
Towards a fully generic theory of data

Douglas A. Creager and Andrew C. Simpson

Oxford University Computing Laboratory
Wolfson Building, Parks Road, Oxford, OX1 3QD

United Kingdom

Abstract. Modern software systems place a large emphasis on hetero-
geneous communication. For disparate applications to communicate ef-
fectively, a generic theory of data is required that works at the inter-
application level. The key feature of such a theory is full generality,
where the data model of an application is not restricted to any partic-
ular modeling formalism. Existing solutions do not have this property:
while any data can be encoded in terms of XML or using the Semantic
Web, such representations provide only basic generality, whereby to rea-
son about an arbitrary application’s data model it must be re-expressed
using the formalism in question. In this paper we present a theory of
data which is fully generic and utilizes an extensible design to allow the
underlying formalisms to be incorporated into a specification only when
necessary. We then show how this theory can be used to investigate two
common data equivalence problems — canonicalization and transforma-
tion — independently of the datatypes involved.

1 Introduction

Modern software systems must contend with many issues of communication and
data exchange that did not exist previously. This raises an interesting class of
new problems involving data equivalence — the question of whether two data
somehow “mean” the same thing, taking into account the data’s format, struc-
ture, semantics, and application. Two examples are canonicalization and trans-
formation.

Canonicalization involves two equivalences that disagree. For example, in the
world of XML [1], digital signatures are problematic, as cryptographic signature
algorithms are defined in terms of byte streams. Since a single XML document
has many possible binary encodings, a mismatched signature does not necessarily
mean that an XML document was modified in transit — it may be a different
sequence of bytes that represents the same document.

Transformation, on the other hand, involves maintaining an equivalence be-
tween two datatypes. This problem occurs frequently when two applications are
linked with a communications channel: the data models of the two applications
will likely not be the same, even though they refer to semantically equivalent
concepts. Assuming that one cannot easily rewrite the applications, some form
of transformation is needed to bridge the mismatch between the two datatypes.

The transformation, however, must ensure that it maintains the semantic equiv-
alence between the two datatypes.

These problems are particularly troublesome, especially when applied to real-
world applications, since they must take into account the low-level encoding de-
tails of the datatypes. This constrasts with most existing approaches to data
modeling and data typing, which abstract away encoding details to simplify the
formalism. This abstraction is beneficial to the application designer, since one
can exploit data independence to separate the high-level application logic from
the low-level data storage issues. However, when integrating multiple applica-
tions, these low-level issues must be considered.

Further complicating matters, these problems must handle multiple under-
lying data formalisms. Many data formalisms are complete, meaning that any
feasible application data model can be represented in the formalism. Complete
formalisms, at varying levels of abstraction, include XML, the relational model
of data [2], algebraic and co-algebraic datatypes [3], and Shannon’s informa-
tion theory [4]. One can investigate canonicalization and transformation within
one of these formalisms. The W3C, for instance, has developed solutions to
both within the context of XML [5, 6]. However, these data equivalence issues
are problems with data in general, and cross formalism boundaries. No XML
transformation method can solve the transformation problem in general.

Fundamentally, existing solutions are not general because multiple data for-
malisms exist not just in theory, but in practice. There are applications that
do not use XML, or do not use the relational model, for perfectly valid reasons.
Though these formalisms are complete, they only maintain basic generality — to
reason about an arbitrary application’s data model, it must first be re-expressed
in terms of the formalism in question. Instead, we strive for a theory of data with
full generality, which would allow us to reason formally about an application’s
data model as it exists in the application. Requiring the application to present
a separate, theory-compatible, view of its data is not a desirable solution.

This paper presents a fully generic theory of data. It has two key features.
The first is that, in addition to the data itself, datatypes and data equivalences
are both treated as first-class objects. This lets us reason about generic problems
like canonicalization and transformation independently of the particular data-
types and underlying data formalisms used. The second is that the theory is
designed in an extensible way; for instance, one can represent an XML datatype
in this theory without requiring a complete description of the XML formalism.
Of course, including an XML formalism increases the number of properties one
can deduce about an XML datatype; however, as we will show, many interesting
problems do not require this level of detail.

The remainder of this paper is organized as follows. Section 2 provides
a basic description of datatypes and data equivalence. Section 3 provides a
formal description of the data theory. We will present this formalism using
the Z notation, introductions to which can be found in [7–9]. We will digress
slightly from the standard notation, however, by allowing certain operators to
be overloaded — to be defined, for instance, for both datatypes and sequences

of datatypes. Section 4 shows how we can use this formalism to investigate
canonicalization and transformation. Finally, Section 5 presents our conclusions
and suggests an area for future work.

2 Overview

In this section we provide an overview of our data theory. First, we highlight
some of the complications that arise when considering the supposedly simple
notion of “equivalence”. Next, we mention an existing classification that can
help illuminate some of the issues involved. Finally, we use this classification to
present informal descriptions of several datatypes that we want our theory to
support.

2.1 Data equivalences

A key feature to take into account when designing a data theory is data equiva-
lence. What do we mean when we say that two data are “equivalent”? A näıve
answer would be to define this based on binary equality — two program variables
that both contain the 32-bit integer “73” are obviously equivalent. However, this
does not capture the entire picture. We present a few obvious counterexamples.

First, we can consider low-level encoding details that can affect data equiva-
lence. For instance, computer processors have a property called endianness that
affects how multi-byte numbers are stored in memory. “Big-endian” processors
store these numbers with their most-significant byte first, whereas “little-endian”
processors store the number’s least-significant byte first. As an example, consider
the number 1,000, which can be encoded in hexadecimal as the 16-bit quantity
03E8. As shown in Figure 1, when encoded on a big-endian machine, the number
is represented by the byte string 〈〈03 E8〉〉. When encoded on a little-endian ma-
chine, however, the byte string becomes 〈〈E8 03〉〉. In one sense, that of binary
equality, the data are not equivalent; in another, equally valid sense, that of
integer equality, they are. This inconsistency holds in reverse, as well. Consider
the byte string 〈〈03 E8〉〉. As before, on a big-endian machine, this evaluates to
the integer 1,000. On the little-endian machine, however, this is interpreted as
the hexadecimal number E803, or 59,395. In this case, the data are equivalent
according to binary equality, but not according to integer equality.

〈〈03 E8〉〉
Signed Unsigned

1,000 1,000
-6,141 59,395

Big-endian
Little-endian

〈〈E8 03〉〉
Signed Unsigned

-6,141 59,395
1,000 1,000

Fig. 1. Differing semantic interpretations of binary integers

To further complicate matters, both of the previous examples assumed that
the integers were unsigned. Modern computers encode signed integers using

two’s complement notation, which has the beneficial property that the same bi-
nary addition operator can be used for signed and unsigned numbers. This is
a further inconsistency in how a particular byte string can be interpreted as an
integer. For example, on a big-endian machine, the byte string 〈〈E8 03〉〉 is in-
terpreted differently as an signed integer (-6,141) and unsigned integer (59,395).
This is another case of the data being equivalent according to binary equality,
but not according to integer equality.

Similar inconsistencies can appear at higher abstraction levels. For instance,
in the HTML markup language [10], it is possible to specify the background
color of a Web page with the bgcolor attribute of the opening body tag. To
give a Web page a white background, for instance, one could use the following:

<body bgcolor="white">

This example represents the color using one of the values in the list of named
color strings specified by the HTML standards. It is also possible to specify the
color by giving an explicit color value in the RGB color space, such as:

<body bgcolor="#ffffff">

This example specifies a background color that has the maximum value of
255 (“ff” in hexadecimal) for its red, green, and blue components; this color
happens to be the color white. These two examples are not equivalent according
to binary equality, or even according to character string equality. However, the
semantics of the bgcolor attribute, as defined by the HTML standard, are such
that the character strings “white” and “#ffffff” represent equivalent colors.

Thus, it is easy to see that a true notion of data equivalence is very application-
dependent. It is also a notion that is very dependent on the level of abstraction
being used — two data that have different binary encodings might be semanti-
cally equivalent, and vice versa. Sometimes semantic equivalence will be more
important; sometimes syntactic equivalence will.

2.2 S classification

As seen in the previous section, many different kinds of data equivalence exist,
depending on the application and the desired level of abstraction. It will be
useful to classify these different equivalences. Ouksel and Sheth identify one
possible classification in their study of heterogeneity in information systems [11,
12]: system, syntax, structure, and semantics. System heterogeneity refers to the
particular combination of hardware and software used to implement an applica-
tion or datastore. Syntactic heterogeneity refers to the low-level representation
of the data — usually in terms of a specific binary encoding. Structural het-
erogeneity refers to the underlying data primitives used to model an application
domain. Semantic heterogeneity refers to the inherent meaning and interpreta-
tion of data — the terms information and knowledge are often used instead of
data to refer to semantic content.

Ouksel and Sheth introduce this classification, which we will refer to as the S
classification, to study heterogeneity of information systems — the applications
that process data. It is equally effective at describing the data itself. Data equiv-
alence is ambiguous because of its dependence on the desired level of abstraction.
The S classification allows us to describe which level of abstraction we are us-
ing when analyzing a particular data equivalence, and to highlight differences
between data equivalences.

2.3 Datatypes

Any study of data needs to think about datatypes. Broadly speaking, we define
a datatype to be some set of data. Notionally, a datatype is different than
an arbitrary set of data, because the data that constitute a type are supposed
to be “similar” in some way. Exactly what form this similarity takes will be
application-dependent, just like our notion of data equivalence. To illustrate
this, we present several example datatypes, and show how the S classification
helps classify them.

Integers. As our first example we can consider the integer types. This is a
very low-level set of types; its syntax is a binary string, or sequence of bytes. As
we have seen in previous sections, our interpretation of these bytes depends on
several factors. At the system level, we must know the integer’s endianness, as
this affects the order of the bytes in the sequence. At the structural level, we
must know the length (and therefore range) of the integer; this is necessary, for
instance, to know how much space to reserve in memory for the integer value.
At the semantic level, we must know whether the application intends to use this
integer as a signed or unsigned value.

Each of these levels can be seen as imposing constraints on which particular
data can appear in the datatype’s set: an integer datatype contains all of the
data that are encoded as a byte string of a particular length, and are interpreted
as integers with a particular endianness and signedness. Taken together, this
constraint-based definition of the datatype’s set brings our original vague notion
of “similarity” into focus — but only for this particular datatype.

Postal address (XML). Next we look at a higher-level type — a postal address
encoded in XML. This data type might, for example, be used to send “electronic
business cards” between address book applications. An instance of this datatype
is shown in Figure 2.

At the semantic level, this datatype represents a postal address. As people
who have grown up with a postal system, we are able to encapsulate quite a bit
of semantic meaning into this concept. This datatype does not provide us with a
means of directly encoding this semantic meaning in the data, but it will inform
how we write applications that use this data.

At the syntax level, we are using the Extensible Markup Language (XML).
Therefore, by extension, our datatype implicitly includes all of the syntactic

<address>

<name>Douglas Creager</name>

<company>Oxford University Computing Lab</company>

<line1>Wolfson Building</line1>

<line2>Parks Road</line2>

<city>Oxford</city>

<postcode>OX1 3QD</postcode>

<country>UK</country>

</address>

Fig. 2. Example instance of the postal address XML type

assumptions and requirements of the XML standard [1]: for instance, a binary
string that is not well-formed XML cannot be a valid instance of our datatype.

At the structural level, we have an XML schema (not shown) that specifies
which XML tags must be used, the content of those tags, and the order in which
the tags must appear. Like at the syntax level, this implicitly includes into the
datatype definition all of the structural assumptions and requirements of our
XML schema: a well-formed XML document that does not match our schema is
not a valid instance of our datatype.

At the system level, things are more vague, and will depend in part on the de-
tails of the application that is accessing the data. Further, the different aspects
of the system interpretation of the datatype are interrelated with the interpre-
tations of the other three levels. Our application will need to have some sort of
XML parser, which will handle the syntax level. It will also need application-
level logic for parsing the abstract document tree, taking care of the structural
level. The application itself will be written with some intuitive notion of what an
address actually is, taking care of the semantic level. In addition, there will be
the low-level details of the application itself, such as the hardware and operating
system that it is running on, and any shared libraries that it uses.

Again, we can look at these levels as imposing constraints on the members of
the datatype’s set: the set contains all of those data that are encoded in XML,
using this particular address schema, and that are used as “postal addresses”
within the context of some application.

Postal address (database). As another example, we might decide to store
these postal addresses in a relational database. This could correspond to an ad-
dress book application’s internal state of the various business cards that someone
has collected. An instance of this datatype is shown in Figure 3.

Semantically, this datatype represents a postal address, just as in the previous
example. Specifically, this means that the semantic-level constraints imposed on
the corresponding sets are the same for both of these datatypes.

Structurally, however, they are obviously quite different. The tables used in
this example are based on the relational model, which is quite different than the
hierarchical model of XML. Instead of using an XML schema to define which

ADDRESSES table
ADDRESS ID 13

NAME "Douglas Creager"

COMPANY "Oxford University Computing Lab"

LINE 1 "Wolfson Building"

LINE 2 "Parks Road"

CITY "Oxford"

POST CODE "OX1 3QD"

COUNTRY ID 30

COUNTRIES table
COUNTRY ID 30

NAME "United Kingdom"

ABBREV "UK"

Fig. 3. Example instance of the postal address database type

tags must appear in the tree of XML data, we have a database schema that
defines which relational tables we use, and how the tables relate to each other.

The system and syntax levels of this example are rather blurred. Relational
databases do provide an application-visible syntax in the SQL query language,
but this is not the syntactic representation of the data itself. In fact, we have
several similar datatypes that are equivalent semantically and structurally, but
different syntactically. We could be referring to the internal representation used
by a particular database server, such as PostgreSQL or Oracle. We could be
referring to the wire format used by the database server to send the results of
a query back to the application. We could be referring to the equivalent SQL
INSERT statement that could be used to reconstruct the data. We could be
referring to the abstract notion of a relational tuple, in which case there is no
actual low-level syntax that can be represented in a computer. Often, these
syntactic differences will not matter, and we can exploit data independence by
ignoring them. Other times, they will be important, and must be included in
the datatype definition.

Postal address (Semantic Web). As one final example, we can describe a
third postal address datatype, which uses the formalisms and notations of the
Semantic Web [13]. The Semantic Web provides a data representation that
is better able to express the semantics of the data involved. It does this by
representing data using subject-predicate-object triples as defined by the Resource
Description Framework (RDF) [14, 15]. One can envision these triples as edges
in a graph, with the subject being a source node, the object being a destination
node, and the predicate being a labeled edge connecting the two. This graph
notation is used in Figure 4 to show how a postal address could be expressed in
the Semantic Web. (Technically, we should give full URIs [16] for the labels of
the edges and the address1 and uk nodes; we provide shorter labels for brevity.)

address1

Oxford Univ. Com. Lab

Douglas Creager

Parks Road

Oxford

OX1 3QD

name

company

line2

city

postcode

Wolfson Building
line1

uk

country

United Kingdom

UK

name

abbrev

Fig. 4. Example instance of the postal address Semantic Web type

Semantically, this datatype once again represents a postal address; however,
by using subject-predicate-object triples, we have encoded a version of these
semantics into the data more directly.

Syntactically, the Semantic Web uses XML to encode these graphs of RDF
triples, so in one very specific, low-level sense, this datatype is similar to the
XML postal datatype described previously. Structurally, however, not just any
XML data is allowed — Semantic Web data must exist in a well-formed RDF
graph, encoded in XML in a specific way. So while the XML syntax is used for
both datatypes, they differ greatly in structure. As with the previous examples,
the Semantic Web provides a schema language, the Web Ontology Language
(OWL) [17, 18], for stating which particular semantic structures are used. Our
datatype would include an OWL ontology describing the overall structure of the
graph in Figure 4. RDF graphs that do not match this ontology would not be
instances of this datatype.

3 Formalization

The example datatypes described in the previous section were not particularly
complex. Even so, they were able to incorporate several formalisms that repre-
sent data in completely different ways. A fully generic theory of data must be
able to incorporate all of this data, regardless of the differences in the underlying
formalisms. In this section we describe such a theory, using a simple running
example to provide clarity.

In order to talk about data, we must first define it. Since we are aiming for
full generality in this type theory, we cannot assume any kind of structure when
referring to data — it must be considered completely opaque. We also define

equivalences, which are relations between data that are reflexive, symmetric, and
transitive:

[Datum]

Equivalence : P(Datum ↔ Datum)

∀$: Datum ↔ Datum •
$ ∈ Equivalence ⇔

∀ d : dom $ • d $ d ∧
∀ d1, d2 : Datum • (d1 $ d2) ⇒ (d2 $ d1) ∧
∀ d1, d2, d3 : Datum • (d1 $ d2 ∧ d2 $ d3) ⇒ (d1 $ d3)

As mentioned above, datatypes are represented as sets of data. We can define
a simple is-a relation between data and datatypes. Note that this definition says
nothing about polymorphism; it is neither mandated nor prohibited.

Datatype == P Datum

is-a : Datum ↔ Datatype

∀ d : Datum; t : Datatype • d is-a t ⇔ d ∈ t

However, we have also said that a datatype is not just any set of data; the
data in question must be similar in some way. We will express this similarity by
defining interpretations and constraints for each datatype. The interpretations
and constraints can both be classified using the S classification.

We can apply this to one of the integer types mentioned in Section 2.3. There
are multiple integer datatypes, since bit length, endianness, and signedness all
affect the integer interpretation. For simplicity, we will look at one integer
datatype in particular: 16-bit, little-endian, and unsigned.

Integer16,L,U : Datatype

Our first task is to specify the datatype’s interpretations. In the case of the
integer datatypes, there are two interpretations: its binary encoding, and its
integer value. We use the Syn subscript to denote that the binary interpretation
is syntactic, and the Sem subscript to denote that the integer interpretation is
semantic. Both interpretations are defined as partial functions:

binarySyn : Datum 7→ ByteString
integerSem : Datum 7→ Z

In the first case, we define the binary interpretation using the byte string type
specified in Appendix A. Similarly, we define an integer interpretation in terms
of Z’s integer type (Z). It is important to point out that this integer interpreta-
tion is not the same as any concrete representation of an integer — rather, it is an
abstract mathematical concept that fully captures the semantics of an “integer”.

With these interpretations in place, we can formalize our notion of binary equiv-
alence and integer equivalence. Two data are binary-equivalent if their binary
interpretations are equal; a similar definition applies to integer equivalence.

$bin : Equivalence
$int : Equivalence

∀ d1, d2 : Datum •
(d1 $bin d2) ⇔ (binarySyn d1 = binarySyn d2) ∧
(d1 $int d2) ⇔ (integerSem d1 = integerSem d2)

In both cases, we have defined the interpretation as a generic property that
can be applied to any Datum, since there are many other datatypes that might be
encoded in binary or interpreted as an integer. They are both partial functions,
though, because not every Datum has a binary or integer interpretation. We
must then apply these generic properties to our specific datatype:

Integer16,L,U ⊆ dom binarySyn

Integer16,L,U ⊆ dom integerSem

After defining the interpretations, we must also specify the datatype’s con-
straints. Each of these constraints will depend in some way on at least one of
the interpretations. First we have the structural constraint that our integer type
is 16 bits long. This is defined in terms of the datatype’s binary interpretation.
Note that this is a two-way constraint; we must not only say that each of our in-
tegers is 16 bits long, but also that every 16-bit binary string can be interpreted
as an integer of this type.

∀ i : Integer16,L,U • binarySyn i ∈ Bytes 2

∀ b : Bytes 2 • ∃1 i : Integer16,L,U • binarySyn i = b

Our other constraint states how the binary and integer interpretations relate
to each other, which we can calculate using the functions in Appendix A. This
constraint is informed by both the system-level endianness property and the
semantic-level signedness property. As before, the constraint is two-way: we
must explicitly state that every integer interpretation in the correct numeric
range has a corresponding Integer16,L,U.

∀ i : Integer16,L,U • integerSem i = unsignedInt binarySyn i

∀ z : 0..(216 − 1) • ∃1 i : Integer16,L,U • integerSem i = z

This completes a formal specification of this particular integer type. The other
integer types can be defined analagously.

The amount of detail that went into the description of this integer datatype
highlights an important distinction in our formalism. The Integer16,L,U datatype
had a full specification — we provided a complete, formal description of both
of the datatype’s interpretations, and of the constraints that relate them. In

this particular case, this full specification was not overly verbose. We were able
to use Z’s existing mathematical integer type (Z) to model the semantics of an
integer, and it was relatively straightforward to provide a formal definition of
binary data (ByteString) in Appendix A.

Often a complete formal description is not readily available, and the effort
involved in developing a precise definition might not be worth the benefit gained
from doing so. In these cases, it is possible to provide a datatype with a partial
specification, where we define some of the interpretations and constraints as
abstract entities. This becomes especially useful when considering how multiple
partially-specified datatypes relate to each other.

For instance, we can revisit the postal address types, which have new inter-
pretations that were not used by the integer datatype. However, whereas we
provided (or were given) full definitions of the Z and ByteString types, we will
leave these new interpretations abstract:

[XMLDocument ,XMLSchema]
[RelationalTuple,RelationalSchema]
[PostalAddress]

XMLDocument represents the logical document tree of an XML document, while
RelationalTuple represents a row from some relational table. In both cases, we
have also mentioned a type that represents the schema that describes the data’s
structure. PostalAddress represents the semantic meaning of a postal address.
We can now define interpretations and equivalences for these three Z types,
similarly to the integer example:

xmlStruct : Datum 7→ XMLDocument
relationalStruct : Datum 7→ RelationalTuple
addressSem : Datum 7→ PostalAddress

$xml : Equivalence
$rel : Equivalence
$addr : Equivalence

∀ d1, d2 : Datum •
(d1 $xml d2) ⇔ (xmlStruct d1 = xmlStruct d2) ∧
(d1 $rel d2) ⇔ (relationalStruct d1 = relationalStruct d2) ∧
(d1 $addr d2) ⇔ (addressSem d1 = addressSem d2)

With these interpretations defined, we can define the types themselves. The
XML address datatype will have binary, XML, and address interpretations; the
relational address datatype will have relational and address interpretations. (We
ignore the syntax of the relational datatype to maintain data independence.)

AddressXML : Datatype

AddressXML ⊆ dom binarySyn

AddressXML ⊆ dom xmlStruct

AddressXML ⊆ dom addressSem

AddressRel : Datatype

AddressRel ⊆ dom relationalStruct

AddressRel ⊆ dom addressSem

Next we specify the constraints, for which we will need several helper func-
tions and relations, which, again, we do not provide full definitions for:

encodes: ByteString 7→ XMLDocument

instanceof: XMLDocument ↔ XMLSchema
instanceof: RelationalTuple ↔ RelationalSchema
AddressSchemaXML : XMLSchema
AddressSchemaRel : RelationalSchema

interpret: XMLDocument 7→ PostalAddress
interpret: RelationalTuple 7→ PostalAddress

The encodes function maps a byte string to the XML document that it repre-
sents. (The function is partial since not all byte strings represent valid XML
documents.) The two flavors of the instanceof relation allow us to verify that
an XML document or relational tuple matches its corresponding schema. We
also mention the particular schemas used by our XML and relational datatypes.
The two flavors of interpret allow us to determine the semantic meaning of an
XML document or relational tuple. These are then applied to the datatypes as
constraints:

∀ d : AddressXML •
(binarySyn d) encodes (xmlStruct d) ∧
(xmlStruct d) instanceof AddressSchemaXML ∧
(xmlStruct d) interpret (addressSem d)

∀ d : AddressRel •
(relationalStruct d) instanceof AddressSchemaRel ∧
(relationalStruct d) interpret (addressSem d)

This provides a formal rendering of the datatype definitions in Section 2.3. For an
XML postal address, its binary encoding must match its logical XML document;
this XML document must match the postal address schema; and the document
must have some valid real-world interpretation as a postal address. Similar
constraints apply to relational postal addresses.

4 Canonicalization and transformation

The formalism presented in the previous section allowed us to give formal defi-
nitions for the datatypes from Section 2.3. However, we only provided a partial
specification for the postal address types. If we were so inclined, it would cer-
tainly have been possible to give them full specifications. This would have re-
quired a formal specification of each of the datatypes’ interpretations. For XML,

it would be relatively straightforward to define in terms of trees of data nodes;
for relational data, we have the underlying relational model to work with. The
real-world semantics could have been modeled using a knowledge-representation
framework such as the Semantic Web. All of these specifications are possible;
however, they would also be much more verbose than what we have presented,
and time-consuming to produce and verify. As will be shown in this section,
we can still describe and reason about useful properties of these datatypes with
partial specifications, rendering this cost unnecessary much of the time. We look
specifically at canonicalization and transformation.

4.1 Canonicalization

One example that highlights the importance of differing notions of equivalence is
data canonicalization. A well-known current example of canonicalization involves
XML documents and digital signatures [5, 19, 20].

The problem stems from the fact that every XML document has many differ-
ent encodings as a concrete sequence of bytes. Three aspects of the XML syntax,
in particular, affect the encoding of a document: attributes, namespaces, and
whitespace. In most XML applications, these differences are not a problem, since
the application works with a high-level view of the XML content, often in the
form of the Document Object Model API [21], which represents an XML docu-
ment by its abstract tree structure. However, one application area where these
differences are important is digital signatures. Briefly, digital signatures are a
more cryptographically-secure version of checksums and error-correcting codes.
They provide a means of attesting that the content of a document has not been
modified in transit between two parties. This is an important security feature in
modern applications that helps prevent, among other things, man-in-the-middle
attacks.

The algorithms used to implement digital signatures are not constrained to
XML documents; they work on any binary payload. Alice can send an XML
document to Bob, signing it before sending it along the communications chan-
nel. However, there might be communications gateways in between Alice and
Bob that modify the binary representation of an XML document without mod-
ifying the document structure. When Bob receives the document, its binary
representation will have changed, and Alice’s signature will no longer match the
document.

Looking at this in terms of our datatype formalism, we can define a function
that can sign a byte string:

[Signature]

sign : ByteString → Signature

∀ b1, b2 : ByteString • (sign b1 = sign b2) ⇔ (b1 = b2)

This captures the essence of a digital signature: if the signatures match, the byte
strings most likely match as well; conversely, if the signatures do not match, the

byte strings are different. (It should be noted that is not technically a true equiv-
alence. The number of signatures is much smaller than the number of binary
strings, so some overlap is inevitable. Rather than a full guarantee, matching
signatures strongly imply that the binary strings are the same. However, for the
purposes of this example, this distinction is not important, and we will treat it
as an equivalence.)

We can define a similar function for signing data that simply signs a datum’s
binary interpretation; signatures then work for arbitrary data, too, but only
under binary equivalence:

sign : Datum 7→ Signature

∀ d : Datum • sign d = sign binarySyn d
∀ d1, d2 : Datum • (sign d1 = sign d2) ⇔ (d1 $bin d2)

We run into a problem in the case of XML. Alice’s and Bob’s applications
do not care about binary equivalence; they care about XML equivalence. The
hope, then, is that the signature predicate holds for XML equivalence, too:

∀ d1, d2 : Datum • (sign d1 = sign d2)
?⇔ (d1 $xml d2)

For this to be the case, we would need the following implication to hold:

∀ d1, d2 : Datum • (d1 6$bin d2)
?⇒ (d1 6$xml d2)

However, we know this is not true; two different byte strings can represent the
same XML document.

What is needed is a canonicalization function. In the case of XML docu-
ments, we need to choose one particular binary encoding for each logical XML
document. We would then define a function canonxml that maps an XML datum
to its canonical binary encoding. The required property would then hold:

∀ d1, d2 : Datum • (canonxml d1 $bin canonxml d2) ⇔ (d1 $xml d2)

Two XML documents that have the same logical structure, when canonicalized,
would also have the same binary encoding. Expressed another way, two data
that are XML-equivalent, when canonicalized, would also be binary-equivalent.
In fact, we can define canonicalization as a generic property that a function
might provide between any two equivalences:

DataFunction == Datum 7→ Datum

canonicalizes
[/]

:
DataFunction ↔ (Equivalence × Equivalence)

∀ f : DataFunction; $1,$2 : Equivalence •
f canonicalizes

[
$1

/
$2

]
⇔

∀ d1, d2 : Datum • (d1 $1 d2) ⇔ (f d1 $2 f d2)

With this generic property defined, we can easily state that the canonxml function
canonicalizes XML equivalence in terms of binary equivalence:

canonxml : DataFunction

canonxml canonicalizes
[
$xml

/
$bin

]
It should be noted that this formalism does not help us find a detailed def-

inition of the canonxml function. In general, the definition of a canonicalization
function will be highly dependent on the details of the underlying data formalism
and how this relates to its binary encodings.

4.2 Transformations

The canonicalizations described in the previous section provide one category of
special data function. Transformations provide another. They differ in how
they relate to the data equivalences that hold on particular types. In the case of
canonicalization, the function is used to ensure that two equivalences agree with
each other. A transformation, on other hand, only deals with a single equiva-
lence; the function provides a bridge between two datatypes that maintains this
equivalence.

One situation where transformations are useful arises often in application in-
tegration: linking two heterogeneous applications with a communications chan-
nel. These applications will often have completely different datatypes for their
inputs and outputs; however, as implied by the fact that we want them to com-
municate, there is at least some semantic equivalence between the datatypes. (If
there were not, what communication would be possible?) We can return once
again to the postal address example, and consider two address book applications:
one which uses the relational datatype, and one which uses the XML datatype.
Since the datatypes both refer to postal addresses, they are semantically equiv-
alent; therefore, in theory, the two applications can communicate. However,
before we can even begin to consider the details of the communications channel
itself, we must reconcile the difference in datatypes. Assuming that rewriting
the applications is impossible or too expensive, some transformation is needed
to link the applications. This transformation would translate data from one
datatype to another, while maintaining the semantic equivalence.

We can model this situation similarly to the canonicalization example and
reuse the DataFunction type from that section. We need to introduce the notion
of typing the data functions, however:

source : Datatype ↔ DataFunction
dest : Datatype ↔ DataFunction

∀ t : Datatype; f : DataFunction •
t source f ⇔ dom f ⊆ t ∧
t dest f ⇔ ran f ⊆ t

We can define the source and destination datatypes for a data function; this
simply states that all of the function’s input or output values come from the

respective datatype. Since we have not prohibited polymorphism, we must define
this as a relation — i.e., there might be many datatypes that encompass the
input values for a particular function; all of them can be said to be sources of
the function. A data function links each of its sources to each of its destinations:

links
[

⇀
]

:
DataFunction ↔ (Datatype × Datatype)

∀ f : DataFunction; tS , tD : Datatype •
f links

[
tS ⇀ tD

]
⇔ (tS source f) ∧ (tD dest f)

Lastly, a data function maintains an equivalence if that equivalence holds be-
tween each of the function’s inputs and the corresponding output:

maintains : DataFunction ↔ Equivalence

∀ f : DataFunction; $: Equivalence •
f maintains $ ⇔

∀ d : dom f • d $ (f d)

With these definitions in place, we can state the existence of the required
transformation: it links the XML and relational postal address datatypes, and
maintains the postal address semantic equivalence.

xformAddress : DataFunction

xformAddress links
[
AddressXML ⇀ AddressRel

]
xformAddress maintains $addr

The xformAddress function is a transformation since it links the AddressXML and
AddressRel datatypes while maintaining the $addr equivalence. Note that once
again, we have abstracted away a lot of unnecessary detail — we have said
nothing about how xformAddress performs this transformation.

Since transformations are modeled as functions between data, they are also
composable. This allows us to consider sequences of datatypes, and sequences
of data functions:

TypeSequence == seq1 Datatype
FunctionSequence == seq1 DataFunction

types : TypeSequence ↔ FunctionSequence
source : Datatype ↔ FunctionSequence
dest : Datatype ↔ FunctionSequence

∀ ts : TypeSequence; fs : FunctionSequence •
ts types fs ⇔

#ts = #fs + 1 ∧
∀ i : 1 . . #fs • ts(i) source fs(i) ∧ ts(i + 1) dest fs(i) ∧
(head ts) source fs ∧
(last ts) dest fs

A sequence of functions is well-typed if the destination type of each data function
matches the source type of its successor. We can then define the source and dest
operators for sequences, much as they are defined for individual functions: the
source (destination) of a function sequence is the source (destination) of the first
(last) function in the sequence.

With these definitions, we can define a compose operator on function se-
quences:

compose : FunctionSequence → DataFunction

∀ f : DataFunction • compose 〈f 〉 = f
∀ fs1, fs2 : FunctionSequence •

compose fs1 a fs2 = (compose fs2) ◦ (compose fs1)
∀ t : Datatype; fs : FunctionSequence •

t source fs ⇔ t source (compose fs) ∧
t dest fs ⇔ t dest (compose fs)

The operator is defined in the obvious way using structural induction, exploiting
the fact that functional composition is associative. Note the order reversal; for
the ◦ operator, the function to apply first is on the right, whereas in a function
sequence, it is on the left.

5 Discussion

In this paper we have provided a formalism for an inter-application theory of
data. This formalism features full generality, in that any application data model
can be represented as is, without requiring conversion to another data formalism.
This theory represents data as abstract entities with several interpretations and
constraints, with the constraints defining how the interpretations of a datatype
relate to each other. Underlying formalisms such as the XML or relational
models can be incorporated into a specification to give a precise meaning to an
interpretation; however, this is optional. It is also valid for an interpretation to
remain abstract.

Our formalism is able to represent the low-level encoding details of a datatype
in addition to the usual high-level semantic descriptions. At first glance, this
seems to violate the data independence principle. However, this is not the case.
Data independence can be maintained, when necessary, simply by leaving the
datatype’s low-level syntactic and structural interpretations abstract, as in the
case of the AddressRel datatype.

However, data independence is not useful when studying problems like canon-
icalization and transformation in a fully generic way. First, we must be able to
handle different data formalisms, and cannot rely on a single abstraction to pro-
vide data independence. Second, we must be able to handle the data’s binary
encoding, which are exactly the details that are hidden by data independence.
By allowing (but not requiring) our formalism to include descriptions of these
low-level details, we are able to reason about this class of problems.

The similar notion of data refinement [9, Chapter 16] tackles many of these
issues from a slightly different viewpoint. Looking at the example of integer
endianness, one would consider the mathematical set of integers (Z) to be a
datatype that happens to be defined at a high, abstract level. One could then
define a lower-level type, such as Integer16,L,U, that represents a binary string
interpreted in a particular way. One would then prove that Integer16,L,U refines
Z — that a specification written in terms of Z could use Integer16,L,U as a drop-in
replacement without affecting the specification.

Data refinement is also possible with our framework. Instead of writing an
application specification in terms of the Z “datatype”, it is written in terms of
any Datum that has an integerSem interpretation. The refinement proof then
consists of showing how a datatype’s integerSem interpretation correctly relates
to one of its other interpretations. Our approach is different in two ways. First, Z
is defined as an interpretation rather than as a first-class datatype, which allows
multiple datatypes to have an integer interpretation. This difference does not
mean much in terms of expressiveness; with data refinement, it is just as easy to
define multiple types that all refine Z. It does, however, make possible the second
difference: that data equivalences are first class objects that might be defined
abstractly. This allows problems like canonicalization and transformation to be
investigated generically in terms of abstract equivalences, without having to rely
on the details of the datatypes involved.

It is important to note that this data theory is not meant to be a replacement
for any of the other data formalisms that have been mentioned. For instance,
our description of canonicalization is not meant to replace the work of the XML
Digital Signature initiative [5]; rather, it is meant to provide a higher-level frame-
work in which to ground the XML-specific canonicalization. We envision this
framework serving two purposes: as a bridge between data formalisms, and an
abstraction away from them. Again, this allows us to reason about generic data
without being forced to consider the particular formalism that it is defined in.

Further work in this area will focus on the transformation formalism men-
tioned in Section 4.2. The current type theory allows one to state the existence
of transformations, and to provide specifications of these transformations at
whatever detail is necessary. However, the theory provides no mechanism for
discovering transformations. We hope to exploit the composability of transfor-
mation to develop a transformation framework that supports efficient discovery,
while retaining the full generality of the type theory.

Acknowledgments

Doug Creager’s work is funded by the Software Engineering Programme of the
Oxford University Computing Laboratory. The authors would like to thank
David Faitelson for providing valuable feedback on the manuscript of this paper.
The comments of the anonymous reviewers were also very helpful in improving
the readability and content of the paper.

References

1. Bray, T., Paoli, J., Sperberg-McQueen, C.M., Maler, E., Yergeau, F., eds.: Exten-
sible Markup Language. W3C (2004) http://www.w3.org/TR/REC-xml/.

2. Codd, E.F.: A relational model of data for large shared data bases. Communica-
tions of the ACM 13 (1970) 377–387

3. Jacobs, B., Rutten, J.: A tutorial on (co) algebras and (co) induction. EATCS
Bulletin 62 (1997) 222–259

4. Shannon, C., Weaver, W.: The Mathematical Theory of Communication. Univer-
sity of Illinois (1963)

5. Eastlake, D., Reagle, J., Solo, D., eds.: XML-Signature Syntax and Processing.
W3C (2002) http://www.w3.org/TR/xml-dsigcore/.

6. Clark, J., ed.: XSL Transformations (XSLT). W3C (1999) http://www.w3.org/
TR/xslt/.

7. Spivey, J.M.: An introduction to Z and formal specification. Software Engineering
Journal 4 (1989) 40–50

8. Spivey, J.M.: The Z Notation: A Reference Manual. Prentice Hall International
(1989)

9. Woodcock, J.C.P., Davies, J.W.M.: Using Z: Specification, refinement, and proof.
Prentice Hall (1996)

10. Raggett, D., Le Hors, A., Jacobs, I.: HTML 4.01 Specification. W3C (1999)
http://www.w3.org/TR/html.

11. Ouksel, A.M., Sheth, A.: Semantic interoperability in global information systems.
SIGMOD Record 28 (1999) 5–12

12. Sheth, A.: Changing focus on interoperability in information systems: From sys-
tem, syntax, structure to semantics. In Goodchild, M.F., Egenhofer, M.J., Fegeas,
R., Kottman, C.A., eds.: Interoperating Geographic Information Systems, Kluwer
Publishers (1998)

13. Berners-Lee, T., Hendler, J., Lassila, O.: The Semantic Web. Scientific American
(2001) 29–37

14. Klyne, G., Carroll, J.J., eds.: Resource Description Framework (RDF): Concepts
and Abstract Syntax. W3C (2004) http://www.w3.org/TR/rdf-concepts/.

15. Beckett, D., ed.: RDF/XML Syntax Specification. W3C (2004) http://www.w3.
org/TR/rdf-syntax-grammar/.

16. Berners-Lee, T., Fielding, R.T., Masinter, L.: Uniform Resource Identifier (URI):
Generic syntax. IETF Requests for Comments 3986 (2005) http://www.ietf.org/
rfc/rfc3986.txt.

17. McGuinness, D.L., van Harmelen, F., eds.: OWL Web Ontology Language
Overview. W3C (2004) http://www.w3.org/TR/owl-features/.

18. Smith, M.K., Welty, C., McGuinness, D.L., eds.: OWL Web Ontology Language
Guide. W3C (2004) http://www.w3.org/TR/owl-guide/.

19. Boyer, J.: Canonical XML. W3C (2001) http://www.w3.org/TR/xml-c14n/.

20. Boyer, J., Eastlake, D.E., Reagle, J.: Exclusive XML Canonicalization. W3C
(2002) http://www.w3.org/TR/xml-exc-c14n/.

21. Le Hors, A., Le Hégaret, P., Wood, L., Nicol, G., Robie, J., Champion, M., Byrne,
S.: Document Object Model (DOM) Level 3 Core Specification. W3C (2004)
http://www.w3.org/TR/DOM-Level-3-Core/.

A Z Specification for Binary Integers

Any description of binary data must first define bits. Bits are simple — there
are exactly two of them: 0 and 1. We can also define a bit string, which is an
ordered sequence of bits.

Bit ::= 0 | 1

BitString == seqBit

We will often need to translate a binary string into its integer equivalent.
(This is not to be confused with interpreting integer datatypes; this is a low-
level helper function to get the decimal interpretation of a base-2 integer.)

intBit : Bit � N
intBits : BitString → N

intBit 0 = 0
intBit 1 = 1

intBits 〈〉 = 0
∀ b : Bit ; bin : BitString • intBits 〈b〉a bin = (intBits bin) ∗ 2 + (intBit b)

This allows us to define a byte, which is an 8-bit value, and a byte string,
which is an ordered sequence of bytes. We also define a Bytes function which
returns the set of all byte strings of a given length.

Byte == { b : BitString • #b = 8 }

ByteString == seqByte

Bytes : N � P ByteString

∀n : N • Bytes n = { b : ByteString • #b = n }

When referring to literal byte strings, we will denote the bytes by their numeric
(specifically hexadecimal) values, as in 〈〈48 6F〉〉.

The integer representation of a byte string is more complicated, because we
must contend with signedness and endianness issues. In this paper we are only
considering unsigned, little-endian numbers; this is the simplest case, since we
can use distributed concatenation to turn the little-endian byte string into an
equivalent little-endian bit string. This bit string can be evaluated using the
intBits function.

unsignedInt : ByteString → N

∀ b : ByteString • unsignedInt b = intBits (a/ b)

