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Abstract. TLA+ is a formal language for specifying systems, including distributed algo-
rithms, that is supported by powerful verification tools. In this work we present a frame-
work for relating traces of distributed programs to high-level specifications written in
TLA+. The problem is reduced to a constrained model checking problem, realized using
the TLC model checker. Our framework consists of an API for instrumenting Java pro-
grams in order to record traces of executions, of a collection of TLA+ operators that are
used for relating those traces to specifications, and of scripts for running the model checker.
Crucially, traces only contain updates to specification variables rather than full values, and
it is not necessary to provide values for all variables. We have applied our approach to
several distributed programs, detecting discrepancies between the specifications and the
implementations in all cases. We discuss reasons for these discrepancies, how to interpret
the verdict produced by TLC, and how to take into account the results of trace validation
for implementation development.

1 Introduction

Distributed systems are at the heart of modern cloud services and they are known to be error-
prone, due to phenomena such as delays or failures of nodes and communication networks. Ap-
plying formal methods in the design and development of these systems can help increase the
confidence in their correctness and resilience. For example, the TLA+ [16] specification language
and verification tools have been successfully used in industry [20,24] for designing distributed al-
gorithms underlying modern cloud systems. TLA+ and similar specification formalisms are most
useful for describing and analyzing systems at high levels of abstraction, but do not provide
support for checking that actual implementations of these systems are correct. Although TLA+

supports a notion of refinement, formally proving a chain of refinements from a high-level design
of a distributed algorithm to an actual implementation would be a daunting task, complicated
by the fact that standard programming languages do not provide explicit control of the grain of
atomicity of the running program. In this work, we present a lightweight approach to validating
distributed programs against high-level specifications that relies on recording finite traces of pro-
gram executions and leveraging the TLA+ model checker TLC [28] for comparing those traces to
the state machine described in the TLA+ specification. Although this approach does not provide
formal correctness guarantees, even when the TLA+ specification has been extensively verified,
we have found it very useful for discovering and analyzing discrepancies between the runs of
distributed programs and their high-level specifications, including serious bugs that had gone
undetected by more traditional quality assurance techniques.

The collection of program traces relies on an instrumentation of the program in order to record
information on how program operations correspond to updates of the variables representing the
state of the TLA+ specification, and potentially indicating the corresponding transition in the
⋆ This work was partly supported by a grant from Oracle Corporation.
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specification. We have designed a Java library that facilitates this instrumentation and can be
used to produce traces in JSON format. Because the traces record the evolution of the state of
the TLA+ specification, our approach is easiest to apply when the specification exists prior to
building the implementation, the implementor is familar with it, and uses it as a blueprint when
writing the code. However, we have also used the approach in order to “reverse engineer” a TLA+

specification from an existing distributed program and better understand its operation. Trace
validation can also help ensure that the specification and implementation remain in sync over
time because it is easy to apply it again when the specification or the implementation changes.

The main problem when instrumenting a program is to identify suitable “linearization points”
at which the program completes a step that corresponds to an atomic transition of the high-level
state machine. Basic guiding principles are to log an event when shared state has been updated,
such as when sending or receiving messages, performing operations on locks or on stable data
storage. We discuss how to account for different grain of atomicity between the specification
and the implementation based on feedback from trace validation. Because data representation
generally differs between the TLA+ specification and the actual program, it may be difficult or
impractical to compute the value of a high-level variable (or its update) corresponding to the
data manipulated by the implementation. We therefore allow traces to be incomplete and only
record some information about the corresponding abstract state. We reduce the problem of trace
validation to one of constrained model checking and show how TLC can reconstruct missing
information. This leads to a tradeoff between the precision of information recorded in the trace
(and potentially of the verdict of validation) and the amount of search that TLC must perform
during model checking.

The paper is organized as follows: Section 2 provides some background on TLA+ and intro-
duces our running example, both in TLA+ and as a Java program. Our approach to instrumen-
tation is described in Section 3. In Section 4 we formalize the trace validation problem, describe
how we realized the approach using TLC, and discuss our experience with it. Section 5 discusses
related work, and Section 6 concludes the paper and presents some perspectives for future work.

2 Background

2.1 TLA+ Specifications

TLA+ [16] is a specification language based on Zermelo-Fraenkel set theory and linear-time
temporal logic that has found wide use for writing high-level specifications of concurrent and
distributed algorithms. It emphasizes the use of mathematical descriptions based on sets and
functions for specifying data structures. TLA+ is a state-based specification formalism: the state
space of a system is represented using variables, and TLA+ formulas are evaluated over behaviors,
i.e., sequences of states that assign values to variables. Algorithms are described as state machines
whose specifications are written in the canonical form

Init ∧2[Next ]vars ∧ L.

In this formula, Init is a state predicate describing the possible initial states of the system,
Next represents the next-state relation, usually written as the disjunction of actions describing
the possible state transitions, vars is a tuple containing all state variables that appear in the
specification, and L is a temporal formula asserting liveness and fairness assumptions. A state
predicate is a formula of first-order logic containing state variables, and it is evaluated over
single states. A transition predicate (or, synonymously, action) is a first-order formula that may
contain unprimed and primed occurrences of state variables. Such a formula is evaluated over a
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1 CONSTANT RM
2 VARIABLES rmState, tmState, tmPrepared, msgs
3 vars ∆

= ⟨rmState, tmState, tmPrepared, msgs⟩
4 Messages ∆

= [type : {"Prepared"}, rm : RM] ∪ [type : {"Commit", "Abort"}]
5 TPInit ∆

=

6 rmState = [r ∈ RM 7→ "working"] ∧ tmState = "init" ∧ tmPrepared = {} ∧ msgs = {}
7 RMPrepare(r) ∆

=

8 ∧ rmState[r] = "working" ∧ rmState’ = [rmState EXCEPT ![r] = "prepared"]
9 ∧ msgs’ = msgs ∪ {[type 7→ "Prepared", rm 7→ r]}

10 ∧ UNCHANGED ⟨tmState, tmPrepared⟩
11 RMRcvCommitMsg(r) ∆

=

12 ∧ [type 7→ "Commit"] ∈ msgs ∧ rmState’ = [rmState EXCEPT ![r] = "committed"]
13 ∧ UNCHANGED ⟨tmState, tmPrepared, msgs⟩
14 RMRcvAbortMsg(r) ∆

=

15 ∧ [type 7→ "Abort"] ∈ msgs ∧ rmState’ = [rmState EXCEPT ![r] = "aborted"]
16 ∧ UNCHANGED ⟨tmState, tmPrepared, msgs⟩
17 TMRcvPrepared(r) ∆

=

18 ∧ tmState = "init" ∧ [type 7→ "Prepared", rm 7→ r] ∈ msgs
19 ∧ tmPrepared’ = tmPrepared ∪ {r} ∧ UNCHANGED ⟨rmState,tmState,msgs⟩
20 TMCommit ∆

=

21 ∧ tmState = "init" ∧ tmPrepared = RM
22 ∧ tmState’ = "done" ∧ msgs’ = msgs ∪ {[type 7→ "Commit"]}
23 ∧ UNCHANGED ⟨rmState, tmPrepared⟩
24 TMAbort ∆

=

25 ∧ tmState = "init" ∧ tmState’ = "done" ∧ msgs’ = msgs ∪ {[type 7→ "Abort"]}
26 ∧ UNCHANGED ⟨rmState, tmPrepared⟩
27 TPNext ∆

=

28 ∨ TMCommit ∨ TMAbort
29 ∨ ∃ r ∈ RM : RMPrepare(r) ∨ TMRcvPrepared(r) ∨ RMRcvCommitMsg(r) ∨ RMRcvAbortMsg(r)
30 Spec ∆

= TPInit ∧ 2[TPNext]_vars

Fig. 1: TLA+ Specification of Two-Phase Commit.

pair of states, with unprimed variables referring to the values before the transition and primed
variables to the values after the transition. The formula [Next ]vars holds of any pair of states
⟨s, t⟩ if either Next holds of ⟨s, t⟩ (and therefore the pair represents an actual step of the system)
or all variables in vars evaluate to the same values in the two states (and the pair represents
a stuttering step). Systematically allowing for stuttering steps enables the implementation of
a system specification by a lower-level specification to be represented as validity of implication
between the TLA+ formulas expressing the specifications. The complementary property L is used
to express fairness assumptions and is at the basis of verifying liveness properties of algorithms.
Since in this work we only analyze finite traces of programs, we ignore liveness properties and
are interested in finite behaviors, i.e., sequences s0 . . . sn of states such that Init holds of s0 and
[Next ]vars holds for all pairs ⟨si , si+1⟩ for i ∈ 0 ..n − 1.

As a running example for this paper, Fig. 1 contains a TLA+ specification of the well-known
Two-Phase Commit protocol where a transaction manager (TM) helps a set of resource managers
(RMs) reach agreement on whether to commit or abort a transaction. This specification is part
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of a collection of example TLA+ modules.3 The module first declares a constant parameter RM
that represents the set of RMs and four variables representing the control states of the RMs
(represented as a function with domain RM) and of the TM, the set of RMs that have declared
their preparedness to carry out the transaction, and the set of messages that have been sent
during the protocol. The initial state of the system is described by the predicate TPInit: every
RM is in state "working", the TM in state "init", and the sets of prepared RMs and of messages
are empty. The following operators define actions that describe individual state transitions. For
example, RMPrepare(r) represents an RM r declaring its preparedness to carry out the transaction
by moving to control state "prepared" and adding a corresponding message to the set of messages
msgs.4 The action TPNext corresponds to the next-state relation of the state machine, defined as
the disjunction of the previously defined actions. Finally, formula Spec represents the overall
specification and asserts that TPInit must hold in the initial state of an execution and that
every non-stuttering step must satisfy the action formula TPNext. The TLA+ tools, including
the model checker TLC and the proof assistant TLAPS [1], can be used to verify properties of
the specification, including the invariant that RMs must agree about committing or aborting a
transaction.

2.2 Java Implementation

A possible Java implementation of the transaction manager and of the resource managers is
presented in Figure 2. Only a simplified version of the main method is presented, the auxiliary
methods are faithful Java translations of the actions in the TLA+ specification.5

A TM is identified by a name and uses a network (manager) to send and receive messages. It
stores the collection of resourceManagers that it manages as well as the collection of preparedRMs
that have already indicated their availability (empty at the beginning). The TM continuously
reads messages and when the message corresponds to a prepared RM, the respective manager is
added to preparedRMs (in the method handleMessage). The receive is blocking unless a timeout
is reached. When all RMs announced to be prepared, i.e. resourceManagers and preparedRMs
contain the same elements (checked in method checkAllPrepared), the TM sends a message to
each managed resource manager (from resourceManagers) to inform them that the transaction
has been committed (method commit). The TM can decide to abort, for example because there
are still some RMs who have not announced to be prepared before some deadline, and in this
case the TM informs all the RMs that the transaction should be aborted (method abort).

Like the TM, an RM is identified by a name and uses a network. Once it completes its task
(represented by method working), it sends a message to the TM indicating that it is prepared to
commit and waits for a reply. The method handleMessage causes the transaction to be committed
or aborted, according to the decision received from the TM. If no reply is received before the
RECEIVE_TIMEOUT, the RM resends its prepared message to the TM.

3 Instrumenting Distributed Programs

Our objective in this work is to check traces of program executions against a TLA+ specification
of the algorithm the program is expected to implement. In order to obtain such traces (in JSON
format), we instrument implementations so that events that correspond to actions of the TLA+

3 https://github.com/tlaplus/Examples/tree/master/specifications/transaction_commit
4 In this version of the protocol, the decision to abort the transaction is left to the TM.
5 The full implementation is available at https://github.com/lbinria/TwoPhase.
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1 public class TransactionManager {
2 String name;
3 Collection<String> resourceManagers, preparedRMs;
4 NetworkManager network;
5 public void run() throws IOException {
6 while (true) {
7 try {
8 Message message = network.receive(name, RECEIVE_TIMEOUT);
9 handleMessage(message);

10 } catch (TimeOutException e) {}
11 if (checkAllPrepared()) {
12 commit();
13 return;
14 } else if (shouldAbort()) {
15 abort();
16 return;
17 } } } }
18

19 public class ResourceManager {
20 String name, transactionManagerName;
21 ResourceManagerState state;
22 NetworkManager network;
23 public void run() throws IOException {
24 working();
25 while (true) {
26 sendPrepared();
27 try {
28 Message message = network.receive(name, RECEIVE_TIMEOUT);
29 handleMessage(message);
30 return;
31 } catch (TimeOutException e) {}
32 } } }

Fig. 2: Java implementation of the managers of the Two-Phase Commit protocol.

specification are recorded. Each entry in the trace contains information about updates of state
variables, and optionally about the TLA+ action the updates correspond to.

The approach is applicable to programs written in any imperative language, here we fo-
cus on Java. We designed a Java library that provides primitives for tracing the events in the
implementation. Section 4 will describe the structure of TLA+ template (trace) specifications
used to process the traces generated in this way and check if they correspond to the high-level
specification.

The main class of the library, TLATracer, provides the methods for logging events and state
variable updates.

1 static TLATracer getTracer(String tracePath, Clock clock);
2 void notifyChange(String varName, List<String> path,
3 String operator, List<Object> args);
4 long log(String eventName, Object[] args);
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The method getTracer creates a tracer that logs events into a file specified by the tracePath
parameter. Each tracer records the time of each event using a shared clock, ensuring that events
are recorded in chronological order both locally (within individual components) and globally
(across all components). While each component uses a unique tracePath for its tracer, all tracers
synchronize their timing using the same type of clock. The library offers various types of clocks
suitable for different scenarios: an in-memory clock is used when components are threads within
the same process; a file-based clock is used for processes on the same machine; and a server-based
clock is appropriate for distributed components. Additionally, a logical clock, which provides a
mechanism for ordering events without synchronizing actual time, can also be used to order
events across different tracers.

Updates to variables are tracked using the method notifyChange, which records operations
that have been applied to a given variable. The variable name varName refers to a variable from
the TLA+ specification but reflects the operations executed at the implementation level and
thus, notifyChange implicitly links the variables from the implementation to the ones in the
specification. Our library supports standard operators such as updating the variable by a new
value, adding or removing a value to or from a set or bag (multi-set), overriding the value of
individual fields (identified using the path argument) of functions or records, etc. The list of
arguments for the respective operator is specified with args.6

The log method is used to produce one log entry in the trace file that reflects all the variable
changes recorded with notifyChange since the last call to log (or since the start of the process if
log was never called before). In its general form, the log method records the variable changes as
well as the event name and its parameters, provided as arguments of the log method. Variants
of the log method ignore the event or its parameters. The time when the log has been performed
is used as a timestamp for the corresponding entry; this value is returned by the method.

For example, in the sendPrepared method, an RM sets its state to "prepared" and sends a
corresponding message to the TM (lines 2 and 7, respectively).

1 void sendPrepared() {
2 state = ResourceManagerState.PREPARED;
3 tracer.notifyChange("rmState", List.of(name), "Update", List.of("prepared"));
4 tracer.notifyChange("msgs", new ArrayList<String>(),
5 "AddElement", List.of(Map.of("type", "Prepared", "rm", name)));
6 tracer.log("RMPrepare", new Object[] { name });
7 networkManager.send(new Message(name, transactionManagerName, "Prepared", 0));
8 }

The remaining lines are used for tracing purposes. Line 3 records the change of the entry cor-
responding to the RM executing sendPrepared of the TLA+ variable rmState to the new value
"prepared". Similarly, line 4 indicates that a message of type "Prepared" from the current RM is
added to the set msgs. Finally, in line 6 these changes are logged as corresponding to the TLA+

action RMPrepare with the current RM as parameter.
For an RM named "rm-0", the above listing produce the following log entry in JSON format:7

{ "clock": 4,
"rmState": [ { "op": "Update", "path": ["rm-0"], "args": ["prepared"] } ],
"msgs": [ { "op": "AddElement", "path": [], "args": ["type":"Prepared","rm":"rm-0"] } ],
"event": "RMPrepare", "event_args": ["rm-0"] }

6 The library (available at https://github.com/lbinria/trace_validation_tools/) offers primitives
to log such operations in a more compact way, but these are just convenient syntactic sugar for the
notifyChange method.

7 The JSON schema of a trace entry is given in the appendix.
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Trace of implementation

1

2

3

4

5

6

7

State space of TLA+ specification

1 2 3 4 5

2 4 6

3 5 7 7

Fig. 3: Trace validation as a search for paths in the state space.

It should be noted that neither all updates to specification variables nor the name or the
parameters of the corresponding TLA+ action need to be traced. For example, the size of the
value of a variable might be prohibitively large, or the value might simply be unknown, for
example because the implementation handles encrypted values. In the above example, either or
both calls to notifyChange could have been omitted. As discussed in Section 4, the model checker
will fill in suitable values for variables omitted from tracing. However, providing more detailed
information can lead to more efficient validation and strengthen confidence in the results.

The library also provides a Python script that merges the trace files of the different traced
processes by sorting the entries according to the timestamp and stripping off the clock values
from the entries in the resulting file as well as a script that can be used to validate the obtained
trace with TLC.

4 Checking Program Traces Against TLA+ Specifications

Having obtained a log from an execution of the distributed Java program, we must check if this
log matches some behavior of the TLA+ specification that the program is claimed to implement.
We first define the problem more formally, then explain how we realize trace validation using the
TLC model checker, report our experience with applying this approach to several case studies,
and finally discuss some technical aspects of trace validation.

4.1 The trace validation problem

Formally, our problem can be stated as follows. Let S be the set of finite behaviors that satisfy
the specification Spec, and let T be the set of finite behaviors that are compatible with the
trace when assigning arbitrary values to the state variables whose values are not fixed. The trace
matches the specification if S ∩ T ̸= ∅.

Figure 3 illustrates the idea. On the left-hand side, the chain of nodes labeled 1 to 7 represents
the trace obtained from the instrumented program. The graph on the right-hand side represents
the state space of the TLA+ specification, and we must check if the trace can be matched to some
path in the state space. The first state of the trace must correspond to some initial state of the
graph: in our example, we assume that this is the case for the state in the lower left-hand corner.
Then, we try to match at least one successor of an already matched state with the corresponding
successor in the trace. Because the trace need not indicate values for all state variables, there may
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be several matching states: in the example, we assume that two successors of the state labeled 1
match the second state of the trace. On the other hand, the state labeled 3 in the left-hand
column of the state space does not have a successor matching the state labeled 4 in the trace.
Overall, the trace of the example is valid since there is at least one (in fact, two) matching paths
up to the last state (labeled 7) of the trace.

The problem is actually a little more subtle: the grain of atomicity of the implementation
need not be perfectly aligned with that of the specification, and an implementation step may
correspond to zero or several steps of the TLA+ specification. We explain how we reduce the
problem to one of constrained model checking and how we realize it using the TLC model checker.

4.2 Realizing trace validation using the TLC model checker

The set S of finite behaviors satisfying the high-level specification is defined by the TLA+ formula
Spec. In order to characterize the intersection S∩T of finite behaviors that also correspond to the
trace obtained from the execution, we add constraints to Spec that require the values of variables
after the transition to agree with those indicated in the trace. Concretely, our framework provides
a module TraceSpec that contains operators that are instrumental for defining the constrained
specification.

1 ------------------- MODULE TraceSpec -------------------
2 EXTENDS Naturals, Sequences, TLC, Json, IOUtils
3 VARIABLE l
4 Trace ∆

= ndJsonDeserialize(IOEnv.TRACE_PATH)
5 IsEvent(e) ∆

=

6 ∧ l ∈ 1 .. Len(Trace) ∧ l’ = l + 1
7 ∧ "event" ∈ DOMAIN Trace[l] => Trace[l].event = e
8 ∧ UpdateVariables(Trace[l])

The module declares a variable l that will denote the current line of the trace. The definition of
the operator Trace causes the JSON representation of the trace to be internalized as a sequence of
records whose fields correspond to the entries of the log file. The operator IsEvent(e) encapsulates
processing the trace and generating the constraints imposed by it. It requires that l is a valid
index into the trace. The trace may explicitly indicate the event corresponding to the current
transition by including an "event" field, in which case the operator checks for the expected value.
(Any event parameters indicated by the entry are taken into account below.) It then increments
the variable l and adds constraints based on the informations given in the current line of the
trace, by evaluating the operator UpdateVariables:

1 UpdateVariables(ll) ∆
=

2 ∧ "rmState" ∈ DOMAIN ll => rmState’ = UpdateVariable(rmState, "rmState", ll)
3 ∧ ... \* similar lines for variables tmState, tmPrepared, msgs

That operator is defined as a conjunction that checks for each variable of the original spec-
ification if a corresponding entry exists in the current line of the trace and, if so, determines
the new value of the variable from that entry. The operator UpdateVariable is predefined in our
framework and computes the new value from the value of the first argument (i.e., the unprimed
variable) and the operator to be applied according to the trace. For example, the JSON entry

"rmState": [ { "op": "Update", "path": ["rm-0"], "args": ["prepared"] } ]

will give rise to the TLA+ value
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1 [rmState EXCEPT !["rm-0"] = "prepared"]

that denotes the function rmState for which the value at argument rmState["rm-0"] is replaced
by "prepared". A single update in the JSON trace may correspond to changes to several parts of
a complex value such as a function or a record. Predefined TLA+ operators exist for the different
operators that our framework currently supports, and this can be smoothly extended, both in
the instrumentation library and at the TLA+ level, should additional operators be desirable.

For every action of the original specification, we then construct an action of the trace spec-
ification by conjoining the predicate IsEvent. For example, the action of the trace specification
corresponding to the TMCommit action of the specification of the two-phase commit protocol is
defined as

1 IsTMCommit ∆
= IsEvent("TMCommit") ∧ TMCommit

For actions that take arguments, the IsEvent predicate is conjoined with a check if the trace
provides such arguments, in which case the corresponding instance of the action should occur:

1 IsTMRcvPrepared ∆
=

2 ∧ IsEvent("TMRcvPrepared")
3 ∧ IF "event_args" ∈ DOMAIN logline ∧ Len(logline.event_args) >= 1
4 THEN TMRcvPrepared(logline.event_args[1])
5 ELSE ∃ r ∈ RM : TMRcvPrepared(r)

The overall next-state relation TraceNext is defined as the disjunction of these actions. Be-
cause TLC evaluates formulas from left to right, the effect of these definitions is to first update
state variables based on the information in the log and then evaluate the action predicate of
the underlying specification, checking that the predicate is satisfied and non-deterministically
generating suitable values for any variables that are left open in the trace.

If the next-state relation does not evaluate to true, no behavior of the base specification
matching the trace exists from the current state. However, there may still exist another matching
behavior elsewhere in the state space: in the example of Fig. 3, no suitable successor state can be
found from the state labeled 3 in the leftmost column, but the behavior can be continued from
the state labeled 3 in the bottom row of the state space. Therefore, we should not use TLC to
check for deadlocks of the constrained specification, or for violations of a liveness property such
as 3(l>=Len(Trace)), but rather for the existence of some path matching the length of the trace.
The length of the longest path in the constrained state space corresponds to the diameter of the
graph,8 which suggests defining the predicate

1 TraceAccepted ∆
= TLCGet("stats").diameter - 1 = Len(Trace)

as the postcondition to check for determining success of trace validation.
Contrary to ordinary model checking, a violation of the condition TraceAccepted , corrre-

sponding to S ∩ T = ∅, does not produce a counterexample. However, the behaviors within T
help explain why an implementation trace fails to conform to the specification. In instances of
zero non-determinism in the constrained specification, where |T | = 1, it is advisable to examine
the final state of the behavior and the corresponding line in the trace to identify the source of
the mismatch. For more complex specifications involving multiple variables and actions, the hit-
based breakpoint feature of the TLA+ debugger [15] can be used to halt state-space exploration
when the diameter reported by TLC matches the value of a reported violation. Once halted, the
debugger allows the user to step back and forth through the evaluation of action formulas to pin-

8 Observe that the presence of the line counter l excludes cycles in the constrained state space.
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Fig. 4: The TLA+ debugger reached a breakpoint where "rm-1" was already in state "prepared";
however, the trace erroneously asserts a transition of "rm-1" to "prepared". Firstly, the bottom
view displays the previous TLC run, which reported a violation of TraceAccepted at a diameter
of 16 (1). Secondly, the "unreachble" breakpoint was triggered when TLC evaluated the conjunct
on line 133 as false (2). Thirdly, the graph view illustrates the behavior leading up to the state
being classified as unreachable, indicating that the formula on line 133 evaluated to false (3).

point the discrepancy. Additionally, the TLA+ debugger displays the values of variables at both
the current and successor states, facilitating a comparison with the trace values. With |T | > 1,
we provide a new unsatisfied breakpoint that activates for each state in T that is found to be
unreachable. Furthermore, T can be visualized as a graph that not only includes all unreachable
states but also references the subformula responsible for the state being unreachable (see Fig. 4).

4.3 Experience with Trace Validation

We have used trace validation for several case studies: besides the two-phase commit protocol
presented here, we experimented with a distributed key-value store ensuring snapshot isolation [5]
whose specification was taken from the standard collection of TLA+ specifications (see [17]),
the distributed termination detection algorithm EWD 998 [3,13] from the same collection, two
existing implementations of the Raft consensus algorithm [22], and the Microsoft Confidential
Consortium Framework [10]. In all cases, trace validation quickly identified executions of the
distributed implementations that could not be matched to the high-level specification. Such
mismatches may indicate that the implementation does not adhere to the state machine described
in the high-level specification – either because of an error in the implementation, a mismatch in
the grain of atomicity, or because the specification is too strict.

Assume for example that the implementation of the Two-Phase Commit protocol used Java
Lists to store the set of resource managers prepared to carry out the transaction, corresponding to
the variable tmPrepared of the TLA+ specification, and implemented method checkAllPrepared by
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comparing the length of that list to the number of resource managers. Such an implementation
would work correctly if no messages are lost. However, if some RM resends the "Prepared"
message due to a timeout, the TM could add it twice to the list of prepared RMs and then
commit prematurely. We found this kind of implementation error to be reliably detected using
trace validation.

The key-value store specification describes operations such as adding a key-value pair or
updating the value of an existing key to be performed transactionally. At the beginning of a
transaction, a snapshot of the global store is copied locally, and at the end of the transaction
the operations performed to the local store are copied back to the global store if no other agent
committed some operations on the same keys in the meantime. Operations have preconditions:
for example, the key has to already exist (in the local copy) when performing an update. Instead
of making a local copy of the store (which could be prohibitively large), our implementation9 only
stores the operations performed during the transaction. Preconditions are checked against the
values contained in the operations performed during the transaction and against the store if no
operations were performed locally. With such an implementation, a precondition could be false
at the beginning of the transaction and thus, the corresponding operation not possible w.r.t. to
the specification, but it could be true later on, if another agent committed an appropriate value
for the corresponding key in the meantime. This discrepancy was detected when we performed
trace validation on the implementation, and the debugger helped us understand the problem.

In some cases, trace validation indicates problems that are due to the fact that the grains
of atomicity of the implementation and the specification do not agree. Programming languages
typically do not provide atomic transactions encapsulating several updates, so the choice of when
to log an action corresponding to the TLA+ specification requires consideration. Transitions that
modify shared state such as sending and receiving network messages, acquiring or releasing global
locks or committing state to stable storage are natural candidates. Some care must be taken in
order not to break the causal ordering of such events, for example by logging a state update
before the corresponding message is received, due to the internal structure of the implementation.
Overall, we and the engineers we worked with found it not too difficult to identify suitable
points in the code for instrumentation, but the choices are important for trace validation to be
meaningful.

It frequently happens that the implementation may take steps that are invisible for the
abstract state space. In our running example, sent messages are (permanently) stored in a set, so
resending a message due to a timeout simply corresponds to a stuttering step of the specification.
However, the trace may indicate that an RMPrepare step took place whenever a "Prepared" message
was sent, even in the case of a resend. Trace validation will then fail because RMPrepare steps
cannot be stuttering steps (observe that such steps require the variable rmState to change). A
simple fix in such cases is not to indicate the corresponding action of the TLA+ specification:
TLC will then correctly map the step in the trace to a stuttering step of the abstract specification.
The fact that TLA+ specifications are insensitive to stuttering steps is helpful in such situations.

Less frequently, an implementation may combine two or more steps of the high-level speci-
fication into a single transition. For example, in Raft implementations, nodes may update their
term upon receiving an AppendEntries request for a higher term, whereas the two actions of
updating the term and appending entries are distinguished in the Raft specification. In such
cases, an explicit decision must be taken if such behavior is deemed acceptable. If it is (as in the
Raft example), the next-state relation of the TLA+ specification used for trace validation may
contain an explicit disjunct allowing the actions to be combined, making use of the TLA+ action
composition operator A ◦ B , support for which has recently been added to TLC. In this way,

9 The implementation is available at https://github.com/lbinria/KeyValueStore/.
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such “deviations” of the implementation from the specification that are typically optimizations
are explicitly documented.

We applied trace validation to complete the reverse engineering of a specification from an
existing implementation of a Raft-inspired consensus algorithm, which is part of the Confidential
Consortium Framework (CCF). We started off from a spec that was manually reverse engineered
by analyzing the source code, and discussions of the implementation with the engineering team.
This preliminary specification was extensively corrected and amended through trace validation by
validating around 15 traces from an existing test suite that exercises non-trivial system behavior.
Extensive verification of the updated spec revealed serious violations of key safety properties of
the consensus algorithm. Manually translating TLC’s counterexamples into new tests confirmed
that the implementation was also vulnerable. After addressing these issues at the spec level,
corresponding updates to the implementation were made. To ensure ongoing consistency between
the spec and its implementation as the project progresses, trace validation has been added
into CCF’s continuous integration pipeline. A detailed analysis of our experiences with formally
verifying CCF, including trace validation, will be discussed in a forthcoming paper [11].

Contrary to the experience reports discussed thus far, where we checked the consistency be-
tween an independently written specification and its implementation, we also leveraged trace
validation early in the development process when implementing the distributed termination de-
tection algorithm EWD 998 (see [14]). The implementation of the algorithm consists of about
500 lines of code (LOC). The algorithm is based on a token-passing scheme to detect when
global termination has occurred. Its specification introduces several actions, including an action
corresponding to the local termination of a node and another one for passing of the token from
one node to its neighbor. The latter was modeled atomically, i.e., the token is sent and received
in a single transition. Initially, trace validation failed because communication is asynchronous
in the implementation, and therefore sending and receiving the token was logged as two sep-
arate transitions. Moreover, the implementation sends the token as soon as local termination
occurs rather than separating local termination and token passing. Both problems are instances
of differences in the grains of atomicity between the specification and the implementation. The
first problem was solved by logging only the sending of the token, the second one initially by
adding a disjunct to the trace specification that composes the two actions of local termination
and of token passing, and later by directly logging local termination in the implementation. Af-
ter these changes yielded some non-trivial traces that could be validated, it was found that the
implementation allowed a node to send ordinary (i.e., non-token) messages to itself, which was
not permitted in the specification. We addressed this by blocking a node from messaging itself;
another possible fix would have been to change the specification. Trace validation then revealed
that nodes continued to pass the token even after all but the initiating node had terminated,
which corresponded to an implementation error. Moreover, it immediately identified an ad-hoc
bugfix as flawed, prompting its replacement with a true bugfix. Since then, thousands of traces
have been successfully validated, making us confident that the implementation is now correct.

4.4 Implementation aspects

As we indicated previously, our approach to instrumentation is flexible with regard to the detail
of information recorded in the trace. In particular, not all variables need to be included in the
trace, and names and parameters of corresponding TLA+ actions may be given or not. Less
information in the trace increases the potential degree of non-determinism in the trace specifi-
cation, potentially leading to combinatorial explosion during model checking. To some extent,
this problem can be alleviated using different exploration strategies. TLC’s default breadth-first
search (BFS) ensures shortest-length counter-examples and is most informative for debugging.
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Problem instance length VEA V VpEA EA E
TP, 4 RMs 17 19 211/35 19 48/22 246/58
TP, 8 RMs 33 35 8k/73 35 640/42 22k/695
TP, 12 RMs 73 74 ∞/209 74 11k/86 2.5M/27k
TP, 16 RMs 90 91 ∞/270 91 205k/107 ∞/557k
KV, 4a, 10/20k/v 109 111 ∞/158 13k/149 111 ∞/35k
KV, 8a, 10/20k/v 229 231 ∞/317 18k/307 231 ∞/176k
KV, 12a, 10/20k/v 295 297 ∞/423 678k/411 297 ∞/300k
KV, 4a, 20/40k/v 131 133 ∞/298 ∞/285 133 ∞/9.9M
KV, 8a, 20/40k/v 249 251 ∞/1164 ∞/1146 251 ∞
KV, 12a, 20/40k/v 308 310 ∞/552 ∞/538 310 ∞

Fig. 5: Number of distinct states explored for valid traces of different lengths of Two-Phase
Commit (TP) and Key-Value Store (KV), for various degrees of precision in the traces. An entry
∞ indicates that the state space could not be fully explored within one hour on a laptop.

However, depth-first search (DFS) constrained by the length of the trace can be more efficient
because checking can be stopped as soon as some behavior of the expected length has been found.

We report in Fig. 5 the number of distinct states explored of states explored with BFS/DFS
by TLC for several valid traces that contain more or less information; a single figure indicates
that BFS and DFS generate the same number of states. We consider traces for the Two-Phase
Commit protocol for 4, 8, 12, and 16 RMs. For the Key-Value Store we consider a store with
a maximum of 10 keys and 20 values as well as a store with a maximum of 20 keys and 40
values; for both stores we generate traces for 4, 8 or 12 agents. The column headings indicate the
kind of information that was recorded in the traces: variables and events with their arguments
(VEA), just the variables (V), the variables and some events (VpEA), only the events with their
arguments (EA) or only event names (E). For Two-Phase Commit, VpEA records only the events
of the TM, for Key-Value Store, only the start and end of transactions are logged.

As expected, tracing full information for variables and the events corresponds to the explo-
ration of the least number of states by TLC. Logging only the variables or only the event names
quickly leads to state-state explosion that makes trace validation infeasible. However, record-
ing well-chosen partial information is sufficient for limiting the state space. What information
needs to be recorded depends on the specification. For the Key-Value Store, logging events and
their arguments is enough because they uniquely determine the corresponding variable values.
For Two-Phase Commit, logging the events of the RMs is unnecessary. Moreover, although not
shown in the table, we found that for this specification, the same numbers of states are obtained
when the messages sent during the execution and the arguments of the events are omitted.

Besides an exponential growth of the number of states, too imprecise logs may even lead to
erroneous traces being accepted because the values inferred by the model checker may be different
from the actual ones. Nevertheless, such traces can be useful at early stages of validation, when
issues are more likely to occur. For instance, validating a trace containing only the event names
for 16 RMs takes a considerable amount of time but the bug for the implementation using Lists
could still be detected with such a trace in less than a minute.

To sum up, the best results in terms of confidence and efficiency are obtained when as many
variables and events as possible are logged by the implementation. Recording only event names
without arguments is least intrusive, and although it can be useful initially for finding poten-
tial issues, it does not provide high confidence and may incur state-space explosion. Validating
variable-only traces may be problematic in terms of efficiency, in particular for BFS. We found
it really helpful to record at least partial information on the events.
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5 Related Work

The verification of execution traces against high-level properties or specifications has a long
history in formal methods. Havelund [9] introduced runtime verification as a lightweight method
for checking that a system’s execution trace conforms to its high-level specification. Runtime
verification typically involves the generation of a monitor from the specification, which consumes
the trace events to check conformance (see [4]). Howard et al. [12] verified execution traces directly
against the system’s high-level specification. Their work also demonstrated the feasibility of using
standard model checkers (ProB and Spin) to check execution traces against these specifications, a
technique that we also employ. However, they did not consider distributed programs that require
the use of (centralized or distributed) clocks for preserving causality, and they did not consider
traces with incomplete information.

The first to explore techniques to align a TLA+ specification with an implementation were
Lamport et al. [18], who used model-based testing to execute behaviors obtained from model
checking a TLA+ specification against concurrent protocols implemented in hardware. Concur-
rently, Tasiran et al. [26] extracted and validated implementation traces obtained from a hard-
ware simulator against a TLA+ specification, demonstrating the practical applicability of trace
validation in verifying system behaviors as specified in TLA+.

The adoption of TLA+ among distributed system practitioners, spurred by Newcombe et
al. [20], led to renewed interest in trace validation. Pressler [23] formalized trace validation as
a refinement check within the TLA+ framework, outlining a concept that was soon applied to
real-world systems. For instance, Davis et al. [2] applied the technique in an industrial con-
text, discovering a non-trivial implementation bug. However, they faced challenges in mapping
the specification to its implementation and consistently logging implementation states, shedding
light on the complexities of applying trace validation in practical settings. Focusing on refinement
rather than the weaker concept of nonemptiness of intersection as we do, they did not leverage
TLA+’s non-determinism to infer implementation state when direct logging was infeasible, nor
did they explore action composition to simplify the mapping between specification and imple-
mentation. Haltermann [8] demonstrated the practicality of trace validation for monitoring the
conformance of production systems with TLA+ specifications, identifying key challenges such
as establishing happens-before relationships in distributed logs and addressing scalability issues
arising from extremely long execution traces. Extending the practical applications of trace val-
idation, Niu et al. [21] validated traces from the distributed execution of a Zookeeper system,
illustrating the viability of the technique as a lightweight method for ensuring that a distributed
system’s implementation corresponds to its specification. Similarly, Wang et al. [27] revisited
model-based testing, revealing several bugs at the implementation level by extracting behaviors
from model checking and replaying these against instrumented implementations. This approach
highlighted the challenges of directly mapping specification actions to implementation steps. This
was illustrated by the authors identifying two bugs in a widely used and well-established spec-
ification [22]. We contend that these are, in fact, common TLA+ modeling patterns and were
mistakenly labeled as bugs.

To facilitate a closer alignment between high-level specifications and their actual implemen-
tations, Hackett et al. [7] and Foo et al. [6] proposed extensions to PlusCal, an algorithmic
language whose translator serves as a front-end to TLA+. These aim at adding sufficient detail
to specifications for code generation and enabling the generation of runtime monitors, respec-
tively. Despite these advancements, the requirement for implementation-level shims may impede
widespread industry adoption. Moreover, the projection from a global state machine, which is a
common TLA+ modeling pattern, to node-local state machines prevent the verification of global
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properties by monitors. Yet, both approaches still translate specifications written in their Pluscal
extensions into TLA+, allowing users to leverage all of the existing TLA+ verification tools.

Among others, Nadal [19] and Springmeyer [25] attempt to render trace validation obso-
lete by integrating state-based modeling and model checking into general-purpose programming
languages like Rust and Haskell. While promising, these efforts confront the idiosyncrasies of
programming languages and lack robust support for the rigorous formal methods enabled by
TLA+ specifications.

6 Conclusion

Formal verification techniques are known to be most effective for specifications written at high
levels of abstraction where the size of state spaces (for model checking) and the complexity
of invariants (for deductive verification) are manageable. High-level specifications can serve as
guidelines to programmers when implementing an algorithm, and in some cases it may even
be possible to generate code from a sufficiently detailed specification. Model-based testing is
a collection of techniques that rely on formal specifications for generating test cases, aiming at
coverage guarantees or exploring parts of the state space deemed interesting based on an analysis
of the specification.

In this paper we described our approach for gaining confidence in the correctness of an im-
plementation by collecting traces of its executions and validating them against the state machine
described by a high-level specification written in TLA+. Our purpose with this approach is to
identify discrepancies that can be analyzed using the TLC model checker in order to deter-
mine if they are due to an error in the implementation, a restrictive specification, or an artefact
due to a mismatch in the grains of atomicity. Although the technique does not provide formal
correctness guarantees, we have found it to be surprisingly effective for finding serious bugs in
implementations that had undergone traditional quality assurance techniques.

We are certainly not the first to suggest that trace validation can be worthwhile for relating
high-level specifications and programs. Original aspects, to the best of our knowledge, are our
ability to handle different grains of atomicity, and that we do not require all specification vari-
ables or events to be traced in the log; instead, we use the model checker to reconstruct missing
information. This leads to a tradeoff between the amount of detail included in the trace, the
increase of the search space for model checking, and the reliability of the verdict, but our ex-
periments suggest that it is enough to trace a suitably chosen subset of variables and/or events.
We implemented a library of Java methods and TLA+ operators to support collecting traces but
their use is not strictly essential for applying our technique. In fact, the EWD 998 and CCF case
studies used ad-hoc code instrumentations for generating the logs. Additionally, we implemented
support for action composition and depth-first search in the TLC model checker, and enhanced
debugging of trace validation in the TLA+ debugger.

At the moment, we exploit random variations in implementation parameters such as message
delays or failures in order to generate different traces of the program to be analyzed. In future
work, we intend to use the TLA+ specification in order to be able to steer executions towards
“interesting” parts of the state space. We also intend to study the feasibility of applying trace
validation online during the execution of the program or even of using the technique as a run-
time monitor to block unsafe transitions of the implementation. However, online validation will
certainly be restricted to trace specifications with low degrees of non-determinism.
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A JSON Schema for a trace entry

Fig. 6 presents the JSON Schema for an entry in the trace file. The additionalProperties stands
for names of variables logged in the entry.

1 {
2 "title": "TraceEntry",
3 "description": "An␣entry␣in␣a␣trace",
4 "type": "object",
5 "properties": {
6 "clock": {
7 "description": "The␣timestamp␣of␣the␣event",
8 "type": "integer",
9 "minimum": 0

10 },
11 "additionalProperties": {
12 "type": "array",
13 "items": {
14 "type": "object",
15 "properties": {
16 "op": { "type": "string" },
17 "path": { "type": "array" },
18 "args": { "type": "array" }
19 },
20 "required": [ "op", "path", "args"]
21 },
22 "minItems": 1
23 },
24 "event": {
25 "description": "Name␣of␣the␣event",
26 "type": "string"
27 },
28 "event_args": {
29 "type": "array",
30 "items": { "type": "string" }
31 }
32
33 },
34 "required": [ "clock"]
35 }

Fig. 6: JSON Schema for an entry in the trace file.


