
Journal of Symbolic Computation 42 (2007) 352–388
www.elsevier.com/locate/jsc

Solving equations with sequence variables and
sequence functionsI

Temur Kutsia∗

Research Institute for Symbolic Computation, Johannes Kepler University, A-4040 Linz, Austria

Received 15 February 2005; accepted 28 December 2006
Available online 7 January 2007

Abstract

Term equations involving individual and sequence variables and sequence function symbols are studied.
Function symbols can have either fixed or flexible arity. A sequence variable can be instantiated by any
finite sequence of terms. A sequence function abbreviates a finite sequence of functions all having the
same argument lists. It is proved that solvability of systems of equations of this form is decidable. A new
unification procedure that enumerates a complete almost minimal set of solutions is presented, together with
variations for special cases. The procedure terminates if the solution set is finite. Applications in various
areas of artificial intelligence, symbolic computation, and programming are discussed.
c© 2007 Elsevier Ltd. All rights reserved.

Keywords: Unification; Sequence variables; Sequence functions

1. Introduction

We study term equations with individual and sequence variables and function symbols. A
sequence variable can be instantiated by any finite sequence of terms, including the empty
sequence. A sequence function abbreviates a finite sequence of functions all having the same
argument lists. Semantically, sequence functions can be interpreted as multi-valued functions.
Individual variables and function symbols are just the ordinary ones.

Sequence variables add expressiveness and elegance to the language. For instance, the
property of a function being “orderless” can be easily defined using sequence variables:

I Supported by the Austrian Science Foundation (FWF) under Project SFB F1302.
∗ Tel.: +43 732 2468 9982; fax: +43 732 2468 9930.

E-mail address: Temur.Kutsia@risc.uni-linz.ac.at.

0747-7171/$ - see front matter c© 2007 Elsevier Ltd. All rights reserved.
doi:10.1016/j.jsc.2006.12.002

T. Kutsia / Journal of Symbolic Computation 42 (2007) 352–388 353

f (x, x, y, y, z) = f (x, y, y, x, z) specifies that the order of arguments in terms with the head f
and with any number of arguments does not matter. Here x and y are individual variables and the
letters with the overbars are sequence variables. Without them one would need the permutation
function to express the same property. Note that the function symbol f has a flexibly arity.
Sequence variables are normally used with flexible arity function or predicate symbols.

List concatenation is another example. Here sequence variables help to avoid recursive
definition: 〈x〉 � 〈y〉 = 〈x, y〉. Furthermore, some proofs become simpler, e.g., associativity
of concatenation can be proved without induction.

Sequence variables provide a natural way to formalize and implement sequent calculi. For
instance, in the rule

Γ , A, B,∆ → Λ
Γ , A ∧ B,∆ → Λ

Γ , ∆, and Λ can be implemented as sequence variables and A and B as individual variables.
Sequence variables in programming help to write an elegant, short code. The following rule-

based implementation of bubble sort is a good example:

sort(〈x, x, y, y, z〉) :=sort(〈x, y, y, x, z〉) if x > y

sort(〈x〉) :=〈x〉.

Sequence variables can be used to query semistructured data. In particular, they can be useful in
XML querying and processing.

Bringing sequence functions into the language allows Skolemization over sequence variables:
Let x, y be individual variables, x be a sequence variable, and p be a flexible arity
predicate symbol. Then ∀x∀y∃x .p(x, y, x) Skolemizes to ∀x∀y.p(x, y, f (x, y)), where f is
a binary Skolem sequence function symbol. Another example, ∀ y∃x .p(y, x), where y is a
sequence variable, after Skolemization introduces a flexible arity sequence function symbol g:
∀ y.p(y, g(y)). The integer division function div(x, y) is an instance of a sequence function. It
abbreviates the sequence of quotient and remainder functions: q(x, y), r(x, y).

Note that sequence functions are interpreted as multi-valued functions where number of values
is not fixed. Modeling functions with a fixed number n of values is trivial: we could just replace
a “macro” f (t1, . . . , tm) by an n-ary sequence f1(t1, . . . , tm), . . . , fn(t1, . . . , tm). Similarly, the
length of possible values for a sequence variable is not fixed. Otherwise we could simply replace
the sequence variable by a sequence of individual variables of the corresponding length.

Equation solving with sequence variables has applications in various areas of artificial
intelligence, symbolic computation, and programming. At the end of the paper we briefly review
some of the related work.

We contribute to this area by introducing a new unification procedure for solving equations in
the free theory with individual and sequence variables and function symbols. Function symbols
have either fixed or flexible arity. The procedure enumerates an almost minimal complete set of
solutions and terminates if the set is finite. We prove that solvability of systems of equations of
this form is decidable. Omitting the decision algorithm and adding extra rules for failure, we
obtain a “lighter” version of the unification procedure. It is still sound and complete, easier to
implement, but for some failing cases might not terminate. We implemented the “light” procedure
in Mathematica (Wolfram, 2003).

It should be noted that some of the techniques we use are similar to those known from general
associative unification (Plotkin, 1972) and word equations (e.g., Schulz (1993)). We discuss the
relation to these problems in the section about the related work.

354 T. Kutsia / Journal of Symbolic Computation 42 (2007) 352–388

Equation solving in the free theory with individual and sequence variables and function
symbols can be considered as a special case of order-sorted higher-order E-unification. However,
it does not make the problem easier, because, to the best of our knowledge, order-sorted higher-
order E-unification is a problem that still waits for its solution.

The paper is organized as follows. In Section 2 basic notions are introduced. In Section 3
decidability of unification with individual and sequence variables and function symbols is proved.
In Section 4 the unification procedure is introduced and its soundness, completeness, and almost
minimality are proved. The “light” procedure is introduced in Section 5 and its termination issues
are addressed in Section 6. The implementation is briefly described in Section 7. A relation with
order-sorted higher-order E-unification is discussed in Section 8. Some of the related work is
reviewed in Section 9.

This work is an extension and a refinement of our previous results on unification with sequence
variables (Kutsia, 2002a,b, 2004).

2. Preliminaries

We assume that the reader is familiar with the standard notions of unification theory (Baader
and Snyder, 2001).

2.1. Syntax and substitutions

We assume fixed pairwise disjoint sets of symbols: individual variables VI , sequence
variables VS , fixed arity individual function symbols F ixI , flexible arity individual function
symbols F lexI , fixed arity sequence function symbols F ixS , flexible arity sequence function
symbols F lexS . Each set of variables and sequence function symbols is countable. Each set of
individual function symbols is finite or countable. Additionally, we define:

FI := F ixI ∪ F lexI , F ix := F ixI ∪ F ixS, F := FI ∪ FS,

FS := F ixI ∪ F lexS, F lex := F lexI ∪ F lexS, V := VI ∪ VS .

The arity of f ∈ F ix is denoted by Ar(f). A function symbol c ∈ F ix is called a constant if
Ar(c) = 0.

If not otherwise stated, we use x , y, z for individual variables, x , y, z for sequence variables,
f , g, h for individual function symbols, f , g, h for sequence function symbols, a, b, c for
individual constants, and a, b, c for sequence constants. Moreover, v will be used for (individual
or sequence) variables, and l (in some cases) for variables or sequence function symbols. The
meta-variables may come with indices.

Terms over F and V are constructed using the following grammar:

t ::= it | st

where it is an individual term and st is a sequence term. They are constructed as follows:

i t ::= x | f (it1, . . . , itn) | g(t1, . . . , tm)

st ::= x | f (it1, . . . , itn) | g(t1, . . . , tm)

where f, f ∈ F ix with Ar(f) = Ar(f) = n, and g, g ∈ F lex.
We denote by T (F,V), TI (F,V), and TS(F,V), respectively, the sets of all terms, all

individual terms, and all sequence terms over F and V .

T. Kutsia / Journal of Symbolic Computation 42 (2007) 352–388 355

Equations are defined as pairs of individual terms 〈it1, it2〉.We use more conventional notation
for equations, writing it1 ≈ it2 for 〈it1, it2〉. We do not define equations between sequence terms,
because they can be encoded as equations between individual terms using flexible arity individual
function symbols.

The head of an individual term t = f (t1, . . . , tn) (resp. of a sequence term t = f (t1, . . . , tn)),
n ≥ 0, denoted by Head(t), is the individual function symbol f (resp. the sequence function
symbol f). For T being either a term, a sequence of terms, or a set of terms, we denote

• the set of all individual variables occurring in T by VI (T);
• the set of all sequence variables occurring in T by VS(T);
• the set VI (T) ∪ VS(T) by V(T);
• the set of all individual function symbols occurring in T by FI (T);
• the set of all sequence function symbols occurring in T by FS(T);
• the set of all fixed arity function symbols occurring in T by F ix(T);
• the set of all flexible arity function symbols occurring in T by F lex(T).

A term t is called ground if V(t) = ∅. We use the letters s, t , r , and q, maybe with indices, for
terms.

Below we do not distinguish between a singleton sequence and its sole element.
A substitution is a mapping from individual variables to individual terms, from sequence

variables to finite, possibly empty sequences of terms, and from sequence function symbols
to finite nonempty sequences of sequence function symbols, such that all but finitely many
individual variables, sequence variables, and sequence function symbols are mapped to
themselves, and sequence function symbol mapping preserves arity. The last condition means the
following: If σ(f) = pg1, . . . , gnq1 for a substitution σ , thenAr(g1) = · · · = Ar(gn) = Ar(f)
if f ∈ F ix, and g1, . . . , gn ∈ F lex if f ∈ F lex.

We will use the traditional notation for substitutions representing them as finite sets of
bindings

{x1 7→ it1, . . . , xn 7→ itn, x1 7→ ps1
1 , . . . , s1

k1
q, . . . , xm 7→ psm

1 , . . . , sm
km

q,

f1 7→ pg1
1, . . . , g1

l1
q, . . . , fr 7→ pgr

1, . . . , gr
lr q}.

Lower case Greek letters are used to denote substitutions. The empty substitution is denoted by
ε.

Substitutions are extended to terms as follows:

xσ = σ(x), f (t1, . . . , tn)σ = f (t1σ, . . . , tnσ),
xσ = σ(x), f (t1, . . . , tn)σ = σ(f)[t1σ, . . . , tnσ],

where the notation pg1, . . . , gmq[t1, . . . , tn] is just a shortcut for the sequence
pg1(t1σ, . . . , tnσ), . . . , gm(t1σ, . . . , tnσ)q. For a term t and a substitution σ , we call tσ an in-
stance of t with respect to σ . Substitutions are extended to sequences of terms, sequences of
sequence function symbols, and equations in the standard way.

Example 1. Let σ = {x 7→ a, y 7→ f (x), x 7→ pq, y 7→ pa, f (x), bq, g 7→ pg1, g2q}. Then
f (x, x, g(y), y)σ = f (a, g1(f (x)), g2(f (x)), a, f (x), b).

1 For better readability we write sequences between the symbols p and q.

356 T. Kutsia / Journal of Symbolic Computation 42 (2007) 352–388

A nonstandard feature with term instances is that a ground term can be further instantiated.
For example, f (g(a)){g 7→ pg1, g2q} = f (g1(a), g2(a)). However, such an instantiation only
“splits” sequence terms and the instance obtained remains ground.

The domain of a substitution σ is the set of variables and sequence function symbols
Dom(σ) := {l | lσ 6= l}. The codomain of σ , denoted as Cod(σ), is the set of terms and
sequence function symbols defined as follows:

Cod(σ) = {t | there exists x ∈ Dom(σ) such that t = xσ, or
there exist x ∈ Dom(σ) and terms t1, . . . , tn, n ≥ 0,
such that pt1, . . . , t, . . . , tnq = xσ }∪

{ f | there exist g ∈ Dom(σ) and sequence function symbols

f 1, . . . , f n , n ≥ 0, such that p f 1, . . . , f , . . . , f nq = gσ }.

For instance, Cod({x 7→ pq}) = ∅ and Cod({x 7→ f (a), x 7→ pa, a, bq, a 7→ pb, cq}) =

{ f (a), a, b(), b, c}. Note that in codomains, omitting parentheses in sequence terms with the
empty list of arguments might lead to confusion: One cannot distinguish such a term from its head
(a sequence function symbol). To avoid this, in codomains we write such terms with parentheses.
This is why we have both b() and b in the codomain in the second example above: b() comes
from the binding for x and b comes from the binding for a.

The range of σ is the set of variables Ran(σ) := V(Cod(σ)). A substitution σ is called
ground if Ran(σ) = ∅.

The restriction of a substitution σ to a set of variables and sequence function symbols S,
denoted as σ |S , is the substitution defined by lσ |S = lσ if l ∈ S, and lσ |S = l otherwise.
Besides, we define VDom(σ) := Dom(σ) ∩ V and FDom(σ) := Dom(σ) ∩ F . We write the
composition of two substitutions σ and ϑ as σϑ . The following example illustrates composition
of substitutions:

σ = {x 7→ y, x 7→ py, xq, y 7→ p f (a, b), y, g(x)q, f 7→ pg, hq}.

ϑ = {y 7→ x, y 7→ x, x 7→ pq, g 7→ pg1, g2q}.

σϑ = {y 7→ x, y 7→ p f (a, b), x, g1(), g2()q, f 7→ pg1, g2, hq, g 7→ pg1, g2q}.

2.2. Technical notions

Given a set E of equations over F and V we denote by ≈E the least congruence relation
on T (F,V) that is closed under substitution application and contains E . To be more precise,
≈E contains E , satisfies reflexivity, symmetry, transitivity, congruence, and a special form of
substitutivity: For all s, t ∈ T (F,V), if s ≈E t and sσ, tσ ∈ T (F,V) for some σ , then
sσ ≈E tσ . Substitutivity in this form only affects situations where sσ and tσ are terms. The
set ≈E is called an equational theory defined by E . We will also call the set E an equational
theory or an E-theory. The signature of E , denoted as Sig(E), is the set of all individual function
symbols occurring in E .

In the rest of the paper, if not otherwise stated, E stands for an equational theory, X for a
finite set of variables, and Q for a finite set of sequence function symbols.

Definition 2. A substitution σ is called erasing on X modulo E if either there exist f ∈ Sig(E)
and v ∈ X such that f (v)σ ≈E f () or there exists x ∈ X such that xσ = pq. We say that σ is
non-erasing on X modulo E if σ is not erasing on X modulo E .

T. Kutsia / Journal of Symbolic Computation 42 (2007) 352–388 357

The notion of erasing substitution will be needed in defining the notions of minimal and almost
minimal sets of substitutions later.

Example 3. (1) Let E = ∅ and X = {x, x}. Then any substitution that maps x to the empty
sequence is erasing on X modulo E .

(2) Let E = { f (x, f (y), z) ≈ f (x, y, z)} and X = {x, x}. Then any substitution that maps x to
f (), or maps x to a (possibly empty) sequence of f ()’s is erasing on X modulo E .

Definition 4. A substitution σ agrees with a substitution ϑ on X and Q modulo E , denoted as
σ =

X ,Q
E ϑ , if

(1) for all x ∈ X , there exist t1, . . . , tn, s1, . . . , sn ∈ T (F,V), n ≥ 0, such that xσ =

pt1, . . . , tnq, xϑ = ps1, . . . , snq, and ti ≈E si for each 1 ≤ i ≤ n;
(2) for all x ∈ X , xσ ≈E xϑ ;
(3) for all f ∈ Q, f σ = f ϑ .

Definition 5. A substitution ϕ matches a substitution σ with a substitution ϑ onX andQmodulo
E , if σϕ =

X ,Q
E ϑ .

Example 6. Let σ = {x 7→ a}, ϑ = {x 7→ pb, cq, a 7→ pb, cq} and ϕ = {x 7→ pb, cq, a 7→

pb, cq}. Let also X = {x}, Q = {a}, and E = ∅. Then σϕ =
X ,Q
E ϑ .

Definition 7. A substitution σ is more general (resp. strongly more general) than a substitution
ϑ on sets X and Q modulo E , denoted as σ ≤·

X ,Q
E ϑ (resp. σ EX ,QE ϑ), if there exists a

substitution (resp. a substitution non-erasing on X modulo E) ϕ such that σϕ =
X ,Q
E ϑ .

Example 8. Let σ = {x 7→ y}, ϑ = {x 7→ pa, bq, y 7→ pa, bq}, η = {x 7→ pq, y 7→ pq}.

(1) If X = {x, y}, then σ ≤·
X ,∅
∅

ϑ , σ EX ,∅
∅

ϑ , σ ≤·
X ,∅
∅

η, σ 5X ,∅
∅

η.
(2) If X = {x}, then σ ≤·

X ,∅
∅

ϑ , σ EX ,∅
∅

ϑ , σ ≤·
X ,∅
∅

η, σ EX ,∅
∅

η.

From Definition 7 it follows that EX ,QE ⊆≤·
X ,Q
E . A substitution ϑ is an E-instance (resp. strong

E-instance) of a substitution σ on X and Q if σ ≤·
X ,Q
E ϑ (resp. σ EX ,QE ϑ). The equivalence

associated with ≤·
X ,Q
E (resp. with EX ,QE) is denoted by .

=
X ,Q
E (resp. by ,X ,QE). If σϕ =

X ,Q
E ϑ ,

then σϕ .
=
X ,Q
E ϑ . If, in addition, ϕ is non-erasing on X and Q modulo E , then σϕ ,X ,QE ϑ .

Definition 9. A set of substitutions S is called minimal (resp. almost minimal) with respect to
X and Q modulo E if two distinct elements of S are incomparable with respect to ≤·

X ,Q
E (resp.

EX ,QE), i.e., for all σ, ϑ ∈ S, σ ≤·
X ,Q
E ϑ (resp. σ EX ,QE ϑ) implies σ = ϑ .

Minimality implies almost minimality, but not vice versa: A counterexample is provided by the
set {σ, η} and X = {x, y} from Example 8.

Definition 10. A set of substitutions S is called disjoint (resp. almost disjoint) with respect to
X and Q modulo E if two distinct elements of S have no common E-instance (resp. strong
E-instance) on X and Q, i.e., for all σ, ϑ ∈ S, if there exists ϕ such that σ ≤·

X ,Q
E ϕ (resp.

σ EX ,QE ϕ) and ϑ ≤·
X ,Q
E ϕ (resp. ϑ EX ,QE ϕ), then σ = ϑ .

Disjointness implies almost disjointness, but not vice versa: Consider again the set {σ, η} and
X = {x, y} in Example 8.

358 T. Kutsia / Journal of Symbolic Computation 42 (2007) 352–388

Proposition 11. If a set of substitutions S is disjoint (resp. almost disjoint) with respect to X and
Q modulo E, then it is minimal (resp. almost minimal) with respect to X and Q modulo E.

Proof. Assume that σ, ϑ ∈ S and σ ≤·
X ,Q
E ϑ . Since ϑ ≤·

X ,Q
E ϑ , by disjointness of S with respect

to X and Q modulo E we get σ = ϑ , which implies minimality of S with respect to X and Q
modulo E . Almost minimality can be proved in the same way. �

However, almost disjointness does not imply minimality: Again, consider the set {σ, η} and
X = {x, y} in Example 8. On the other hand, minimality does not imply almost disjointness:
Let σ = {x 7→ f (a, y)}, ϑ = {x 7→ f (y, b)}, X = {x}, Q = ∅, and E = ∅. Then {σ, ϑ}

is minimal but not almost disjoint with respect to X and Q modulo E , because σ EX ,QE ϕ and
ϑ EX ,QE ϕ, where ϕ = {x 7→ f (a, b)}, but σ 6= ϑ . The same example can be used to show
that almost minimality does not imply almost disjointness either. From these observations we
can also conclude that neither minimality nor almost minimality imply disjointness.

Definition 12. A substitution σ is disjointness preserving (resp. almost-disjointness preserving)
with respect to X and Q modulo E if for any two substitutions ϑ1 and ϑ2, disjointness
(resp. almost disjointness) of the set {ϑ1, ϑ2} with respect to the set of variables ∪v∈X V(vσ)
and sequence function symbols ∪ f ∈Q FS(f σ) modulo E implies disjointness (resp. almost
disjointness) of the set {σϑ1, σϑ2} with respect to X and Q modulo E .

2.3. Unification problems

Solving equations in an equational theory E is called E-unification. The fact that the equation
s ≈ t has to be solved in an E-theory is written as s≈?

E t .
First, we define the notion of substitution linearizing away from a set of sequence function

symbols. As we will see later, it plays an important role in defining the notion of a solution of
an equation. Roughly, it will be used to guarantee that term equations with two ground sides that
are not E-equal to each other cannot be solved in the E-theory.

Definition 13. A substitution σ is called linearizing away from a finite set of sequence function
symbols Q if the following three conditions hold:

(1) Cod(σ) ∩Q = ∅.
(2) For all f , g ∈ FDom(σ) ∩Q, if f 6= g, then { f σ } ∩ {gσ } = ∅.
(3) If f σ = pg1 . . . , gnq and f ∈ Q, then gi 6= g j for all 1 ≤ i < j ≤ n.

(A remark about the notation { f σ }: If f σ = p f 1, . . . , f nq, then { f σ } is a set of sequence
function symbols { f 1, . . . , f n}.) Intuitively, a substitution linearizing away fromQ either leaves
a sequence function symbol in Q “unchanged” or “moves it away from” Q, binding it with
a sequence of distinct sequence function symbols that do not occur in Q, and maps different
sequence function symbols to disjoint sequences.

Definition 14. Let E be an equational theory and let F contain Sig(E). An E-unification
problem over F is a finite set of equations Γ = {s1 ≈

?
E t1, . . . , sn ≈

?
E tn} over F and V .

An E-quasi-unifier, or an E-quasi-solution, of Γ is a substitution σ such that siσ ≈E tiσ for
all 1 ≤ i ≤ n. The set of all E-quasi-unifiers of Γ is denoted by QU E (Γ). An E-unifier, or an
E-solution, of Γ is an E-quasi-unifier of Γ that is linearizing away from FS(Γ). The set of all
E-unifiers of Γ is denoted by UE (Γ), and Γ is E-unifiable, or E-solvable, if UE (Γ) 6= ∅.

T. Kutsia / Journal of Symbolic Computation 42 (2007) 352–388 359

Note that if Γ = {s1 ≈
?
E t1, . . . , sn ≈

?
E tn} is an E-unification problem, then all

s1, . . . , sn, t1, . . . , tn ∈ TI(F,V). The equational theory E is often not mentioned explicitly
if the context makes it clear.

Note that if we did not require bindings of sequence function symbols in substitutions to be
nonempty, the unification problem { f (x) ≈

?
∅

f (g(x))} would be solvable (with {x 7→ pq, g 7→

pq}), which is in contrast to the fact that the corresponding positive sentence ∃x ∀ y f (x) ≈ f (y)
(from which f (x) ≈

?
∅

f (g(x)) is obtained by Skolemization) is not valid; see Kutsia and
Buchberger (2004).

The following example shows the importance of the condition that an unifier of an E-
unification problem Γ should be linearizing away from FS(Γ).

Example 15. Let Γ = { f (a) ≈
?
∅

f (b)}. Then U∅(Γ) = ∅. Intuitively, it is justified, because
f (a) and f (b) are two ground terms such that f (a) 6≈∅ f (b), or, equivalently, because the
corresponding positive sentence ∀ x ∀ y f (x) ≈ f (y) is not valid. Note that QU∅(Γ) 6= ∅, e.g.,
{a 7→ b} ∈ QU∅(Γ).

Definition 16. Let Γ be a E-unification problem over F , X = V(Γ), and Q = FS(Γ). A
complete set of E-unifiers of Γ is a set S of substitutions such that

(1) S ⊆ UE (Γ), i.e., each element of S is an E-unifier of Γ ,
(2) for each ϑ ∈ UE (Γ) there exists σ ∈ S such that σ ≤·

X ,Q
E ϑ .

The set S is a minimal (resp. almost minimal) complete set of E-unifiers of Γ if it is a complete
set that is minimal (resp. almost minimal) with respect to X and Q modulo E .

A minimal (resp. almost minimal) complete set of E-unifiers of Γ , if it exists, is unique up to
the equivalence .

=
X ,Q
E (resp. ,X ,QE), where X = V(Γ) and Q = FS(Γ). That is, if S1 and S2

are minimal (resp. almost minimal) complete sets of E-unifiers of Γ , then for each σ1 ∈ S1 there
exists exactly one σ2 ∈ S2 such that σ1

.
=
X ,Q
E σ2 (resp. σ1 ,X ,QE σ2). We will use this fact

and denote by mcuE (Γ) (resp. by amcuE (Γ)) a minimal (resp. almost minimal) complete set of
unifiers, and interpret an equality mcuE (Γ) = S (resp. amcuE (Γ) = S) as equality up to the
equivalence .

=
X ,Q
E (resp. ,X ,QE), where X = V(Γ) and Q = FS(Γ).

A substitution σ is a most general E-unifier of a unification problem Γ if mcuE (Γ) = {σ }.

Proposition 17. An E-unification problem Γ has an almost minimal complete set of E-unifiers
if and only if it has a minimal complete set of E-unifiers.

Proof. (⇒) Let X = V(Γ), Q = FS(Γ), and let S be an almost minimal complete set of
E-unifiers of Γ . Then the set

S \ {ϑ |ϑ ∈ S and there exists σ ∈ S, with σ 6= ϑ and σ ≤·
X ,Q
E ϑ}

is a minimal complete set of E-unifiers of Γ .
(⇐) Every minimal complete set of E-unifiers of Γ is itself an almost minimal complete set

of E-unifiers of Γ . �

Example 18. Let E = ∅.

(1) Γ = { f (x) ≈
?
E f (y)}. Then

mcuE (Γ) = {{x 7→ y}}.

amcuE (Γ) = {{x 7→ y}, {x 7→ pq, y 7→ pq}}.

360 T. Kutsia / Journal of Symbolic Computation 42 (2007) 352–388

(2) Γ = { f (x, x, y) ≈
?
E f (f (x), x, a, b)}. Then

mcuE (Γ) = {{x 7→ f (), x 7→ pq, y 7→ p f (), a, bq}}.

amcuE (Γ) = mcuE (Γ).

(3) Γ = { f (x, x, y) ≈
?
E f (a, x, b)}. Then

mcuE (Γ) = {{x 7→ a, y 7→ b}, {x 7→ a, x 7→ pq, y 7→ pa, bq},

{x 7→ b, x 7→ pa, bq, y 7→ pq}}.

amcuE (Γ) = mcuE (Γ).

(4) Γ = { f (a, x) ≈
?
E f (x, a)}. Then

mcuE (Γ) = {{x 7→ pq}, {x 7→ a}, {x 7→ pa, aq}, . . .}

amcuE (Γ) = mcuE (Γ).

(5) Γ = { f (x, y, x) ≈
?
E f (c, a)}. Then

mcuE (Γ) = {{x 7→ pq, y 7→ c, x 7→ a}, {x 7→ c, y 7→ pq, x 7→ a},

{x 7→ c1, y 7→ c2, x 7→ a, c 7→ pc1, c2q}}.

amcuE (Γ) = mcuE (Γ).

(6) Γ = { f (a) ≈
?
E f (b)}. Then mcuE (Γ) = amcuE (Γ) = ∅.

Definition 19. Let E be an equational theory and let Γ be an E-unification problem over F . The
problem Γ has type unitary (finitary, infinitary) if it has a minimal complete set of E-unifiers of
cardinality 1 (finite cardinality, infinite cardinality). If Γ does not have a minimal complete set of
E-unifiers, then it is of type zero, or nullary. We abbreviate type unitary by 1, type finitary by ω,
type infinitary by ∞, and type nullary by 0, and order these types as follows: 1 < ω < ∞ < 0.

The unification type of E with respect to F is the maximal type of an E-unification problem
over F .

Definition 20. Let E be an equational theory, Γ be an E-unification problem over F , and FI be
the set of individual function symbols in F .

(1) Γ is an elementary E-unification problem if FI = Sig(E).
(2) Γ is an E-unification problem with constants if FI \ Sig(E) is a set of individual constant

symbols (called free constants).
(3) Γ is a general E-unification problem if FI \ Sig(E) contains arbitrary individual function

symbols (called free function symbols).

The equational theory E = ∅ is called the free theory with individual and sequence variables
and function symbols. We call unification in the free theory the syntactic sequence unification.

Three main questions that arise in unification theory are:

• Decidability: Is it decidable whether a unification problem is solvable?
• Unification type: What is the unification type?
• Unification procedure: How can we obtain a (preferably minimal) unification procedure?

Elementary syntactic sequence unification and syntactic sequence unification with constants are
trivially decidable unitary problems, which can be solved simply by the Robinson unification
algorithm (Robinson, 1965). Therefore, in the rest of the paper we try to answer these questions

T. Kutsia / Journal of Symbolic Computation 42 (2007) 352–388 361

only for general syntactic sequence unification. We assume that the set of individual function
symbols FI is countable. Decidability is shown in Section 3, and the questions about the
procedure and the type are addressed in Section 4.

The equational theory E = { f (x, f (y), z) ≈ f (x, y, z)}, which we encountered in
Example 3, is called the flat theory with individual and sequence variables and function symbols,
where f ∈ F lexI is called a flat symbol. We call unification in the flat theory F-unification.
Below we use certain properties of the flat theory in proving decidability of the general syntactic
sequence unification.

3. Decidability

To show decidability of a general syntactic sequence unification problem we design a rule-
based decision algorithm that nondeterministically performs at most four steps. Each of these
steps preserves solvability. On the first step the problem is reduced to another general syntactic
sequence unification problem containing no sequence function symbols. The second step gets rid
of all free flexible arity functions, obtaining an F-unification problem whose signature consists
of fixed arity individual functions and one flat flexible arity individual function. The third step
replaces all sequence variables with individual variables. On the fourth step the F-unification
problem is represented as a combination of word equations and Robinson unification whose
decidability is proved by the Baader–Schulz combination method (Baader and Schulz, 1996).

We start with two lemmata that characterize solutions of general syntactic sequence
unification problems.

Lemma 21. If a general syntactic sequence unification problem Γ is solvable, then there exists
a solution σ of Γ such that FDom(σ) = ∅.

Proof. Let ϑ0 be a solution of Γ and let f 7→ pg1, . . . , gnq ∈ ϑ0. Assume without loss of
generality that f ∈ FS(Γ). Since ϑ0 is linearizing away from FS(Γ), we have that the sequence
function symbols g1, . . . , gn /∈ FS(Γ), they are all distinct, and do not appear in ϑ0 in the
bindings of any other sequence function symbol. Let ϑ1 be a substitution obtained from ϑ0 by

• deleting the binding f 7→ pg1, . . . , gnq from ϑ0,
• replacing each binding x 7→ t in ϑ0 with x 7→ s, where the term s is obtained from t by

deleting all subterms of the form gi (r1, . . . , rm), 2 ≤ i ≤ n, m ≥ 0, and replacing all
occurrences of the sequence function symbol g1 with f ,

• replacing each binding x 7→ pt1, . . . , tkq, k ≥ 1, in ϑ0 with the binding x 7→ ps1, . . . , slq,
l ≥ 0, where the sequence ps1, . . . , slq is obtained from the sequence pt1, . . . , tkq by deleting
all subterms of the form gi (r1, . . . , rm), 2 ≤ i ≤ n, m ≥ 0, and replacing all occurrences of
the sequence function symbol g1 with f .

The substitution ϑ1 contains no occurrences of g1, . . . , gn . Intuitively, what the transformation
from ϑ0 to ϑ1 does is to “undo” splitting f into g1, . . . , gn . Since the g’s occur neither in Γ nor in
ϑ1, we can conclude that ϑ1 is still a solution of Γ that contains no binding for f . Repeating this
transformation for each binding for sequence function symbols in ϑ1, we arrive at the substitution
σ with the property FDom(σ) = ∅ and σ is a solution of Γ . �

Lemma 22. If a general syntactic sequence unification problem Γ is solvable, then there exists
a solution of Γ that introduces no new function symbol and does not instantiate any sequence
function symbol.

362 T. Kutsia / Journal of Symbolic Computation 42 (2007) 352–388

Proof. Let ϑ be a solution of Γ . By Lemma 21 we can assume that FDom(ϑ) = ∅. If we
replace in ϑ every individual (resp. sequence) term whose head does not occur in Γ with a new
individual (resp. sequence) variable we get a substitution σ that still is a solution of Γ , but does
not introduce any new function symbol. �

Now we start defining inference rules for the decision algorithm. We will formulate them
for general syntactic sequence unification problems consisting of a single equation only. For
general unification it is not a restriction, because the problems {s1 ≈

?
∅

t1, . . . , sn ≈
?
∅

tn} and
{ f (s1, . . . , sn) ≈

?
∅

f (t1, . . . , tn)}, where f ∈ FI , have the same set of solutions, and we can
always take such an f . Below we will use the unification problem

{ f0(x, x, y, z, f0(u, x)) ≈
?
∅

f0(g0(x), x, a, f0(g0(x), u))} (1)

as an example to demonstrate the steps of the decision algorithm.
The first inference rule eliminates sequence function symbols:

SFE: Sequence Function Elimination
{s ≈

?
∅

t} =⇒ { f (s′, x1, . . . , xn) ≈
?
∅

f (t ′, r1, . . . , rn)},

where

• s or t contains sequence function symbols,
• f is a new n + 1-ary individual function symbol,
• s′ and t ′ are terms obtained respectively from s and t by replacing each sequence function

symbol g with a new individual function symbol gg that has the same arity as g,
• x1, . . . , xn is an enumeration of all individual variables in s ≈

?
∅

t ,
• each ri is either a new individual constant c, an individual term of the form h(y1, . . . , ym),

or an individual term of the form h(y), where h ∈ FI (s, t), yi ’s are fresh distinct individual
variables, and y is a fresh sequence variable. h(y1, . . . , ym) is used when h is m-ary, and h(y)
is used when h has a flexible arity.

We assume that for the given s and t we have the function symbol f , the terms s′ and
t ′, the enumeration of variables x1, . . . , xn , and the constant c fixed. However, we have a
nondeterministic choice of the function symbols that define the ri ’s, which makes SFE a
nondeterministic rule.

In general, there are (k + 1)n different ways to apply SFE on a unification problem Γ , where
k is the number of elements in FI (Γ), and n is the number of elements in VI (Γ). We can restrict
this choice in particular cases. For instance, if Γ is { f (s1, . . . , sm) ≈

?
∅

f (t1, . . . , tl)}, where f
occurs neither in si ’s nor in ti ’s, then there is no point in considering it as a head of one of the
ri ’s. In this case we will have kn alternatives for applying SFE. One can come up with more
ways to restrict applications of the SFE rule, but it is not in the scope of this paper.

Example 23. From the unification problem (1), by the rule SFE, we obtain the following three
unification problems:

{ f1(f0(x, x, y, z, f0(u, x)), x) ≈
?
∅

f1(f0(g0(x), x, aa, f0(g0(x), u)), c1)} (2)

{ f1(f0(x, x, y, z, f0(u, x)), x) ≈
?
∅

f1(f0(g0(x), x, aa, f0(g0(x), u)), g0(v1))} (3)

{ f1(f0(x, x, y, z, f0(u, x)), x) ≈
?
∅

f1(f0(g0(x), x, aa, f0(g0(x), u)), f0(v1))}. (4)

T. Kutsia / Journal of Symbolic Computation 42 (2007) 352–388 363

We may use the rule name abbreviation as a subscript. For instance, we may write Γ =⇒SFE ∆
to indicate that ∆ is obtained from Γ by an application of the SFE rule. The next lemma shows
that SFE preserves solvability.

Lemma 24. Let Γ be a general syntactic sequence unification problem that contains sequence
function symbols. Then Γ is solvable if and only if there exists a general syntactic sequence
unification problem ∆ without sequence function symbols such that Γ =⇒SFE ∆ and ∆ is
solvable.

Proof. (⇒) Let Γ be {s ≈
?
∅

t} and let σ be a solution of Γ . By Lemma 22 we can assume
that σ does not bind any sequence function symbol and does not introduce any new function
symbol. Let σ ′ be a substitution obtained from σ by replacing each sequence function symbol g
by the corresponding gg . We take ∆ of the form { f (s′, x1, . . . , xn) ≈

?
∅

f (t ′, r1, . . . , rn)} that is
obtained from Γ by the SFE rule with ri ’s selected in the following way: If xiσ

′ is a variable,
then ri = c. If xiσ

′
= h(s1, . . . , sm), where m ≥ 0, then ri = h(y1, . . . , ym) if h is an m-ary

individual function symbol, and ri = h(y) if h is a flexible arity individual function symbol. All
yi ’s are distinct fresh individual variables, and y is a fresh sequence variable. ∆ does not contain
sequence function symbols.

We now construct a solution of ∆. It is easy to see that s′σ ′
≈∅ t ′σ ′. Let now ϑ be a

substitution defined as follows: For each xi , if xiσ
′
= y for some y, then y 7→ c ∈ ϑ ; if xiσ

′

has a form h(s1, . . . , sm), where m ≥ 0, then depending on whether h is an m-ary or a flexible
arity symbol we have two cases: If h is m-ary, then y j 7→ s j ∈ ϑ for all 1 ≤ j ≤ m, where
h(y1, . . . , ym) = ri . If h has a flexible arity, then y 7→ ps1, . . . , smq ∈ ϑ , where h(y) = ri . We
take ϑ ′

= ϑϑ . Then s′σ ′ϑ ′
≈∅ t ′σ ′ϑ ′ and xiσ

′ϑ ′
≈∅ riσ

′ϑ ′ for each xi . This implies that σ ′ϑ ′

is a solution of ∆.2

(⇐) From a solution of ∆ we can get a solution of Γ replacing each individual function
symbol gg introduced by the rule SFE by the corresponding symbol g ∈ FS(Γ). �

Remark 25. Note that had we formulated SFE as {s ≈
?
∅

t} =⇒ {s′
≈

?
∅

t ′} (with the same
conditions on s, t, s′, and t ′ as in SFE), Lemma 24 would not hold. A simple counterexample
is the unsolvable problem { f (x) ≈

?
∅

f (a)} that in this case would have been transformed into
{ f (x) ≈

?
∅

f (aa)} that is solved by {x 7→ aa}.

Remark 26. If Γ =⇒SFE ∆, then, in general, there is no one-to-one correspondence between
the sets amcu∅(Γ) and amcu∅(∆) or between the sets mcu∅(Γ) and mcu∅(∆). For instance, if
Γ = {g(x, y) ≈

?
∅

g(a)}, then ∆ = { f (g(x, y)) ≈
?
∅

f (g(aa))} and

mcu∅(Γ) = amcu∅(Γ) = {{x 7→ pq, y 7→ a}, {x 7→ a, y 7→ pq},

{x 7→ a1, y 7→ a2, a 7→ pa1, a2q}}.

mcu∅(∆) = amcu∅(∆) = {{x 7→ pq, y 7→ aa}, {x 7→ aa, y 7→ pq}}.

The next inference rule eliminates free flexible arity symbols and reduces a general syntactic
sequence unification problem to an F-unification problem.

2 Note that taking ϑ instead of ϑ ′ is not enough because ϑ can contain bindings y 7→ c and y j 7→ s j with y ∈ VI (s j),
and therefore, σ ′ϑ cannot be a solution of ∆. Just take s′

= f (x), t ′ = f (g(g(y))), ∆ = {h(f (x), x, y) ≈
?
∅

h(f (g(g(y))), g(y1), c)}, σ ′
= {x 7→ g(g(y))}, and ϑ = {y 7→ c, y1 7→ g(y)} as a counterexample.

364 T. Kutsia / Journal of Symbolic Computation 42 (2007) 352–388

FlexE: Flexible Arity Function Elimination
{s ≈

?
∅

t} =⇒ { f (s′, x1, . . . , xn) ≈
?
F f (t ′, r1, . . . , rn)},

where

• s and t contain no sequence function symbols,
• s or t contains (free) flexible arity function symbols,
• f is a new n + 1-ary individual function symbol,
• s′ and t ′ are terms obtained respectively from s and t by recursively replacing each term

g(s1, . . . , sm), where g ∈ F lex and is free, with a term hg(seq(s1, . . . , sm)), where hg ∈ F ix
is unary and seq ∈ F lex is flat. Neither hg nor seq occurs in s or in t ,

• x1, . . . , xn is an enumeration of all individual variables in s ≈
?
∅

t ,
• each ri is either a new individual constant c or an individual term of the form h(y1, . . . , ym),

where h ∈ FI (s′, t ′) \ { f, seq} is m-ary and yi ’s are fresh distinct individual variables.

Like we did for SFE, we assume also for FlexE that for the given s and t the function symbol
f , the terms s′ and t ′, the enumeration of variables x1, . . . , xn , and the constant c are fixed, as
well as the function symbol seq. However, we have a nondeterministic choice of the function
symbols that define the ri ’s, which makes FlexE a nondeterministic rule. If Γ =⇒FlexE ∆, then
all function symbols except seq that occur in ∆ are fixed arity individual function symbols. All
sequence variables in ∆ are arguments of terms whose head is seq.

In general, there are (k +1)n different ways to transform a unification problem Γ into another
unification problem ∆ by FlexE, where k is the number of elements inFI (Γ) and n is the number
of elements in VI (Γ). Like for SFE, the number of alternatives for FlexE can be reduced in
particular cases.

Example 27. Applying the rule FlexE to the unification problem (2), we obtain the following
F-unification problems:

{ f2(s′, x) ≈
?
F f2(t ′, c2)} (5)

{ f2(s′, x) ≈
?
F f2(t ′, aa)} (6)

{ f2(s′, x) ≈
?
F f2(t ′, c1)} (7)

{ f2(s′, x) ≈
?
F f2(t ′, hg0(y2))} (8)

{ f2(s′, x) ≈
?
F f2(t ′, h f0(y2))} (9)

{ f2(s′, x) ≈
?
F f2(t ′, f1(y2, z2))} (10)

where

s′
= f1(h f0(seq(x, x, y, z, h f0(seq(u, x)))), x),

t ′ = f1(h f0(seq(hg0(seq(x)), x, aa, h f0(seq(hg0(seq(x)), u)))), c1).

Similarly, from (3) by FlexE we obtain:

{ f2(s′, x) ≈
?
F f2(t ′, c2)} (11)

{ f2(s′, x) ≈
?
F f2(t ′, aa)} (12)

{ f2(s′, x) ≈
?
F f2(t ′, hg0(y2))} (13)

{ f2(s′, x) ≈
?
F f2(t ′, h f0(y2))} (14)

{ f2(s′, x) ≈
?
F f2(t ′, f1(y2, z2))} (15)

T. Kutsia / Journal of Symbolic Computation 42 (2007) 352–388 365

where

s′
= f1(h f0(seq(x, x, y, z, h f0(seq(u, x)))), x),

t ′ = f1(h f0(seq(hg0(seq(x)), x, aa, h f0(seq(hg0(seq(x)), u)))), hg0(seq(v1))).

The equations obtained from (4) by FlexE are similar to the Eqs. (11)–(15) with the difference
that t ′ there is

f1(h f0(seq(hg0(seq(x)), x, aa, h f0(seq(hg0(seq(x)), u)))), h f0(seq(v1))).

Lemma 28. Let Γ be a general syntactic sequence unification problem with flexible arity
functions but without sequence functions. Then Γ is solvable if and only if there exists an F-
unification problem ∆ without sequence functions and free flexible arity functions such that
Γ =⇒FlexE ∆ and ∆ is solvable.

Proof. (⇒) Let Γ be {s ≈
?
∅

t} and let σ be a solution of Γ . By Lemma 22 we can assume
that σ does not introduce any new function symbol. Let σ ′ be a substitution obtained from
σ by (recursively) replacing each term g(s1, . . . , sm), where g ∈ F lex and is free, by the
corresponding term hg(seq(s1, . . . , sm)) and by replacing each binding x 7→ ps1, . . . , smq by
x 7→ seq(s1, . . . , sm). We take ∆ of the form { f (s′, x1, . . . , xn) ≈

?
F f (t ′, r1, . . . , rn)} that is

obtained from Γ by the FlexE rule with ri ’s selected in the following way: If xiσ
′ is a variable,

then ri = c. If xiσ
′

= h(s1, . . . , sm), where m ≥ 0, then ri = h(y1, . . . , ym) if h is an m-
ary individual function symbol, and ri = hh(seq(y)) if h is a flexible arity individual function
symbol. All yi ’s are distinct fresh individual variables, and y is a fresh sequence variable. ∆
does not contain flexible arity function symbols except flat seq. There are no sequence function
symbols in ∆.

We now construct a solution of ∆. It is easy to see that s′σ ′
≈F t ′σ ′. Let now ϑ be a

substitution defined as follows: For each xi , if xiσ
′

= y for some y, then y 7→ c ∈ ϑ ; if
xiσ

′ has a form h(seq(s1, . . . , sm)), then y 7→ seq(s1, . . . , sm) ∈ ϑ , where h(seq(y)) = ri ;
otherwise, if xiσ

′ has a form h(s1, . . . , sm), where m ≥ 0, then y j 7→ s j ∈ ϑ for all 1 ≤ j ≤ m,
where h(y1, . . . , ym) = ri . We take ϑ ′

= ϑϑ . Then s′σ ′ϑ ′
≈F t ′σ ′ϑ ′ and xiσ

′ϑ ′
≈F riσ

′ϑ ′ for
each xi . This implies that σ ′ϑ ′ is a solution of ∆.3

(⇐) From a solution of ∆ we get a solution of Γ replacing each unary symbol hg and each
term seq(s1, . . . , sm) introduced by the rule FlexE by the corresponding symbol g ∈ F lex(Γ)
and by the sequence s1, . . . , sm , respectively. �

Remark 29. Like for the rule SFE above, it is not enough to formulate FlexE as {s ≈
?
∅

t} =⇒

{s′
≈

?
F t ′} where s, t, s′, and t ′ satisfy the conditions from FlexE. In this case the unsolvable

problem { f (x) ≈
?
∅

f (a, b)} would be transformed into {h f (seq(x)) ≈
?
F h f (seq(a, b))}, that can

be solved by the substitution {x 7→ seq(a, b)} because h f (seq(seq(a, b))) ≈F h f (seq(a, b)).

The next inference rule replaces sequence variables with individual variables:

SVR: Sequence Variable Replacement
Γ =⇒ ∆,

where

3 Again, it is not enough to take just ϑ instead of ϑ ′. See the footnote in the proof of Lemma 24.

366 T. Kutsia / Journal of Symbolic Computation 42 (2007) 352–388

• Γ is a F-unification problem,
• Γ contains no sequence function symbols,
• the only flexible arity function symbol that occurs in Γ is flat seq,
• Γ contains sequence variables,
• ∆ is obtained from Γ by replacing each sequence variable x with a new individual variable

xΓ .

We assume that the choice of individual variables xΓ is fixed for each Γ . This assumption
makes SVR a deterministic rule: There is only one way to get ∆ from Γ by SVR. If Γ =⇒SVR
∆, then ∆, like Γ , is an F-unification problem that contains no sequence function symbols and
no flexible arity function symbols except seq. Moreover, unlike in Γ , there are no sequence
variables in ∆.

Example 30. Here we only show the result of application of the rule SVR to the problem (13):

{ f2(f1(h f0(seq(zx , x, zy, zz, h f0(seq(zu, x)))), x), x) ≈
?
F

f2(f1(h f0(seq(h f0(seq(zx)), x, aa, h f0(seq(hg0(seq(zx)), zu)))),

hg0(seq(zv1))), hg0(y2))} (16)

Lemma 31. Let Γ be an F-unification problem with sequence variables but without sequence
function symbols whose only flexible arity function symbol is flat seq and let ∆ be obtained from
Γ by SVR. Then Γ is solvable if and only if ∆ is solvable.

Proof. (⇒) From a solution of Γ we obtain a solution of ∆ in two steps: First, we replace
each sequence variable x with the corresponding xΓ . Second, we replace each expression
xΓ 7→ ps1, . . . , snq (if there are any) with the binding xΓ 7→ seq(s1, . . . , sn).

(⇐) Replacing each individual variable xΓ with x in a solution of ∆ yields a solution of
Γ . �

The last rule makes the decision step:

DS: Decision Step
Γ =⇒ ∆,

where

• Γ is a F-unification problem,
• the only flexible arity function symbol that occurs in Γ is flat seq,
• Γ contains no sequence function symbols and sequence variables,
• ∆ is > if Γ is solvable; otherwise, ∆ is ⊥.

To justify DS we need the combination method:

Theorem 32 (Combination Method (Baader and Schulz, 1996)). Let E1, . . . , En be equational
theories over disjoint signatures such that solvability of Ei -unification problems with linear
constant restrictions is decidable for each 1 ≤ i ≤ n. Then solvability of elementary unification
problems is decidable for the combined theory E1 ∪ · · · ∪ En .

Linear constant restrictions, LCV in short, are induced by a linear order< on the set of variables
and constants demanding that, for a unifier σ , a constant c, and a variable x , c must not occur in
xσ if x < c.

T. Kutsia / Journal of Symbolic Computation 42 (2007) 352–388 367

Lemma 33. Let Γ be an F-unification problem without sequence function symbols and sequence
variables whose only flexible arity function symbol is flat seq. Then solvability of Γ is decidable.

Proof. Let F1 = {seq} and F2 = F ix(Γ) be two disjoint signatures. Let E1 be a flat theory over
F1 and VI and let E2 be a free theory overF2 and VI . Then Γ can be considered as an elementary
unification problem in the combined theory E1∪ E2. Then, by Theorem 32, we need to prove that
solvability of E1- and E2-unification problems with LCV is decidable. E1-unification problems
are, in fact, word equations, while E2-unification is the Robinson unification. Decidability of
word equations with LCV, and of Robinson unification with LCV was proved by Baader and
Schulz (1991). �

Lemma 33 shows that the rule DS always gives the output: for any Γ that fulfils the conditions
of DS, application of DS yields either > or ⊥.

Example 34. The rule DS gives > when applied to (16). This problem, in fact, has an infinite
minimal complete set of F-unifiers. One of the unifiers is {zx 7→ seq(), x 7→ hg0(seq()), zy 7→

hg0(seq()), zz 7→ aa, zu 7→ seq(), zv1 7→ seq(), y2 7→ seq()}, from which we can reconstruct a
solution of (1): {x 7→ pq, x 7→ g0(), y 7→ g0(), z 7→ a, u 7→ pq}.

The decision algorithm D takes a general syntactic sequence unification problem Γ as an input,
turns it into a single equation problem if necessary, and uses the inference rules SFE, FlexE,
SVR, and DS in all possible ways to generate a decision tree whose root is labeled with Γ ,
internal nodes are labeled with unification problems (obtained from their ancestors by SFE,
FlexE, or SVR), and leaves are labeled either with > or with ⊥ (obtained from their ancestors by
DS). The decision tree is finite: The conditions of inference rules guarantee that, first, the depth
of the tree is maximum four (on each branch there is maximum one application of each rule).
Second, it is finitely branching: Each rule can be applied only finitely many times. Lemmas 24,
28, 31 and 33, together with the construction of the decision tree guarantee soundness and
completeness of D. A unification problem Γ is solvable if a decision tree with the root Γ contains
a leaf labeled with >, and Γ is unsolvable if all leaves are labeled with ⊥. This implies the main
result of this section:

Theorem 35 (Decidability). General syntactic sequence unification is decidable.

4. Unification procedure

In the rest of the paper, unless otherwise stated, the term “unification problem” stands for
general syntactic sequence unification problem.

We now present inference rules for deriving solutions for unification problems. A system is
either the symbol ⊥ (representing failure) or a pair 〈Γ ; σ 〉, where Γ is a unification problem and
σ is a substitution. The inference system I consists of the transformation rules on systems listed
below. In the Splitting rule f1 and f2 are new sequence function symbols of the same arity as f
in the same rule. We assume that the indices n,m, k, l ≥ 0.

P: Projection
〈Γ ; σ 〉 =⇒ 〈Γϑ; σϑ〉,

where ϑ 6= ε, Dom(ϑ) ⊆ VS(Γ), and Cod(ϑ) = ∅.

T: Trivial
〈{s ≈

?
∅

s} ∪ Γ ′
; σ 〉 =⇒ 〈Γ ′

; σ 〉.

368 T. Kutsia / Journal of Symbolic Computation 42 (2007) 352–388

O1: Orient 1
〈{s ≈

?
∅

x} ∪ Γ ′
; σ 〉 =⇒ 〈{x ≈

?
∅

s} ∪ Γ ′
; σ 〉, if s /∈ VI .

O2: Orient 2
〈{ f (s, s1, . . . , sn) ≈

?
∅

f (x, t1, . . . , tm)} ∪ Γ ′
; σ 〉

=⇒ 〈{ f (x, t1, . . . , tm) ≈
?
∅

f (s, s1, . . . , sn)} ∪ Γ ′
; σ 〉, if s /∈ VS .

S: Solve
〈{x ≈

?
∅

t} ∪ Γ ′
; σ 〉 =⇒ 〈Γ ′ϑ; σϑ〉, if x /∈ VI (t) and ϑ = {x 7→ t}.

TD: Total Decomposition
〈{ f (s1, . . . , sn) ≈

?
∅

f (t1, . . . , tn)} ∪ Γ ′
; σ 〉

=⇒ 〈{s1 ≈
?
∅

t1, . . . , sn ≈
?
∅

tn} ∪ Γ ′
; σ 〉,

if f (s1, . . . , sn) 6= f (t1, . . . , tn) and si , ti ∈ TI (F,V) for all 1 ≤ i ≤ n.

PD1: Partial Decomposition 1
〈{ f (s1, . . . , sn) ≈

?
∅

f (t1, . . . , tm)} ∪ Γ ′
; σ 〉 =⇒

〈{s1 ≈
?
∅

t1, . . . , sk−1 ≈
?
∅

tk−1, f (sk, . . . , sn) ≈
?
∅

f (tk, . . . , tm)} ∪ Γ ′
; σ 〉,

if f (s1, . . . , sn) 6= f (t1, . . . , tm), for some 1 < k ≤ min(n,m), either sk ∈ TS(F,V) or
tk ∈ TS(F,V), and si , ti ∈ TI (F,V) for all 1 ≤ i < k.

PD2: Partial Decomposition 2
〈{ f (f (r1, . . . , rk), s1, . . . , sn) ≈

?
∅

f (f (q1, . . . , ql), t1, . . . , tm)} ∪ Γ ′
; σ 〉 =⇒

〈{ f (r1, . . . , rk) ≈
?
∅

f (q1, . . . , ql), f (s1, . . . , sn) ≈
?
∅

f (t1, . . . , tm)} ∪ Γ ′
; σ 〉,

if f (f (r1, . . . , rk), s1, . . . , sn) 6= f (f (q1, . . . , ql), t1, . . . , tm).

SVE1: Sequence Variable Elimination 1
〈{ f (x, s1, . . . , sn) ≈

?
∅

f (x, t1, . . . , tm)} ∪ Γ ′
; σ 〉

=⇒ 〈{ f (s1, . . . , sn) ≈
?
∅

f (t1, . . . , tm)} ∪ Γ ′
; σ 〉,

if f (x, s1, . . . , sn) 6= f (x, t1, . . . , tm).

SVE2: Sequence Variable Elimination 2
〈{ f (x, s1, . . . , sn) ≈

?
∅

f (t, t1, . . . , tm)} ∪ Γ ′
; σ 〉

=⇒ 〈{ f (s1, . . . , sn)ϑ ≈
?
∅

f (t1, . . . , tm)ϑ} ∪ Γ ′ϑ; σϑ〉,

if x /∈ VS(t) and ϑ = {x 7→ t}.

W1: Widening 1
〈{ f (x, s1, . . . , sn) ≈

?
∅

f (t, t1, . . . , tm)} ∪ Γ ′
; σ 〉

=⇒ 〈{ f (x, s1ϑ, . . . , snϑ) ≈
?
∅

f (t1ϑ, . . . , tmϑ)} ∪ Γ ′ϑ; σϑ〉,

if x /∈ VS(t) and ϑ = {x 7→ pt, xq}.

W2: Widening 2
〈{ f (x, s1, . . . , sn) ≈

?
∅

f (y, t1, . . . , tm)} ∪ Γ ′
; σ 〉

=⇒ 〈{ f (s1ϑ, . . . , snϑ) ≈
?
∅

f (y, t1ϑ, . . . , tmϑ)} ∪ Γ ′ϑ; σϑ〉,

where ϑ = {y 7→ px, yq}.

T. Kutsia / Journal of Symbolic Computation 42 (2007) 352–388 369

Sp: Splitting
〈{ f (x, s1, . . . , sn) ≈

?
∅

f (f (r1, . . . , rk), t1, . . . , tm)} ∪ Γ ′
; σ 〉

=⇒ 〈{ f (s1, . . . , sn)ϑ ≈
?
∅

f (f2(r1, . . . , rk), t1, . . . , tm)ϑ} ∪ Γ ′ϑ; σϑ〉,

if x /∈ VS(f (r1, . . . , rk)) and ϑ = {x 7→ f1(r1, . . . , rk)}{ f 7→ p f1, f2q}.
We write ϑ = {x 7→ f1(r1, . . . , rk)}{ f 7→ p f1, f2q} in the Sp rule because r1, . . . , rk can

contain f . In the rule PD2 we replace f with f to guarantee that the transformation yields
a system again. Besides using the rule name abbreviations as subscripts, we may also write
〈Γ1; σ1〉 =⇒BT 〈Γ2; σ2〉 to indicate that 〈Γ1; σ1〉 was transformed to 〈Γ2; σ2〉 by some basic
transformation (i.e., non-projection) rule. We denote the transitive closure of =⇒ by =⇒

+.
The Projection can be applied to the same system in (finitely many) different ways.

Example 36. Projection rule transforms the system 〈{ f (x, a) ≈
?
∅

f (a, y)}; ε〉 in the following
three different ways:

〈{ f (x, a) ≈
?
∅

f (a, y)}; ε〉 =⇒P 〈{ f (a) ≈
?
∅

f (a, y)}; {x 7→ pq}〉.

〈{ f (x, a) ≈
?
∅

f (a, y)}; ε〉 =⇒P 〈{ f (x, a) ≈
?
∅

f (a)}; {y 7→ pq}〉.

〈{ f (x, a) ≈
?
∅

f (a, y)}; ε〉 =⇒P 〈{ f (a) ≈
?
∅

f (a)}; {x 7→ pq, y 7→ pq}〉.

The rules SVE2, W1, W2, and Sp can be applied to the same equation.

Example 37. SVE2 and W1 transform the system 〈{ f (x, a) ≈
?
∅

f (a, y)}; ε〉:

〈{ f (x, a) ≈
?
∅

f (a, y)}; ε〉 =⇒SVE2 〈{ f (a) ≈
?
∅

f (y)}; {x 7→ a}〉.

〈{ f (x, a) ≈
?
∅

f (a, y)}; ε〉 =⇒W1 〈{ f (x, a) ≈
?
∅

f (y)}; {x 7→ pa, xq}〉.

SVE2, W1, and Sp transform the system 〈{ f (x, y, a) ≈
?
∅

f (a, z)}; ε〉:

〈{ f (x, y, a) ≈
?
∅

f (a, z)}; ε〉 =⇒SVE2 〈{ f (y, a) ≈
?
∅

f (z)}; {x 7→ a}〉.

〈{ f (x, y, a) ≈
?
∅

f (a, z)}; ε〉 =⇒W1 〈{ f (x, y, a) ≈
?
∅

f (z)}; {x 7→ pa, xq}〉.

〈{ f (x, y, a) ≈
?
∅

f (a, z)}; ε〉 =⇒Sp 〈{ f (y, a1, a2) ≈
?
∅

f (a2, z)};

{x 7→ a1, a 7→ pa1, a2q}〉.

SVE2, W1, and W2 transform the system 〈{ f (x, a) ≈
?
∅

f (z, y)}; ε〉:

〈{ f (x, a) ≈
?
∅

f (z, y)}; ε〉 =⇒SVE2 〈{ f (a) ≈
?
∅

f (y)}; {x 7→ z}〉.

〈{ f (x, a) ≈
?
∅

f (z, y)}; ε〉 =⇒W1 〈{ f (x, a) ≈
?
∅

f (y)}; {x 7→ pz, xq}〉.

〈{ f (x, a) ≈
?
∅

f (z, y)}; ε〉 =⇒W2 〈{ f (a) ≈
?
∅

f (z, y)}; {z 7→ px, zq}〉.

A derivation is a sequence 〈Γ1; σ1〉 =⇒ 〈Γ2; σ2〉 =⇒ · · · of system transformations. A selection
strategy S is a function which given a derivation 〈Γ1; σ1〉 =⇒ · · · =⇒ 〈Γn; σn〉 returns an
equation, called a selected equation, from Γn . A derivation is via a selection strategy S if in the
derivation all choices of selected equations, being transformed by the transformation rules, are
performed according to S.

In the definition below we need two versions of the decision algorithm D. One, denoted
by Dm , calls in the DS step (as one of the ingredients of the combination method that it
uses) the decision algorithm for solving equations in a free monoid (Abdulrab and Pécuchet,

370 T. Kutsia / Journal of Symbolic Computation 42 (2007) 352–388

1990). The other one, denoted as Ds , uses the decision algorithm for solving equations in a free
semigroup (Makanin, 1977).

Definition 38. A syntactic sequence unification procedure U is any program that takes a system
〈Γ ; ε〉 and a selection strategy S as an input and uses the transformation rules of the inference
system I to generate a tree of derivations via S, called the unification tree for Γ via S, in the
following way:

(1) The root of the tree is labeled with 〈Γ ; ε〉.
(2) Each branch of the tree is a derivation via S of the form

〈Γ ; ε〉 =⇒� 〈Γ1; σ1〉 =⇒BT 〈Γ2; σ2〉 =⇒BT · · · ,

where � is either P or BT. The nodes in the tree are systems.
(3) If different instances of the projection rule are applicable to the root node in the tree, they are

applied concurrently.
(4) If several basic transformation rules are applicable to the selected equation in a node in the

tree, they are applied concurrently.
(5) The decision algorithm Dm is applied to the root. If the problem Γ in the root is unsolvable,

then the branch is extended by 〈Γ ; ε〉 =⇒DAm ⊥ and the procedure stops with failure.
Otherwise, the decision algorithm Ds is applied to the root and to each node generated by
P, SVE2, W1, W2, and Sp, to decide whether the node contains a unification problem that
can be solved without replacing any sequence variable with the empty sequence. If ∆ in a
node 〈∆; δ〉 cannot be solved under this restriction, then the branch is extended only by
〈∆; δ〉 =⇒DAs ⊥.

The unification tree for Γ via S, generated by U, is denoted as UT SU(Γ). We will often omit S
and write just UT U(Γ).

The leaves of UT U(Γ) are labeled either with the systems of the form 〈∅; σ 〉 or with the system
⊥. The branches of UT U(Γ) that end with leaves of the form 〈∅; σ 〉 are called successful
branches, and those with the leaves ⊥ are failed branches. We denote by SolU(Γ) the solution
set for Γ generated by U, i.e., the set of all substitutions σ such that 〈∅; σ 〉 is a leaf of UT U(Γ).

Example 39. Let Γ = { f (x, x, y) ≈
?
∅

f (f (x), x, a, b)}. DAm reports that Γ is solvable. Then
the unification procedure generates the following seven derivations:

〈{ f (x, x, y) ≈
?
∅

f (f (x), x, a, b)}; ε〉 =⇒DAs ⊥

〈{ f (x, x, y) ≈
?
∅

f (f (x), x, a, b)}; ε〉
=⇒P 〈{ f (x) ≈

?
∅

f (f (), x, a, b)}; {x 7→ pq, y 7→ pq}〉

=⇒DAs ⊥

〈{ f (x, x, y) ≈
?
∅

f (f (x), x, a, b)}; ε〉
=⇒P 〈{ f (x, x) ≈

?
∅

f (f (x), x, a, b)}; {y 7→ pq}〉

=⇒DAs ⊥

〈{ f (x, x, y) ≈
?
∅

f (f (x), x, a, b)}; ε〉
=⇒P 〈{ f (x, y) ≈

?
∅

f (f (), x, a, b)}; {x 7→ pq}〉

=⇒PD1 〈{x ≈
?
∅

f (), f (y) ≈
?
∅

f (x, a, b)}; {x 7→ pq}〉

=⇒S 〈{ f (y) ≈
?
∅

f (f (), a, b)}; {x 7→ pq, x 7→ f ()}〉
=⇒SVE2 〈{ f () ≈

?
∅

f (a, b)}; {x 7→ pq, x 7→ f (), y 7→ f ()}〉
=⇒DAs ⊥

T. Kutsia / Journal of Symbolic Computation 42 (2007) 352–388 371

〈{ f (x, x, y) ≈
?
∅

f (f (x), x, a, b)}; ε〉
=⇒P 〈{ f (x, y) ≈

?
∅

f (f (), x, a, b)}; {x 7→ pq}〉

=⇒PD1 〈{x ≈
?
∅

f (), f (y) ≈
?
∅

f (x, a, b)}; {x 7→ pq}〉

=⇒S 〈{ f (y) ≈
?
∅

f (f (), a, b)}; {x 7→ pq, x 7→ f ()}〉
=⇒W1 〈{ f (y) ≈

?
∅

f (a, b)}; {x 7→ pq, x 7→ f (), y 7→ p f (), yq}〉

=⇒SVE2 〈{ f () ≈
?
∅

f (b)}; {x 7→ pq, x 7→ f (), y 7→ p f (), aq}〉

=⇒DAs ⊥

〈{ f (x, x, y) ≈
?
∅

f (f (x), x, a, b)}; ε〉
=⇒P 〈{ f (x, y) ≈

?
∅

f (f (), x, a, b)}; {x 7→ pq}〉

=⇒PD1 〈{x ≈
?
∅

f (), f (y) ≈
?
∅

f (x, a, b)}; {x 7→ pq}〉

=⇒S 〈{ f (y) ≈
?
∅

f (f (), a, b)}; {x 7→ pq, x 7→ f ()}〉
=⇒W1 〈{ f (y) ≈

?
∅

f (a, b)}; {x 7→ pq, x 7→ f (), y 7→ p f (), yq}〉

=⇒W1 〈{ f (y) ≈
?
∅

f (b)}; {x 7→ pq, x 7→ f (), y 7→ p f (), a, yq}〉

=⇒SVE2 〈{ f () ≈
?
∅

f ()}; {x 7→ pq, x 7→ f (), y 7→ p f (), a, bq}〉

=⇒T 〈∅; {x 7→ pq, x 7→ f (), y 7→ p f (), a, bq}〉

〈{ f (x, x, y) ≈
?
∅

f (f (x), x, a, b)}; ε〉
=⇒P 〈{ f (x, y) ≈

?
∅

f (f (), x, a, b)}; {x 7→ pq}〉

=⇒PD1 〈{x ≈
?
∅

f (), f (y) ≈
?
∅

f (x, a, b)}; {x 7→ pq}〉

=⇒S 〈{ f (y) ≈
?
∅

f (f (), a, b)}; {x 7→ pq, x 7→ f ()}〉
=⇒W1 〈{ f (y) ≈

?
∅

f (a, b)}; {x 7→ pq, x 7→ f (), y 7→ p f (), yq}〉

=⇒W1 〈{ f (y) ≈
?
∅

f (b)}; {x 7→ pq, x 7→ f (), y 7→ p f (), a, yq}〉

=⇒W1 〈{ f (y) ≈
?
∅

f ()}; {x 7→ pq, x 7→ f (), y 7→ p f (), a, b, yq}〉

=⇒DAs ⊥

Therefore, SolU(Γ) = {{x 7→ pq, x 7→ f (), y 7→ p f (), a, bq}}.

Example 40. Let Γ = { f (x, a, x) ≈
?
∅

f (a, x, a)}. Then the unification procedure generates the
following derivations:

〈{ f (x, a, x) ≈
?
∅

f (a, x, a)}; ε〉
=⇒P 〈{ f (a) ≈

?
∅

f (a, a)}; {x 7→ pq}〉

=⇒DAs ⊥

〈{ f (x, a, x) ≈
?
∅

f (a, x, a)}; ε〉
=⇒SVE2 〈{ f (a, a) ≈

?
∅

f (a, a)}; {x 7→ a}〉

=⇒T 〈∅; {x 7→ a}〉

〈{ f (x, a, x) ≈
?
∅

f (a, x, a)}; ε〉
=⇒W1 〈{ f (x, a, a, x) ≈

?
∅

f (a, x, a)}; {x 7→ pa, xq}〉

=⇒DAs ⊥

Therefore, SolU(Γ) = {{x 7→ a}}.

Example 41. Let Γ = { f (x, a) ≈
?
∅

f (a, x)}. Then the unification procedure generates infinitely
many derivations:

〈{ f (x, a) ≈
?
∅

f (a, x)}; ε〉
=⇒P 〈{ f (a) ≈

?
∅

f (a)}; {x 7→ pq}〉

372 T. Kutsia / Journal of Symbolic Computation 42 (2007) 352–388

=⇒T 〈∅; {x 7→ pq}〉

〈{ f (x, a) ≈
?
∅

f (a, x)}; ε〉
=⇒SVE2 〈{ f (a) ≈

?
∅

f (a)}; {x 7→ a}〉

=⇒T 〈∅; {x 7→ a}〉

〈{ f (x, a) ≈
?
∅

f (a, x)}; ε〉
=⇒W1 〈{ f (x, a) ≈

?
∅

f (a, x)}; {x 7→ pa, xq}〉

=⇒SVE2 〈{ f (a) ≈
?
∅

f (a)}; {x 7→ pa, aq}〉

=⇒T 〈∅; {x 7→ pa, aq}〉

and so on. SolU(Γ) = {{x 7→ pq}, {x 7→ a}, {x 7→ pa, aq}, . . .}.

4.1. Soundness

In this subsection we will show soundness of U: for any general syntactic sequence unification
problem Γ , every substitution in the solution set SolU(Γ) is a syntactic unifier of Γ .

Below Γ and ∆ are general syntactic sequence unification problems.

Lemma 42. If QU∅(Γ) = QU∅(∆), then QU∅(Γϑ) = QU∅(∆ϑ) for any substitution ϑ .

Proof. σ ∈ QU∅(Γϑ) if and only if ϑσ ∈ QU∅(Γ) if and only if ϑσ ∈ QU∅(∆) if and only if
σ ∈ QU∅(∆ϑ). �

Lemma 43. If 〈Γ ; σ 〉 =⇒ 〈∆; σϑ〉, then QU∅(∆) = QU∅(Γϑ).

Proof. The nontrivial cases concern the rules S, SVE2, W1, W2, and Sp.
S: If x /∈ VI (t), then xθ ≈ tθ for θ = {x 7→ t}, and Γ θ = {xθ ≈

?
∅

tθ} ∪ Γ ′θ and ∆ = Γ ′θ

have the same set of quasi-unifiers. SVE2 is similar to S.
W1: Let Γ = { f (x, s1, . . . , sn) ≈

?
∅

f (t, t1, . . . , tm)} ∪ Γ ′ such that x /∈ VS(t). By W1 we
get ∆ = { f (x, s1ϑ, . . . , snϑ) ≈

?
∅

f (t1ϑ, . . . , tmϑ)} ∪ ∆′, where ϑ = {x 7→ pt, xq}. Then Γϑ
and ∆ have exactly the same set of quasi-unifiers. W2 is similar to W1.

Sp: Let Γ = { f (x, s1, . . . , sn) ≈
?
∅

f (g(r1, . . . , rk), t1, . . . , tm)} ∪ Γ ′ such that
x /∈ VS(g(r1, . . . , rk)). Then by Sp we get a new problem ∆ = { f (s1, . . . , sn)ϑ ≈

?
∅

f (g2(r1, . . . , rk), t1, . . . , tm)ϑ} ∪ ∆′, where ϑ = {x 7→ g1(r1, . . . , rk)}{g 7→ pg1, g2q}. Then
Γ θ and ∆ have exactly the same set of quasi-unifiers. �

Lemma 44. If 〈Γ ; σ 〉 =⇒
+

〈∆; σϑ〉, then QU∅(∆) = QU∅(Γϑ).

Proof. By induction on the derivation length. Lemma 43 proves the case when the length is 1.
Now assume that the lemma holds for the derivation length n. We have to show that it holds
for the length n + 1. Let the derivation have a form 〈Γ ; σ 〉 =⇒ 〈∆1; σδ1〉 =⇒ · · · =⇒

〈∆n+1; σδ1δ2 · · · δn+1〉 where ϑ = δ1δ2 · · · δn+1. By the induction hypothesis QU∅(∆n) =

QU∅(Γ δ1 · · · δn). By Lemma 43 QU∅(∆n+1) = QU∅(∆nδn+1). Therefore, by Lemma 42 we
obtain QU∅(∆n+1) = QU∅(Γ δ1 · · · δnδn+1) = QU∅(Γϑ). �

Lemma 45. If 〈Γ ; ε〉 =⇒
+

〈∅; ϑ〉, then ϑ ∈ U∅(Γ).

Proof. By Lemma 44 we haveQU∅(∅) = QU∅(Γϑ). Since ε ∈ QU∅(∅), we get ε ∈ QU∅(Γϑ)
and, hence, ϑ ∈ QU∅(Γ). Moreover, ϑ is linearizing away from FS(Γ), because all the bindings
for sequence function symbols introduced during the derivation (by Sp) introduce fresh distinct
sequence function symbols. Hence, ϑ ∈ U∅(Γ). �

T. Kutsia / Journal of Symbolic Computation 42 (2007) 352–388 373

From Lemma 45 and Definition 38 we immediately get soundness of U:

Theorem 46 (Soundness of U). Let Γ be a general syntactic sequence unification problem. Then
SolU(Γ) ⊆ U∅(Γ).

4.2. Completeness

Proving completeness is more involved than the soundness proof. In this section we prove
completeness by showing that for any solution ϑ of a unification problem Γ there exists a
derivation from 〈Γ ; ε〉 that terminates with success and the substitution in the last system of
the derivation is strongly more general than ϑ . For the termination proof, we need to define a
complexity measure on the systems, introduce a well-founded ordering on the measures, and
show that every step in the derivation strictly decreases the measure.

First, we introduce notions needed later to define complexity measures.

Definition 47. The length of the image of a set of variables X with respect to a substitution σ ,
denoted as Len(X , σ), is defined as

∑
v∈X len(vσ), where len(vσ) is 1 if vσ is a single term,

and is n if vσ = pt1, . . . , tnq for some terms t1, . . . , tn , n ≥ 0.

The following lemma is an easy consequence of Definitions 47 and 7:

Lemma 48. For all σ , ϑ , X , and Q, if Ran(σ) ⊆ X and σ EX ,Q
∅

ϑ , then Len(X , σ) ≤

Len(X , ϑ).

We denote by Dif (X , ϑ, σ) the length difference Len(X , ϑ) − Len(X , σ). Obviously,
Dif (X , ϑ, σ) = Dif (VS(X), ϑ, σ).

Lemma 49. Let Γ be a unification problem, X = V(Γ), Q = FS(Γ), and ϑ ∈ U∅(Γ). Let S
be a selection strategy. If ϑ is non-erasing on X , then there exists a derivation via S of the form
〈Γ1; σ1〉 =⇒

+

BT 〈∅, σk〉 with Γ1 = Γ and σ1 = ε such that σk EX ,Q
∅

ϑ .

Proof. We prove the lemma in two steps. First, we construct a derivation of the form
〈Γ1; σ1〉 =⇒BT 〈Γ2; σ2〉 =⇒BT · · · with Γ1 = Γ and σ1 = ε such that σi EX ,Q

∅
ϑ for

all i ≥ 1, and then we show that it terminates with success.
Step 1: Construction. We construct the derivation recursively. We take Γ1 = Γ , σ1 = ε, and

start the derivation from 〈Γ1; σ1〉. Obviously, σ1 EX ,Q
∅

ϑ .
We assume that 〈Γn; σn〉, n ≥ 1, Γn 6= ∅ belongs to the derivation. We have to find a system

〈Γn+1; σn+1〉 such that 〈Γn; σn〉 =⇒BT 〈Γn+1; σn+1〉 and σn+1 EX ,Q
∅

ϑ .

Since 〈Γn; σn〉 belongs to the derivation, we have σn EX ,Q
∅

ϑ , i.e., there exists ϕ, non-
erasing on X , such that σnϕ =

X ,Q
∅

ϑ . Let σ ′
n be the restriction of σn to X and Q. Moreover, we

can assume without loss of generality that FDom(ϕ) ⊆ FS(Γn), because any sequence function
symbol in FS(Γn) either belongs to Q′

= Q \ FDom(σ ′
n) or is introduced by applying σ ′

n to an
element of Q. Then σ ′

nϕ =
X ,Q
∅

ϑ holds. Our goal is first to prove that ϕ ∈ U∅(Γn) and then to
extend the derivation with the help of ϕ.

From σ ′
nϕ =

X ,Q
∅

ϑ we have σ ′
nϕ ∈ U∅(Γ1) ⊆ QU(Γ1) and therefore ϕ ∈ QU∅(Γ1σ

′
n).

Moreover, by Lemma 44 we have QU∅(Γ1σ
′
n) = QU∅(Γn). Therefore, ϕ ∈ QU∅(Γn).

Now we show that ϕ is linearizing away from FS(Γn) which will imply ϕ ∈ U∅(Γn). Assume
by contradiction that it is not. Then we have the following three cases:

374 T. Kutsia / Journal of Symbolic Computation 42 (2007) 352–388

(1) Cod(ϕ) ∩ FS(Γn) 6= ∅. Assume f 7→ p. . . , g, . . .q ∈ ϕ with g ∈ FS(Γn). Since
FDom(ϕ) ⊆ FS(Γn), and any sequence function symbol in FS(Γn) either belongs to Q′

or is introduced by applying σ ′
n to an element of Q, we have one of the possible four

cases: (i) f , g ∈ Q′, (ii) f ∈ Cod(σ ′
n) and g ∈ Q′, (iii) f ∈ Q′ and g ∈ Cod(σ ′

n), or
(iv) f , g ∈ Cod(σ ′

n). In the first two cases Cod(σ ′
nϕ)∩Q 6= ∅, which contradicts the fact that

σ ′
nϕ is linearizing away from Q (because σ ′

nϕ ∈ U∅(Γ1)). In the last two cases there exist
h1, h2 ∈ FDom(σ ′

nϕ) ∩ Q such that h1σ
′
nϕ and h2σ

′
nϕ share a common sequence function

symbol, which also violates the condition on σ ′
nϕ being linearizing away from Q.

(2) There exist two distinct sequence function symbols f , g ∈ FDom(ϕ) ∩ FS(Γn) such that
the sequences f ϕ and gϕ share a common sequence function symbol. Then there exist
h1, h2 ∈ FDom(σ ′

nϕ) ∩ Q such that h1σ
′
nϕ and h2σ

′
nϕ share a common sequence function

symbol, which is a contradiction to the fact that σ ′
nϕ is linearizing away from Q.

(3) There exists f ∈ FS(Γn) such that f ϕ = pg1, . . . , gmq and gi = g j for some 1 ≤ i < j ≤

m. Then there exists h ∈ Q such that the sequence hσ ′
nϕ contains two equal elements gi and

g j . Again a contradiction.

Hence, all three cases contradict the fact that σ ′
nϕ is linearizing away from Q. This implies that

ϕ is linearizing away from FS(Γn) and, therefore, ϕ ∈ U∅(Γn).
Let s ≈

?
∅

t be an equation in Γn selected by S. We represent Γn as {s ≈
?
∅

t} ∪ Γ ′
n . Depending

on the form of the pair 〈s, t〉, we have the following four cases:
Case 1: 〈s, t〉 is a pair of identical terms. We extend the derivation with the step 〈Γn; σn〉 =⇒T

〈Γ ′
n; σn〉. Therefore, σn+1 = σn EX ,Q

∅
ϑ .

Case 2: 〈s, t〉 is a pair of distinct individual variables. Let s = x and t = y. Then xϕ ≈∅ yϕ.
Let ψ = {x 7→ y}. Then ψϕ = ϕ. Thus, σnψϕ =

X ,Q
∅

ϑ , which implies σnψ EX ,Q
∅

ϑ .
Therefore, we can take Γn+1 = Γ ′

nψ , σn+1 = σnψ , and extend the derivation with the step
〈Γn; σn〉 =⇒S 〈Γn+1; σn+1〉.

Case 3: 〈s, t〉 is a pair of an individual variable and a non-variable term. If s = x and t is a
non-variable term that does not contain x , then we proceed as in the previous case, extending the
derivation with the rule S. Note that t cannot contain x , because otherwise it would lead to the
contradiction ϕ ∈ ∅. If t = x and s is a non-variable term, then we take Γn+1 = {x ≈

?
∅

s} ∪ Γ ′
n ,

σn+1 = σn , and extend the derivation with the step 〈Γn; σn〉 =⇒O1 〈Γn+1; σn+1〉.
Case 4: 〈s, t〉 is a pair of distinct non-variable terms. Assume s = f (s1, . . . , sk) and

t = f (t1, . . . , tm). If neither s1 nor t1 is a sequence variable, then we extend the derivation
with the step 〈Γn; σn〉 =⇒� 〈Γ ′

n; σn〉, where � is either TD, PD1, or PD2. Therefore,
σn+1 = σn EX ,Q

∅
ϑ . If both s1 and t1 are sequence variables with s1 = t1, then we extend the

derivation with the step 〈Γn; σn〉 =⇒SVE1 〈Γ ′
n; σn〉 and σn+1 = σn EX ,Q

∅
ϑ . If t1 is a sequence

variable and s1 is not, then the derivation is extended with the step 〈Γn; σn〉 =⇒O2 〈Γ ′
n; σn〉

and, again, σn+1 = σn EX ,Q
∅

ϑ .
The only remaining case is when s1 ∈ VS , m > 0 and s1 /∈ V(t1). Let s1 be x . We have the

following three cases depending on t1:
If t1 is a sequence variable y, then we define substitutions ψ and ρ in three different ways

as follows. (i) If f (x)ϕ ≈∅ f (y)ϕ, then ψ = {x 7→ y} and ρ = ϕ. In this case the rule
SVE2 will be used. (ii) If there exists a nonempty sequence of terms r1, . . . , rl such that
f (xϕ) ≈∅ f (yϕ, r1, . . . , rl), then ψ = {x 7→ py, xq} and ρ = {x 7→ pr1, . . . , rlq} ∪ ϕ−,
where ϕ−

= ϕ|Dom(ϕ)\{x}. We will use the rule W1. (iii) If there exists a nonempty sequence
of terms r1, . . . , rl such that f (yϕ) ≈∅ f (xϕ, r1, . . . , rl), then ψ = {y 7→ px, yq} and

T. Kutsia / Journal of Symbolic Computation 42 (2007) 352–388 375

ρ = {y 7→ pr1, . . . , rlq} ∪ ϕ−, where ϕ−
= ϕ|Dom(ϕ)\{y}. We will use W2 in this case. Since

ϕ ∈ U∅(Γn), these three cases for ψ are the only possibilities for getting Γn+1 from Γn via the
selection strategy S. Thus, we can take σn+1 = σnψ and extend the derivation either by SVE2,
W1 or W2 rules, depending on the cases for ψ . Since ψρ = ϕ, we have σnψρ =

X ,Q
∅

ϑ and
therefore σn+1ρ =

X ,Q
∅

ϑ . Moreover, ρ is non-erasing on the setX , which implies σn+1 EX ,Q
∅

ϑ .
If t1 is an individual term, then we can proceed as in the previous case (where t1 was

a sequence variable y). The only difference is that now ψ can have only two alternatives
instead of three. Therefore, we can extend the derivation either by SVE2 or W1 rules ensuring
σn+1 = σnψ EX ,Q

∅
ϑ .

If t1 is a sequence term f (r1, . . . , rl), then we define substitutions ψ and ρ in three different
ways. (i) If f (x)ϕ ≈∅ f (t1)ϕ, then ψ = {x 7→ t1} and ρ = ϕ. We will use SVE2 here. (ii) If
there exists a nonempty sequence of terms q1, . . . , q j such that f (x)ϕ ≈∅ f (t1ϕ, q1, . . . , q j),
then ψ = {x 7→ pt1, xq} and ρ = {x 7→ pq1, . . . , q jq} ∪ ϕ−, where ϕ−

= ϕ|Dom(ϕ)\{x}. The
rule W1 will be used in this case. (iii) If f (x)ϕ = f (f1(r1, . . . , rl))ϕ and f (f (r1, . . . , rl))ϕ =

f (f1(r1, . . . , rl), f2(r1, . . . , rl))ϕ for some sequence function symbols f1 and f2, then ψ =

{x 7→ f1(r1, . . . , rl)}{ f 7→ p f1, f2q} and ρ = ϕ|Dom(ϕ)\{ f }
. In this case Sp will be used. Since

ϕ ∈ U∅(Γn), these three cases for ψ are the only possibilities for getting Γn+1 from Γn via the
selection strategy S. Thus, we can take σn+1 = σnψ and get Γn+1 from Γn either by SVE2, W1
or Sp rules, depending on the case for ψ . Since ψρ = ϕ, we have σnψρ =

X ,Q
∅

ϑ and therefore
σn+1ρ =

X ,Q
∅

ϑ . Moreover, ρ is non-erasing on the set X , which implies that σn+1 EX ,Q
∅

ϑ .
Hence, Case 4 is proved.

Since ϑ is non-erasing onX , none of the cases above involves the projection rule. This implies
that the derivation constructed consists of basic transformation (BT) steps only. This concludes
Step 1 of the proof.

Step 2: Termination. We have to show that the derivation constructed terminates with success.
We define a complexity measure (with respect to a given substitution and a set of variables) on
systems as a 7-tuple of integers, ordered by the lexicographic ordering on tuples of integers as
follows: the tuple 〈m1,m2,m3,m4,m5,m6,m7〉 is a complexity measure of a system 〈∆; σ 〉

with respect to a substitution λ and a set of variables Y , if

m1 = the number of distinct variables in ∆;
m2 = Dif (Y, λ, σ);
m3 = the number of symbols in ∆;
m4 = the number of occurrences of sequence function symbols in ∆;
m5 = the number of subterms in ∆ of the form f (s1, . . . , sn), where s1 is not a sequence

term;
m6 = the number of equations in ∆ of the form t ≈

?
∅

x , where t is not an individual
variable;

m7 = the number of equations in ∆ that have the form f (s, s1, . . . , sn) ≈
?
∅

f (x, t1, . . . , tm), where s is not a sequence variable.

All these numbers except m2 are, indeed, natural numbers. As for m2, depending on λ and σ , it
can also be negative. But for each substitution σi in the derivation constructed above, and for the
setX = V(Γ), we haveRan(σi) ⊆ X because σ1 = ε and no rule in I introduces a new variable.
Therefore, by Lemma 48 we have Dif (X , ϑ, σi) ≥ 0 for each i , i.e., m2 is a natural number for
each 〈Γi ; σi 〉. Thus, the ordering on complexity measures of systems (with respect to ϑ and X)
in the derivation is well-founded. Then, each step in the derivation strictly reduces the complexity

376 T. Kutsia / Journal of Symbolic Computation 42 (2007) 352–388

measure: T and SVE1 do not increase m1 and m2 and decrease m3. O1 decreases m6 and does
not increase the others. O2 decreases m7 and does not increase the others. S, SVE2, and Sp
decrease m1. TD does not increase m1 and m2 and decreases m3. PD1 does not increase m1, m2,
m3, and m4 and decreases m5. PD2 does not increase m1, m2, and m3 and decreases m4. W1
and W2 do not increase m1 and decrease m2. Since the case with W1 and W2 is not as obvious
as with the other rules, we show the details for W1: Let the corresponding step in the derivation
be 〈Γi ; σi 〉 =⇒W1 〈Γi+1; σi+1〉, where Γi = { f (x, s1, . . . , sn) ≈

?
∅

f (t, t1, . . . , tm)} ∪ Γ ′

i ,
Γi+1 = { f (x, s1ϕ, . . . , snϕ) ≈

?
∅

f (t1ϕ, . . . , tmϕ)} ∪ Γ ′

i ϕ and σi+1 = σiϕ, with x /∈ VS(t) and
ϕ = {x 7→ pt, xq}. It is clear that the step does not enlarge the number of distinct variables
in the systems. Moreover, x ∈ X , because x ∈ VS(Γi) and VS(Γi) ⊆ X . (The last inclusion
follows from the fact that no rule in the inference system I introduces a new variable.) For
all y ∈ X \ {x} we have len(yσi+1) ≥ len(yσi). As for x itself, if x ∈ VDom(σi), then
x ∈ {xσi } (otherwise it would have been impossible to have x in VS(Γi+1)) and therefore
len(xσi+1) > len(xσi). If x /∈ VDom(σi), then len(xσi+1) = 2 > 1 = len(xσi). This means
that Len(X , σi+1) > Len(X , σi), i.e., Dif (X , ϑ, σi) > Dif (X , ϑ, σi+1).

Hence, the derivation terminates. Let 〈Γk, σk〉 be the last system in the derivation. Then, on
the one hand, σk EX ,Q

∅
ϑ . On the other hand, Γk = ∅ (otherwise we could make another step),

which finishes the proof of the lemma. �

Lemma 50. Let Γ be a unification problem, X = V(Γ), Q = FS(Γ), and ϑ ∈ U∅(Γ). Let S
be a selection strategy. If ϑ is erasing on X , then there exists a derivation via S of the form
〈Γ0; σ0〉 =⇒P 〈Γ1; σ1〉 =⇒

+

BT 〈∅; σn〉 with Γ0 = Γ and σ0 = ε such that σn EX ,Q
∅

ϑ .

Proof. Assume x1, . . . , xk ∈ X , k > 0, are all the variables in X that ϑ maps to the empty
sequence. Let σ1 = {x1 7→ pq, . . . , xk 7→ pq}, Γ1 = Γ0σ1, and make the projection
rule the first step of derivation: 〈Γ0; σ0〉 =⇒P 〈Γ1; σ1〉. We have σ1σ1 = σ1. Let ϕ be
ϑ |Dom(ϑ)\Dom(σ1). Then ϑ = σ1ϕ = σ1σ1ϕ ∈ U∅(Γ0). Therefore, σ1ϕ ∈ U∅(Γ0σ1), i.e.,
ϑ ∈ U∅(Γ1). Moreover, ϑ is non-erasing on V(Γ1). Then, by Lemma 49, there exists a derivation
via S 〈∆1; δ1〉 =⇒

+

BT 〈∅; δn〉 such that ∆1 = Γ1, δ1 = ε, and δn EX1,Q1
∅

ϑ , where X1 = V(Γ1)

and Q1 = FS(Γ1). Hence, there exists a substitution ψ that is non-erasing on X1 such that
δnψ =

X1,Q1
∅

ϑ . Since Q1 = Q, we have, in fact, δnψ =
X1,Q
∅

ϑ . Moreover, VDom(δn) ⊆ X1
and Ran(δn) ⊆ X1 since the rules in I do not introduce new variables. From Ran(δn) ⊆ X1
we can assume that ψ is non-erasing on any finite superset of X1 and in particular, on X . From
VDom(δn) ⊆ X1 we have σ1δn = σ1 ∪ δn and, finally, σ1δnψ =

X ,Q
∅

ϑ .
For all i ≥ 1, if 〈∆i+1; δi+1〉 is obtained from 〈∆i ; δi 〉 by a rule of I, then 〈∆i+1; σ1δi+1〉

can be obtained from 〈∆i ; σ1δi 〉 by the same rule. Thus, taking Γi = ∆i and σi = σ1δi for all
1 < i ≤ n, we get the derivation 〈Γ ; ε〉 =⇒P 〈Γ1; σ1〉 =⇒BT 〈Γ2; σ2〉 =⇒BT · · · =⇒BT
〈∅; σn〉 such that σn EX ,Q

∅
ϑ . �

From Theorem 46, Lemmas 49 and 50, and the fact that EX ,QE ⊆≤·
X ,Q
E , by Definitions 38 and 16

we get the completeness theorem:

Theorem 51 (Completeness of U). Let Γ be a general syntactic sequence unification problem.
Then SolU(Γ) is a complete set of solutions of Γ .

T. Kutsia / Journal of Symbolic Computation 42 (2007) 352–388 377

4.3. Almost minimality

The solution set SolU(Γ), in general, is not minimal with respect to V(Γ) and FS(Γ). Just
consider Γ = { f (x) ≈

?
∅

f (y)}: We have SolU(Γ) = {{x 7→ y}, {x 7→ pq, y 7→ pq}}. However,
it can be shown that SolU(Γ) is almost minimal with respect to V(Γ) and FS(Γ). In fact, we
will prove a stronger statement: SolU(Γ) is almost disjoint with respect to V(Γ) and FS(Γ).

Before proceeding we need to establish a few notational conventions. We denote by
BSub(Γ ,Eq) the set of substitutions obtained by performing a basic transformation step on a
general syntactic sequence unification problem Γ = {Eq} ∪ Γ ′ with Eq as the selected equation:
BSub(Γ ,Eq) = {δ | 〈{Eq} ∪ Γ ′

; ε〉 =⇒BT 〈∆; δ〉 for some ∆}. By Proj(Γ) we denote
the set of projecting substitutions {π | 〈Γ ; ε〉 =⇒P 〈Γπ; π〉}. Finally, Sub(Γ ,Eq) denotes
Proj(Γ) ∪ BSub(Γ ,Eq).

To prove that SolU(Γ) is almost disjoint with respect to V(Γ) and FS(Γ) we will show that
for any Eq ∈ Γ , the set Sub(Γ ,Eq) is almost disjoint with respect to the sets V(Γ) and FS(Γ),
and preserves almost disjointness.

Lemma 52. Let Γ be a unification problem and let X = V(Γ) and Q = FS(Γ). Then Proj(Γ)
is almost disjoint with respect to X and Q.

Proof. Assume by contradiction that Proj(Γ) is not almost disjoint. Then there exist σ, ϑ ∈

Proj(Γ), σ 6= ϑ , and a ϕ such that σ EX ,Q
∅

ϕ and ϑ EX ,Q
∅

ϕ. Since σ 6= ϑ , we assume without
loss of generality that there exists x ∈ X such that x 7→ pq ∈ ϑ \ σ . But then x 7→ pq ∈ ϕ,
and therefore x 7→ pq ∈ δ for any δ such that σδ =

X ,Q
∅

ϕ. This contradicts the fact that
σ EX ,Q

∅
ϕ. �

Lemma 53. Let Γ be a unification problem, Eq be an equation in Γ , and let X = V(Γ)
and Q = FS(Γ). Then Sub(Γ ,Eq) is almost disjoint with respect to X and Q if and only if
BSub(Γ ,Eq) is almost disjoint with respect to X and Q.

Proof. (⇒) Since Sub(Γ ,Eq) is almost disjoint with respect to X and Q, any subset of
Sub(Γ ,Eq) is almost disjoint with respect to X and Q.

(⇐) Since, by the assumption and Lemma 52, BSub(Γ ,Eq) and Proj(Γ) are almost disjoint
with respect to X and Q, what remains to show is that no σ ∈ BSub(Γ ,Eq) and ϑ ∈ Proj(Γ)
can have a common strong ∅-instance on X and Q. Assume by contradiction that there exists
ϕ such that σ EX ,Q

∅
ϕ and ϑ EX ,Q

∅
ϕ. Then there exists x ∈ X such that x 7→ pq ∈ ϑ and

x 7→ pq /∈ σ . But then x 7→ pq ∈ ϕ, and therefore x 7→ pq ∈ δ for any δ such that σδ =
X ,Q
∅

ϕ.
This contradicts the fact that σ EX ,Q

∅
ϕ. �

Lemma 54. Let Γ be a unification problem, Eq be an equation in Γ , and let X = V(Γ) and
Q = FS(Γ). Then BSub(Γ ,Eq) is almost disjoint with respect to X and Q.

Proof. We consider only the cases when BSub(Γ ,Eq) contains more than one element.
(Otherwise the lemma is trivial.) This leads to assuming that Eq has a form { f (s, s1, . . . , sn) ≈

?
∅

f (t, t1, . . . , tm)}, where s is a sequence variable and t is a term different from s. Depending on
t , we have the following two cases:

Case 1. Let s = x and t = y. Then BSub(Γ ,Eq) = {σ1, σ2, σ3}, where σ1 = {x 7→ y},
σ2 = {x 7→ py, xq}, and σ3 = {y 7→ px, yq}. Assume by contradiction that BSub(Γ ,Eq) is not
almost disjoint with respect to X and Q. Then there must exist i and j with 1 ≤ i < j ≤ 3 such

378 T. Kutsia / Journal of Symbolic Computation 42 (2007) 352–388

that σi and σ j have a common strong instance, i.e., there exist ϑ and ϕ such that σiϑ =
X ,Q
∅

σ jϕ,
and ϑ and ϕ are non-erasing on X .

Assume that i = 1 and j = 2. Then we have xσ1ϑ = yϑ , xσ2ϕ = pyϕ, xϕq, yσ1ϑ = yϑ ,
yσ2ϕ = yϕ. This implies that xϕ = pq, i.e., x 7→ pq ∈ ϕ, but contradicts the fact that ϕ is
non-erasing on X .

Assume that i = 1 and j = 3. Then xσ1ϑ = yϑ , xσ3ϕ = xϕ, yσ1ϑ = yϑ , yσ3ϕ =

pxϕ, yϕq. This implies that yϕ = pq, i.e., y 7→ pq ∈ ϕ, but contradicts the fact that ϕ is
non-erasing on X .

Assume that i = 2 and j = 3. Then xσ2ϑ = pyϑ, xϑq, xσ3ϕ = xϕ, yσ2ϑ = yϑ ,
yσ3ϕ = pxϕ, yϕq. This implies that yϕ = pq and xϑ = pq, i.e., y 7→ pq ∈ ϕ and x 7→ pq ∈ ϑ ,
but contradicts the fact that ϕ and ϑ are non-erasing on X . Hence, in Case 1 BSub(Γ ,Eq) is
almost disjoint with respect to X and Q.

Case 2. If s occurs in t , then BSub(Γ ,Eq) = ∅ is trivially almost disjoint. Otherwise,
if t is not a sequence term, we can proceed like for Case 1, having only two elements in
BSub(Γ ,Eq). If t is a non-variable sequence term, assume that s = x and t = f (r1, . . . , rk)

for k ≥ 0. Then BSub(Γ ,Eq) = {σ1, σ2, σ3}, where σ1 = {x 7→ f (r1, . . . , rk)}, σ2 = {x 7→

p f (r1, . . . , rk), xq}, and σ3 = {x 7→ f1(r1, . . . , rk)}{ f 7→ p f1, f2q}. The substitutions σ1
and σ2 cannot have a common strong instance. This can be shown in the same way as in the case
i = 1, j = 2 above. The substitutions σ1 and σ3, and also σ2 and σ3 cannot have even a common
instance, because f2 cannot be eliminated from σ3. Hence, BSub(Γ ,Eq) is almost disjoint with
respect to X and Q. �

Lemmas 52–54 imply almost disjointness of Sub(Γ ,Eq):

Lemma 55. Let Γ be a unification problem, Eq be an equation in Γ , and let X = V(Γ) and
Q = FS(Γ). Then Sub(Γ ,Eq) is almost disjoint with respect to X and Q.

Now we show that substitutions from Sub(Γ ,Eq) preserve almost disjointness. First, we prove
two auxiliary lemmata.

Lemma 56. Let Γ be a unification problem and let X = V(Γ) and Q = FS(Γ). Then every
σ ∈ Proj(Γ) is almost-disjointness preserving with respect to X and Q.

Proof. Let ϑ1 and ϑ2 be two substitutions such that {ϑ1, ϑ2} is almost disjoint with respect
to the set of variables ∪v∈X V(vσ) = X \ VDom(σ) and the set of sequence function symbols
∪ f ∈Q FS(f σ) = Q. Assume by contradiction that {σϑ1, σϑ2} is not almost disjoint with respect

to X and Q. Then there exist ϕ1 and ϕ2, both non-erasing on X , such that σϑ1ϕ1 =
X ,Q
∅

σϑ2ϕ2.

But then ϑ1ϕ1 =
X−,Q
∅

ϑ2ϕ2, where X−
= X \ VDom(σ), and this contradicts the fact that

{ϑ1, ϑ2} is almost disjoint with respect to X− and Q. �

Lemma 57. Let Γ be a unification problem, Eq be an equation in Γ , and let X = V(Γ) and
Q = FS(Γ). Then every σ ∈ BSub(Γ ,Eq) is almost-disjointness preserving with respect to X
and Q.

Proof. We prove the lemma by case distinction on the basic transformation rules applicable to
Γ where Eq is the selected equation. For the rules T, O1, O2, TD, PD1, PD2, and SVE1 the
set BSub(Γ ,Eq) consist of ε only and, therefore, the lemma trivially holds. The cases with the
rules S, SVE2, W1, W2, and Sp are considered below.

T. Kutsia / Journal of Symbolic Computation 42 (2007) 352–388 379

S: We have Eq = {x ≈
?
∅

t}, x /∈ V(t), and σ = {x 7→ t}. Moreover, ∪v∈X V(vσ) = X \ {x}

and ∪ f ∈Q FS(f σ) = Q. Let ϑ1 and ϑ2 be two substitutions such that {ϑ1, ϑ2} is almost disjoint
with respect to X \ {x} and Q. We have to show that {σϑ1, σϑ2} is almost disjoint with respect
to X andQ. Assume by contradiction that it is not. Then there exist substitutions ϕ1 and ϕ2 such
that σϑ1ϕ1 =

X ,Q
∅

σϑ2ϕ2. This implies that vσϑ1ϕ1 = vσϑ2ϕ2 for all v ∈ X \ {x}. But since
vσ = v for all v ∈ X \ {x}, we get vϑ1ϕ1 = vϑ2ϕ2 for all v ∈ X \ {x}, which contradicts almost
disjointness of {ϑ1, ϑ2} with respect to X \ {x} and Q.

SVE2: We have Eq = { f (x, s1, . . . , sn) ≈
?
∅

f (t, t1, . . . , tm)} with x /∈ VS(t), and σ = {x 7→

t}. We can proceed here in the same way as for S above.
W1: We have Eq = { f (x, s1, . . . , sn) ≈

?
∅

f (t, t1, . . . , tm)} with x /∈ VS(t), and σ = {x 7→

pt, xq}. Assume t is an individual term. (The case when t is a sequence variable can be proved
like for W2, and the case when t is a non-variable sequence term can be proved like for Sp; see
below.) Let ϑ1 and ϑ2 be two substitutions such that {ϑ1, ϑ2} is almost disjoint with respect to
∪v∈X V(vσ) = X and ∪ f ∈Q FS(f σ) = Q and assume by contradiction that {σϑ1, σϑ2} is not.

Then there exist ϕ1 and ϕ2, both non-erasing on X , such that σϑ1ϕ1 =
X ,Q
∅

σϑ2ϕ2. But then
ϑ1ϕ1 =

X ,Q
∅

ϑ2ϕ2, which contradicts almost disjointness of {ϑ1, ϑ2}.
W2: We have Eq = { f (x, s1, . . . , sn) ≈

?
∅

f (y, t1, . . . , tm)} and σ = {y 7→ px, yq}. Let ϑ1
and ϑ2 be two substitutions such that {ϑ1, ϑ2} is almost disjoint with respect to ∪v∈X V(vσ) =

X and ∪ f ∈Q FS(f σ) = Q and assume by contradiction that {σϑ1, σϑ2} is not. Then there

exist ϕ1 and ϕ2, both non-erasing on X , such that σϑ1ϕ1 =
X ,Q
∅

σϑ2ϕ2. This implies, in
particular, that xϑ1ϕ1 = xϑ2ϕ2 (since xσ = x) and yϑ1ϕ1 = yϑ2ϕ2 (following from the
equalities yσϑ1ϕ1 = yσ2ϑ2ϕ2, yσϑ1ϕ1 = pxϑ1ϕ1, yϑ1ϕ1q, yσ2ϑ2ϕ2 = pxϑ2ϕ2, yϑ2ϕ2q, and
xϑ1ϕ1 = xϑ2ϕ2). But then ϑ1ϕ1 =

X ,Q
∅

ϑ2ϕ2, which contradicts almost disjointness of {ϑ1, ϑ2}.
Sp: We have Eq = { f (x, s1, . . . , sn) ≈

?
∅

f (f1(r1, . . . , rk), t1, . . . , tm)}, x /∈

VS(f1(r1, . . . , rk)), and σ = {x 7→ f1(r1, . . . , rk)}{ f 7→ p f1, f2q}. Let ϑ1 and ϑ2 be two
substitutions such that {ϑ1, ϑ2} is almost disjoint with respect to ∪v∈X V(vσ) = X \ {x}

and ∪ f ∈Q FS(f σ) = Q ∪ { f1, f2} \ { f }. Assume by contradiction that {σϑ1, σϑ2} is not
almost disjoint with respect to X and Q. Then there exist ϕ1 and ϕ2, both non-erasing on
X , such that σϑ1ϕ1 =

X ,Q
∅

σϑ2ϕ2. But then ϑ1ϕ1 =
X ′,Q′

∅
ϑ2ϕ2, where X ′

= X \ {x} and
Q′

= Q ∪ { f1, f2} \ { f }, which contradicts the fact that {ϑ1, ϑ2} is almost disjoint with respect
to X \ {x} and Q ∪ { f1, f2} \ { f }. �

Lemmas 56 and 57 imply that Sub(Γ ,Eq) preserves almost disjointness:

Lemma 58. Let Γ be a unification problem and Eq be an equation in Γ . Then every substitution
in Sub(Γ ,Eq) is almost-disjointness preserving with respect to V(Γ) and FS(Γ).

We need one more technical result:

Lemma 59. Let σ1 and σ2 be two substitutions such that {σ1, σ2} is almost disjoint with respect
to X and Q such that Ran(σ1) ⊆ X and Ran(σ2) ⊆ X . Let ϑ1 and ϑ2 be two non-erasing
substitutions on X with Ran(ϑ1) ⊆ X and Ran(ϑ2) ⊆ X . Then {σ1ϑ1, σ2ϑ2} is almost disjoint
with respect to X and Q.

Proof. Assume by contradiction that {σ1ϑ1, σ2ϑ2} is not almost disjoint with respect to X and
Q. Then there exist substitutions ϕ1 and ϕ2, both non-erasing on X , such that σ1ϑ1ϕ1 =

X ,Q
∅

380 T. Kutsia / Journal of Symbolic Computation 42 (2007) 352–388

σ2ϑ2ϕ2. But this contradicts the fact that {σ1, σ2} is almost disjoint with respect to X and Q,
because ϑ1ϕ1 and ϑ2ϕ2 are non-erasing on X . �

Now we can prove the almost disjointness theorem:

Theorem 60 (Almost Disjointness). Let Γ be a unification problem and let X = V(Γ) and
Q = FS(Γ). Then SolU(Γ) is almost disjoint with respect to X and Q.

Proof. Let σ1, σ2 be two substitutions from SolU(Γ) and let

〈Γ , ε〉 =⇒ 〈Γ1, γ1〉 =⇒ · · · =⇒ 〈Γn, γ1 · · · γn〉 =⇒

=⇒ 〈∆1, δ1〉 =⇒ · · · =⇒ 〈∆m, δm〉 =⇒ 〈∅, σ1〉,

〈Γ , ε〉 =⇒ 〈Γ1, γ1〉 =⇒ · · · =⇒ 〈Γn, γ1 · · · γn〉 =⇒

=⇒ 〈Φ1, ϕ1〉 =⇒ · · · =⇒ 〈Φk, ϕk〉 =⇒ 〈∅, σ2〉

be two derivations in U, leading respectively to 〈∅, σ1〉 and 〈∅, σ2〉 and having the common initial
part 〈Γ , ε〉 =⇒ 〈Γ1, γ1〉 =⇒ · · · =⇒ 〈Γn, γ1 · · · γn〉. Let γ0 = ε. We prove the theorem in three
steps.

Step 1. In the first step we show that for any set of substitutions {ϑ1, ϑ2} that is almost disjoint
with respect to V(Γn) and FS(Γn), the set {γ0γ1 · · · γnϑ1, γ0γ1 · · · γnϑ2} is almost disjoint with
respect to X and Q. We use induction on n. For n = 0 the claim is trivial. As the induction
hypothesis, assume that for any set of substitutions {ϑ1, ϑ2} that is almost disjoint with respect to
V(Γn0) and FS(Γn0), n0 ≥ 0, the set {γ0γ1 · · · γn0ϑ1, γ0γ1 · · · γn0ϑ2} is almost disjoint with
respect to X and Q. Now assume that {ϑ1, ϑ2} is almost disjoint with respect to V(Γn0+1)

and FS(Γn0+1). Since V(Γn0+1) ⊆ V(Γn0γn0+1) = ∪v∈V(Γn0)
V(vγn0+1) and FS(Γn0+1) ⊆

FS(Γn0γn0+1) = ∪ f ∈FS(Γn0)
FS(f γn0+1), we, in fact, have that the set {ϑ1, ϑ2} is almost

disjoint with respect to ∪v∈V(Γn0)
V(vγn0+1) and ∪ f ∈FS(Γn0)

FS(f γn0+1). By Lemma 58, the
substitution γn0+1 is almost-disjointness preserving with respect to V(Γn0) andFS(Γn0), because
γn0+1 ∈ Sub(Γn0 ,Eq) for some Eq ∈ Γn0 . Therefore, by Definition 12, {γn0+1ϑ1, γn0+1ϑ2} is
almost disjoint with respect to V(Γn0) and FS(Γn0). Instantiating the induction hypothesis with
{γn0+1ϑ1, γn0+1ϑ2}, we obtain that {γ0γ1 · · · γn0γn0+1ϑ1, γ0γ1 · · · γn0γn0+1ϑ2} is almost disjoint
with respect to X and Q. This proves the first step.

Step 2. Now we will show that the set {δ1 · · · δm, ϕ1 · · ·ϕk} is almost disjoint with respect to
V(Γn) andFS(Γn). The substitutions δ1 and ϕ1 belong to Sub(Γn,Eq) for some Eq ∈ Γn and, by
Lemma 55, the set {δ1, ϕ1} is almost disjoint with respect to V(Γn) andFS(Γn). The substitutions
δ2 · · · δm and ϕ2 · · ·ϕk are non-erasing on V(Γn). Moreover, Ran(δ1) ⊆ V(Γn), Ran(ϕ1) ⊆

V(Γn),Ran(δ2 · · · δm) ⊆ V(Γn), andRan(ϕ2 · · ·ϕk) ⊆ V(Γn). Therefore, by Lemma 59, the set
{δ1 · · · δm, ϕ1 · · ·ϕk} is almost disjoint with respect to the sets V(Γn) and FS(Γn).

Step 3. From the previous two steps we conclude that the set {γ0 · · · γnδ1 · · · δm,

γ0 · · · γnϕ1 · · ·ϕk} is almost disjoint with respect to X and Q. Since σ1 = γ0 · · · γnδ1 · · · δm
and σ2 = γ0 · · · γnϕ1 · · ·ϕk , we obtain that {σ1, σ2} (and hence an arbitrary two-element subset
of SolU(Γ)) is almost disjoint with respect to X and Q. Therefore, by Definition 10, SolU(Γ) is
almost disjoint with respect to X and Q. �

Theorems 51 and 60, and Proposition 11 imply the main result about general syntactic sequence
unification:

Theorem 61 (Main Theorem). Let Γ be a general syntactic sequence unification problem. Then
SolU(Γ) = amcu∅(Γ).

T. Kutsia / Journal of Symbolic Computation 42 (2007) 352–388 381

The Main Theorem implies that every general syntactic sequence unification problem has an
almost minimal complete set of unifiers. Then, by Proposition 17, every such problem has a
minimal complete set of unifiers. Since for some problems (e.g., for { f (a, x) ≈

?
∅

f (x, a)}) this
set is infinite, we obtain the following result about the unification type:

Theorem 62 (Unification Type). The unification type for general syntactic sequence unification
is infinitary.

5. “Lighter” version of the unification procedure

Application of the decision algorithm D can be a costly operation. The DS step in D invokes
the NP-hard decidability test for word equations with linear constant restrictions. Below we
describe a “lighter” version of the unification procedure that does not call the decision algorithm.
It uses the inference system I extended with rules to detect some (but not all) failing cases. We
denote the extended inference system by IExt. The rules that detect failure are the following ones:

IVOC: Individual Variable Occurrence Check
〈{x ≈

?
∅

t} ∪ Γ ′
; σ 〉 =⇒ ⊥, if x 6= t and x ∈ VI (t).

SC1: Symbol Clash 1
〈{ f (s1, . . . , sn) ≈

?
∅

g(t1, . . . , tm)} ∪ Γ ′
; σ 〉 =⇒ ⊥, if f 6= g.

SC2: Symbol Clash 2
〈{ f (s, s1, . . . , sn) ≈

?
∅

f (t, t1, . . . , tm)} ∪ Γ ′
; σ 〉 =⇒ ⊥,

if Head(s),Head(t) ∈ FS and Head(s) 6= Head(t).

AD: Arity Disagreement
〈{ f (s1, . . . , sn) ≈

?
∅

f (t1, . . . , tm)} ∪ Γ ′
; σ 〉 =⇒ ⊥,

if n 6= m and si /∈ VS and t j /∈ VS for all 1 ≤ i ≤ n and for all 1 ≤ j ≤ m.

E1: Empty 1
〈{ f () ≈

?
∅

f (t, t1, . . . , tn)} ∪ Γ ′
; σ 〉 =⇒ ⊥.

E2: Empty 2
〈{ f (s, s1, . . . , sn) ≈

?
∅

f ()} ∪ Γ ′
; σ 〉 =⇒ ⊥.

SVOC: Sequence Variable Occurrence Check
〈{ f (x, s1, . . . , sn) ≈

?
∅

f (t, t1, . . . , tm)} ∪ Γ ′
; σ 〉 =⇒ ⊥,

if x 6= t and x ∈ VS(t).

PF: Prefix Failure
〈{ f (s, s1, . . . , sn) ≈

?
∅

f (t, t1, . . . , tm)} ∪ Γ ′
; σ 〉 =⇒ ⊥,

if s ∈ T −

S (F,V) and t ∈ TI (F,V), or s ∈ TI (F,V) and t ∈ T −

S (F,V), where
T −

S (F,V) = TS(F,V) \ VS .
Hence, IExt = I ∪ {IVOC,SC1,SC2,AD,E1,E2,SVOC,PF}.

One way of refining the unification procedure U (see Definition 38) is to use IExt instead of
I and to retain the decision algorithm D. In this case instead of immediately applying D on

382 T. Kutsia / Journal of Symbolic Computation 42 (2007) 352–388

a unification problem in a unification tree first the failure detection rules of IExt are tried. If
they cannot detect failure, then the decision algorithm is used to decide whether the problem is
solvable or not. In this way we can tailor the failure detection rules in U as a pre-filter before
applying the costly decision algorithm.

Another way is to use IExt instead of I and omit D completely. We call the unification
procedure obtained from U in this way the “light” unification procedure and denote it by ULight.
Obviously, soundness and completeness theorems hold for ULight as well. However, there are
cases when U stops with failure, but ULight can go on forever. This is because the failure rules in
IExt do not detect all failing cases, even if a fair selection strategy is used. For instance, none of
them apply to an unsolvable unification problem { f (x) ≈

?
∅

f (a, x)}.

6. Termination without the decision algorithm

In this section we consider three special cases when omitting the application of the decision
algorithm D does not lead to nontermination.

6.1. Equations in unification problems have at least one ground side

Unification procedure ULight terminates if equations in the unification problem have at least
one ground side. It can be proved by showing that every rule in the inference system IExt strictly
decreases a complexity measure, a 5-tuple of natural numbers 〈n1, n2, n3, n4, n5〉, associated
with a system 〈∆, σ 〉 where:

n1 = the number of distinct variables in ∆;
n2 = the total number of symbols in the ground sides of equations in ∆;
n3 = the number of subterms in ∆ of the form f (s1, . . . , sn), where s1 is not a sequence

term;
n4 = the number of equations in ∆ of the form t ≈

?
∅

x , where t is not an individual
variable;

n5 = the number of equations in ∆ that have the form f (s, s1, . . . , sn) ≈
?
∅

f (x, t1, . . . , tm), where s is not a sequence variable,

and measures are compared lexicographically.
This result, in particular, implies that general syntactic matching with sequence variables and

sequence function symbols in finitary.

6.2. Unification problems with linear shallow sequence variables

Unification problems with linear shallow sequence variables are problems where every
sequence variable occurs only once and the occurrence happens at the top level, like, for
instance, in { f (x1, x, y1) ≈

?
∅

f (g(x), g(h(y))), f (x2, x) ≈
?
∅

f (y2, g(h(a)))}. The problems
like { f (a, x) ≈

?
∅

x, f (x, a) ≈
?
∅

x} or { f (x, x) ≈
?
∅

f (g(a, x), g(x, a))} do not fall into this class.
Although the restriction might look too strong, it is common in formalizing and implementing
sequent calculi (Paulson, 1990).

Termination of ULight for unification problems with linear shallow sequence variables is not
hard to establish. We can consider a complexity measure for a system 〈∆, σ 〉, a 6-tuple of natural
numbers 〈n1, n2, n3, n4, n5, n6〉, where

n1 = the number of distinct variables in ∆;

T. Kutsia / Journal of Symbolic Computation 42 (2007) 352–388 383

n2 = the number of symbols in ∆;
n3 = the number of occurrences of sequence function symbols in ∆;
n4 = the number of subterms in ∆ of the form f (s1, . . . , sn), where s1 is not a sequence

term;
n5 = the number of equations in ∆ of the form t ≈

?
∅

x , where t is not an individual
variable;

n6 = the number of equations in ∆ that have the form f (s, s1, . . . , sn) ≈
?
∅

f (x, t1, . . . , tm), where s is not a sequence variable.

Measures are compared lexicographically. It is easy to show that each rule in the inference system
IExt strictly decreases the measure, and it implies termination.

6.3. Sequence variables occur only in the last argument positions in terms

This is another interesting case. As it turns out, it makes unification unitary and application of
the decision algorithm obsolete.

We start with modifying the inference system. First, we introduce rules that take into account
the occurrence restriction for sequence variables. These are the following:

E1m: Empty 1, modified
〈{ f () ≈

?
∅

f (t, t1, . . . , tn)}; σ 〉 =⇒ ⊥, if t /∈ VS .

E2m: Empty 2, modified
〈{ f (s, s1, . . . , sn) ≈

?
∅

f ()}; σ 〉 =⇒ ⊥, if s /∈ VS .

SVOCm: Sequence Variable Occurrence Check, modified
〈{ f (x) ≈

?
∅

f (t, t1, . . . , tm)}; σ 〉 =⇒ ⊥,

if x 6= t and x ∈ VS(t, t1, . . . , tm).

SVD1: Sequence Variable Deletion 1
〈{ f (x) ≈

?
∅

f ()}; σ 〉 =⇒ 〈∅; σϑ〉, where ϑ = {x 7→ pq}.

SVD2: Sequence Variable Deletion 2
〈{ f () ≈

?
∅

f (x)}; σ 〉 =⇒ 〈∅; σϑ〉, where ϑ = {x 7→ pq}.

SVEm: Sequence Variable Elimination, modified
〈{ f (x) ≈

?
∅

f (t, t1, . . . , tm)}; σ 〉 =⇒ 〈∅; σϑ〉,

if x /∈ VS(t, t1, . . . , tm) and ϑ = {x 7→ pt, t1, . . . , tmq}.
We define the modified inference system IMod as the set of inference rules:

IMod = {T,O1,O2,S,TD,PD1,PD2, IVOC,SC1,SC2,AD,PF,
E1m,E2m,SVOCm,SD1,SD2,SVEm}.

The modified unification procedure UMod is obtained from ULight by replacing the inference
system ILight by IMod.

Remark 63. Note that only one rule in IMod is applicable to a selected equation. No rules can
be applied on ⊥ and 〈∅; σ 〉. Hence, if Γ is unifiable, then the solution set SolUMod(Γ) generated
by UMod is a singleton.

384 T. Kutsia / Journal of Symbolic Computation 42 (2007) 352–388

Termination of any transformation sequence in IMod can be shown in the standard way.
First, we define a complexity measure for a system 〈∆, σ 〉 as a 6-tuple of natural numbers
〈n1, n2, n3, n4, n5, n6〉, where

n1 = the number of distinct variables in ∆;
n2 = the number of symbols in ∆;
n3 = the number of occurrences of sequence function symbols in ∆;
n4 = the number of subterms in ∆ of the form f (s1, . . . , sn), where s1 is not a sequence

term;
n5 = the number of equations in ∆ of the form t ≈

?
∅

x , where t is not an individual
variable;

n6 = the number of equations in ∆ of the form f (s1, . . . , sn) ≈
?
∅

f (x), where n ≥ 0 and
s1 is not a sequence variable.

Measures are compared lexicographically. Then, we prove that each rule in IMod reduces the
complexity measure. This is pretty straightforward.

Two other important properties of UMod, soundness and completeness, can be formulated and
proved similarly to the soundness and completeness theorems for U. We do not give details of
the proofs here. Rather, we point out that completeness of UMod, together with the fact that
the solution set UMod(Γ) is a singleton for an unifiable Γ , implies that UMod calculates a most
general unifier for unification problems where sequence variables occur as the last arguments.
The unification type for this case is unitary, since any unifiable problem has a most general
unifier.

7. Implementation

We implemented the “light” unification procedure in Mathematica on the basis of a rule-
based programming system ρLog4 (Marin and Kutsia, 2003). A rule in ρLog is a specification
of a nondeterministic and partially defined computation. The system has primitive operators
for defining elementary rules and for computing with unions, compositions, reflexive–transitive
closures, rewriting, and normal forms of rules. With these tools the “light” syntactic sequence
unification procedure (with bounded depth) was implemented quite easily. Within the bounded
depth, the procedure, by default, uses the depth-first search method with backtracking provided
with ρLog. Options allow the user to modify the depth bound, use iterative deepening instead of
the depth-first method, and stop computation after obtaining a certain number of solutions.

8. Relation with order-sorted higher-order unification

Syntactic sequence unification can be considered as a special case of order-sorted higher-
order E-unification. Here we show the corresponding encoding in the framework described in
Kohlhase (1994).

We consider simply typed λ-calculus with the types i and o. The set of base sorts consists of
ind, seq, seqc, o such that the type of o is o and the type of the other sorts is i . Individual
and sequence variables are treated as first-order variables, while sequence function symbols
are encoded as second-order variables. We define a context C (a function that assigns sorts to

4 Available from http://www.score.is.tsukuba.ac.jp/∼mmarin/RhoLog/.

T. Kutsia / Journal of Symbolic Computation 42 (2007) 352–388 385

variables) such that C(x) = ind for all x ∈ VI , C(x) = seq for all x ∈ VS , C(f) = seq →

seqc for each f ∈ F lexS , and C(f) = ind → · · · → ind → seqc (with n arrows) for each
f ∈ F ixS with Ar(f) = n. Individual function symbols are treated as constants. We assign to
each f ∈ F lexI a functional sort seq → ind and to each f ∈ F ixI withAr(f) = n a functional
sort ind → · · · → ind → ind (with n arrows). We assume equality constants ≈s for every
sort s. In addition, we have two function symbols: binary pq of the sort seq → seq → seq
and a constant [] of the sort seq. Sorts are partially ordered as ind ≤ seqc and seqc ≤ seq.
The equational theory is an AU-theory, asserting associativity of pq with [] as left and right unit.
We consider unification problems for terms of the sort ind, where terms are in βη-normal form
containing no bound variables, and terms whose head is pq are flattened. For a given unification
problem in this theory, we are looking for unifiers that obey the following restrictions: If a unifier
σ binds a second-order variable f of the sort seq → seqc, then f σ = λx .pg1(x), . . . , gm(x)q.
If σ binds a second-order variable f of the sort ind → · · · → ind → seqc (with n arrows), then
f σ = λx1. . . . xn .pg1(x1, . . . , xn), . . . , gm(x1, . . . , xn)q. In both cases m > 1 and g1, . . . , gm
are fresh variables of the same sort as f .

Hence, syntactic sequence unification can be considered as order-sorted second-order AU-
unification with additional restrictions. Order-sorted higher-order syntactic unification was
investigated by Kohlhase (1994), but we are not aware of any work done on order-sorted higher-
order equational unification.

9. Related work

Solving equations involving sequence variables has applications in various fields, like
artificial intelligence, knowledge management, programming, rewriting, program schemata,
XML processing, and theorem proving. In this section we briefly review just some of the methods
related to our work. Note that in the literature flexible arity symbols are also called “variadic”,
“polyadic”, “variable arity”, “varying-arity”, or “multiple arity” symbols.

Sequence variables are part of Common Logic (Common Logic Working Group, 2003) and
SCL, a simplified version of Common Logic. These are languages designed for use in the
interchange of knowledge among disparate computer systems. Moreover, sequence variables
occur in a “concrete” instance of the Common Logic language, called Knowledge Interchange
Format, KIF (Genesereth et al., 1998) and in a simplified version of KIF, called SKIF (Hayes
and Menzel, 2001). In SKIF, sequence variables are called row variables. Hayes and Menzel
(2001) point out that unification with row variables is very difficult, because two expressions can
have infinitely many most general unifiers. They also remark that allowing row variables only
in the last argument positions guarantees that unification patterns that create the difficulties with
infinitely many most general unifiers cannot arise. Unification procedures for these languages are
not discussed.

Probably the first attempt to design and implement unification with sequence variables
(without sequence functions) was made in the MVL system (Ginsberg, 1991). The
implementation of unification was incomplete because of restricted use of the widening
technique. The restriction was imposed intentionally, for efficiency reasons. No theoretical study
of the unification algorithm of MVL, to the best of our knowledge, was undertaken.

Word equations (Siekmann, 1975; Abdulrab and Pécuchet, 1990; Jaffar, 1990; Schulz, 1993)
and associative unification (Plotkin, 1972) can be modeled by syntactic sequence unification
using constants, sequence variables, and one flexible arity function symbol. In a similar way

386 T. Kutsia / Journal of Symbolic Computation 42 (2007) 352–388

we can imitate unification for path logics closed under right identity and associativity (Schmidt,
1998).

Equations for which the length of the values of sequence variables is bounded have
finitely many solutions. This fact is used in, for instance, Prolog III (Colmerauer, 1990) and
in transformation schemata for Prolog programs (Richardson and Fuchs, 1997). In Prolog
III, a restricted form of word unification is incorporated for reasoning with lists with several
subparts of unknown length. Solving such equations is delayed until the length of those subparts
becomes known. In Richardson and Fuchs (1997), a unification algorithm with vector variables
is described. Vector variables are similar to sequence variables, but come with their possible
length attached, which makes unification finitary. The algorithm was implemented and used for
schema-based logic program transformation, but its properties have never been investigated.

Extensions of logic and functional programming, integrated in the RelFun system (Boley,
1999), permit sequence variables in the last argument positions of flexible arity symbols.
Unification for such terms is unitary. RelFun allows multiple-valued functions as well.

Implementation of first-order logic in Isabelle (Paulson, 1990) is based on sequent calculus
formulated using sequence variables (on the meta-level). Sequence meta-variables are used to
denote sequences of formulae and individual meta-variables denote single formulae. Since in
every such unification problem no sequence meta-variable occurs more than once and all of them
occur only on the top level, Isabelle, in fact, deals with a finitary case of sequence unification.

The Set-Var prover (Bledsoe and Feng, 1993) has a construct called the vector of
(Skolem) functions that resembles our sequence functions. For instance, a vector of functions
denoted by g(a, s), where s is a vector of variables, abbreviates a sequence of functions
g1(a, s), . . . , gm(a, s). However, splitting vectors of functions between variables is not allowed
in unification: such a vector of functions either entirely unifies with a variable or with another
vector of functions.

The programming language of Mathematica has a built-in pattern matching mechanism,
which supports sequence variables (represented as identifiers with “triple blanks”, e.g., x) and
flexible arity function symbols. The behavior of the matching algorithm is explained in examples
in the Mathematica book (Wolfram, 2003). Our procedure (without sequence function symbols)
can imitate this behavior. For a given matching problem, the output of the procedure would be
identical to the set of all possible matchers Mathematica matching algorithm computes. On the
other hand, when Mathematica tries to match patterns to some expression, it tries first those
matchers that assign the shortest sequences of arguments to the first triple blanks that appear in
the pattern and returns the first matcher it finds. We can simulate this behavior also, imposing
an order of choosing successors in the Projection rule, applying Sequence Variable Elimination
2 before Widening 1, and stopping the procedure whenever the first solution appears. In exactly
the same way we can model the minimal sequence matching algorithm described in (Hamana,
1997), where it was used to define rewriting with sequences and study rewriting semantics of
Mathematica/R (Buchberger, 1996). Mathematica/R is the rewriting part of the Mathematica
programming language.

Marin and Ţepeneu (2003) provided a more advanced mechanism for controlling pattern
matching with sequence variables in Mathematica. Their package Sequentica allows users to
specify the sequence variable instantiation order, and the lengths of term sequences sequence
variables can be instantiated with.

Hamada and Ida (1997) extended Mathematica symbolic computation capabilities with
higher-order lazy narrowing calculi. The extension itself did not involve sequence variables, but

T. Kutsia / Journal of Symbolic Computation 42 (2007) 352–388 387

the authors indicated that properly used sequence variables enhance clarity of programs and
emphasized the need for clear semantics of sequence variables.

Coelho and Florido (2004) developed a constraint logic programming language CLP(Flex)
over the domain of terms with sequence variables and flexible arity symbols. Constraint solving
in CLP(Flex) is based on a version of our unification procedure without sequence functions
(Kutsia, 2002b). CLP(Flex) is applied to XML processing, where XML documents are abstracted
by terms with flexible arity symbols. It gives a highly declarative model for XML processing
yielding a substantial degree of flexibility in programming.

Buchberger introduced sequence variables and sequence functions in the Theorema system
(Buchberger et al., 2000). Kutsia and Buchberger (2004) studied the meta-mathematical
implications of introducing sequence variables in predicate logic. The equational prover of
Theorema (Kutsia, 2003) supports proving by unfailing completion for unit equalities with
sequence variables in the last argument positions and proving by rewriting with unrestricted
occurrences of sequence variables. The unification procedure implemented in the prover follows
the procedure UMod described in this paper.

10. Conclusions

We proved that general unification in the free theory with individual and sequence variables
and function symbols is decidable and has the infinitary type. We developed a rule-based
unification procedure and proved its soundness, completeness, and almost minimality. The
procedure uses the decision algorithm to cut failing branches in the unification tree. A “lighter”
version of the procedure replaces the decision algorithm with extra rules for detecting failure. It is
still sound and complete, easier to implement, but for some failing cases might not terminate. We
also showed a relation between general syntactic sequence unification and order-sorted higher-
order equational unification.

Under certain restrictions sequence unification problems have finitely many solutions:
sequence variables in the last argument positions, unification problems with at least one ground
side (matching as an instance), all sequence variables on the top level with maximum one
occurrence. It would be interesting to identify more cases with finite or finitely representable
solution sets.

Acknowledgements

I thank Bruno Buchberger who introduced me to the subject, Mircea Marin for interesting
discussions, Manuel Kauers for useful LATEX macros, and the anonymous referees for helpful
comments.

References

Abdulrab, H., Pécuchet, J.-P., 1990. Solving word equations. J. Symbolic Comput. 8 (5), 499–522.
Baader, F., Schulz, K.U., 1991. General A- and AX-unification via optimized combination procedures. In: Abdulrab, H.,

Pécuchet, J.-P. (Eds.), Proc. of the 2nd Int. Workshop on Word Equations and Related Topics. In: LNCS, vol. 677.
Springer, pp. 23–42.

Baader, F., Schulz, K.U., 1996. Unification in the union of disjoint equational theories: Combining decision procedures.
J. Symbolic Comput. 21 (2), 211–244.

Baader, F., Snyder, W., 2001. Unification theory. In: Robinson, A., Voronkov, A. (Eds.), Handbook of Automated
Reasoning., vol. I. Elsevier Science, pp. 445–532 (Chapter 8).

Bledsoe, W.W., Feng, G., 1993. Set-Var. J. Automat. Reason. 11 (3), 293–314.

388 T. Kutsia / Journal of Symbolic Computation 42 (2007) 352–388

Boley, H., 1999. A Tight, Practical Integration of Relations and Functions. In: LNAI, vol. 1712. Springer.
Buchberger, B., 1996. Mathematica as a rewrite language. In: Ida, T., Ohori, A., Takeichi, M. (Eds.), Proc. of the 2nd

Fuji Int. Workshop on Functional and Logic Programming. World Scientific, Shonan Village Center, Japan, pp. 1–13.
Buchberger, B., Dupré, C., Jebelean, T., Kriftner, F., Nakagawa, K., Vasaru, D., Windsteiger, W., 2000. The Theorema

project: A progress report. In: Kerber, M., Kohlhase, M. (Eds.), Proc. of Calculemus’2000 Conference. pp. 98–113.
Coelho, J., Florido, M., 2004. CLP(Flex): Constraint logic programming applied to XML processing. In: Meersman, R.,

Tari, Z. (Eds.), On the Move to Meaningful Internet Systems 2004: CoopIS, DOA, and ODBASE (Proc. of
Confederated Int. Conferences). In: LNCS, vol. 3291. Springer, pp. 1098–1112.

Colmerauer, A., 1990. An introduction to Prolog III. Commu. ACM 33 (7), 69–91.
Common Logic Working Group, 2003. Common logic: Abstract syntax and semantics. http://cl.tamu.edu/docs/cl/1.0/cl-

1.0.pdf.
Genesereth, M.R., Petrie, C., Hinrichs, T., Hondroulis, A., Kassoff, M., Love, N., Mohsin, W., 1998. Knowledge

interchange format, draft proposed American national standard (dpANS). Tech. Rep. NCITS.T2/98-004.
http://logic.stanford.edu/kif/dpans.html.

Ginsberg, M.L., 1991. The MVL theorem proving system. SIGART Bull. 2 (3), 57–60.
Hamada, M., Ida, T., 1997. Implementation of lazy narrowing calculi in Mathematica. Technical Report 97-02, RISC.

Johannes Kepler University, Linz, Austria.
Hamana, M., 1997. Term rewriting with sequences. In: Proc. of the First Int. Theorema Workshop. Technical report

97–20, RISC. Johannes Kepler University, Linz, Austria.
Hayes, P., Menzel, C., 2001. Semantics of Knowledge Interchange Format,

http://reliant.teknowledge.com/IJCAI01/HayesMenzel-SKIF-IJCAI2001.pdf.
Jaffar, J., 1990. Minimal and complete word unification. J. ACM 37 (1), 47–85.
Kohlhase, M., 1994. A mechanization of sorted higher-order logic based on the resolution principle. Ph.D. Thesis.

Saarland University, Saarbrücken, Germany.
Kutsia, T., 2002a. Solving and proving in equational theories with sequence variables and flexible arity symbols. Ph.D.

Thesis. Johannes Kepler University, Linz, Austria.
Kutsia, T., 2002b. Unification with sequence variables and flexible arity symbols and its extension with pattern-terms.

In: Calmet, J., Benhamou, B., Caprotti, O., Henocque, L., Sorge, V. (Eds.), Artificial Intelligence, Automated
Reasoning and Symbolic Computation. (Proc. of Joint AISC’2002—Calculemus’2002 Conference). In: LNAI, vol.
2385. Springer, pp. 290–304.

Kutsia, T., 2003. Equational prover of Theorema. In: Nieuwenhuis, R. (Ed.), Proc. of the 14th Int. Conference on
Rewriting Techniques and Applications. In: LNCS, vol. 2706. Springer, pp. 367–379.

Kutsia, T., 2004. Solving equations involving sequence variables and sequence functions. In: Buchberger, B.,
Campbell, J.A. (Eds.), Artificial Intelligence and Symbolic Computation (Proc. of AISC’04 Conference). In: LNAI,
vol. 3249. Springer, pp. 157–170.

Kutsia, T., Buchberger, B., 2004. Predicate logic with sequence variables and sequence function symbols. In: Asperti, A.,
Bancerek, G., Trybulec, A. (Eds.), Proc. of the 3rd Int. Conference on Mathematical Knowledge Management.
In: LNCS, vol. 3119. Springer, pp. 205–219.

Makanin, G.S., 1977. The problem of solvability of equations in a free semigroup. Math. USSR Sbornik 32 (2), 129–198.
Marin, M., Ţepeneu, D., 2003. Programming with sequence variables: The Sequentica package. In: Mitic, P., Ramsden, P.,

Carne, J. (Eds.), Challenging the Boundaries of Symbolic Computation (Proc. of 5th Int. Mathematica Symposium).
Imperial College Press, London, pp. 17–24.

Marin, M., Kutsia, T., 2003. On the implementation of a rule-based programming system and some of its applications.
In: Konev, B., Schmidt, R. (Eds.), Proc. of the 4th Int. Workshop on the Implementation of Logics. pp. 55–68.

Paulson, L., 1990. Isabelle: The next 700 theorem provers. In: Odifreddi, P. (Ed.), Logic and Computer Science.
Academic Press, pp. 361–386.

Plotkin, G., 1972. Building in equational theories. In: Meltzer, B., Michie, D. (Eds.), Machine Intelligence, vol. 7.
Edinburgh University Press, pp. 73–90.

Richardson, J., Fuchs, N.E., 1997. Development of correct transformation schemata for Prolog programs. In: Fuchs, N.E.
(Ed.), Proc. of the 7th Int. Workshop on Logic Program Synthesis and Transformation. In: LNCS, vol. 1463. Springer,
pp. 263–281.

Robinson, J.A., 1965. A machine-oriented logic based on the resolution principle. J. ACM 12 (1), 23–41.
Schmidt, R., 1998. E-Unification for subsystems of S4. In: Nipkow, T. (Ed.), Proc. of the 9th Int. Conference on

Rewriting Techniques and Applications. In: LNCS, vol. 1379. Springer, pp. 106–120.
Schulz, K.U., 1993. Word unification and transformation of generalized equations. J. Automated Reasoning 11 (2),

149–184.
Siekmann, J., 1975. String unification. Research paper, Essex University.
Wolfram, S., 2003. The Mathematica Book, 5th edn. Wolfram Media.

