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Collapsing Towers of Interpreters

NADA AMIN, University of Cambridge, UK

TIARK ROMPF, Purdue University, USA

Given a tower of interpreters, i.e., a sequence of multiple interpreters interpreting one another as input
programs, we aim to collapse this tower into a compiler that removes all interpretive overhead and runs
in a single pass. In the real world, a use case might be Python code executed by an x86 runtime, on a CPU
emulated in a JavaScript VM, running on an ARM CPU. Collapsing such a tower can not only exponentially
improve runtime performance, but also enable the use of base-language tools for interpreted programs, e.g.,
for analysis and verification. In this paper, we lay the foundations in an idealized but realistic setting.

We present a multi-level lambda calculus that features staging constructs and stage polymorphism: based on
runtime parameters, an evaluator either executes source code (thereby acting as an interpreter) or generates
code (thereby acting as a compiler). We identify stage polymorphism, a programming model from the domain
of high-performance program generators, as the key mechanism to make such interpreters compose in a
collapsible way.

We present Pink, a meta-circular Lisp-like evaluator on top of this calculus, and demonstrate that we
can collapse arbitrarily many levels of self-interpretation, including levels with semantic modifications. We
discuss several examples: compiling regular expressions through an interpreter to base code, building program
transformers from modified interpreters, and others. We develop these ideas further to include reflection and
reification, culminating in Purple, a reflective language inspired by Brown, Blond, and Black, which realizes a
conceptually infinite tower, where every aspect of the semantics can change dynamically. Addressing an open
challenge, we show how user programs can be compiled and recompiled under user-modified semantics.
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1 INTRODUCTION

This paper is concerned with the challenge of collapsing towers of interpreters, i.e., sequences of
multiple interpreters interpreting one another as input programs. As illustrated in Figure 1a, given
a sequence of programming languages L0, . . . ,Ln and interpreters Ii+1 for Li+1 written in Li , the
challenge is to derive a compiler from Ln to L0. This compiler should be optimal in the sense that
the translation removes all interpretive overhead, and the compiler should run in just a single pass.
Without loss of generality, we restrict the scope to interpreters based on variations of the lambda
calculus as L0. To make matters more interesting, we also consider that a) some or all interpreters
may be reflective, i.e., can be inspected and modified at runtime; and b) the tower of interpreters
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Fig. 1. Collapsing Towers of Interpreters

may be conceptually infinite, i.e., each interpreter can itself be interpreted, so that the number of
meta levels can be arbitrarily large and dynamically adjusted.

Examples. As an example of collapsing a tower of interpreters, consider a base virtual machine
executing an evaluator executing a regular expression matcher (illustrated in Figure 1d). We can
think of this setup as a tower of three interpreters (virtual machine, evaluator, regular expres-
sion matcher). By collapsing this tower, we can generate low-level (virtual machine) code for a
matcher specialized to one regular expression. In our approach, we can add an arbitrary number of
intermediate evaluators, while still enabling end-to-end collapse.
As an example of compiling under user-modified semantics, consider a base virtual machine

executing an evaluator executing a modified evaluator executing a user program (illustrated in
Figure 1d). The modified evaluator can, for example, (1) add tracing or counting of variable accesses,
or (2) it can be written in continuation-passing style (CPS). Now, collapsing the tower will translate
the user program to low-level (virtual machine) code, and this code will (1) have extra calls for
tracing or counting, or (2) be in CPS. Thus, under modified semantics, interpreters become program
transformers. For instance, a CPS-interpreter becomes a CPS-converter. Throughout this paper, we
will see several examples of collapsing towers of interpreters, in particular in a reflective setup,
where each level in the tower is open to inspection and change.

Proposed Solution. It is well known that staging an interpreter ś making it generate code when-
ever it would normally interpret an expression ś yields a compiler (review in Section 2). So as a
first attempt illustrated in Figure 1b, we might try to stage all intermediate interpreters individ-
ually. However, this approach falls short of solving the general challenge: first, it requires each
intermediate language to have dedicated code generation facilities targeting the next language.
Second, it would produce a multi-pass compiler instead of a one-pass compiler. This means that it
cannot work in the case of a reflective tower, where delineations between languages are fuzzy and
execution might jump back and forth between different levels.

Is there another way? We draw on a key insight from the domain of high-performance program
generators for numeric libraries, namely the idea that by abstracting over staging decisions through
an explicit notion of stage polymorphism, a single program generator can produce code that is
specialized in many different ways [Ofenbeck et al. 2017]. Armed with this insight, the key idea of
our approach is to abstract over compilation vs. interpretation. We start with a multi-level language
L0, i.e., a language that has built-in staging operators, and express all other evaluators in a way that
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makes them stage polymorphic, which means that they are able to act either as an interpreter or as a
translator. Then, as illustrated in Figure 1c, we wire up the tower so that the staging commands for
Ln are directly interpreted in terms of the staging commands of L0. All intermediate interpreters
L1, . . . ,Ln−1 act in a kind of pass-through mode, handing down staging commands from Ln , but
not executing any staging commands of their own. As a result, only the staging commands that
represent the top-level user program will lead to actual code generation commands. In essence,
this approach only stages the final interpreter, but not the rest of the tower. As we will see, this
approach can sustain collapsing arbitrary meta-levels of interpretation as well as compiling under
user-modified semantics.

Contributions. The high-level contribution of this paper is to show that explicit staging with the
ability to abstract over staging decisions (i.e., stage polymorphism) is a versatile device to collapse
towers of interpreters, even in very dynamic scenarios, where users can modify semantics on the
fly. To the best of our knowledge, no previous work achieves compilation in a reflective tower with
respect to user-modified semantics, and no previous work that we are aware of achieves collapsing
even fixed towers of interpreters, reliably, into single-pass compilers.

The specific contributions of this paper are the following:

• We develop a multi-level kernel language λ↑↓ that supports staging through a polymorphic
Lift operator and stage polymorphism through dynamic operator overloading (Section 3).
We discuss a first use case of interpreter specialization via stage polymorphism.
• We present a meta-circular evaluator for Pink, a restricted Lisp front-end, and demonstrate
that we can collapse arbitrarilymany levels of self-interpretation via compilation: this achieves
our challenge of collapsing (finite) towers of interpreters (Section 4). We discuss optimality
and correctness of the approach.
• We extend Pink with mechanisms for reflection and compilation from within, enabling
user programs to execute expressions as part of an interpreter at any level in a tower, and
compiling functions under modified semantics (Section 5).
• We develop these ideas further into the language Purple, a variant of Asai’s reflective language
Black [Asai et al. 1996], where every aspect of the semantics can change dynamically based
on a conceptually infinite tower. In contrast to Black, Purple programs can be recompiled on
the fly to adapt to modified semantics ś a challenge left open by Asai [2014] (Section 6).
• We present a range of examples in Purple / Black that make extensive use of reflection
(Section 7). We implement Purple (Section 9) on top of Lightweight Modular Staging (LMS)
and discuss how stage-polymorphic interpreters can be implemented using type classes in
this typed setting (Section 8).
• We show benchmarks that confirm compilation and collapsing (Section 10).

We discuss related work in Section 11 and offer concluding remarks in Section 12. All our code is
available from popl18.namin.net.

2 PRELIMINARIES

It is well known that interpreters and compilers are fundamentally linked through specialization, as
formalized in the three Futamura projections [Futamura 1971, 1999]. First, specializing an interpreter
to a given program yields a compiled version of that program, in the implementation language
of the interpreter. Second, a process that can specialize a given interpreter to any program is
equivalent to a compiler. Third, a process that can take any interpreter and turn it into a compiler
is a compiler generator, also called cogen.
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For a given interpreter, the corresponding compiler is also called its generating extension [Ershov
1978]. Since compilers are often preferable to interpreters, and preferable to running a potentially
costly specialization process on an interpreter for every input program, how does one compute the
generating extension of a given program?

Futamura has not only clarified the relationship between formal descriptions of a programming
language (i.e., an interpreter) and an actual compiler, but also proposed to realize this process
through automatic program specializers or partial evaluators. The third Futamura projection in
particular tells us that double self-application of a generic program specializer is one way to
produce a compiler generator cogen, which can compute a generating extension for any program
that resembles an interpreter, i.e., takes a static and a dynamic piece of input.

In the simplest possible setting, partial evaluation can be viewed as a form of normalization, which
propagates constants and performs reductions whenever it encounters a redex, i.e., a combination
of introduction and elimination form. But most interesting languages are not strongly normalizing,
i.e., uncurbed eager reduction might diverge, and even for terminating languages or programs it
can lead to exponential blow-up due to duplication of control-flow paths. This means that some
static redexes need to be residualized ś but how to pick which ones to reduce, and which ones to
residualize?

In general this is a very hard problem. In a traditional offline partial evaluation setting, it is the
job of a binding-time analysis (BTA) [Jones et al. 1989]. The result of binding-time analysis is an
annotated program in a multi-level language, which defines which expressions to reduce statically
and which to residualize.
A key realization is that if one starts with a binding-time annotated interpreter, expressed in

a multi-level language, then deriving a cogen by hand is actually quite straightforward [Birkedal
and Welinder 1994; Thiemann 1996]. What is more, when starting from a multi-level program, it is
actually easy to derive the generating extension itself! Thus, multi-level languages are attractive in
their own right as tools for programmable specialization, as evidenced for example byMetaML [Taha
and Sheard 2000] and MetaOCaml [Calcagno et al. 2003; Kiselyov 2014], and of course by much
earlier work in Lisp and Scheme [Bawden 1999].
Proposed multi-level languages differ in many details, but usually provide a syntax like this:

n | x | e @b e | λbx .e | . . .

Function application uses an explicit infix operator @, and the binding-time annotationsb define at
which stage an abstraction or application is computed.Well-formedness of binding-time annotations
is usually specified as a type system. In the simplest case, b ranges over S,D for static or dynamic,
but in more elaborate systems b can range over integers [Glück and Jùrgensen 1996; Thiemann
1996] or include variables β for polymorphism [Henglein and Mossin 1994].

Multi-stage languages in the line of MetaML [Taha and Sheard 2000] feature quasiquotation
syntax, following similar facilities in Lisp-like languages:

n | x | e e | λx .e | ⟨e⟩ |∼ e | run e | . . .

Brackets ⟨e⟩ correspond to quotes, and escapes ∼ e correspond to unquotes; run e executes a
piece of quoted code.

Other systems are implemented as libraries in a general-purpose host language, e.g., Lightweight
Modular Staging (LMS) [Rompf and Odersky 2012] in Scala. Multi-level languages differ also
quite significantly in their semantics. MetaML and its descendants, for example, provide hygiene
guarantees for bindings, but follow the Lisp tradition of interpreting quotation in a purely syntactic
way. This can lead to reordering or duplication of quoted expressions, which is often undesirable,
in particular when combined with side effects.
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Syntax

e ::= x | Lit(n) | Str(s ) | Lam( f ,x , e ) | App(e, e ) | Cons(e, e ) | Let(x , e, e ) | If(e, e, e ) |

⊕1 (e ) | ⊕2 (e, e ) | Lift(e ) | Run(e, e ) | д

д ::= Code(e ) | Reflect(e ) | Lamc ( f ,x , e ) | Letc (x , e, e )

⊕1 ::= IsNum | IsStr | IsCons | Car | Cdr

⊕2 ::= Plus | Minus | Times | Eq

v ::= Lit(n) | Str(s ) | Lam( f ,x , e ) | Cons(v,v ) | Code(e )

Contexts

M ::= [] | B (M ) | R (M ) E ::= [] | B (E) P ::= [] | B (Q ) | R (P ) Q ::= B (Q ) | R (P )

B (X ) ::= Cons(X , e ) | Cons(v,X ) | Let(x ,X , e ) | App(X , e ) | App(v,X ) | If(X , e, e ) |

⊕1 (X ) | ⊕2 (X , e ) | ⊕2 (v,X ) | Lift(X ) | Run(X , e ) | Reflect(X )

R (X ) ::= Lift(Lamc ( f ,x ,X )) | If(Code(e ),X , e ) | If(Code(e ),v,X ) | Run(v,X ) | Letc (x , e,X )

Reduction rules . . . e −→ e

M[Let(x ,v, e )] −→ M[[v/x]e]
M[App(Lam( f ,x , e ),v )] −→ M[[v/x][Lam( f ,x , e )/f ]e]
M[App(Code(e1), Code(e2))] −→ M[Reflect(App(e1, e2))]
M[If(n | n , 0, e1, e2)] −→ M[e1]
M[If(0, e1, e2)] −→ M[e2]
M[If(Code(e0), Code(e1), Code(e2))] −→ M[Reflect(If(e0, e1, e2))]
M[IsNum(Lit(n))] −→ M[Lit(1)]
M[IsNum(v | v , Code(_) & v , Lit(_))] −→ M[Lit(0)]
M[IsNum(Code(e ))] −→ M[Reflect(IsNum(e ))]
M[Plus(Lit(n1), Lit(n2))] −→ M[Lit(n1 + n2)]
M[Plus(Code(e1), Code(e2))] −→ M[Reflect(Plus(e1, e2))]
. . . other unary and binary operators elided . . .

M[Lift(Lit(n))] −→ M[Code(Lit(n))]
M[Lift(Cons(Code(e1), Code(e2)))] −→ M[Reflect(Code(Cons(e1, e2)))]
M[Lift(Lam( f ,x , e ))] −→ M[Lift(Lamc ([Code(x )/x][Code( f )/f ]e ))]
M[Lift(Lamc ( f ,x , Code(e )))] −→ M[Reflect(Code(Lam( f ,x , e )))]
M[Lift(Code(e ))] −→ M[Reflect(Code(Lift(e )))]
M[Run(Code(e1), Code(e2))] −→ M[Reflect(Code(Run(e1, e2)))]
M[Run(v1 | v1 , Code(_), Code(e2))] −→ M[e2]
P[E[Reflect(Code(e ))]] −→ P[Letc (x , e,E[Code(x )])] where x is fresh
M[Letc (x1, e1, Code(e2))] −→ M[Code(Let(x1, e1, e2))]

Fig. 2. λ↑↓ Small-Step Semantics

3 MULTI-LEVEL CORE LANGUAGE λ↑↓

With an eye towards the challenge posed in the introduction, we present a new multi-level kernel
language λ↑↓ which combines a number of desirable features. Like MetaML, it contains facilities to
run residual code. Like polymorphic BTA [Henglein and Mossin 1994], it supports binding-time
or stage polymorphism. Like LMS, its evaluation preserves the execution order of future-stage
expressions. But unlike most other systems, λ↑↓ does not require a type system or any other static
analysis. Inspired by type-directed partial evaluation (TDPE) [Danvy 1996b], its key mechanism is
a polymorphic Lift operator that turns a static, present-stage, value into a future-stage expression.
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// Syntax -- Exp corresponds to e from small-step (Fig. 2), without internal-only forms (Reflect, Code, ...).

// -- Instead of explicit names, we use de Bruijn levels Var(n), hence Lam(e) instead of Lam(f,x,e).

// -- We elide Strings and many straightforward operators for simplicity.

Exp ::= Lit(n:Int) | Var(n:Int) | Lam(e:Exp) | App(e1:Exp, e2:Exp) | Cons(a:Exp,b:Exp)

| Let(e1:Exp,e2:Exp) | If(c:Exp,a:Exp,b:Exp) | IsNum(a:Exp) | Plus(a:Exp,b:Exp) | ... -, *, =, ...

| Lift(e:Exp) | Run(b:Exp,e:Exp)

Val ::= Cst(n:Int) | Tup(a:Val,b:Val) | Clo(env:Env,e:Exp) | Code(e:Exp)

Env = List[Val]

// NBE-style polymorphic lift operator

def lift(v: Val): Exp = v match {

case Cst(n) => Lit(n)

case Tup(a,b) => val (Code(u),Code(v))=(a,b); reflect(Cons(u,v))

case Clo(env2,e2) => reflect(Lam(reifyc(evalms(env2:+Code(fresh()):+Code(fresh()),e2))))

case Code(e) => reflect(Lift(e)) }

def liftc(v: Val) = Code(lift(v))

// Multi-stage evaluation

def evalms(env: Env, e: Exp): Val = e match {

case Lit(n) => Cst(n)

case Var(n) => env(n)

case Cons(e1,e2) => Tup(evalms(env,e1),evalms(env,e2))

case Lam(e) => Clo(env,e)

case Let(e1,e2) => val v1 = evalms(env,e1); evalms(env:+v1,e2)

case App(e1,e2) => (evalms(env,e1), evalms(env,e2)) match {

case (Clo(env3,e3), v2) => evalms(env3:+Clo(env3,e3):+v2,e3)

case (Code(s1), Code(s2)) => reflectc(App(s1,s2)) }

case If(c,a,b) => evalms(env,c) match {

case Cst(n) => if (n != 0) evalms(env,a) else evalms(env,b)

case Code(c1) => reflectc(If(c1, reifyc(evalms(env,a)), reifyc(evalms(env,b)))) }

case IsNum(e1) => evalms(env,e1) match {

case Code(s1) => reflectc(IsNum(s1))

case Cst(n) => Cst(1)

case v => Cst(0) }

case Plus(e1,e2) => (evalms(env,e1), evalms(env,e2)) match {

case (Cst(n1), Cst(n2)) => Cst(n1+n2)

case (Code(s1),Code(s2)) => reflectc(Plus(s1,s2)) }

...

case Lift(e) => liftc(evalms(env,e))

case Run(b,e) => evalms(env,b) match {

case Code(b1) => reflectc(Run(b1, reifyc(evalms(env,e))))

case _ => evalmsg(env, reifyc({ stFresh = env.length; evalms(env, e) })) }

def evalmsg(env: Env, e: Exp) = reifyv(evalms(env,e))

// Additional helpers

var stFresh: Int = 0

var stBlock: List[Exp] = Nil

def fresh() = { stFresh += 1; Var(stFresh-1) }

def run[A](f: => A): A = { val sF = stFresh; val sB = stBlock; try f finally { stFresh = sF; stBlock = sB } }

def reify(f: => Exp) = run { stBlock = Nil; val last = f; (stBlock foldRight last)(Let) }

def reflect(s:Exp) = { stBlock :+= s; fresh() }

def reifyc(f: => Val) = reify { val Code(e) = f; e }

def reflectc(s: Exp) = Code(reflect(s))

def reifyv(f: => Val) = run { stBlock = Nil; val res = f

if (stBlock == Nil) res else { val Code(last) = res; Code((stBlock foldRight last)(Let)) } }

Fig. 3. λ↑↓ Big-Step Semantics as a Definitional Interpreter in Scala
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Lift(Lam(_, x, Plus(x, Times(x, x ))))

−→ Lift(Lamc (_, x, Plus(Code(x ), Times(Code(x ), Code(x )) )))

−→ Lift(Lamc (_, x, Plus(Code(x ), Reflect(Code(Times(x, x ))) ) ))

−→ Lift(Lamc (_, x, Letc (x1, Times(x, x ), Plus(Code(x ), Code(x1))) ))

−→ Lift(Lamc (_, x, Letc (x1, Times(x, x ), Reflect(Code(Plus(x, x1))) )))

−→ Lift(Lamc (_, x, Letc (x1, Times(x, x ), Letc (x2, Plus(x, x1), Code(x2)) )))

−→ Lift(Lamc (_, x, Letc (x1, Times(x, x ), Code(Let(x2, Plus(x, x1), x2))) ))

−→ Lift(Lamc (_, x, Code(Let(x1, Times(x, x ), Let(x2, Plus(x, x1), x2)))))

−→ Reflect(Code(Lam(_, x, Let(x1, Times(x, x ), Let(x2, Plus(x, x1), x2)))))

−→ Letc (x3, Lam(_, x, Let(x1, Times(x, x ), Let(x2, Plus(x, x1), x2))), Code(x3))

−→ Code(Let(x3, Lam(_, x, Let(x1, Times(x, x ), Let(x2, Plus(x, x1), x2))), x3))

Fig. 4. Example of small-step derivation in λ↑↓ highlighting the P , E and M contexts.

We present a small-step operational semantics in Figure 2 and a big-step operational semantics as
a definitional interpreter written in Scala in Figure 3. We first designed the interpreter in Figure 3,
and then devised the small-step rules to make all intermediate steps of the big-step evaluation
explicit, introducing internal-only syntactic forms to represent the various pieces of the interpreter’s
state. The top-level entry point to the big-step evaluator is function evalmsg. We also write e ⇓ v for
top-level evaluation in an empty environment, i.e., evalmsg(Nil,e) = v. We present the following
claim without formal proof, but backed by experimental evidence:

Proposition 3.1 (Semantic Eqivalence). For any λ↑↓ expression e , small-step value v , and

equivalent big-step value v ′ we have e −→ ∗v if and only if e ⇓ v ′.

The small-step version lends itself to formal reasoning, while the big-step version is more suitable
for experimentation. We posit that a formal connection can be established through Danvy et al.’s
semantic inter-derivation method [Ager et al. 2003; Danvy and Johannsen 2010; Danvy et al. 2012],
via CPS conversion, defunctionalization [Reynolds 1972], and refocusing [Danvy and Nielsen 2004].
Note that the definitional interpreter does not use any advanced Scala features, and can easily be
translated to other call-by-value languages with mutable references. As a case in point, we also
implemented an equivalent semantics in Scheme. The small-step semantics is implemented in PLT
Redex [Felleisen et al. 2009].

The term syntax contains λ-calculus constructs, plus operators Lift and Run. In small-step, there
are additional intermediary constructs for bookkeeping, such as Reflect, Lamc and Letc (noted
under the syntax term д in Figure 2). The value syntax contains standard constants, tuples, closures
(plain lambdas in the small-step semantics), and in addition Code objects that hold expressions. All
functions are potentially recursive, taking a self-reference as the first additional argument. This
means that the term Lam( f ,x , e ) is equivalent to the term fix(λf .λx .e ) in the usual λ-calculus with
an explicit fixpoint combinator fix. For non-recursive functions we use _ in the place of identifier f.
The polymorphic Lift operator is inspired by a corresponding facility in normalization by

evaluation (NBE) [Berger et al. 1998] or type-direction partial evaluation (TDPE) [Danvy 1996b]. Its
purpose is to convert values into future-stage expressions. Lifting a number is immediate, lifting
a tuple is performed element-wise and lifting a code value creates a Lift expression. To lift a
(potentially recursive) function, the function creates a λ-abstraction via two-level η-expansion,
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as in NBE/TDPE. In the small-step semantics, lifting a function steps to the intermediary Lamc

construct, which marks the body for reification. Helper terms like Reflect, Lamc , Letc serve to
perform łlet-insertionž [Bondorf 1990; Bondorf and Danvy 1991; Danvy 1996a; Danvy and Filinski
1990; Hatcliff and Danvy 1997; Lawall and Thiemann 1997; Thiemann and Dussart 1999] to maintain
the relative evaluation order of expressions (see example in Figure 4). This is a standard practice
in partial evaluators that deal with state and effects, and the result is also described as monadic
normal form [Moggi 1991] or administrative normal form (ANF) [Flanagan et al. 1993].
In the big-step semantics, let-insertion (i.e., ANF conversion) is achieved with a set of helper

functions. Each individual expression is reflected, storing it in the stBlock data structure, and all
reflected expressions in a scope can be captured into a sequence of Let bindings, i.e., made explicit,
via reify.1 In the small-step semantics, the same behavior is modeled by the last two rules of the
operational semantics. The first rule carefully splits an expression into a reification context and a
reflection context P[E[.]] and pulls out the reflected sub-expression into a Letc , which is eventually
transformed in a Code of Let by the second rule.
In the big-step implementation, we use a name-less de Bruijn level representation for simplic-

ity. The variable stFresh holds the next available de Bruijn level. In the Run case, the statement
stFresh = env.length aligns the de Bruijn levels of the present stage and the code being generated.
The main entry point evalmsg delegates to evalms and also packages up and returns all generated
code, if any.
To illustrate how a simple function term is lifted and how the context decomposition guides

insertion of Let bindings in the right places, we show a small-step derivation for the term e =

Lam(_,x , Plus(x , Times(x ,x ))) in Figure 4. The big-step evaluator computes the equivalent result in
a single call to evalmsg(Nil,e).

The key design behind λ↑↓ is that introduction forms (e.g., Lit, Lam, Cons) always create present-
stage values, which can be lifted explicitly using Lift, and that elimination forms (e.g., App, If,
Plus) are overloaded, i.e., they match on their arguments and decide on present-stage execution or
future-stage code generation based on whether their arguments are code values or not. Mixed code
and non-code values lead to errors, but a variant with automatic conversion of primitive constants
would be conceivable as well.

A curious case is Run, the elimination form for code values. Unlike other elimination forms, Run
always receives a Code value as argument, hence matching on the argument would not allow us
to decide whether to evaluate the expression in the Code value now or generate a Run expression
for the future stage. Hence, Run takes an additional initial argument b, which solely exists for the
purpose of matching. Thus, assuming e evaluates to Code(e ′), Run(Lit(0), e ) will evaluate e ′ now,
whereas Run(Lift(Lit(0)), e ) will generate a call to Run(Lit(0), e ′) in the next stage.

3.1 A Lisp-Like Front-End

We implement a small Lisp reader that translates S-expressions to λ↑↓ syntax. The mapping is
straightforward, with proper names vs. de Bruijn levels being the biggest difference between the
front-end and the core definitional interpreter. We also introduce syntactic sugar for multi-argument
functions, and we extend the core language slightly to add support for proper booleans, equality
tests, quote and a few other constructs. We make this reader available via a function trans, and it
will play a key role when we implement reflection in Section 5.1.1.

1It is important to note that the reflect and reify functions are only a semantic device to generate code in ANF. They
provide a direct-style API to a conceptual let-insertion monad via monadic reflection [Filinski 1994], but they have nothing
to do with reflective language capabilities in the sense of Section 5 and 6.
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As a first programming example, here is a tiny generic list matcher that tests if the list s has the
list r as a prefix.
(define matches (lambda (r) (lambda (s) (if (null? r) #t (if (null? s) #f

(if (eq? (car r) (car s)) ((matches (cdr r)) (cdr s)) #f))))))

> ((matches '(a b)) '(a c)) ;; => #f

> ((matches '(a b)) '(a b)) ;; => #t

> ((matches '(a b)) '(a b c)) ;; => #t

To play with multi-level evaluation and Futamura projections, let us turn this string matcher,
which can be viewed as a (simple) interpreter over the pattern string r, into a compiler that
generates specific matching code for a given pattern. We treat the pattern r as static and the input
s as dynamic:
(define matches (lambda (r) (lambda (s) (if (null? r) (lift #t) (if (null? s) (lift #f)

(if (eq? (lift (car r)) (car s)) ((matches (cdr r)) (cdr s)) (lift #f)))))))

To make this work, the inner function has to return code values as well. Hence we lift all result
values #t and #f. We also need to lift the result of (car r), the current (static) pattern character to
be compared with the (dynamic) input character.
With these modifications, we can generate code for matching a particular prefix, by partially

applying matches, lifting the result, and running it:
(define start_ab (run 0 (lift (matches '(a b)))))

Recall that the 0 argument to run designates the desired łrun nowž. The resulting generated code
has only the low-level operations on the dynamic input s. The static input r causes three unfoldings
of the matches body with the first static if disappearing from the generated code. The generated
code is identical to the internal ANF representation of the following user-level program:
(define start_ab (lambda (s)

(if (null? s) #f (if (eq? 'a (car s)) (let (s1 (cdr s)) (if (null? s1) #f (if (eq? 'b (car s2)) #t #f)))))))

While this simple example conveys the key ideas, it deliberately leaves many questions unan-
swered. For example, how do we deal with loops and recursion, e.g., if we want to support patterns
with wildcards or repetition patterns? We will present a more powerful matcher that supports such
features in Figure 6.

3.2 Stage Polymorphism

Going back to the examples of Section 3.1, we started with a plain, unmodified, interpreter program
and added lift annotations in judiciously chosen places to turn it into a code generator. But now the
original program is lost! Sure, being diligent software engineers, we can still retrieve the previous
version from our version control system of choice, but if we want to keep both for the future, then
we will have to maintain two slightly different versions of the same piece of code.

And there are good reasons for running generic code sometimes, without specialization: imagine,
for example, that we want to use our string matcher with very long patterns. Then generating a
big chunk of code for each such pattern will likely be wasteful. In fact, we might want to introduce
a dynamic cut off: specialize only if the pattern length is less then a certain threshold. Assume
that matches-gen is the generic matches function, and matches-spec is the one including lifts from
Section 3.1, we would like to write:
(define matches-maybe-spec (lambda (r) (if (< (length r) 20) (run 0 (lift (matches-spec r))) (matches-gen r))))

The notion of stage polymorphism or binding-time polymorphism was introduced as a program-
ming model for high-performance code generators with similar use cases in mind [Ofenbeck et al.
2017], and it enables us to achieve exactly this. The key insight here is that we can abstract over
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(lambda _ maybe-lift (lambda _ eval (lambda _ exp (lambda _ env

(if (num? exp) (maybe-lift exp)

(if (sym? exp) (env exp)

(if (sym? (car exp))

(if (eq? '+ (car exp)) (+ ((eval (cadr exp)) env) ((eval (caddr exp)) env))

(if (eq? '- (car exp)) (- ((eval (cadr exp)) env) ((eval (caddr exp)) env))

(if (eq? '* (car exp)) (* ((eval (cadr exp)) env) ((eval (caddr exp)) env))

(if (eq? 'eq? (car exp)) (eq? ((eval (cadr exp)) env) ((eval (caddr exp)) env))

(if (eq? 'if (car exp)) (if ((eval (cadr exp)) env) ((eval (caddr exp)) env)

((eval (cadddr exp)) env))

(if (eq? 'lambda (car exp)) (maybe-lift (lambda f x ((eval (cadddr exp))

(lambda _ y (if (eq? y (cadr exp)) f (if (eq? y (caddr exp)) x (env y)))))))

(if (eq? 'let (car exp)) (let x ((eval (caddr exp)) env) ((eval (cadddr exp))

(lambda _ y (if (eq? y (cadr exp)) x (env y)))))

(if (eq? 'lift (car exp)) (lift ((eval (cadr exp)) env))

(if (eq? 'run (car exp)) (run ((eval (cadr exp)) env) ((eval (caddr exp)) env))

(if (eq? 'num? (car exp)) (num? ((eval (cadr exp)) env))

(if (eq? 'sym? (car exp)) (sym? ((eval (cadr exp)) env))

(if (eq? 'car (car exp)) (car ((eval (cadr exp)) env))

(if (eq? 'cdr (car exp)) (cdr ((eval (cadr exp)) env))

(if (eq? 'cons (car exp)) (maybe-lift (cons ((eval (cadr exp)) env) ((eval (caddr exp)) env)))

(if (eq? 'quote (car exp)) (maybe-lift (cadr exp))

((env (car exp)) ((eval (cadr exp)) env)))))))))))))))))

(((eval (car exp)) env) ((eval (cadr exp)) env)))))))))

Fig. 5. Meta-circular stage-parametric evaluator for Pink.

lift via η-expansion. We rewrite matches-spec back into a generic matches as follows, replacing
liftwith calls to a parameter maybe-lift:
(define matches (lambda (maybe-lift) (lambda (r) (lambda (s)

(if (null? r) (maybe-lift #t) (if (null? s) (maybe-lift #f)

(if (eq? (lift (car r)) (car s)) ((matches (cdr r)) (cdr s)) (maybe-lift #f))))))))

Now, we can define matches-spec and matches-gen simply as
(define matches-spec (matches (lambda (e) (lift e)))) (define matches-gen (matches (lambda (e) e)))

which completes our stage-polymorphic string matcher.

4 BUILDING AND COLLAPSING TOWERS

We have seen in the previous sections how we can turn simple interpreters into compilers, and how
we can abstract over staging decisions. We now turn our attention to the challenge posed in the
introduction: collapsing towers of interpreters, i.e., sequences of multiple interpreters interpreting
one another as input programs. Stage polymorphism is the key mechanism to make interpreters
compose in such a collapsible way.

In this section we will focus on finite towers and defer conceptually infinite towers to Section 6.
We start by defining a meta-circular evaluator, shown in Figure 5, for a slightly more restricted
Lisp front-end that is closer to λ↑↓. We dub this language Pink. In comparison to Scheme, only
single-argument functions are supported and in the syntax (lambda f x body), f is the recursive self
reference as in λ↑↓. The evaluator in Figure 5 is binding-time parametric (parameter maybe-lift), so
it can act as an interpreter or a compiler. It also uses open recursion (parameter eval), so that it can
be customized from the outside.
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The key technique to enable binding-time agnostic staging for this evaluator is to put a call to
maybe-lift around all user-level values the evaluator creates: literal numbers (case num?), closures
(case 'lambda), and cons cells (case 'cons).

4.1 Correctness and Optimality

In this section, we discuss correctness and optimality of specialization via Pink and λ↑↓. We
state these properties without formal proofs but backed by experimental evidence. We start by
instantiating the stage-polymorphic Pink evaluator from Figure 5 as a normal interpreter, assuming
that the above code is bound to an identifier eval-poly:
(define eval ((lambda ev e (((eval-poly (lambda _ e e)) ev) e)) #nil)))

The resulting interpreter eval can then be applied to quoted S-expressions:
(define fac-src '(lambda f n (if (eq? n 0) 1 (* n (f (- n 1))))))

> ((eval fac-src) 4) ;; => 24

Definition 4.1 (Source and Translation). For any Pink program p, let p-src be its quoted Pink source
in S-expression form and let ⟦ p ⟧ be its translation to λ↑↓ in ANF.

For correctness, we should be able to add levels of interpretation without changing the result of
the program (albeit slowing it down), leading to the intuitive equivalence eval ≡ (eval eval-src).
We can verify that double and triple interpretation work in this way, given a quoted version of the
interpreter source eval-src:
> (((eval eval-src) fac-src) 4) ;; => 24

> ((((eval eval-src) eval-src) fac-src) 4) ;; => 24

Proposition 4.2 (Correctness of Interpretation). For any Pink program p, evaluating its

source is observationally equivalent to the program itself: ⟦ (eval p-src) ⟧ ≡ ⟦ p ⟧.

Correctness of (repeated) self-interpretation follows by considering p = eval.
To obtain a compiler, all we have to do is to instantiate eval-poly as follows, with the proper

lift operation:
(define evalc (lambda eval e ((((eval-poly (lambda _ e (lift e))) eval) e) #nil)))

Now we can use evalc in place of eval to compile:
> (evalc fac-src) ;; => < code of fac in λ↑↓ >

> ((run 0 (evalc fac-src)) 4) ;; => 24

Obtaining the same result as interpretation for a range of different programs and inputs, we can
convince ourselves of correctness of the compilation step.

Proposition 4.3 (Correctness of Compilation). For any Pink program p, compiling and running

its source is observationally equivalent to the program itself: ⟦ (run 0 (evalc p-src)) ⟧ ≡ ⟦ p ⟧.

However, our goal is to generate not only correct, but also efficient code. And in fact, we can
show a much stronger property:

Proposition 4.4 (Optimality of Compilation). For any Pink program p, compiling its source

yields exactly the program itself (in ANF): ⟦ (evalc p-src) ⟧ ⇓ ⟦ p ⟧.

In other words, evalc leaves no trace of any of the interpretive overhead that is present in the
definition of eval-poly.
Taking this result a step further, we want to collapse levels of self-interpretation, even across

towers. More formally, we want to show a notion of Jones-optimality [Glück 2002; Jones et al. 1993]
for the interpreter eval: for each program p, running the compiled program (evalc p-src) should
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be at least as efficient as evaluating the program p directly. The following definition is adapted from
Section 6.4 of the book by Jones et al. [1993]:

Definition 4.5 (Jones Optimality of Specialization). A partial evaluatorM is Jones-optimal for a
self-interpreter E with respect to a time measure t provided t (p ′ d ) ≤ t (p d ) for any two-argument
programs p,p ′ such that p ′ = M E p and any program input d .

In our setting, there is no explicit partial evaluator, but we can think ofM as the programmer-
controlled specialization process and identify evalc = M eval. Thus, Proposition 4.4 directly implies
Jones-optimality for any time measure (since p ′ is identical to p).

We can further verify collapsing with an additional level of interpretation:
> ((eval evalc-src) fac-src) ;; => < code of fac >

> ((eval evalc-src) eval-src) ;; => < code of eval >

> ((eval evalc-src) evalc-src) ;; => < code of evalc >

And even further, for as many levels as we like:
> (((eval eval-src) evalc-src) fac-src) ;; => < code of fac >

The theoretical justification is given by Proposition 4.4 and Proposition 4.2, which gives rise to the
equivalences (eval evalc-src) ≡ evalc and (eval eval-src) ≡ eval.

Proposition 4.6 (Multi-Level Jones Optimality). For any Pink program p, arbitrarily many

levels of self-interpretation collapse: for any natural number n, ⟦ ((evaln evalc-src) p-src) ⟧ ⇓ ⟦ p ⟧,

where evaln is defined recursively as eval1 = eval and evaln+1 = (evaln eval-src).

The key pattern here is that all the base evaluators, i.e., (eval eval-src) are instantiated in actual
interpretation mode, but the final evaluator operates as a compiler. Thus, the base evaluators are
merely interpreting the staging commands of the target compiler.

Compiling User-Level Languages. We can also add evaluators to the tower at the user level, for
example for domain-specific languages (DSLs). Let us exercise this pattern with a string matcher
acting as the top compiler in a chain: we obtain a string matching compiler that operates through
arbitrarily many levels of self-interpretation of the base evaluator. Figure 6 shows a string matcher
written directly in Pink. This version is adapted from Kernighan and Pike [2007], and covers more
functionality than the one shown in Section 3.1. In particular, the pattern syntax supports wildcard
_ and repeat * patterns, but it does not support nesting of wildcards. Thus, in the pattern a**, the
second * is treated as a literal character. The pattern is matched against the beginning of the string,
so the pattern a**bmatches *b, a*b, aa*b and a*bc, but neither b nor a**b.

4.2 Deriving Translators from Heterogeneous Towers

4.2.1 Instrumenting Execution. Let us consider an evaluator that logs accesses to any variable
named n. We simply change the variable line of our evaluator:
;; ... old ... ;; ... new ...

(if (sym? exp) (env exp) ... (if (sym? exp) (if (eq? 'n exp) (log (maybe-lift 0) (env exp)) (env exp)) ...

The side-effecting function log is an extension of λ↑↓. It prints its second argument value and
returns it, and is lifted into code only if the first argument is code (like run). We use maybe-lift so
that we introduce the logging in the generated code if the string matcher is compiled.

Now, we can construct a tracing compiler trace-n-evalc using the same pattern as before. If we
call it on the definition of fac, we get the code for fac transformed so that for each occurrence of
the variable named n, we get an additional call to the log function.
> (trace-n-evalc fac-src) ;; => < code of fac with extra log calls >
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(lambda _ maybe-lift

(let star_loop (lambda star_loop m (lambda _ c (maybe-lift (lambda inner_loop s

(if (eq? (maybe-lift 'yes) (m s)) (maybe-lift 'yes)

(if (eq? (maybe-lift 'done) (car s)) (maybe-lift 'no)

(if (eq? '_ c) (inner_loop (cdr s))

(if (eq? (maybe-lift c) (car s)) (inner_loop (cdr s)) (maybe-lift 'no)))))))))

(let match_here (lambda match_here r (lambda _ s (if (eq? 'done (car r)) (maybe-lift 'yes)

(let m (lambda _ s

(if (eq? '_ (car r)) (if (eq? (maybe-lift 'done) (car s)) (maybe-lift 'no) ((match_here (cdr r)) (cdr s)))

(if (eq? (maybe-lift 'done) (car s)) (maybe-lift 'no)

(if (eq? (maybe-lift (car r)) (car s)) ((match_here (cdr r)) (cdr s)) (maybe-lift 'no)))))

(if (eq? 'done (cadr r)) (m s)

(if (eq? '* (cadr r)) (((star_loop (match_here (cddr r))) (car r)) s) (m s)))))))

(lambda _ r (if (eq? 'done (car r)) (maybe-lift (lambda _ s (maybe-lift 'yes))) (maybe-lift (match_here r)))))))

Fig. 6. Binding-time polymorphic string matcher in Pink.

> (define fac-src '(lambda f n (if (eq? n 0) 1 (* n (f (- n 1))))))

> (evalc fac-src) ;; =>

(lambda f0 x1

(let x2 (eq? x1 0)

(if x2 1

(let x3 (- x1 1)

(let x4 (f0 x3)

(* x1 x4))))))

> (trace-n-evalc fac-src) ;; =>

(lambda f0 x1

(let x2 (log 0 x1)

(let x3 (eq? x2 0)

(if x3 1

(let x4 (log 0 x1)

(let x5 (log 0 x1)

(let x6 (- x5 1)

(let x7 (f0 x6)

(* x4 x7)))))))))

> (cps-evalc fac-src) ;; =>

(lambda f0 x1 (lambda f2 x3

(let x4 (eq? x1 0)

(if x4 (x3 1)

(let x5 (- x1 1)

(let x6 (f0 x5)

(let x7 (lambda f7 x8

(let x9 (* x1 x8) (x3 x9)))

(x6 x7))))))))

Fig. 7. Code for factorial in λ↑↓: source (top), after plain compilation (left), tracing variable accesses (middle),
cps conversion (right). Code is shown in Pink syntax for readability.

The λ↑↓ code for fac, with extra log calls as transformed by tracing variables named n is shown
in Figure 7. As we see highlighted in gray, there are three additional log calls, one initially (for
the variable n in the conditional), and two more in the recursive branch. Due to the additional
let-bindings, some de Bruijn variable names are shifted accordingly.

The same approach applies to any user program, for example our string matcher from Figure 6.
If we use a tracing interpreter in the middle of a chain for the string matcher, we can generate code
for a particular regular expression that is instrumented. This instrumented code could print a trace
of the match_here calls and arguments during a run of the matcher, which explains the backtracking
structure and which part of the pattern is currently being matched.
Going a step further, the use of maybe-lift turns the derived evaluator into a general-purpose

transformer, so that when we pass the string matcher program as input, we get a modified string
matcher back (as code), which will, when we pass it a regular expression, generate instrumented
code. So when we run the code, we get the same trace as before.
Thus, we show source to source translation of staged code, where what happens in the future

stage is changed.

4.2.2 CPS Transform. An interpreter in continuation-passing style (CPS) leads to a CPS trans-
former via staging or partial evaluation [Danvy and Filinski 1990; Jones 2004]. We turn our stage-
polymorphic evaluator into an evaluator in CPS by explicitly passing the continuation as an
additional argument k:
(lambda _ maybe-lift (lambda _ eval (lambda _ exp (lambda _ env (lambda _ k ...
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Most cases are straightforward, and do not interfere with staging; here are the first three:
...

(if (num? exp) (k (maybe-lift exp))

(if (sym? exp) (k (env exp))

(if (sym? (car exp))

(if (eq? '+ (car exp)) (((eval (cadr exp)) env) (lambda _ v1 (((eval (caddr exp)) env) (lambda _ v2

(k (+ v1 v2)))))) ...

The lambda and application cases are interesting from a staging point of view, because they are
the ones that maybe-lift the continuation:
...

(if (eq? 'lambda (car exp)) (k (maybe-lift (lambda f x (maybe-lift ((eval (cadddr exp))

(lambda _ y (if (eq? y (cadr exp)) f (if (eq? y (caddr exp)) x (env y)))))))))

... ;; application

(((eval (cadr exp)) env) (lambda _ v2 (((env (car exp)) v2) (maybe-lift (lambda _ x (k x)))))) ...

Armed with such an evaluator, we can create cps-evalc, our compiler / CPS transformer. The
resulting λ↑↓ code for factorial in CPS (on top of the usual ANF through reflect/reify) is shown in
Figure 7. Each lambda takes an additional curried argument for the continuation. All function calls
are in tail position, with inner lambdas passed as continuation arguments.

We also have a choice to residualize or duplicate the continuation for conditionals. Duplicating
the continuation is sometimes desirable, but may lead to code explosion for nested conditional
expressions. Residualizing the continuation as common join point, by contrast, will guarantee
linear space behavior. Since continuations take a Code argument and return a Code value when in
compilation mode, we can lift a continuation into a residual function at any time [Danvy 2003].

4.2.3 Correctness and Optimality of Transformation. We have considered correctness and opti-
mality of unmodified metacircular towers in Section 4.1. What can we say about interpreters that
implement program transformations, for example CPS conversion or tracing? Then specialization
should perform the transformation, but not introduce extraneous overhead and a tower of multiple
such interpreters should apply a series of transformations. A possible way to think about this is as
Jones-optimality modulo projection: there exists a self-interpreter that, when specialized, realizes a
certain projection on the space of programs (i.e., implements a certain program transformation).
Regular Jones-optimality is the special case for the identity transform.

Proposition 4.7 (Jones Optimality Modulo Projection). Given a modified self-interpreter

t-eval that implements the observable effects of program transformation T , the specialized interpreter

t-evalc materializes the transformationT : for any Pink program p, if ⟦ (t-eval p-src) ⟧ ≡T ⟦ p ⟧ then

⟦ (t-evalc p-src) ⟧ ⇓ T ⟦ p ⟧.

This property holds for both examples shown above.

5 TOWARDS REFLECTIVE TOWERS

Up until now, we have considered towers consisting of cleanly separated levels. We now turn Pink
into a proper, albeit simple, reflective language, which means that programs will be able to observe
the behavior of a running interpreter anywhere in a tower of Pink interpreters.

5.1 Execute-at-Metalevel

To do so, we add a construct EM, short for execute-at-metalevel, inspired by the reflective language
Black [Asai et al. 1996]. Invoking (EM e) will execute the expression e as if it were part of the

interpreter code. Here is an example:
> (eval '((lambda f x (EM (* 6 (env 'x)))) 4)) ;; => 24
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The EM call executes the expression at the meta level. Thus, the user program’s environment is in
scope under the name env and the syntactic lookup for name 'x yields 4 ś the argument value.
It is instructive to run the same example in compiled mode:

> (evalc '((lambda f x (EM (* (lift 6) (env 'x)))) 4)) ;; => ((lambda f x (* 6 x)) 4)

The body of EM is again executed at the meta level, which means that it now runs at compile time.
Hence, we need to lift any values that are supposed to become part of the compiled code. In the
example we used lift explicitly, but we could have used maybe-lift just as well. With EM and
maybe-lift, we have a meta-programming facility that can serve both as runtime reflection in
interpreted mode, and essentially function as a macro system in compiled mode.

5.1.1 Implementing EM. How can we implement EM in a Pink tower? For towers of arbitrary
height, we need to add the following meta-circular case to the Pink evaluator:
(lambda _ maybe-lift (lambda tie eval (lambda _ exp (lambda _ env ...

(if (sym? (car exp)) ... (if (eq? 'EM (car exp)) (let e (cadr exp) (EM ((eval (env 'e)) env))) ...

As we can see, the implementation of EM takes its unevaluated argument, and executes it right
there, in the interpreter code, by delegating to evaluation one level up the tower. Inside EM, (env 'e)

retrieves the value of variable e. However, EM is not supported natively by λ↑↓. Thus, bootstrapping
the tower necessitates a different implementation, in terms of λ↑↓, at the edge of the tower:

(lambda _ maybe-lift (lambda tie eval (lambda _ exp (lambda _ env ...

(if (sym? (car exp)) ... (if (eq? 'EM (car exp)) (run (maybe-lift 0) (trans (cadr exp))) ...

To recall, trans is the function that translates a quoted S-expression into λ↑↓ code. The use of
maybe-lift as argument for run ensures that we remain polymorphic over compiling vs. interpreting
code. Once the tower is bootstrapped in this way, all further levels can use the meta-circular
implementation above.

5.1.2 Modifying the Tower Structure. It is always possible to launch new tower levels by calling
eval (or a different interpreter) on a given quoted expression, increasing the height of the tower.
With EM, an argument to EM can choose to evaluate a subexpression at the current user level by
invoking eval, which is in scope in the interpreter code, just like env in the example above. But
EM can also choose to modify the currently executing tower by launching a different interpreter
recursively, with added cases for new functionality, configured to trace all operations, or modified
in some other way. In contrast to launching new levels of evaluation, EM permits us to replace the
currently executing interpreters within a given scope. Finally, when using the CPS Pink interpreter,
EM can also be implemented to discard the current continuation k of the interpreter. This will
effectively terminate the current user level and reduce the height of the tower.

As an example, we use a scoped modification via EM instead of a whole new evaluator to achieve
tracing like in Section 4.2.1. Here, tie is the recursive self-reference for the function that implements
open recursion, from the interpreter signature as in Section 5.1.1. To launch a modified interpreter,
we invoke tiewith a function ev that overrides the desired cases and otherwise delegates to eval.
> (eval '((EM (((lambda ev exp (lambda _ env (if (if (sym? exp) (eq? 'n exp) 0) (log 0 ((eval exp) env))

(((tie ev) exp) env)))) '(lambda f n (if (eq? n 0) 1 (* n (f (- n 1)))))) env)) 4)) ;; => 24

;; prints 4, 4, 4, 3, 3, 3, 2, 2, 2, 1, 1, 1, 0

5.1.3 Language Extensions in User Code. Finally, EM can expose inner workings of an interpreter
through expressive user-facing APIs. In contrast to non-reflective languages, such APIs do not
have to be baked into the core language. As a concrete example, when we combine the CPS Pink
interpreter (see Section 4.2.2) with execution at the meta level (EM), we can implement a range of
control operators such as call/cc or Danvy and Filinski’s shift and reset 1990 at the user level.
The implementation of call/cc is as follows:
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(define call/cc (lambda _ f (EM (((env 'f) (maybe-lift (lambda _ v (maybe-lift (lambda _ k1 (k1 (k v)))))))

(maybe-lift (lambda _ x x))))))

> (cps-eval '(+ 3 (call/cc (lambda _ k (k (k (k 1))))))) ;; => 10

Note that the free variable k inside of the EM expression refers to the meta-level variable which
holds the user-level continuation (similar to env above). The function of the call/cc expression is
passed in that continuation, suitably packaged. Control operators like call/cc or shift and reset
can serve as a basis for further high-level abstractions such as nondeterministic or probabilistic
execution, entirely implemented in user code. Note that defining call/cc through reification is
already discussed in classic works on reflective towers, notably Brown [Friedman and Wand 1984;
Wand and Friedman 1986] and Blond [Danvy and Malmkjñr 1988].

5.2 Compiling under Persistent Semantic Modifications

Our starting point for Pink was a tower where the choice of interpretation vs. compilation was not
observable by user code (see Section 4.1). With EM already, user code can execute at compile time,
which may lead to observably different side effects. A key question now is what is the visibility of
changes to the tower semantics in interpreted vs. compiled mode.
In a fully reflective setting, we want to go as far as allowing user code to change the currently

running tower persistently, and in completely unforeseen ways. If we swap out the currently
running eval function for another one (assuming that λ↑↓ and Pink are suitably extended with
mutable state), then all expressions that are evaluated in the future should obey the new semantics.
In interpreted mode this is the default behavior. But how should such semantic changes, which
may depend on the flow of execution in a user program, interact with its compilation? The short
answer is that they can’t ś as already observed by Asai [Asai 2014], compilation in a reflective
tower is necessarily with respect to a semantics that is known at the expression’s definition site.2

Thus, when compiled, semantic modifications can only have static as opposed to dynamic extent.
For this reason, it is of interest to make compilation decisions on a finer granularity, at the

level of individual functions. Following Asai [Asai 2014], we introduce two separate function
abstractions: the normal lambda (interpreted, call-site semantics), and clambda (compiled, definition-
site semantics). In contrast to Asai’s Black implementation [Asai 2014], where clambdas are compiled
with respect to unmodified initial tower semantics, our clambdas follow the semantics at the function
definition site.
To implement the lambda vs. clambda split, we change Pink’s eval so that maybe-lift becomes

another argument for each recursive call. In addition, we package two things within this argument
l now: maybe-lift as before, and also whether we are already in compilation mode or not. Now, we
can provide clambda as a special form that compiles its body, removing all interpretative overhead,
while retaining the normal interpreted lambda as well:
(lambda tie eval (lambda _ l (lambda _ exp (lambda _ env ...

(if (sym? (car exp)) (let maybe-lift (car l) (let compile-mode (cdr l)

(if (or (eq? 'lambda (car exp)) (and (eq? 'clambda (car exp)) compile-mode)) (maybe-lift (lambda f x

(((eval l) (cadddr exp)) (lambda _ y (if (eq? y (cadr exp)) f (if (eq? y (caddr exp)) x (env y)))))))

(if (eq? 'clambda (car exp)) (run 0 (((eval (cons (lambda _ e (lift e)) 1)) (cons 'lambda (cdr exp)))

(lambda _ y (lift-ref (env y))))) ...

To compile a function, we evaluate it as a regular lambda under a staged evaluator, achieved by
passing in a lifting function. The function lift-ref enables cross-stage persistence by injecting
pointers to the existing environment values into the generated code. We assume that a suitable
implementation is added to λ↑↓.

2A possible way out would be to look at deoptimization and re-compilation techniques from JIT compilers, but our hope is
that future work will show how those mechanisms can be expressed in user code based on the facilities presented here.
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6 PURPLE: REFLECTION À LA BLACK

We now consider a more powerful reflective tower, which has conceptually infinitely many levels of
meta-interpretation. The tower still executes in finite time, because when executing an unmodified
meta level, the tower can fall back to built-in semantics. Another way to think about this is that
meta levels are spawned lazily, as they are accessed and modified by constructs like EM.

Our language, dubbed Purple, is heavily inspired by Asai’s reflective language Black [Asai et al.
1996]. In the spirit of Black, there are a couple of important differences in comparison to Pink:
Purple is conceptually infinite as a tower; it allows persistent mutable modifications; it has a richer
API (i.e., user-observable interpreter); it is designed to closely match Black, which was proposed
previously, including the open challenge of compilation; and it is based on an existing practical
multi-stage programming framework, Lightweight Modular Staging (LMS) [Rompf and Odersky
2012]. While we could have grown Purple from Pink, we found it more interesting to investigate if
we can apply the underlying ideas end-to-end in the setting of an existing language (Black) and an
existing staging toolkit (LMS).
In a fully reflective programming language such as Black [Asai et al. 1996], programs are

interpreted by an infinite tower of meta-circular interpreters. Each level of the tower can be
accessed and modified, so the semantics of the language changes dynamically during execution.
Previous work [Asai 2014] used MetaOCaml [Calcagno et al. 2003; Kiselyov 2014] to stage the
built-in interpreter, and thus enable compilation of functions with respect to the built-in semantics
of the tower. But a key question was left open [Asai 2014]: can we specialize a function with respect
to the current semantics of the tower, which is (1) possibly user-modified, and (2) possibly also
compiled via staging?

Here, we answer in the affirmative, showing that it is possible to compile a user program under
modified, possibly also compiled, semantics, building on the techniques presented earlier in the
context of Pink.

6.1 An Example

At the user level, we define the usual function for the Fibonacci sequence.
(define fib (lambda (n) (if (< n 2) n (+ (fib (- n 1)) (fib (- n 2))))))

> (fib 7) ;; => 13

At the meta level, we change the evaluation of variables so that it increments a meta-level counter
when a variable name is n. Like in Pink (Section 5.1), the special form EM shifts the tower so that its
argument executes at the meta level. By changing the definition of the function eval-var at the
meta level, we modify the meaning of evaluating a variable, affectning the object level. At the meta
level, each evaluator function such as eval-var takes three arguments: the expression, environment
and continuation from the object level.
(EM (begin (define counter 0) (define old-eval-var eval-var)

(set! eval-var (clambda (e r k) (if (eq? e 'n) (set! counter (+ counter 1))) (old-eval-var e r k)))))

> (fib 7) ;; => 13

> (EM counter) ;; => 102

Like in Pink (Section 5.2), we can compile a function by defining it with clambda instead of lambda
(as we do above for eval-var). Our goal is that the behavior of a clambdamatches that of a lambda
when applied, assuming the current semantics remain fixed.
(set! fib (clambda (n) (if (< n 2) n (+ (fib (- n 1)) (fib (- n 2))))))

> (EM (set! counter 0))

> (fib 7) ;; => 13

> (EM counter) ;; => 102
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On the other hand, if we undo the meta-level changes, the compiled function still updates the
counter. If we re-compile the function under the current semantics, it stops updating the counter.
(EM (set! eval-var old-eval-var))

> (EM (set! counter 0))

> (fib 7) ;; => 13

> (EM counter) ;; => 102

(set! fib (clambda (n) (if (< n 2) n (+ (fib (- n 1)) (fib (- n 2))))))

> (EM (set! counter 0))

> (fib 7) ;; => 13

> (EM counter) ;; => 0

As for the generated code, the fib function compiled under the modified semantics has extra
code (in gray) for incrementing the counter for each occurrence of the variable n in its body, but is
otherwise similar to the code (in black) compiled under the original semantics. The syntax for the
generated code is presented in Figure 9.
{(k, xs) => _app(‘+, _cons(_cell_read(<cell counter>), ‘(1)), _cont{c_1 => _cell_set(<cell counter>, c_1)

_app(‘<, _cons(_car(xs), ‘(2)), _cont{v_1 => _if(_true(v_1),

_app(‘+, _cons(_cell_read(<cell counter>), ‘(1)), _cont{c_2 => _cell_set(<cell counter>, c_2)

_app(k, _cons(_car(xs), ‘()), _cont{v_2 => v_2})}),

_app(‘+, _cons(_cell_read(<cell counter>), ‘(1)), _cont{c_3 => _cell_set(<cell counter>, c_3)

_app(‘-, _cons(_car(xs), ‘(1)), _cont{v_3 => _app(_cell_read(<cell fib>), _cons(v_3, ‘()), _cont{v_4 =>

_app(‘+, _cons(_cell_read(<cell counter>), ‘(1)), _cont{c_4 => _cell_set(<cell counter>, c_4)

_app(‘-, _cons(_car(xs), ‘(2)), _cont{v_5 => _app(_cell_read(<cell fib>), _cons(v_5, ‘()), _cont{v_6 =>

_app(‘+, _cons(v_4, _cons(v_6, ‘())), _cont{v_7 => _app(k, _cons(v_7, ‘()), _cont{v_8 => v_8})})})})})})})}))})})}

In the generated code, mutable cells are directly referenced, bypassing any explicit concepts
(such as environments) of the user-accessible evaluators. The modified evaluator function from the
meta level is inlined into code compiled for the user level. Compilation collapses the levels of the
tower.

6.2 Compilation of User Code

For our use case, we want to use evaluator functions, both to interpret expressions and to compile
the body of clambda expressions. In case of compilation, the body expression is known (static);
however, the actual arguments and meta-continuation are not known (dynamic), since they are
only supplied when the function is called. Furthermore, user-defined compiled functions should be
usable as or in evaluator functions, in both interpretation and compilation mode. Hence, compilation
should produce code that can also produce code. Similarly, first-class objects with code, such as
functions and continuations, should be usable in both modes (interpretation and compilation),
regardless of which mode they were created in. In summary, we want our functions to be stage-
polymorphic, i.e., polymorphic over whether they interpret or compile, and also generate code that
is stage-polymorphic.
While λ↑↓ has dynamic stage polymorphism more akin to online partial evaluation, LMS has

type-driven stages, and so here we explore static stage polymorphism (Section 8) more akin to offline
partial evaluation. We further rely on LMS optimizations to heuristically achieve as much collapse
as in Pink. Compared to Pink, Purple does not expose any manual staging or lifting constructs:
only clambda, which marks a lambda for compilation.

6.3 Tower Structure

In a łclassicž tower of interpreters, as in languages 3-Lisp [Smith 1984], Brown [Wand and Friedman
1986], Blond [Danvy and Malmkjñr 1988], or Black [Asai 2014; Asai et al. 1996], each level has its
own environment and its own continuation. Conceptually, the semantics of level n is given by the
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interpreter at level n + 1, which takes an expression, an environment and a continuation, together
with a stream of all the environments and continuations of the levels above. So level 0 (the user
level) is interpreted by level 1 (the meta level), which is interpreted by level 2 (the meta meta level),
and so on. Note that such a tower is depicted with the user level at the bottom, and then increasing
meta levels, while confusingly fixed towers are the other way around, with the most meta level at
the bottom and the user level at the top.
For compilation, we would rather avoid reasoning about level shifting, up and down, explicitly.

Therefore, we drop meta-continuations in favor of one global continuation, which fits better
with a model of one global łpcž counter. This departure from łclassicž towers of interpreters is a
meta-difference: a difference in the meta-execution of the tower itself rather than the observed
meta-interpreter. Intuitively, the entire tower has only a single thread of execution and focus, while
łclassicž towers have independent threads of executions for each level.

Fig. 8. łClassicž vs. Rigid Reflective Towers

Thus, our tower has a rigid level structure, better suited
for collapsing. Each level has its own global environ-
ment, containing bindings for primitives (such as null?,
+,display) and, except at the user level, for evaluator func-
tions (such as base-eval, eval-var, base-apply). Each eval-
uator function takes as arguments an expression, an en-
vironment and a continuation. These arguments usually
come from the object level below, and are manipulated
as reified structures. In addition, an evaluator function
statically knows about its fixed meta-environment (the
stream of all environments in levels above and including
its own) and is dynamically given a continuation, which represents the rest of the computation or
context around the evaluator function call. Similarly, closures, created from lambda, save not only
their lexical environment, but also their lexical meta-environment.

In a classic reflective tower, shifting levels up and down needs to be made explicit (and would need
to be part of the compilation language). In addition, there is this tension between the meta-state
when a function is defined (and possibly compiled) and the meta-state when it is applied. What
if the function is applied at a different level than the one in which it was created? The tower at
run-time might not even match any preconceived model since by pushing onto the meta-state, one
can change the tower structure arbitrarily. In our case, we avoid all these thorny issues by using a
rigid structure and a lexical discipline for both environments and meta-environments. For a strange
example, calling the continuation _k below pushes another user level in Black:
(begin (define where_am_i 'user) (EM (define where_am_i 'meta)) (define _ 0)

(EM (let ((old-eval-var eval-var) (__k (lambda (x) x))) (set! eval-var (lambda (e r k)

(if (eq? e '__k) (k __k) (begin (if (eq? e '_) (set! __k k) '()) (old-eval-var e r k))))))))

> (+ _ 1) ;; => 1

> where_am_i ;; => user

> (EM where_am_i) ;; => meta

> (__k 2) ;; => 3

> where_am_i ;; => user

> (EM where_am_i) ;; => meta (in Black: user!)

Figure 8 summarizes the differences in structure between Black and Purple: (1) each level has a
conceptual CPU in Black, while there is a single global CPU in Purple; (2) in Black, the environments
(represented by stars in Figure 8) are detachable from the tower structure, while they are rigidly
attached in Purple. Even though the tower structure in Purple is rigid, the semantics is not, since
evaluator functions can be redefined using set!.
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7 PURPLE / BLACK EXAMPLES

In this section, we show several examples implemented in our system. For all of these, unless
otherwise specified, using lambda or clambda does not alter the semantics.

7.1 Instrumentation

We can extend the initial example, so that we have an instr special form, that count calls to several
meta-level functions, and prints a nice summary.
Here is a general hook to add a special form:

(EM (define add-app-hook! (lambda (n ev)

(let ((original-eval-application eval-application)) (set! eval-application (lambda (exp env cont)

(if (eq? (car exp) n) (ev exp env cont) (original-eval-application exp env cont))))))))

7.2 Introspection for TABA (There and Back Again)

There is a neat recursion pattern [Danvy and Goldberg 2005] to construct (cnv xs ys) = (zip

xs (reverse ys)) in n recursive calls and no auxiliary data list, where xs and ys are lists of size
n.
(define walk (lambda (xs ys) (if (null? xs) (cons '() ys)

(let ((rys (walk (cdr xs) ys))) (let ((r (car rys)) (ys (cdr rys)))

(cons (cons (cons (car xs) (car ys)) r) (cdr ys)))))))

(define cnv (lambda (xs ys) (car (walk xs ys))))

To understand the recursion pattern, it is helpful to visualize the pending operations as the
recursive calls unfold. So we create a special form taba, which takes a list of function names to
monitor and an expression to evaluate under temporarily modified semantics that instrument the
monitored function calls.
(EM (begin

(define eval-taba-call (lambda (add! original-eval-application) (lambda (exp env cont)

(eval-list (cdr exp) env (lambda (ans-args) (original-eval-application exp env (lambda (ans)

(add! ans-args ans) (cont ans))))))))

(define eval-taba (lambda (fns) (lambda (exp env cont)

(let ((original-eval-application eval-application) (pending '()))

(map (lambda (fn) (add-app-hook! fn (eval-taba-call (lambda (ans-args ans)

(set! pending (cons (list fn ans-args ans) pending))) eval-application))) fns)

(base-eval exp env (lambda (ans) (set! eval-application original-eval-application)

(cont (list ans pending))))))))

(add-app-hook! 'taba (lambda (exp env cont) ((eval-taba (car (cdr exp))) (car (cdr (cdr exp))) env cont)))))

Using our special form on a particular instance of the problem, we see what happens when
we go There And Back Again (TABA). As we walk down the first list, we remember via pending
operations the successive elements that we pair with the elements of the second list explored on
the way up.
> (taba (cnv walk) (cnv '(1 2 3) '(a b c))) ;; => (((1 . c) (2 . b) (3 . a))

;; ((cnv ((1 2 3) (a b c)) ((1 . c) (2 . b) (3 . a)))

;; (walk ((1 2 3) (a b c)) (((1 . c) (2 . b) (3 . a))))

;; (walk ((2 3) (a b c)) (((2 . b) (3 . a)) c))

;; (walk ((3) (a b c)) (((3 . a)) b c))

;; (walk (() (a b c)) (() a b c))))

Note that since the taba special form modifies the semantics temporarily, it won’t be able to
monitor any already compiled functions. Still, as expected, functions that are compiled inside the
taba expression will behave according to the monitoring semantics.
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This technique for introspecting TABA calls works well for all direct-style examples (with no
exceptional control flow), as the arguments to calls are directly observable. For examples with
higher-order implementations, including CPS, the introspection is more opaque due to closures as
arguments.

7.3 Reifiers

In towers of interpreters, a reifier is a way to go up the tower and get a reified structure for
the current computation from the object level below. From level n, the expression ((delta (e r

k) body...) args...) evaluates the expression body...with the environment from level n + 1, with
e bound to the unevaluated expression args..., r bound to the environment from level n, and k to
the continuation from level n. Within the body, (meaning e r k) can be used to reflect back.

We can use delta to reify the continuation, like in Scheme’s call/cc:
(define call/cc (lambda (f) ((delta (e r k) (k ((meaning 'f r (lambda (v) v)) k))))))

> (+ 1 (call/cc (lambda (k) 0))) ;; => 1

> (+ 1 (call/cc (lambda (k) (k 0)))) ;; => 1

> (+ 1 (call/cc (lambda (k) (begin (k 1) (k 3))))) ;; => 2

> (+ 1 (call/cc (lambda (k) (begin (k (k 1)) (k 3))))) ;; => 2

First, at the meta level, we need a way to reify the current environment, the one from the same
meta level. So we add this facility by changing the meta meta level:
(EM (EM (begin (define old-eval-var eval-var)

(set! eval-var (clambda (e r k) (if (eq? '_env e) (k r) (old-eval-var e r k)))))))

Now, at the meta level, we provide the definition of delta by recognizing its pattern of application.
This is a simplification: we do not turn delta into a first-class object.
(EM (begin (define delta? (lambda (e) (if (pair? e) (if (pair? (car e)) (eq? 'delta (car (car e))) #f) #f)))

(define apply-delta (lambda (e r k) (let ((operator (car e)) (operand (cdr e)))

(let ((delta-params (car (cdr operator))) (delta-body (cdr (cdr operator))))

((EM eval-begin) delta-body (extend _env delta-params (list operand r k)) id-cont)))))

(define old-eval-application eval-application)

(set! eval-application (lambda (e r k) (if (delta? e) (apply-delta e r k) (old-eval-application e r k))))

(define meaning base-eval)))

7.4 Meta-Level Undo

We can implement undo at the meta level, so that it is easy to experiment with changes and roll
back to a previous state.

At the meta meta level, we change eval_var to provide the _env reifier like for delta. In addition,
we also monitor eval_set! to keep track of changes at the meta level:
(EM (EM (begin (define undo-list '()) (define old-eval-set! eval-set!)

(set! eval-set! (clambda (e r k) (let ((name (car (cdr e))))

(eval-var name r (lambda (v) (set! undo-list (cons (cons name v) undo-list)) (old-eval-set! e r k))))))

(define reflect-undo! (clambda (r) (if (null? undo-list) '() (begin

(old-eval-set! (list 'set! (car (car undo-list)) (list 'quote (cdr (car undo-list)))) r (lambda (v) v))

(set! undo-list (cdr undo-list)))))))))

At the meta level, we just provide a nice undo! function:
(EM (define undo! (clambda () ((EM reflect-undo!) _env))))

Here is a use example of undo!:
(EM (define old-eval-var eval-var))

(EM (set! eval-var (clambda (e r k) (if (eq? e 'n) (k 0) (old-eval-var e r k)))))

(define n 1)
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> n ;; => 0

> (EM (eq? old-eval-var eval-var)) ;; => #f

(EM (undo!))

> n ;; => 1

> (EM (eq? old-eval-var eval-var)) ;; => #t

7.5 Collapsing User-Level Interpreters

Last but not least, we show how our simple string matcher example from Section 3.1 can be
expressed and collapsed as a user-level interpreter:
(define matches (clambda (r) (clambda (s) (if (null? r) #t (if (null? s) #f

(if (eq? (car r) (car s)) ((matches (cdr r)) (cdr s)) #f))))))

> ((matches '(a b)) '(a c)) ;; => #f

> ((matches '(a b)) '(a b)) ;; => #t

> ((matches '(a b)) '(a b c)) ;; => #t

We can generate code for matching a particular prefix as follows:
(define start_ab ((clambda () (matches '(a b)))))

The resulting code is the same as shown in earlier sections.
We can combine this user-level interpreter with a user-modified meta level too. For example, we

can modify the meta-level eval-var to count evaluations of variables named r or s, similar to the
initial example of Section 6.1.
> ((matches '(a b)) '(a c)) ;; => #f (r: 5, s: 5)

> ((matches '(a b)) '(a b)) ;; => #t (r: 7, s: 6)

> ((matches '(a b)) '(a b c)) ;; => #t (r: 7, s: 6)

8 FROM λ↑↓ TO LMS

Purple is internally implemented in Scala, using the Lightweight Modular Staging (LMS) frame-
work [Rompf and Odersky 2012]. Before we dive further into the implementation of Purple, we first
discuss how the ideas prototyped in the context of λ↑↓ scale to LMS, especially the key ingredient
of stage polymorphism.

Having seen in Section 3.1 how λ↑↓ can serve as a model for untyped front-ends, it is instructive
to look at typed models of multi-stage evaluation. LMS uses a type constructor Rep[T] to designate
future-stage expressions, i.e., those that evaluate to Code values in λ↑↓, and it provides overloaded
methods on suchRep[T] values, e.g., + forRep[Int]. Thus, Scala’s local type inference and overloading
resolution performs a form of local binding-time analysis.
Previous work has clarified how to understand multi-stage evaluation in LMS in terms of an

explicit multi-level interpreter [Rompf 2016]. We summarize the main ideas below. Essentially, we
take the evalms function from Section 3 and turn it inside out, from an interpreter over an initial
term language Exp to an evaluator in tagless-final [Carette et al. 2009] style. Doing so, we can assign
the following overloaded type signatures to the λ↑↓operations:

def lift(v: Int): Rep[Int] def app[A,B](f: A=>B,x:A): B

def lift[A,B](v: (Rep[A], Rep[B])): Rep[(A,B)] def app[A,B](f: Rep[A=>B], x: Rep[A]): Rep[B]

def lift[A,B](v: Rep[A]=>Rep[B]): Rep[A=>B] def if_[A](c: Boolean, a: =>A, b: =>A): A

def lift[A](v: Rep[A]): Rep[Rep[A]] def if_[A](c: Rep[Boolean], a: =>Rep[A], b: =>Rep[A]): Rep[A]

def run[A](b: Any, e: Rep[A]):A def plus(x: Int, y: Int): Int

def run[A](b: Rep[Any], e: Rep[Rep[A]]): Rep[A] def plus(x: Rep[Int], y: Rep[Int]): Rep[Int]

Note that there are no introduction forms anymore, as these correspond to normal Scala values.
Looking closely at the structure of the evaluator of Figure 3, we observe that fortunately, we

never need to get our hands on unevaluated Scala expressions. This is not a given for a multi-level
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language: the fact that tools like LMS operate as libraries inside a general-purpose host language is a
key difference from offline partial evaluation systems that operate on the program text. We identify
Rep[T] = Exp and note how the implementations carry over immediately from evalms and lift of
Figure 3, and how the normal Scala evaluation takes over the role of present-stage evaluation from
evalms, e.g.:
def app[A,B](f: A=>B, x: A ): B = f(x)

def app[A,B](f: Rep[A=>B], x: Rep[A]): Rep[B] = reflect(App(f,x))

Note also the use of reflect instead of reflectc since we no longer need a specific Code data type,
and use plain Exp instead.
This API corresponds almost directly to the actual implementation in LMS. Behind the reflect

and reify API, the internal representation of LMS is different though. Rather than as simple
expression trees, LMS has a graph-based intermediate representation (IR) that directly supports
code motion, common subexpression elimination, dead code elimination and a range of other
optimizations [Click and Cooper 1995; Rompf and Odersky 2012; Rompf et al. 2013]. LMS also
makes pervasive use of smart constructors to perform rewriting while the IR is constructed.
For comparison with Section 3.1, here is the staged string matcher in LMS, using regular and

staged lists:
def matches(r: List[Char])(s: Rep[List[Char]) = if (r.isEmpty) lift(true) else if (s.isEmpty) lift(false) else

if (lift(r.head) == s.head) matches(r.tail, s.tail) else lift(false)

Here is the specialization to pattern ab:
val start_ab = run(0,lift(matches(List('a','b'))))

The run construct built on top of LMS will generate Scala source code, compile it at runtime, and
load the generated class files into the running JVM. Note that the explicit calls to lift for primitives
could be dropped by declaring the corresponding lift function as implicit. We have left them in
here for clarity and for consistency with λ↑↓.

8.1 Stage Polymorphism with Type Classes

The question now is, how to achieve the same flavor of stage polymorphism as in Section 3.2?
LMS relies on the normal Scala type system without specific support for polymorphic binding-time
abstraction and application operators, as in other work [Henglein and Mossin 1994]. So far, we have
a fixed type distinction between normal types T and staged types Rep[T], and we have overloaded
methods based on those static types. Based on previous work [Ofenbeck et al. 2013], the key idea
here is to introduce another higher-kinded type R[T] which can be instantiated with either T or
Rep[T] in a given context.

But how do we get the correct operations on R[T] values? We follow previous work [Ofenbeck
et al. 2017] in using type classes [Wadler and Blott 1989] to good effect. We define a type class
interface and corresponding instances of Ops[NoRep] and Ops[Rep] that delegate to the appropriate
base methods on plain types (NoRep[T] = T) or Rep types respectively. Figure 9 shows the actual
type class interface used in Purple.
Now we can go ahead and define the stage-polymorphic matcher in Scala:

def matches[R[_]:Ops](r: List[Char])(s: R[List[Char]) = { val o = implicitly[Ops[R]]; import o._

if (r.isEmpty) lift(true) else if (s.isEmpty) lift(false) else

if (lift(r.head) == s.head) matches(r.tail, s.tail) else lift(false) }

Note that the preamble val o = ...; import o._ could be eliminated with an additional level of
indirection, defining lift etc. as methods outside of Ops that are parameterized over R[_]:Ops.

In the driver code, we just have to pick the correct type parameter when calling matches:
def matches-maybe-spec(r: List[Char]) = if (r.length < 20) run(0,lift(matches[Rep](r))) else matches[NoRep](r)
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trait Ops[R[_]] {

implicit def _lift(v: Value): R[Value] def _liftb(b: Boolean): R[Boolean]

def inRep: Boolean def _app(fun: R[Value], args: R[Value], cont: Value): R[Value]

def _true(v: R[Value]): R[Boolean] def _if(c: R[Boolean], a: => R[Value], b: => R[Value]): R[Value]

def _fun(f: Fun[R]): R[Value] def _cont(f: FunC[R]): Value

def _car(p: R[Value]): R[Value] def _cell_new(v: R[Value], memo: String): R[Value]

def _cdr(p: R[Value]): R[Value] def _cell_set(c: R[Value], v: R[Value]): R[Value]

def _cons(car:R[Value],cdr:R[Value]): R[Value] def _cell_read(c: R[Value]): R[Value] }

type NoRep[T] = T // identity type constructor

implicit object PlainOps extends Ops[NoRep] { /* ... */ } // for normal interpretation

implicit object RepOps extends Ops[Rep] { /* ... */ } // for compilation via LMS

Fig. 9. Type class interface defining target language, and instances for interpretation and compilation.

Scala’s implicit resolution will pass the correct type class instance (either PlainOps or RepOps) to
matches automatically.

9 A SKETCH OF PURPLE’S IMPLEMENTATION

Now we show some aspects of Purple’s implementation, focusing on compilation and reflection.
The Purple system comprises three languages:

(1) The host language, Scala, in which the built-in evaluator functions are written.
(2) The user language, which exposes the user level and the tower structure, including all the

meta-level evaluator functions.
(3) The compilation language, which is defined by the lifted operations Ops[R] of Figure 9.

Values are represented in the host language as follows:
Value ::= I(n: Int) | B(b: Boolean) | S(sym: String) | Str(s: String) | P(car: Value, cdr: Value)

| Clo(params: Value, body: Value, env: Value, menv: MEnv) | Evalfun(key: Int) | Cell(key: String)

| /* ... nil, primitives, continuations ... */

Integers, booleans, symbols, strings and pairs are completely standard. Closures hold a meta-
environment MEnv in addition to the parameters, body, and value environment. Cells encapsulate a
store location. Evalfuns represent a reference to a built-in evaluator function, or to a compiled user
function (clambda).

9.1 Initializing the Tower

Below is the code for building the tower level structure. Instead of meta-continuations, Purple uses
only rigid meta-environments as discussed in Section 6.3. The representation of evaluator functions
is wrapped to look just like user-defined compiled functions. The meta-environment being created
is passed lazily on to the interpreted functions during frame initialization. The meta-environment
constructor takes an environment eagerly, and the next meta-environment lazily; thus, the stream
of environments fixes infinitely many upper meta levels, conceptually.
def binding(s: String, v: Value): Value = P(S(s), cell_new(v, s))

def init_frame_list = List(

P(S("null?"), Prim("null?")), P(S("+"), Prim("+")), /* ... */ P(S("display"), Prim("display")))

def init_mframe(m: => MEnv) = list_to_value(List(

binding("eval-begin", evalfun(eval_begin_fun(m))), binding("eval-EM", evalfun(eval_EM_fun(m))),

binding("eval-clambda", evalfun(eval_clambda_fun(m))), binding("eval-lambda", evalfun(eval_lambda_fun(m))),

binding("eval-application", evalfun(eval_application_fun(m))), binding("eval-var", evalfun(eval_var_fun(m))),

/* ... */ binding("base-eval", evalfun(base_eval_fun(m))), binding("base-apply", evalfun(base_apply_fun(m)))) ++

init_frame_list)
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def init_env = cons(cell_new(init_frame, "global"), N)

def init_meta_env(m: => MEnv) = cons(cell_new(init_mframe(m), "global"), N)

def init_menv[R[_]:Ops]: MEnv = { lazy val m: MEnv = MEnv(init_meta_env(m), init_menv[R]); m }

Mutable cells are represented explicitly. From the code above, each initial environment is a list of
one global frame. The head of the list is mutable so that more definitions can be added to the frame.
The value binding of evaluator functions is also mutable, so that an evaluator can be modified.

9.2 Base Evaluation

Below is the code for the entry-point evaluator function. The function dispatches on the form of
the expression, delegating to other evaluator functions accordingly. In the host language, we do not
hard-code references to mutually-recursive evaluator functions, but look up such references in the
meta-environment ś via meta_apply. Even though the expression, environment and continuation of
the object level below are known (static: Value), the result of the function is not known (dynamic:
R[Value]). The function calls starting with _ (such as _lifted) are part of the operations for R[_]
types (defined in Figure 9), behaving differently for each instantiation type (NoRep vs. Rep).
def base_eval[R[_]:Ops](m: MEnv, exp: Value, env: Value, cont: Value): R[Value] = {

val o = implicitly[Ops[R]]; import o._; exp match {

case I(_) | B(_) | Str(_) => apply_cont[R](cont, _lift(exp))

case S(sym) => meta_apply[R](m, S("eval-var"), exp, env, cont)

case P(S("lambda"), _) => meta_apply[R](m, S("eval-lambda"), exp, env, cont)

case P(S("clambda"), _) => meta_apply[R](m, S("eval-clambda"), exp, env, cont)

/* ... case let, if, begin, set!, define, quote, ... */

case P(S("EM"), _) => meta_apply[R](m, S("eval-EM"), exp, env, cont)

case P(fun, args) => meta_apply[R](m, S("eval-application"), exp, env, cont) }}

The result is potentially dynamic (R[Value]), so that we indeed can turn the interpreter into
a compiler. Above, we use _lift to turn a static (known) Value into dynamic (though constant)
R[Value].

Application. The meta_apply function delegates to static_apply to actually apply the evaluator
function looked up in the meta-environment. If we have a closure (from an uncompiled lambda),
then we recursively call meta_apply again possibly going further up in the meta levels. If we have
a compiled or built-in function, then we just apply it as a black-box, thus breaking out of an
infinite-tower regress.
def meta_apply[R[_]:Ops](m: MEnv, s: Value, exp: Value, env: Value, cont: Value): R[Value] = {

val MEnv(meta_env, meta_menv) = m; val o = implicitly[Ops[R]]; import o._

val c@Cell(_) = env_get(meta_env, s); val fun = cell_read(c); val args = P(exp, P(env, P(cont, N)))

static_apply[R](fun, args, id_cont[R]) }

def static_apply[R[_]:Ops](fun: Value, args: Value, cont: Value) = {

val o = implicitly[Ops[R]]; import o._; fun match {

case Clo(params, body, cenv, m) => meta_apply[R](m, S("eval-begin"), body,

env_extend[R](cenv, params, args), cont)

case Evalfun(key) => val f = funs(key).fun[R]; f(cons(cont, args))

case Prim(p) => apply_cont[R](cont, apply_primitive(p, args))

case _ if isCont(fun) => apply_cont[R](fun, car(args)) /* lost cont */ }}

In the case for Evalfun, the target function is looked up from a global table funs of compiled
functions, which holds objects of type Fun:
abstract class Fun { def fun[R[_]:Ops]: R[Value] => R[Value] }

These functions, which represent evaluator functions like base_eval or static_apply itself, or user-
defined clambdas, are stage-polymorphic, and can be invoked for any given [_]:Ops.
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Execute-at-Metalevel. Here is the definition of eval_EM, which shifts the computation up a meta
level:
def eval_EM[R[_]:Ops](m: MEnv, exp: Value, env: Value, cont: Value): R[Value] = {

val o = implicitly[Ops[R]]; import o._; val P(_, P(e, N)) = exp; val MEnv(meta_env, meta_menv) = m

meta_apply[R](meta_menv, S("base-eval"), e, meta_env, cont) }

The continuation cont is kept when shifting up with eval_EM. However, meta_apply gives a new
outer continuation id_cont because the continuation from the object level below becomes part of
the arguments.

Compiled Lambdas. To evaluate aclambdaexpression, wemight need to switch from interpretation
to compilation. In any case, we evaluate the static body of the clambda in an extended environment,
in which parameters of the clambda are mapped to symbolic values.
case class Code[R[_]](c: R[Value]) extends Value

The continuation with which the body returns is also dynamic, as it is passed when the function
is applied. We łunwrapž the continuation argument k, because meta_apply like other evaluator
functions expects a known continuation.
def eval_clambda[R[_]:Ops](m: MEnv, exp: Value, env: Value, cont: Value): R[Value] = {

val o = implicitly[Ops[R]]; import o._; val P(_, P(params, body)) = exp

def eval_body[RF[_]:Ops](kv: RF[Value]): RF[Value] = {

val or = implicitly[Ops[RF]]; val args = or._cdr(kv); lazy val k = or._car(kv)

meta_apply[RF](m, S("eval-begin"), body, env_extend[RF](env, params, Code(args)), unwrap_cont[RF](k)) }

val f = if (!inRep) { /* switch to compilation mode */

trait Program extends EvalDsl { def snippet(kv: Rep[Value]): Rep[Value] = eval_body[Rep](kv)(OpsRep) }

val r = new EvalDslDriver with Program; r.precompile

_lift(evalfun(r.f)) // insert into funs table

} else { /* already in compilation mode, create a stage-polymorphic function */

_fun(new Fun[R] { def fun[RF[_]:Ops] ={ kv => eval_body[RF](kv) }}) }

apply_cont[R](cont, f) }

By sketching the implementation of Purple, we have given a constructive answer to the challenge
of collapsing reflective towers. Following earlier work on Black, we wire the tower structure so
that the meta levels are conceptually infinite, and the base evaluation defined in the host language
leaves all evaluator functions up for modification. We treat host-defined functions and user-defined
compiled functions uniformly, and to support collapsing, these functions are stage-polymorphic,
requiring generating code that is stage-polymorphic. Stage polymorphism is thus a key ingredient
for collapsing reflective towers.

10 BENCHMARKS

We show some micro benchmarks in Figure 10, computing factorial from 0 to 9, through interpreta-
tion and compilation, as well as with and without tracing, for the original Black (on Scheme and
on MetaOCaml), and our own Pink and Purple. In all cases, tracing is achieved by incrementing a
counter cell. In Pink, compilation is achieved by using a lifted evaluator (e.g. evalc). In Purple and
Black (on MetaOCaml), compilation is achieved by using clambda. In Black (on MetaOCaml), compi-
lation is only possible with respect to the default semantics (c) but not with respect to modified
semantics (ct ); in Black (on Scheme), no compilation is possible.
As expected, these benchmarks confirm that collapsing towers does of course speed up com-

putation, exercising interpretation and collapse across standard and non-standard semantics. For
overheads, we expect positive ratios, due to growing input, interpretation overhead, and tracing
overhead. While the Pink system is much leaner than the Purple system, they both exhibit these
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trends. The benchmarks for Black (on Scheme) and for Black (on MetaOCaml) are broadly compa-
rable with the benchmarks for Pink and Purple, respectively, and suggest that collapsing would be
beneficial. For example, note that it for Black (on MetaOCaml) lies between it and ct for Purple, and
that the ratio it

ct
for Purple shows the benefits of collapsing with speed ups in orders of magnitude.

Black (on Scheme) [Asai et al. 1996] Black (on MetaOCaml) [Asai 2014]

n i it
i (n )
i (n−1)

it
i

i c it
i (n )
i (n−1)

i
c

it
i

0 2380 15070 1.00 6.33 20647 17796 34580 1.00 1.16 1.67
1 3490 22810 1.47 6.54 31162 19376 54266 1.51 1.61 1.74
2 4740 31710 1.36 6.69 42782 20553 73496 1.37 2.08 1.72
3 5840 39240 1.23 6.72 53878 21932 92338 1.26 2.46 1.71
4 7130 47870 1.22 6.71 63113 23175 110884 1.17 2.72 1.76
5 8470 55300 1.19 6.53 75404 24336 130029 1.19 3.10 1.72
6 9660 65740 1.14 6.81 85664 25535 152028 1.14 3.35 1.77
7 11330 75690 1.17 6.68 97299 26653 171987 1.14 3.65 1.77
8 12060 80820 1.06 6.70 107850 28235 191590 1.11 3.82 1.78
9 13690 89690 1.14 6.55 120602 29740 214206 1.12 4.06 1.78

Pink Purple

n i c it ct
i (n )
i (n−1)

i
c

it
i

it
ct

i c it ct
i (n )
i (n−1)

i
c

it
i

it
ct

0 569 52 786 146 1.00 10.98 1.38 5.40 52921 1972 34175 1999 1.00 26.83 0.65 17.10
1 1590 99 2269 517 2.79 16.05 1.43 4.39 76554 2133 75555 3145 1.45 35.89 0.99 24.03
2 2634 170 3787 803 1.66 15.46 1.44 4.71 149781 2753 175706 4708 1.96 54.41 1.17 37.32
3 3696 234 5343 1172 1.40 15.81 1.45 4.56 321412 3855 381856 6344 2.15 83.39 1.19 60.19
4 4852 313 7015 1542 1.31 15.50 1.45 4.55 444264 4449 485257 6673 1.38 99.85 1.09 72.72
5 5870 363 8431 1906 1.21 16.18 1.44 4.42 658563 8935 702719 7683 1.48 73.71 1.07 91.46
6 7095 443 10174 2319 1.21 16.01 1.43 4.39 953057 5376 1012975 15205 1.45 177.27 1.06 66.62
7 7815 501 11642 2639 1.10 15.61 1.49 4.41 1248392 6939 1689002 12636 1.31 179.91 1.35 133.67
8 9072 583 13364 3043 1.16 15.56 1.47 4.39 1847398 10232 1952642 16625 1.48 180.56 1.06 117.45
9 11470 739 14940 3399 1.26 15.52 1.30 4.40 2423174 10357 2486263 19943 1.31 233.96 1.03 124.67

Fig. 10. Benchmark contrasting fac(n) computations that are interpreted (i) vs. collapsed (c) with standard
vs. tracing (□t ) evaluators. The raw numbers are in ms per 100’000 iterations.

11 RELATED WORK

Partial Evaluation. Partial evaluation [Jones et al. 1993] is an automatic program specialization
technique. Despite their automatic nature, most partial evaluators also provide annotations to guide
specialization decisions. Some notable systems include DyC [Grant et al. 2000], an annotation-
directed specializer for C, JSpec/Tempo [Schultz et al. 2003], the JSC Java Supercompiler [Klimov
2009], and Civet [Shali and Cook 2011].
Partial evaluation has addressed higher-order languages with state using similar let-insertion

techniques as discussed here [Bondorf 1990; Hatcliff and Danvy 1997; Lawall and Thiemann 1997;
Thiemann and Dussart 1999]. Further work has studied partially static structures [Mogensen 1988]
and partially static operations [Thiemann 2013], and compilation based on combinations of partial
evaluation, staging and abstract interpretation [Consel and Khoo 1993; Kiselyov et al. 2004; Sperber
and Thiemann 1996]. Two-level languages are frequently used as a basis for describing binding-time
annotated programs [Jones et al. 1993; Nielson and Nielson 1996].

Multi-level binding-time analysis extends binding-time analysis (BTA) from two stages to more
levels [Glück and Jùrgensen 1996]. Polymorphic binding-time analysis extends binding-time analysis
so that some expressions can be assigned multiple stages [Henglein and Mossin 1994]. Our kernel
language λ↑↓ complements such binding-time analyses: the stages are explicit, but can be abstracted
over, just like with a polymorphic multi-level BTA. However in λ↑↓, we want fine-grained control
over multi-level computation, and hence provide a lightweight but explicit API instead of purely
automatic behavior.
Type-directed partial evaluation [Danvy 1996a,b, 1998a,b; Filinski 1999] is a partial evaluation

technique that leverages meta-language execution to perform static reductions. The initially pro-
posed version corresponds to normalization by evaluation (NBE) [Berger et al. 1998] and yields
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residual code in βη-normal form, but later works have also considered variants that can residualize
selected redexes, since full normalization is often too aggressive.
Our work builds heavily on ideas from TDPE. In particular, the λ↑↓ lift operator corresponds

exactly to the two-level η-expansion in TDPE. Unlike the original formulation of TDPE [Danvy
1996b] but somewhat similar to later work [Filinski 1999], lift is used explicitly by the programmer.
But λ↑↓ as well as Pink do not use (an explicit representation of) types to guide the transformation,
and the residual expressions are not necessarily βη-normalized. The λ↑↓ base interpreter imple-
ments eager let-insertion without requiring a notion of effect types as in corresponding TDPE
approaches [Danvy 1996a], and the difficulties of dealing with polymorphic types noted in the
original TDPE paper [Danvy 1996b] also do not seem to apply.

The łwriting cogen by hand approachž was adopted by Birkedal and Welinder [1994] to solve the
typing problem in typed self-applicable partial evaluators, and was developed further by Thiemann
[1996]. Glück and Jùrgensen [1995, 1998] showed how optimizing specializers can be derived by
layering and specializing interpreters. Jones [2004] gives an overview of program transformation
via interpreter specialization.

The book by Jones et al. [1993] briefly discusses hierarchies of languages and their repeated
specialization. Glück and Klimov [1999] studied reduction of language hierarchies by program
composition and specialization. Foundational works on the CPS hierarchy [Danvy and Filinski 1989,
1990] suggest an early example of residualizing layered interpreters, demonstrating that a program
can be CPS transformed either in multiple passes, or all at once. Danvy’s doctoral dissertation 2006
discusses how one-pass CPS transformation inspired the development of TDPE, in particular the
use of two-level η-expansion for binding-time separation, and shows how the transformed type of
the program guides the residualization in this case.

Multi-stage programming. Multi-stage programming (MSP, staging for short), as established
by Taha and Sheard [2000] enables programmers to delay evaluation of certain expressions to a
generated stage. MetaOCaml [Calcagno et al. 2003; Kiselyov 2014] implements a classic staging
system based on quasi-quotation. The semantics of multi-stage programming are still a subject of
ongoing study [Berger et al. 2017; Ge and Garcia 2017].
Lightweight Modular Staging (LMS) [Rompf and Odersky 2010, 2012] uses types instead of

syntax to identify binding times, and generates an intermediate representation instead of target
code [Rompf 2012]. LMS draws inspiration from earlier work such as TaskGraph [Beckmann et al.
2003], a C++ framework for program generation and optimization. LMS has been used in a variety
of applications, ranging from web programming [Kossakowski et al. 2012] over domain-specific
languages for machine learning [Rompf et al. 2011; Sujeeth et al. 2011] to database engines [Rompf
and Amin 2015] and distributed systems [Ackermann et al. 2012].

Reflective Towers. Smith [1982, 1984] introduced reflective towers in seminal papers on 3-Lisp.
The motivation stems from enabling processes to inspect on their computation arbitrarily. Friedman
and Wand [1984]; Wand and Friedman [1986] distill the essence of reflection in Brown, explaining
reflection and reification in a self-contained semantics, which does not re-allude to reflection. Later,
Jefferson and Friedman [1996] also give a simplified account for a finite tower, IR , and at the same
time, Sobel and Friedman [1996] also give an account of reflection without towers. Danvy and
Malmkjñr [1988] present a denotational semantics of Blond. Their account justifies the use of
meta-continuations for a compositional semantics. As discussed earlier, our Purple reflective tower
is inspired chiefly by Black [Asai 2014; Asai et al. 1996].
A line of recent work considers self-representation and self-interpretation of typed languages

such as Fω [Brown and Palsberg 2016, 2017; Rendel et al. 2009].
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Aspect-Oriented Programming. Some of the non-standard semantics we cover in this paper (e.g.,
tracing) are reminiscent of aspect-oriented programming, which also shares some of the compilation
challenges that arise in towers of interpreters [Masuhara et al. 2003; Tanter 2010].

Program Generators. A number of high-performance program generators have been built, for
example ATLAS [Whaley et al. 2001] (linear algebra), FFTW [Frigo 1999] (discrete Fourier trans-
form), and Spiral [Püschel et al. 2004] (general linear transformations). Other systems include
PetaBricks [Ansel et al. 2009], and CVXgen [Hanger et al. 2011]. Generating a variety of different
code shapes and abstracting over choices such as fixed-size vs. variable-size inputs is a recurring
problem in building high-performance code generators. Stage polymorphism or łgeneric program-
ming in timež was recently discovered as a programming model that covers many of the important
situations [Ofenbeck et al. 2017, 2013].

12 CONCLUSIONS

We have shown how to collapse towers of interpreters using a stage-polymorphic multi-level
λ-calculus λ↑↓. We have also shown that we can re-create a similar effect using LMS and polytypic
programming via type classes. We have discussed several examples including novel reflective
programs in Purple / Black. Looking beyond this paper, we believe that collapsing towers, in
particular heterogeneous towers, has practical value. Here are some examples:

(1) It is often desirable to run other languages on closed platforms, e.g., in a web browser. For this
purpose, Emscripten [Zakai 2011] translates LLVM code to JavaScript. Similarly, Java VMs [Vilk
and Berger 2014] and even entire x86 processor emulators [Hemmer 2017] that are able to boot
Linux [Bellard 2017] have been written in JavaScript. It would be great if we could run all such
artifacts at full speed, e.g., a Python application executed by an x86 runtime, emulated in a JavaScript
VM. Naturally, this requires not only collapsing of static calls, but also adapting to a dynamically
changing environment.
(2) It can be desirable to execute code under modified semantics. Key use cases here are: (a)

instrumentation/tracing for debugging, potentially with time-travel and replay facilities, (b) sand-
boxing for security, (c) virtualization of lower-level resources as in environments like Docker, and
(d) transactional execution with atomicity, isolation, and potential rollback.

(3) Non-standard interpretations, e.g., program analysis, verification, synthesis. We would like to
reuse those artifacts if they are implemented for the base language. For example, a Racket interpreter
in miniKanren [Byrd et al. 2017] has been shown to enable logic programming for a large class of
Racket programs without translating them to a relational representation. Other examples are the
Abstracting Abstract Machines (AAM) framework [Horn and Might 2011], which has recently been
extended to abstract definitional interpreters [Darais et al. 2017]. For these indirect approaches to
be effective, it is important to remove intermediate interpretive abstractions which would otherwise
confuse the analysis.
For these use cases, our approach hints at a solution where we only need to manually lift the

meta interpreter of the user level while the rest of the tower acts in a kind of pass-through mode,
handing down staging commands to the lowest level, which needs to support stage polymorphism.
Last but not least, it is important to note that the present work is based on interpreters derived
from variations of the λ-calculus, and thus leaves a gap towards collapsing heterogeneous towers
of truly independent languages. This gap is especially prominent in a setting where a language
level does not follow the usual functional or imperative paradigm, e.g., if a logic programming
language or a probabilistic programming language is part of the tower. Thus, we hope that our
work spurs further activity in implementing stage polymorphic virtual machines and collapsing
towers of interpreters in the wild.
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