
guage today and are extensively used in guards. Furthermore, we hope the Elixir
community will find Enumerable.t(a) and Collectable.t(a) more readable than
Enumerable.t(a) & Collectable.t(a), and atom() and not(:foo or :bar) to be
clearer than atom() \ (:foo | :bar).

Implementation. We have implemented a prototype type-checker for Elixir, based on
the formalization outlined in Section 4 and which is available at https://typex.fly.dev/.
This prototype relies on a crucial component: a library of set-theoretic types, that
checks the subtyping relation between types and solves type constraint problems. Our
first prototype used the CDuce type library [16], but we are currently reimplementing
it in Elixir itself, in order to deploy it within the Elixir compiler. A roadmap of the
planned development of the type system of Elixir is given in the conclusion (Section 7).
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6 Related work

With this design, a typed Elixir would join the family of languages that make use of
semantic subtyping, which includes CDuce [15] (for which it was originally designed),
and newer additions such as Ballerina [2], Luau [28, 24], and (partially) Julia [4].
The work most related to ours is the addition to set-theoretic types to Erlang

by Schimpf et al. [39] which transposes and adapts the current polymorphic type
system of CDuce to Erlang. Their work provides a nice formalization and a throughout
comparison with other current type analysis and verification systems for Erlang.
Essentially, [39] ends where we start from, namely the content of Section 2, whereas
most of the features we presented in Section 3 are by [39] either left as future work
(e.g., the typing of records and gradual typing) or ignored (e.g., the typing of function
arity). A notable exception is the typing of patterns and guards: as in our case, and
independently of us, the authors of [39] propose over and under approximations for
types accepted by patterns combined with guards, but their analysis, which is similar
to [22], stops to very simple guards formed by conjunctions of type tests on single
variables, thus avoiding the complex guard analysis we outlined in Section 4.

Another related work is eqWAlizer [18], an open-source Erlang type-checker (with
an extremely succinct documentation) developed by Meta and used to check the
code of WhatsApp. It consumes the spec and type alias of Erlang with few exceptions.
In particular, and contrary to what we do, they have distinct types for records and
dictionaries, and empty lists are subsumed to lists. As in our system, they use generics
(constrained by the same when keyword we use) with local type inference, type
narrowing, and gradual typing. In particular, eqWAlizer uses the same subtyping
and precision relations for gradual types as we do, since both approaches are based
on [26, 11]. However, eqWAlizer techniques to gradually type Erlang expressions
are quite different from ours (no dynamic propagation or strong arrows). Another
important difference is that when typing overloaded functions with overloaded specs
(i.e., our intersections of arrow types) eqWAlizer does not take into account the order
of the clauses of the functions while their applications require the argument to be
compatible with a unique clause. Thanks to negation types our approach takes into
account the order of clauses, and applications are correctly typed even if the argument
is compatible with several clauses: it thus implements a more precise type inference.

Besides eqWAlizer and our approach, the theory of [11] is used also by Cassola et
al. [6] to add gradual typing to Elixir. The work focuses on the gradual aspects, which
is why the typing of the functional core is quite basic (no guards, no polymorphism,
no set-theoretic types). For the gradual aspects, they use the sound gradual typing
approach of [11] but they do not couple it neither with a cast-inserting compilation (to
preserve Elixir semantics) nor with advanced techniques like ours that can take into
account existing checks, and this may hinder the satisfaction of gradual guarantees.

The initial effort to type Erlang was by Marlow and Wadler [29] who define a type
system based on solving subtyping constraints. This type system supports disjoint
unions, a limited form of complement, and recursive types, but not general unions,
intersections, or negations, as we do. The formalization lacks proofs for first-class
function types, which is a solved problem in semantic subtyping. One issue with this
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work is that they infer constrained types which are quite large, which leads to the use
of a heuristics-based simplification algorithm to make them more readable.

Dialyzer [27], which serves as the current default to provide type inference in Erlang,
is a static analysis tool that detects errors with a discipline of no false positive, while
our static type system ensures soundness, that is, no false negative. Dialyzer lacks
support for conditional types or intersection types to capture the relation between
input and output types for functions, and record types are parsed but not used.
An actively developed alternative to type Erlang is Gradualizer [25], which also

supports Elixir programs through a translation frontend. Their approach looks simi-
lar to ours, though it lacks subtyping polymorphism, with gradual typing inspired
from [26]. But a comparison is difficult since it lacks a formalization or a detailed
description.
The literature on Erlang also includes Hindley-Milner type systems [42] and bidi-

rectional type systems (without set-theoretic types) [35].
Numerous statically-typed languages constructed for the Erlang VM have emerged

over time. Two examples, Hamler and purerl [21, 33], derived from [34], incorporate
a type system akin to Haskell’s, including type classes. Notably, in Hamler, type
classes are used to model OTP behaviors. Another language, Caramel [5], features
a type system inspired from OCaml. Sesterl [40] extends the trend by offering a
module system [37], utilizing functors to type OTP behaviors (a high priority in our
future work list). Lastly, Gleam [20] is a functional language utilizing well-proven
static typing methodologies from the ML community dating back to the early 90s: a
Hindley-Milner type system [23, 31], supplemented with a rudimentary form of row
polymorphism [43, 36].

7 Conclusion and Future Work

We presented the type system that we plan to incorporate in the Elixir compiler. The
system is a transposition to languages of the Erlang family of the polymorphic type
system of CDuce. To do that we had to improve and extend the latter to account for
several characteristics of Elixir: the arity of functions, the use of guards, a uniform
treatment of records and dictionaries, the need for a new sound gradual typing
discipline that does not rely on the insertion at compile time of specific run-time
type-tests but, rather, takes into account both the type tests performed by the virtual
machine and those explicitly added by the programmer. The design of our system
was guided by the principles and goals we briefly exposed in Section 5. Whether it
achieves these goals will have to be checked on an actual implementation.
Incorporating a type system into a language used at scale can be a daunting task.

Our concerns range from how the community will interact and use the type system to
how it will perform on large code bases, with hundreds of millions of users. Therefore,
our plan is to introduce very gradually our gradual (pun intended) type system into
the Elixir compiler.

In the first release types will be used just internally by the compiler. The type system
will extract type information from patterns and guards to find the most obvious of
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mistakes, such as typos in field names or type mismatches from attempting to add an
integer to a string, without using any $-prefixed type specification: developers will
not be allowed to write them. The goal is to assess the performance impact of the type
system and the quality of the reports we can generate in case of typing violations,
without tying the language to a specific type syntax.

The second milestone is to introduce type annotations only in structs, which are
named and statically-defined closed record types. Elixir programs frequently pattern
match on structs, which reveals information about the struct fields, but it knows
nothing about their respective types. By propagating types from structs and their
fields throughout the program, we will increase the type system’s ability to find errors
while further straining our type system implementation. This capability will require
the implementation of strong arrows, as the types defined in structs may not be
necessarily guarded in functions that receive said struct.
The third milestone is to introduce the $-prefixed type annotations for functions,

with no or very limited type reconstruction: users can annotate their code with types,
but any untyped parameter will be assumed to be of the dynamic() type.
The development of the type system will happen in parallel with further research

into set-theoretic types and their application to other Elixir idioms, according to the
lines we briefly describe next.

Type Reconstruction and Occurrence Typing In the current system we can define and
type JavaScript’s “logical or” as follows:

142 $ ( (a , term()) -> a ) and ( (false or nil) , b -> b )
143 when a: not(false or nil), b: term()
144 def l_or(x, y) do: if x, do: x, else: y

The type is very precise: it states that when the first argument is of a type a that is nei-
ther false nor nil (as not(false or nil) is equivalent to not false and not nil),
then the result is (of the type of) the first argument, otherwise it is (of the type of)
the second argument. It reflects Elixir’s semantics of if which executes the else:
part if and only if the tested value is either false or nil. By extending the techniques
of [12] to polymorphic types, it will become possible not only to check but also to
reconstruct—i.e., to infer in the absence of an explicit type specification—this same
type for l_or. Using these same techniques we should be able to give more precise
types to some common functions. For example, consider:

145 $ ((a -> boolean()) , [a]) -> [a] when a: term()
146 def filter(fun, []), do: []
147 def filter(fun, [h | t]) do
148 if fun.(h), do: [h | filter(fun, t)], else: filter(fun, t)
149 end

This function type-checks in our system, and the given type is as good a type as we
can specify for it. However, by extending the techniques of [12] to polymorphic types,
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it will become possible to check (and probably also to reconstruct) for filter the
following far more precise type:13

150 $ ((a and b -> true) and (a and not b -> false), [a]) -> [a and b]
151 when a: term(), b: term()

In our current system, checking this type fails because its verification requires to
narrow the type of h in the branches of the if-expression by using the fact that, in the
test, h is the argument of a function, fun, that has an intersection type; such a de-
duction requires the powerful occurrence typing techniques developed by [12] which
can probably be decoupled from type reconstruction. Enabling type reconstruction
in Elixir would make it easier for programmers to annotate their programs, since
the type reconstructed for a function can be suggested as a starting point for the
annotation (the type reconstructed for l_or would probably not be the first type a pro-
grammer would think of). Having a powerful type reconstruction system would also
open the possibility for a strict type-checker mode that, instead of using dynamic()
for non-annotated parameters, tries to infer their type. However, these advantages
are counterbalanced by the computational price of this kind of reconstruction which
makes several passes on the code each pass requiring the resolution of several type
constraint problems. Therefore, a careful analysis of the costs and benefits of the
approach must be performed before implementing it.

Maps: row polymorphism and key-types To write polymorphic annotations on func-
tions operating onmaps, row polymorphism is needed [43, 36], but extending semantic
subtyping with it is an open problem we are working on. Also, we plan to study how to
remove the constraint that key-types must be chosen among a predefined set of types.
Our idea is to allow the programmer to declare finite partitions of these predefined
types and, eventually, to infer these partitions without an explicit declaration.

Message-passing. One key characteristic of Elixir is its concurrency and distribution
system based on message-passing between lightweight threads called processes. Re-
ceiving messages from other processes is done through the receive construct, which
relies on pattern matching and guards to match messages sitting in the process inbox.
Typing the concurrency constructs and the actor model of Elixir is an obvious next
step. Our type system is already capable of augmenting the code in receive with
type information from guards, with narrowing and approximations. The potentially
accepted type (cf. Section 3.2) of the patterns and guards in receive operations can be
used to define interfaces (i.e., types) for processes and thus type higher-order commu-
nications. A longer-term research project is to type processes with their behavioral
types, in the sense of [1].

13Actually an extension of the techniques of [12] should reconstruct an even better type:
((a and b -> term()) and (a and not b -> (false or nil)), [a]) -> [a and b]
which is better since it allows filter to be applied to a function of type Int->boolean()
and then deduce for this application the type [(a and Int)] -> [(a and Int)]
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Behaviors. Elixir is a language with first-class modules: modules can be passed to
functions and returned as results. The “types” for modules are called behaviors: when
you declare a behavior in Elixir, you specify a list of function callbacks, alongside
their domain and codomain. A module implements (i.e., it is typed by) a behavior if
it defines for each callback in the behavior a function that accepts a superset of the
callback domain and returns a subset of the callback codomain. Elixir uses behavior
to implement a naive static typing of modules: if a module adopting a behavior
does not implement all the callbacks of the behavior or does not do it according to
their specifications, then a warning is emitted. Currently, callbacks’ domains and
codomains are specified in TypeSpec’s, but at some point (cf. the third milestone
above) we will want to use the types presented here for callbacks specifications, too.
Later we will add behaviors as types in our system in order to reap some benefits of
our static type system when programming with modules. This will require further
research. Behaviors may specify the type of callbacks in terms of abstract types, that
is, nominal types whose concrete implementation is provided only by each module. In
Elixir this corresponds to use term() in the TypeSpec specification of a callback. We
can already more advantageously replace term() by dynamic(), but to fully exploit
the information provided by behaviors, we need to extend the semantic subtyping
framework, for instance to cope with existential types for packaged modules [38].
At the same time, even the simpler extension where abstract types are simulated by
dynamic() will require careful consideration at the language design, especially in
regard to backward compatibility.
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A Types

A.1 Multi-argument functions

Definition A.1. Let X1, .. , Xn and Y be subsets of D.

(X1, .. , Xn)→ Y =
�

R :P f (D
n×DΩ) | ∀(d1, .. , dn,δ) : R. (∀i ∈ {1, ..., n}. di : X i) =⇒ δ : Y

	

Using the usual semantic subtyping relation for unary functions, our system encodes
multi-arity function types using a CDuce record type:

Encoding for Multi-arity Functions.

Fun ((t1, .. , tn) , t) := {fn= {t1, .. , tn} → t; ar= n}
Fun1 := {fn=O→ 1; ar= int}
Funn := {fn=O→ 1;ar= n}

Subtyping Properties.
∀(t1, .. , tn, t) Fun ((t1, .. , tn) , t) ≤ Fun1
there is a distinct top function for functions of all arity, which is for all n,

Funn = {fn=O→ 1;ar= n}

since the integer singleton type n is a subtype of m if and only if n = m, each
function type is discriminated by its arity:

Fun ((t1, .. , tn) , t)≤ Fun ((s1, .. , sm) , s) ⇐⇒ (n= m)∧(∀i = 1 .. n, t i ≥ si)∧(t ≤ s)

Note that this encoding makes intersections of function types of different arity be
the empty type, since n∧m is O if n ̸= m.

32

https://doi.org/10.1109/LICS.1989.39162


Giuseppe Castagna, Guillaume Duboc, and José Valim

B Language

B.1 Syntax

i integers, k atoms, α type variables , x variables

Constants c ::= i | k

Expressions e, f ::= c | x | λ ( x . e) | f ( e ) | {e} | πe(e)

| let x : t = e in e | e+ e

| case e do pg → e

Base types b ::= int | atom | 1fun | 1tup
Types t, s ::= b | c | α | t → t | t ∨ t | ¬t |

�

t
	

Singletons ℓ ::= c | {ℓ}
Patterns p ::= ℓ | x | p & p | {p}
Guard atoms a ::= ℓ | x | πa(a) | size (a)
Guards g ::= a? t | a = a | g and g | g or g

Type environments Γ ::= • | Γ , x: t

where no patterns have variables occurring more than once.

Figure 2 Expressions and Types
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B.2 Type system

Declarative Typing Rules.

(cst)
c : c

(var)
⊣ x : t

x : t
(λ)

x : s ⊢ e : t

λ ( x . e) : s→ t
(app)

f : s→ t e : s

f ( e ) : t

(+)
e1 : int e2 : int

e1 + e2 : int
(proj)

f : i e : {t0 , .. , tn}
π f (e) : t i

(projΩ)
f : int e : {t0 , .. , tn}

π f (e) :
∨

i t i

(projΩ)
f : int e : 1tup
π f (e) : 1

(tuple)
e : t

{e} : {t}
(let)

f : s x : s ⊢ e : t

let x : s = f in e : t

(case)
Γ ⊢ e : t ∀i < n ∀ j < mi either t i j ≤O or Γ ,

�

t i j/pi

�

⊢ ei : s

Γ ⊢ case e do (pi gi → ei)i<n : s
t ≤
∨

i<n

H(pg)iI

(caseΩ)
Γ ⊢ e : t ∀i < n ∀ j < mi either t i j ≤O or Γ ,

�

t i j/pi

�

⊢ ei : s

Γ ⊢ case e do (pi gi → ei)i<n : s
t ≤
∨

i<n

I(pg)i

H

where Γ ; t ⊢ (pi gi)i≤n⇝ (si j , bi j)i≤n, j≤mi
and t i j = (t ∧ si j) \

∨

{(h,k) | (h,k)
L
<(i, j) and bhk}

shk

(inst)
Γ ⊢ e : t

Γ ⊢ e : t ϱ
dom (ϱ)∩ Γ =∅ (≤)

e : t t ≤ s

e : s
(∧)

e : t1 e : t2

e : t1 ∧ t2

(∨)
f : s x : s ∧ u ⊢ e : t x : s ∧¬u ⊢ e : t

e[ f /x] : t
fv(u) =∅

Figure 3 Declarative type system

The system of Figure 3 uses a presentation in which only the relevant part of the type
environments is presented (i.e., the part Γ ⊢ is often omitted). In that system the
rules marked by a “Ω” correspond to cases in which the type-checker emits a warning
since it cannot ensure type safety. More precisely, whenever a rule (projΩ) is used
the type-checker warns that the expression may generate an "index out of range"
exception; when the rule (caseΩ) is used the type-checker warns that the case may
not be exhaustive.
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